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Abstract Much effort is put into the construction of general linear methods
with the aim of achieving an excellent long-time behavior for the integration
of Hamiltonian systems. In this article, a backward error analysis is presented,
which permits to get sharp estimates for the parasitic solution components and
for the error in the Hamiltonian. For carefully constructed methods (symmetric
and zero growth parameters) the error in the parasitic components typically
grows like hp+4 exp(h2Lt), where p is the order of the method, and L depends
on the problem and on the coefficients of the method. This is confirmed by
numerical experiments.
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1 Introduction

For the long-time integration of dynamical systems it is important to use
suitable numerical methods. It is well-known that symplectic one-step methods
have an excellent long-time behavior when applied to Hamiltonian systems,
symmetric one-step methods are well suited for reversible integrable systems.
Also certain classes of linear multistep methods nearly preserve the energy
over long times for second order Hamiltonian systems [11].
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Recently, much effort has been put into the construction of G-symplectic
general linear methods with zero growth parameters [4,2,3,8], and it is ex-
pected to obtain methods with a long-time behavior that is comparable to
symplectic (or symmetric) one-step methods. This article studies long-term
error estimates for such multi-value methods. We consider systems of differ-
ential equations

ẏ = f(y), y(0) = y0. (1)

Multi-value methods consist of a forward step procedure

Yn+1 = V Yn + hΦ(h, Yn), (2)

a starting procedure
Y0 = Sh(y0), (3)

and a finishing procedure
yn = Fh(Yn), (4)

which permits to extract the numerical approximation from Yn. If d is the
dimension of the differential equation (1) and V is a matrix of dimension r× r
(by abuse of notation we write V in (2) instead of the correct V ⊗ I, where I
is the d-dimensional identity matrix), then the vector Yn is of dimension rd .

If r > 1, the recursion of the forward step procedure has parasitic solutions.
The aim of the present article is to study the long-time behavior of these
parasitic solutions.

We are mainly interested in stable methods having good conservation prop-
erties. We therefore assume that all eigenvalues of V are simple and lie on the
unit circle. We denote them by ζ1 = 1, ζ2, . . . , ζr. We let vj and v∗j be right and
left eigenvectors (V vj = ζjvj and v∗jV = ζjv

∗
j ) satisfying v∗j vj = 1. To relate

the forward step procedure (2) to the differential equation (1) we assume the
pre-consistency condition

Φ(0, Y ) = Bf(UY ), Uv1 = 1l, (5)

where B is an r × s matrix, U an s × r matrix, and 1l is the vector with all
components equal to 1. Again, by abuse of notation, we avoid the heavy tensor
notation and use matrices B and U instead of B ⊗ I and U ⊗ I. For UY =
W = (Wi)

s
i=1 ∈ Rsd the vector f(W ) ∈ Rsd is defined by f(W ) = (f(Wi))

s
i=1.

We assume throughout this article that the forward step method is consistent.
This means that

v∗1Φ(0, yv1) = f(y), (6)

and, for pre-consistent methods (5), is equivalent to v∗1B1l = 1.
Backward error analysis is a crucial ingredient for the study of the long-time

behavior of numerical integrators, and it has successfully been applied to one-
step and linear multistep methods. We extend this tool to multi-value methods
in Section 2. In this context we study the effect of symmetry on the modified
equations and we discuss the role of growth parameters. Section 3 presents
the main results: sharp estimates for the parasitic solution components and a
proof of the long-time behavior of multi-value methods, when they are applied
to Hamiltonian systems. Numerical experiments are shown in Section 4. They
confirm the sharpness of the theoretically obtained error estimates.
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2 Backward analysis for multi-value methods

With the aim of separating smooth and parasitic components in the numerical
solution yn = Fh(Yn), we consider approximations to Yn of the form

Ŷn = Y (tn) +

r∑
j=2

ζnj Zj(tn), (7)

where tn = nh, and the coefficient functions Y (t), Zj(t) are independent of
n, but depend smoothly on h. Such expansions have first been considered for
the study of the long-time behavior of linear multistep methods [9], see also
[11]. There is a striking connection to the technique of modulated Fourier
expansions, which is applied to the study of the long-time behavior of analytic
and numerical solutions for highly oscillatory problems [12].

2.1 Modified differential equation

We derive a system of modified equations for the smooth functions Y (t) and
Zj(t). These modified equations only depend on the forward step procedure,
and are independent of the starting and finishing procedures.

Theorem 1 Consider a forward step procedure (2) with matrix V having sim-
ple eigenvalues of modulus 1. Then there exist h-independent real functions
fl(y1) and complex functions gkl(y1), ajl(y1), and bjkl(y1), such that for an
arbitrarily chosen truncation index N and for every solution yk(t), zkj(t) of
the system (j, k = 1, . . . , r)

ẏ1=f(y1) + h f1(y1) + . . .+ hN−1fN−1(y1)

yk=h gk1(y1) + . . .+ hNgk,N (y1) for k > 1

żjj=
(
aj0(y1) + h aj1(y1) + . . .+ hN−1aj,N−1(y1)

)
zjj

zjk=
(
h bjk1(y1) + . . .+ hNbj,k,N (y1)

)
zjj for k 6= j

(8)

the approximations (7) with

Y (t) =

r∑
k=1

yk(t) vk, Zj(t) =

r∑
k=1

zkj(t) vk (9)

satisfy (2) with a small defect, i.e.,

Ŷn+1 = V Ŷn + hΦ(h, Ŷn) +O(hN+1) +O(h‖Z‖2)

as long as y1(tn) remains in a compact set. The constant symbolized by O(·) is
independent of h, but depends on the truncation index N . We use the notation
‖Z‖ = max{|zjk(tn)| ; j, k = 1, . . . , r}.
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Proof Inserting (7) into the forward step procedure and expanding the non-
linearity around Y (tn) yields

Y (t+ h)=V Y (t) + hΦ
(
h, Y (t)

)
+O(h‖Z‖2)

ζj Zj(t+ h)=V Zj(t) + hΦ′
(
h, Y (t)

)
Zj(t) +O(h‖Z‖2).

(10)

Neglecting terms of size O(h‖Z‖2) and using (9), we get from the upper rela-
tion

yk(t+ h) = ζkyk(t) + h v∗kΦ
(
h, Y (t)

)
.

We expand the left-hand side into a Taylor series around h = 0 and thus obtain
(omitting the argument t)

ẏ1 +
h

2
ÿ1 + · · · = Ψ1(h, y1, . . . , yr)

(1− ζk) yk + h ẏk +
h2

2
ÿk + · · · = hΨk(h, y1, . . . , yr), k = 2, . . . , r.

(11)

Differentiation of the relations for yk (k = 2, . . . , r) and recursive elimination
of the first and higher derivatives, and also of y2, . . . , yr on the right-hand side,
yields the second relation of (8) with a defect of size O(hN+1). In the same way
one can eliminate the second and higher derivatives in the first equation of (11)
and thus obtains a differential equation for y1. By the consistency assumption
(6), the h-independent term of this differential equation becomes f(y1).

Neglecting terms of size O(h‖Z‖2) in the second relation of (10) yields

ζjzkj(t+ h) = ζkzkj(t) + h v∗kΦ
′(h, Y (t)

)
Zj(t). (12)

We expand the left-hand side into a Taylor series, and apply the same elim-
ination procedure as for the smooth component Y (t). This then gives a first
order differential equation for zjj and algebraic relations for zkj (k 6= j), and
terminates the proof of (8). ut

2.2 Initial values

For n = 0 and Ŷ0 = Y0 = Sh(y0) the relation (7) gives

Sh(y0) = Y (0) +

r∑
j=2

Zj(0).

Because of the algebraic relations in (8) this represents a nonlinear algebraic
equation for the h-dependent vectors y1(0), z22(0), . . . , zrr(0). For h = 0 we
get

y1(0)
∣∣
h=0

= v∗1S0(y0), zjj(0)
∣∣
h=0

= v∗jS0(y0),

and the implicit function theorem guarantees the existence of a local unique
solution for sufficiently small h.
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The initial values zjj(0) for j = 2, . . . , r determine, on intervals of length
O(1), the size of the parasitic solution components. We shall investigate how
they depend on the choice of the starting procedure. Let us denote the forward
step procedure (2) by Yn+1 = Gh(Yn). It follows from Theorem XV.8.2 of [13]
that for a given Gh(Y ) and a given finishing procedure Fh(Y ) there exist a
unique (as formal power series in h) starting procedure S∗h(y) and a unique
one-step method yn+1 = Φ∗h(yn), such that

Gh ◦ S∗h = S∗h ◦ Φ∗h and Fh ◦ S∗h = identity. (13)

This means that for the choice Y0 = S∗h(y0) the numerical solution obtained
by the multi-value method is (formally) equal to that of the one-step method
Φ∗h. For this reason, the method Φ∗h is called underlying one-step method.

For all common multi-value methods and in particular for general linear
methods (see [1]) the underlying one-step method and the components of the
starting procedure are B-series. Their coefficients can be computed recursively
from the relations (13) by using the composition formula for B-series.

Theorem 2 Let the starting procedure Sh(y0) satisfy

Sh(y0) = S∗h(y0) +O(hq), (14)

and assume that the finishing procedure is given by Fh(Y ) = v∗1Y = y1. Then,
the initial values for the system of modified equations (8) satisfy

y1(0) = y0 +O(hq), zjj(0) = O(hq).

Proof For the exact starting procedure S∗h(y0) the numerical solution {yn}n≥0
is that of the underlying one-step method and does not have parasitic compo-
nents. Consequently, we have y1(0) = y0 and zkj(0) = 0 for all k and j. A per-
turbation of this starting procedure implies, by the implicit function theorem,
a perturbation of the same size in the initial values y1(0), z22(0), . . . , zrr(0).

ut

Remark 1 For a finishing procedure, given by Fh(Y ) = v∗1Y (which is the typi-
cal situation), the numerical solution is close to yn = y1(tn) +

∑r
j=2 ζ

n
j z1j(tn),

and the modified differential equation of the underlying one-step method is
the differential equation of (8) for y1. If this one-step method is of order p,
then we have fj(y1) = 0 for j = 1, . . . , p− 1 in the modified equation.

If Fh(Y ) = dTY + O(h) with dTv1 = 1 then, due to the algebraic rela-
tions (8) for yk, k = 2, . . . , r, there is a bijection Fh(Y ) ↔ v∗1Y = y1 which
permits to obtain the modified equation for the underlying one-step method
from (8).
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2.3 Growth parameters

The parasitic solution components are determined by the functions zjj(t).
To study their long-time behavior we first examine the leading term in the
differential equation (8) for zjj . For k = j the equation (12) yields

ζj żjj = v∗jΦ
′(0, y1v1) vjzjj +O(h|zjj |).

Subject to the pre-consistency assumption (5), we obtain

żjj = µj f
′(y1) zjj +O(h|zjj |), µj = ζ−1j v∗jBUvj . (15)

The coefficients µj are called growth parameters of the multi-value method.
They determine to a large extent the long-term behavior of the parasitic com-
ponents Zj(t). For linear multistep methods with generating polynomials (ρ, σ)
these growth parameters, given by µj = σ(ζj)/(ζjρ

′(ζ)) and introduced in [6],
cannot be zero for irreducible methods.

However, recently, general linear methods have been constructed [4] for
which the growth parameters corresponding to parasitic roots are all zero.
This is an interesting property in view of the long-term energy conservation
in the numerical solution of Hamiltonian differential equations.

2.4 Modified differential equation of symmetric methods

Consider a multi-value method, equipped with a finishing procedure. We call
it symmetric (see [13]) if the underlying one-step method is symmetric, i.e., if
Φ∗h = (Φ∗−h)−1. This implies that the modified differential equation of Φ∗h is in
even powers of h. Without additional assumptions on the method, we cannot
expect to have a similar result for the whole system (8).

Theorem 3 Consider a forward step procedure (2), where V is of dimension 2
with eigenvalues 1 and −1, and assume that it is mathematically equivalent to

Yn = V Yn+1 − hΦ(−h, Yn+1).

Then, the equations (8) of Theorem 1 contain only expressions with even pow-
ers of h.

Proof Neglecting terms of size O(hN+1) and O(h‖Z‖2), the functions Y (t)
and Zj(t) of Theorem 1 satisfy

Y (t+ h)=V Y (t) + hΦ
(
h, Y (t)

)
ζj Zj(t+ h)=V Zj(t) + hΦ′

(
h, Y (t)

)
Zj(t),

(16)

where the prime in Φ′(h, Y ) stands for a derivative with respect to Y . Our
assumption on the forward step procedure implies that

Y (t)=V Y (t+ h)− hΦ
(
−h, Y (t+ h)

)
Zj(t)=V ζj Zj(t+ h)− hΦ′

(
−h, Y (t+ h)

)
ζj Zj(t+ h),
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which, substituting t− h for t, gives

Y (t− h)=V Y (t)− hΦ
(
−h, Y (t)

)
ζ−1j Zj(t− h)=V Zj(t)− hΦ′

(
−h, Y (t)

)
Zj(t),

(17)

Let us consider first the components of the vector Y (t). Comparing the upper
relations of (16) and (17) we notice that the components yk(t) of Y (t) have to
satisfy the same equations for h and for −h.

Since, by assumption, ζ2 = −1 is the only eigenvalue of V different from 1,
we have ζ−12 = ζ2. The lower relation of (16) is therefore equal to the lower
relation of (17), where h is replaced by −h. Consequently, also the components
of Z2(t) have to satisfy the same equations for h and for −h. This implies that
all equations of (8) are in even powers of h. ut

3 Long-term behavior of multi-value methods

Insight into the long-term behavior of multi-value methods requires

– the study of properties of the underlying one-step method. Its modified
differential equation is closely related to the equation for y1 in (8).

– the study of boundedness of the parasitic solution components, which are
given by the differential and algebraic equations for zjk in (8).

3.1 Bounds on the parasitic solution components

It follows from Theorem 1 that the coefficient functions of the parasitic solution
components (9) satisfy

żjj = hMA
(
h, y1(t)

)
zjj

zjk = hB
(
h, y1(t)

)
zjj for k 6= j.

(18)

In general we have M = 0, but if the growth parameters (15) of the method
are zero we have M = 1, and if in addition to zero growth parameters the
assumptions of Theorem 3 are satisfied we have M = 2. If the vector field f(y)
of (1) is smooth and has bounded derivatives (which excludes stiff and highly
oscillatory problems), the functions A(h, y1) and B(h, y1) are bounded as long
as y1(t) stays in a compact set. Gronwall’s Lemma then implies

‖zjj(t)‖ ≤ ‖zjj(0)‖ exp(hMLt), (19)

where L is a bound on the norm or, better, the logarithmic norm of A(h, y1).
For k 6= j the functions zjk(t) are bounded by the same expression with an
additional factor Ch.
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3.2 Energy conservation for Hamiltonian systems

For a Hamiltonian system

ẏ = J−1∇H(y), J =

(
0 I
−I 0

)
(20)

the Hamiltonian function H(y), also called energy, is preserved along exact
solutions. We are interested to know how well the energy is preserved by the
numerical solution of a multi-value method.

Theorem 4 Consider a multi-value method of order p, a starting procedure
satisfying (14) with q, and let 0 ≤M ≤ q be the integer such that the modified
equations for zjj, j = 2, . . . , r, satisfy (18). Furthermore, assume the existence

of a modified Hamiltonian H̃(y) satisfying H̃(y)−H(y) = O(hp) which is well
preserved by the flow ϕ̃t(y) of the underlying one-step method, more precisely,

H̃
(
ϕ̃h(y)

)
= H̃(y) +O(hr+1) (21)

with p ≤ r ≤ 2q. We then have, for t = nh,

H(yn)−H(y0) = O(hp) +O(thr) +O
(
hq+1 exp(hMLt)

)
as long as t = O(h−M ).

Proof Recall that for a given initial value y0 the numerical solution is obtained
from Y0 = Sh(y0), the forward step procedure Yn+1 = V Yn + hΦ(h, Yn), and
the finishing procedure yn = Fh(Yn). The proof is in several steps.

a) We use the expansion (7) only locally on one step. This means that

for every n we compute functions Y [n](t) and Z
[n]
j (t) satisfying the modified

equations (8) such that

Yn = Y [n](0) +

r∑
j=2

Z
[n]
j (0).

It follows from Theorem 1 that (with the choice N = 2q)

Yn+1 = Y [n](h) +

r∑
j=2

ζjZ
[n]
j (h) +O(h2q+1)

as long as the parasitic components are bounded as ‖Z(t)‖ = O(hq). By the
uniqueness of the initial values (Section 2.2) this implies that

Y [n+1](0) = Y [n](h) +O(h2q+1), Z
[n+1]
j (0) = ζjZ

[n]
j (h) +O(h2q+1). (22)

b) The estimates (19) and (22) yield

‖z[n+1]
jj (0)‖ ≤ ‖z[n]jj (h)‖+ Ch2q+1 ≤ ‖z[n]jj (0)‖ exp(hM+1L) + Ch2q+1.
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Applying a discrete Gronwall Lemma we obtain for t = nh

‖z[n]jj (0)‖ ≤ ‖z[0]jj (0)‖ exp(hMLt) + Ch2q t exp(hMLt). (23)

c) We assume now that the finishing procedure is given by Fh(Y ) = v∗1Y , so
that the time-h flow of the modified equation for y1 in (8) represents the under-
lying one-step method. (For a more general finishing procedure, the nonlinear
transformation of Remark 1 has to be considered.) We consider the telescoping
sum

H̃
(
y
[n]
1 (0)

)
− H̃

(
y
[0]
1 (0)

)
=

n−1∑
l=0

(
H̃
(
y
[l+1]
1 (0)

)
− H̃

(
y
[l]
1 (0)

))
.

From the estimate (22) and the assumption (21) we obtain that every sum-
mand is bounded by O(h2q+1) + O(hr+1) (the first term can be removed,
because r ≤ 2q), which yields an error term of size O(thr). In the left-hand

side we substitute y
[n]
1 (0) from the relation

yn = y
[n]
1 (0) +

r∑
j=2

z
[n]
1j (0). (24)

The statement now follows from ‖z1j(0)‖ ≤ ch‖zjj(0)‖, from the bounds (23)

for z
[n]
jj (0), and from the assumption H̃(y)−H(y) = O(hp). ut

Similar long-time behavior (with terms increasing exponentially like
exp(hMLt)) has been obtained in [5] for partitioned linear multistep meth-
ods. It is interesting that certain linear multistep methods for second order
differential equations have an excellent energy preservation without any expo-
nential terms [11].

The crucial ingredient of the previous theorem is the existence of a modified
Hamiltonian function. Let us discuss the most important situations where such
a modified Hamiltonian is known to exist.

– If the underlying one-step method is a symplectic transformation, there ex-
ists a modified Hamiltonian satisfying (21) with arbitrarily large r, see [13,
Section IX.3]. Unfortunately, the results of [10] indicate that the underlying
one-step method of multi-value methods cannot be symplectic.

– If (20) is an integrable reversible system, and if the underlying one-step
method is symmetric (reversible), under mild non-resonance conditions
there exists a modified Hamiltonian satisfying (21) with arbitrarily large r,
see [13, Chapter XI].

– If the underlying one-step method is a B-series (this is the case for all gen-
eral linear methods), necessary and sufficient conditions for the existence
of a modified Hamiltonian satisfying (21) with a given r are presented
in [13, IX.9.4]. For example, only one condition is necessary for symmetric
methods of order 4 to satisfy condition (21) with r = 6.
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– If the underlying one-step method is a B-series, necessary and sufficient
conditions for conjugate-symplecticity up to a certain order r are given
in [15]. This implies the existence of H̃(y) satisfying (21). For example,
three conditions are necessary for methods of order 4 to satisfy condi-
tion (21) with r = 5.

Remark 2 A recent result of [7] shows that G-symplecticity of a general linear
method implies conjugate-symplecticity of the underlying one-step method.
Consequently, the assumption (21) is satisfied with arbitrarily large r, and the
second (linearly increasing) term in the estimate of Theorem 4 can be removed.

The factor hq in front of the exponentially increasing term can be made
smaller by designing starting procedures that better approximate S∗h(y). To get
results on intervals longer thanO(h−2), one has either to construct methods for
which also the h2-term in the modified differential equation for zjj(t) vanishes
or one has to restrict the class of methods and the class of problems that
permit to get improved bounds on zjj(t).

3.3 Further results on the long-time behavior

The estimates (19) prove that for multi-value methods for which the order q of
the starting procedure is larger or equal to the order p of the method, the para-
sitic solution components can be neglected on time intervals of length O(h−M ).
On such intervals the underlying one-step method completely describes the
qualitative behavior of the method and we have the following results:

– If the problem is an integrable reversible system and if the underlying one-
step method is symmetric (and reversible), then all action variables are
preserved up to an error of size O(hp). Moreover, the global error increases
at most linearly with time.

– If the underlying one-step method is conjugate-symplectic up to order r >
p, then quadratic first integrals (like the angular momentum) are conserved
up to an error of size O(hp) +O(thr). The same estimates hold for action
variables in integrable Hamiltonian systems.

4 Application to general linear methods

The aim of this section is to illustrate with numerical experiments that the
bounds of Theorem 4 and, in particular, those for the parasitic solution com-
ponents are sharp. We consider general linear methods, which are given by the
formulas (with the notation of Section 1)

Yn+1 = V Yn + hBf(W ), W = UYn + hAf(W ).
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4.1 A general linear method with zero growth parameters

The general linear method with coefficients

1 0 2/3 −1/6 −1/6 2/3
0 −1 1 −1/2 1/2 −1
1 1/2 1/12 0 0 0
1 1 −1/3 1/6 0 0
1 −1 5/3 −2/3 1/6 0
1 −1/2 7/6 −5/12 1/12 1/12

(the matrices V and B are in the upper row, and U and A in the lower row)
has recently been proposed in [4]. We have 2 external stages and 4 internal
stages, and the matrix V has eigenvalues ζ1 = 1 and ζ2 = −1. The vector

Yn =
( yn
an

)
provides an approximation yn to the solution and an approximation an to a
scaled second derivative. The finishing procedure is the mapping Fh(Yn) = yn.
If we denote by Rh(y0) the result of one step of the Runge–Kutta method

0
1/2 1/2
1 373/550 177/550
0 8233/50976 −30749/152928 3025/76464

0 −383/648 275/1296 1

then the starting procedure is given by

Sh(y0) =

(
y0

1
2

(
Rh(y0) +R−h(y0)

)
− y0

)
.

Let us collect some essential properties of this method.

– The method is of order p = 4 implying that the underlying one-step method
is of order 4.

– The method is symmetric in the sense of Theorem 3. As a consequence all
equations in (8) are in even powers of h.

– By construction, the growth parameter corresponding to the parasitic root
ζ2 = −1 is zero. Together with the symmetry of the method this implies
that M = 2 in (18).

– The first component of the exact starting procedure S∗h(y) is the identity
(as it is the case for Sh(y)). The B-series of the second component of S∗h(y),
computed from the relations (13), has coefficients1

∅ q [ q] [ q, q] [[ q]] [ q, q, q] [ q, [ q]] [[ q, q]] [[[ q]]]
0 0 −1/12 0 0 239/10368 59/1728 11/3456 11/1728

1 All the manipulations with B-series are done with the excellent Mathematica package
by Ander Murua.
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with zero coefficients for trees with odd order. Computing the B-series of
the starting procedure Sh(y), we find that Sh(y) = S∗h(y) +O(h6), so that
q = 6.

– We have computed the dominant error term of the underlying one-step
method. The coefficients for the trees of order 5 are

[ q, q, q, q] [ q, q, [ q]] [ q, [ q, q]] [ q, [[ q]]] [[ q], [ q]]
839/124416 491/10368 349/10368 169/5184 251/10368

[[ q, q, q]] [[ q, [ q]]] [[[ q, q]]] [[[[ q]]]]
457/31104 157/5184 83/10368 47/5184

Verifying the conditions of Theorem VI.8.3 of [13] we find that the method
is conjugate-symplectic up to order at least 5. Since the method is symmet-
ric, it is automatically conjugate-symplectic up to order 6. Checking the
criterion of [15] we have even found that the underlying one-step method
is conjugate-symplectic up to order 8, so that (21) is satisfied with r = 8,
see also [7].

Theorem 5 If the method of this section is applied to a Hamiltonian sys-
tem (20), then the energy is nearly preserved according to

H(yn)−H(y0) = O(h4) +O(th8) +O
(
h8 exp(h2Lt)

)
as long as t = nh = O(h−2).

Proof The first two error terms follow directly from Theorem 4. From Theo-
rem 2 we have that the parasitic solution components satisfy zjj(0) = O(h6),
so that zjj(t) = O

(
h6 exp(h2Lt)

)
. To justify the factor h8 in front of the ex-

ponential term we note that only the functions z1j enter the formula for yn.
By symmetry of the method, we have a factor h2 in the modified equation (8)
for z1j . This proves that z1j(t) = O

(
h8 exp(h2Lt)

)
. ut

4.2 Numerical experiments

To prove that the estimate of Theorem 5 is sharp, we apply the method of
Section 4.1 to the mathematical pendulum with the Hamiltonian

H(p, q) =
1

2
p2 − cos q,

and initial values q(0) = 3, p(0) = 0 as in [4]. We use constant step sizes.
Figure 2 shows the error in the Hamiltonian as a function of time for the step
sizes h = 0.25 and h = 0.125. The scales on the vertical axis differ by a factor
16, so that the O(h4) behavior of the error can be observed. As predicted by
the estimate of Theorem 5 the error behaves like O(h4) on intervals of length
O(h−2), and then follows an exponential growth. We notice that halving the
step size increases the interval of good energy preservation by a factor of 4.
This confirms the factor h2 in the exponential term. The constant L in the
estimate, which depends on the problem and on the coefficients of the method,
seems to be rather small.
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Fig. 1 Error in the Hamiltonian for the method of Section 4.1 applied to the mathematical
pendulum with initial values q(0) = 3, p(0) = 0.

4.3 Methods with complex parasitic roots

For general linear methods with a matrix V having complex eigenvalues, we
cannot apply Theorem 3. Let us compute the dominant terms in the modified
equations of Theorem 1 following its constructive proof. For k > 1, we obtain

yk = hνk1f(y1) + h2νk2f
′(y1)f(y1) +O(h3),

where νk1 = (1− ζk)−1v∗kB1l. If the coefficients νk1 vanish for all k > 1, then
we have νk2 = (1− ζk)−1v∗kBA1l.

The differential equation for zjj has the form

żjj =
(
µjf

′(y1) + h
(
µj1f

′(y1)f ′(y1) + µj2f
′′(y1)

(
f(y1), ·

))
+O(h2)

)
zjj ,

where µj = ζ−1j v∗jBUvj is the growth paremeter associated to ζj , and the
further coefficients are given by

µj1 =
v∗jBAUvj

ζj
+

∑
k 6=j,k 6=1

v∗jBUvkv
∗
kBUvj

ζj(ζj − ζk)
−
µ2
j

2

µj2 =
v∗jB(c · Uvj)

ζj
− µj

2
, c = A1l +

r∑
k=2

νk1 Uvk.
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We now consider the method 4134 of [4] with coefficients given by

1 0 0 −1/10 3/5 3/5 −1/10
0 0 1 −1/5 6/5 −6/5 1/5

0 −1 0
√

5/5 0 0 −
√

5/5

1 −
√

5/12 −1/12 0 0 0 0
1 0 −1/12 −1/12 1/4 0 0
1 0 1/12 −7/60 7/10 1/4 0

1
√

5/12 1/12 −1/5 7/10 1/2 0

.

For this method, whose matrix V has eigenvalues 1, i, and −i and which has
zero growth parameters µj , it turns out that νk1 = 0, νk2 6= 0 for all k, and
µj1 = µj2 = 0 for all j. Similar as in the previous example the parasitic
solution components are bounded by hr exp(h2Lt), where r depends on the
accuracy of the starting procedure.

To verify our estimates also in the case of complex parasitic roots, we have
constructed a starting procedure satisfying (14) with q = 5. It is given by

Sh(y0) =

 y0

R2
h(y0)− y0

R3
h(y0)− y0

 ,

where R2
h(y0) and R3

h(y0) are explicit Runge–Kutta methods with 4 stages.
For the finishing procedure, which consists of taking the first component as
numerical approximation, we computed the B-sries of the corresponding exact
starting procedure S∗h(y0). Their coefficients up to order four are given in
Table 1. The order conditions for the methods R2

h(y0) and R3
h(y0) are those

for explicit Runge–Kutta methods (see for example [14, pages 135–136]), where
the fraction of the right-hand side is replaced by the coefficients of Table 1.

We arbitrarily fix c3 = 1/2 and c4 = 1, and we consider c2 as a parameter.
The coefficients aij and bj can then be computed straightforwardly following
the construction of explicit Runge–Kutta methods of order 4 with 4 stages.

Table 1 Coefficients of the B-series for the exact starting procedure of method 4134

tree method R2
h(y0) method R3

h(y0)q 0 0

[ q] 3−
√
5

10
−3−

√
5

10

[ q, q] −3−
√

5
10

−3+
√
5

10

[[ q]] −35−16
√
5

300
−35+16

√
5

300

[ q, q, q] −59+18
√
5

90
59+18

√
5

90

[ q, [ q]] −187+60
√
5

600
187+60

√
5

600

[[ q, q]] −135+38
√
5

600
135+38

√
5

600

[[[ q]]] −131+37
√
5

1200
131+37

√
5

1200
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Fig. 2 Error in the Hamiltonian for the method of Section 4.3 applied to the mathematical
pendulum with initial values q(0) = 3, p(0) = 0.

The last order condition leads to a polynomial equation of degree 3 for the
parameter c2 with real solution

c2 =
20429509 + 5835398

√
5

177874806
and c2 =

−17237489 + 7047906
√

5

248413686

for the methods R2
h(y0) and R3

h(y0), respectively.
We have applied the method 4134 with our starting procedure to the math-

ematical pendulum with data as in Figure 2. Similar to the method of Sec-
tion 4.1 we can observe an exponential growth of the parasitic solution com-
ponents. For the step size h = 0.125 it becomes clearly visible after t = 90 000,
and for h = 0.0625 after t = 400 000. This agrees very well with our theoretical
estimates.
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