
Long-term system load forecasting based on data-driven linear

clustering method

Yiyan LI1 , Dong HAN1, Zheng YAN1

Abstract In this paper, a data-driven linear clustering

(DLC) method is proposed to solve the long-term system

load forecasting problem caused by load fluctuation in

some developed cities. A large substation load dataset with

annual interval is utilized and firstly preprocessed by the

proposed linear clustering method to prepare for modelling.

Then optimal autoregressive integrated moving average

(ARIMA) models are constructed for the sum series of

each obtained cluster to forecast their respective future

load. Finally, the system load forecasting result is obtained

by summing up all the ARIMA forecasts. From error

analysis and application results, it is both theoretically and

practically proved that the proposed DLC method can

reduce random forecasting errors while guaranteeing

modelling accuracy, so that a more stable and precise

system load forecasting result can be obtained.

Keywords Long-term system load forecasting, Data-

driven, Linear clustering, Autoregressive integrated

moving average (ARIMA), Error analysis

1 Introduction

Power system load forecasting investigates the changing

pattern of the power load, seeks intrinsic correlations

between power load and the factors that influence it, and

then forecasts the future load scientifically based on cor-

responding historical data [1]. Particularly, long-term sys-

tem load forecasting plays an important role in power

system planning.

Classical methods for long-term system load forecasting

are mainly in three categories: time series models [2–5],

correlation models [6–9] and artificial intelligence models

[9–13]. Time series models forecast the future load based

on the historical load data, so the underlying assumption is

that the future load will follow the same trend as its past.

Thus, the forecasting error will significantly increase once

the trend changes. In short, the major problem of common

time series methods is that they don’t adapt well to a

changing environment. Meanwhile, because of the com-

plicated set of factors influencing the power load and

insufficient annual data, correlation models and artificial

intelligence models sometimes cannot work well either.

For several reasons, long-term system load forecasting

for a developed city becomes a problem. When a city

enters the late stage of urbanization, economic growth

slows down, industry is restructuring, and the population

starts to saturate [14]. Under such circumstances, the load

trend is changing from the fast growing stage to the satu-

rating and fluctuating stage, which weakens the regularity

and makes it difficult to conduct accurate forecasting work.

Take Shanghai as an example. The average annual growth

rate of power consumption in Shanghai from 2001 to 2010

was 8.83%. However, since 2011, the average rate sharply

dropped to 1.42% over the next 4 years, with an unprece-

dented negative growth of -1.42% in 2014. The official
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value of the average annual growth rate used for planning

for Shanghai is 3.2% from 2016 to 2020, which is also

much lower than before [15], while contrasting with the

experience of the previous 5-year period. In fact, there are

quite a number of cities in this transitional period around

the world, so it is timely to propose a corresponding

effective forecasting method.

In recent years, two main trends have appeared in the

development of long-term system load forecasting

research. One is that hybrid models are gradually becoming

the mainstream. Reference [16] proposes a hybrid model

combining dynamic and fuzzy time series approaches to

forecast the power consumption in household, commerce

and industry respectively. Reference [17] utilizes an

Ensemble Empirical Mode Decomposition method to

extract the electricity consumption characteristics in mul-

tiple time scales, and then construct a relational model

between these characteristics and the factors they affect to

improve forecasting. Reference [18] constructs a semi-

parametric model to investigate the uncertainties in mid-to-

long-term forecasting and estimate the probability distri-

bution of the future load, while a novel Kullback-Liebler

divergence-based similarity measure strategy is combined

to identify the significant impact factors. A Grey model

optimized by the Ant Lion Optimizer and a regression

model optimized by Improved Particle Swarm Optimiza-

tion are proposed in [19, 20], respectively. Hybrid models

incorporate advantages of different single models so that

changing load patterns can be better described, and fore-

casting accuracy can be improved.

Another research trend in long-term system load fore-

casting field is that the ‘‘big data’’ concept is gaining

increasing attention [21]. With the development of Smart

Grids with Advanced Metering Infrastructure, massive

power consumption data are available at different network

levels, providing a new opportunity to understand the

intrinsic characteristics of the power load and improve the

forecasting accuracy. Reference [22] investigates how

many lagged hourly temperatures and moving average

temperatures are needed in a regression model based on a

massive load and temperature dataset. In order to prepare

for forecasting, [23–25] utilize high-resolution data at an

hourly interval to analysis and recognize the load pattern.

Particularly, clustering methods are widely used for load

forecasting, especially in big-data analyses. In [26], cus-

tomers are grouped according to consumption similarities,

and system load forecasting is improved by combining the

forecasting results of each group. References [27, 28] apply

the hierarchical clustering method to put similar load

curves into one cluster, and forecast the future load of each

cluster respectively. Reference [29] introduces the Fuzzy

Hopfield Neural Network to classify the hourly load curves

based on the date information in order to weight different

forecasting models. References [30, 31] extract and ana-

lyze the load pattern based on the clustering results, while

spectral clustering and functional clustering are utilized to

prepare for load forecasting in [32, 33]. In summary, by

putting similar objects into one cluster, clustering methods

can help recognizing load patterns, weighting different

models, simplifying calculation and preparing for model

construction in the load forecasting field.

Based on the big data idea, this paper proposes a data-

driven linear clustering (DLC) method to improve the

stability and accuracy of long-term system load forecast-

ing. A large substation load dataset is utilized to investigate

the composition of the system load and to reveal its

changing pattern.

Two major contributions of this paper are:

1) The data-driven forecasting idea is introduced to

address the forecasting difficulties caused by load

fluctuation in developed cities. Based on an autore-

gressive integrated moving average (ARIMA) model,

it is theoretically proved in this paper that the data-

driven method is effective in reducing the random

forecasting errors so that it can better adapt to the

changing environment.

2) A novel linear clustering method is proposed to put

complementary substation load curves into the same

cluster. After clustering, more accurate ARIMA mod-

els can be constructed so that the forecasting error can

be further reduced.

The rest of the paper is organized as follows. In Sect. 2,

the proposed DLC method is introduced. In Sect. 3, the

forecasting error is analyzed, while the results of applying

the method to load data are demonstrated in Sect. 4.

Finally, Sect. 5 concludes this paper.

2 Data-driven linear clustering method

Among all load forecasting problems, long-term system

load forecasting has its own characteristics. In terms of

time scale, it usually forecasts the annual power load in the

next few years or even decades based on annual historical

data, which means a low data quantity and resolution. In

terms of spatial scale, system load forecasting focuses on a

load system such as a city, a province or even the whole

country, so that the load level is usually high and the load

curve is relatively smooth.

However, the forecasting methods based on annual

system load data are gradually incapable to grasp the load

trend in the transitional period mentioned above. So, in

order to improve the forecasting accuracy, we need more

detailed information about the load system to better

understand its structure and inherent regularity. In this
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case, we propose the DLC method to conduct long-term

system load forecasting based on a large substation load

dataset. Two main parts are included in this method: the

linear clustering preprocessing part and the optimal

ARIMA modelling and forecasting part. The large substa-

tion load dataset, comprising load time series with annual

interval, is firstly clustered by the proposed linear cluster-

ing method. Then the time series of summed load of each

cluster are modeled and forecasted using optimal ARIMA

model. Finally, the system load forecasting results are

obtained by summing up all the ARIMA forecasting

results.

The flow chart of the DLC method is shown in Fig. 1.

2.1 Linear clustering preprocessing

Suppose ytð t ¼ 1; 2; . . .; TÞ is the time series of the

system power load, and yt is composed of subsequences

yk;t ðk ¼ 1; 2; . . .;NÞ, where N is the number of subse-

quences and T is the number of time samples, usually at

annual intervals. yk,t could be a substation load series, or

the load series of a district load, and so on. Then we have:

X

N

k¼1

yk;t ¼ yt ð1Þ

The proposed linear clustering preprocessing method

aims to smooth the multiple substation or district load

series in such a way that the modelling accuracy is

improved. Linear clustering here refers to the clustering

criteria. Traditional clustering methods usually classify

objects into classes according to a measure of similarity. In

order to prepare for modelling and forecasting, we cluster

subsequences into classes such that the sum of

subsequences in a class has a better linear property than

the sum of all subsequences in the dataset. A better linear

property means more obvious regularity so that modelling

accuracy could be better.

Therefore, the proposed linear clustering is indeed an

optimization problem to find the optimal clustering that

provides the best global linearity, which can be described

by:

min
X

M

i¼1

fRMSðSi;t � S�i;tÞ ð2Þ

s:t:

Si;t ¼
P

y
k;t
; i ¼ 1; 2; . . .;M

P

M

i¼1

Si;t ¼
P

N

k¼1

yk;t ¼ yt

8

<

:

where Si;t is the sum of the obtained cluster i, i ¼

1; 2; . . .;M; M�N; S�i;t is the corresponding linear fitting

series; fRMS is the root mean square (RMS) calculation:

fRMSðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
ðx21 þ x22 þ . . .þx2nÞ

r

ð3Þ

where x is an n-dimension vector and

x ¼ ðx1; x2; . . .; xnÞ:
In order to solve this problem, the following iterative

algorithm is described:

Step 1: Construct least-squares linear fitting model for

each subsequence yk,t and calculate the corresponding

RMS value of the linear fitting residual, denoted uk,

k = 1,2,…,N, as a linearity measurement for each

original subsequence.

Step 2: Find the subsequence with the maximum RMS

value ukmax from Step 1 and mark it as ykmax,t. Then

ykmax,t is the subsequence with the most obvious

fluctuation and usually the most difficult one to construct

an accurate model for. Therefore, ykmax,t is our major

optimization target for this iteration.

Step 3: Construct new linear fitting models for sum

series Yj;t ¼ ykmax;t þ yj;t; j ¼ 1; 2; . . .;N; j 6¼ k, and cal-

culate the corresponding RMS values of the fitting

residual marked as Uj. This step is to see whether there is
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fitting residual
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Fig. 1 Flow chart of proposed DLC method
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any other subsequence that can be summed with ykmax,t

to improve the linear fit.

Step 4: Find the minimum value of Uj from Step 3 and

mark it as Ujmin. If

Ujmin\ukmax ð4Þ

it means that there exists a subsequence yjmin,t that can be

summed with ykmax,t to improve the linear fit. In this

case, we replace yjmin,t and ykmax,t by their sum Yjmin,t and

go back to Step 1. The iteration stops when Ujmin

C ukmax, which means the subsequences cannot be

smoothed any further by summation.

After such linear clustering preprocessing, the smooth-

ness of the subsequences is improved while their number is

reduced, which are better conditions for modelling and

forecasting.

2.2 Optimal ARIMA modelling and forecasting

The ARIMA model proposed by Box and Jenkins in

1970s has a good performance when describing and fore-

casting a time series [34]. Therefore, we use it to forecast

the summed load of each cluster and to analyze the load

forecasting error. The ARIMA (p,d,q) model can be

described by:

yt ¼ u1yt�1 þ u2yt�2 þ � � � þ upyt�p þ et � h1et�1

� h2et�2 � � � � � hqet�q ð5Þ

where et is white noise; u and h are the coefficients.We can

see that there are two parts contained in the ARIMA model:

the autoregressive (AR) part

yt ¼ u1yt�1 þ u2yt�2 þ � � � þ upyt�p þ et ð6Þ

and the moving average (MA) part

yt ¼ et � h1et�1 � h2et�2 � � � � � hqet�q ð7Þ

The AR part describes the remembered characteristics of

past system states, while the MA part reflects the influence

of noise on the current system state. p and q are the

corresponding orders of the two parts. Because ARIMA

model is only suitable for stationary series, differencing

preprocessing is required if the series is not stationary [35],

with d representing the differencing order.

We construct optimal ARIMA models for Si,t, i ¼

1; 2; . . .;M; forecast their future values respectively, and

sum them up to obtain the final system load forecast. The

corresponding algorithm steps are as follows.

Step 1: The Unit Root Test [36] is firstly applied to the

preprocessed series Si,t to check whether they are

stationary or not. Any non-stationary series will be

converted into a stationary one by differencing.

Step 2: Construct multiple ARIMA (p,d,q) models for

each stationary series with different combination of

parameters p and q. Due to limited series length, we limit

p and q to a relatively low order in order to avoid

overfitting [37]: p = 0,1,2; q = 0,1.

Step 3: Among all the ARIMA models constructed in

Step 2, find the optimal one for each stationary series by

the Akaike information criterion (AIC). This is a

criterion to measure the modelling effect considering

both the fitting accuracy and the complexity of the

constructed model [38]:

AIC ¼ 2nþ T lnðfRSS=TÞ ð8Þ

where n is the number of parameters in the constructed

model; T is the length of the series; fRSS is the residual

sum of squared differences which reflects the modelling

accuracy. Generally, the model with the smallest AIC

value is the optimal one, so the mathematical description

of choosing the optimal ARIMA model for Si,t is:

min AIC ¼ 2nþ T lnðf 2RSS=TÞ

s:t:

n ¼ pþ q

p ¼ 0; 1; 2; q ¼ 0; 1

q� p

fRSS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

T

t¼1

ðSi;t � S�i;tÞ
2

v

u

u

t

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð9Þ

where Si,t
* is the ARIMA (p,d,q) fitting value of Si,t.

Step 4: Forecast the future value of each preprocessed

series Si,t based on its corresponding optimal ARIMA

model selected in Step 3. The forecasting results are

denoted by Si,t?s, s ¼ 1; 2; . . .;DT , in which DT is the

forecasting period. Note that DT cannot be too big

because of a limitation of the ARIMA model [39].

Step 5: Sum up all the ARIMA forecasting results to

obtain the final system load forecasting results:

Stþs ¼
X

M

i¼1

Si;tþs ð10Þ

3 Forecasting error analysis

When we forecast the power load, the forecasting error

mainly consists of two parts: the modelling error and the

random error [40]. The modelling error refers to the dif-

ference between the model fitting value and the true value.

Generally, the smoother the load curve, the smaller the

modelling error, so that the constructed model can better fit

the pattern of changing load. The random error refers to the
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forecasting error caused by some random and unpre-

dictable factors that change the original load changing

pattern. Thus, in order to improve the forecasting accuracy,

we should both improve the modelling accuracy and try to

limit the random error.

Here, we analyze the forecasting error of different

forecasting methods based on ARIMA model. For sim-

plicity, we make two assumptions in advance [40]:

1) Because the ARIMA forecasting results mainly

depend on the AR part, we assume that the time

series of the power load follows the first term of the

AR model in (6), denoted the AR(1) pattern:

yt ¼ u1yt�1 þ et; yk;t ¼ uk;1yk;t�1 þ ek;t ð11Þ

2) We assume that the white noise in the time series of

power load is White Gaussian Noise (WGN), and that

the standard deviation of the noise is proportional to

the load level:

et �Nð0; r2y2t Þ; ek;t �Nð0; r2y2k;tÞ ð12Þ

where r[ 0 is the proportionality coefficient.

Suppose the modelling error in time t is vt
m, and the

random error is vt
r. Then vt

m depends on the AR(1) part,

while vt
r is related to et according to the analysis above.

Then the total forecasting error can be described by:

vt ¼ vmt þ vrt ð13Þ

3.1 Modelling error

Based on (1), suppose the ARIMA modelling result for

time series yt is:

y�t ¼ u�
1yt�1 þ e�t ð14Þ

From (2) we know that et is WGN, so et
*
= 0. Then (14)

becomes:

y�t ¼ u�
1yt�1 ð15Þ

From (11), the actual value of u1 is:

u1 ¼
yt�1 � et�1

yt�2

ð16Þ

Therefore the parameter estimation error for u1 is:

Du1 ¼ u1 � u�
1 ¼

et�1

yt�2

ð17Þ

where Du1 is the source of the modelling error, which is

proportional to the WGN et and inversely proportional to

the load level yt according to (17). If we model and forecast

the system load directly (called the direct method in this

paper), the modelling error will be small because the load

level yt is high and the standard deviation of the noise et is

low due to the smoothness of the system load curve. On the

other hand, if we model and forecast the subsequences of

the system load and then sum them up to obtain the system

load forecasting result (called the data-driven method in

this paper), the modelling error for each subsequence will

be more significant. The proposed DLC method constructs

a forecasting model based on the smoothed sum series so

that the modelling accuracy can be guaranteed to a certain

extent, theoretically inferior to the direct method but better

than the data-driven method.

The modelling error of the forecasting results can be

evaluated by:

v�mt ¼
1

T

X

T

t¼1

yt � y�t

�

�

�

�

yt
� 100% ð18Þ

3.2 Random error

From (12) we know that the WGN of a subsequence

ek;t �Nð0; r2y2k;tÞ. Because of the mutual independence

property of WGN, we have:

X

N

k¼1

ek;t �N 0;
X

N

k¼1

r2y2k;t

 !

ð19Þ

Because r[ 0, yk,t[ 0, and yk,t are not all equal for

different k, we have:

X

N

k¼1

r2y2k;t\r2
X

N

k¼1

yk;t

 !2

¼ r2y2t ð20Þ

Equation (20) is the theoretical basis of the data-driven

method: the variance of the WGN is smaller than for the

direct method. In this way, the forecasting random error

can be limited and a more stable system load forecasting

result can be obtained by the data-driven method. And this

is exactly the value of using a large quantity of substation

load data. Similarly, the proposed DLC method also takes

advantage of the large dataset, so that its random

forecasting error will be smaller than that of the direct

method.

The forecasting error can be evaluated by:

v�t ¼
1

DT

X

DT

s¼1

yTþs � STþsj j

yTþs

� 100% ð21Þ

According to (13), the random forecasting error can be

evaluated as:

v�rt ¼ v�t � v�mt ð22Þ

In short, the direct method usually performs well in

modelling, but will probably gain an uncontrollable

random error when forecasting. On the contrary, the data-

driven method can limit the forecasting random error, but
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makes it harder to construct a precise model for each

subsequence. As a combination of the above two methods,

the proposed DLC method can reduce the random

forecasting error while guaranteeing modelling accuracy,

providing improved forecasting results.

4 Application results

Peak load data from Shanghai are used to test the

effectiveness of the proposed DLC method [41]. The

annual peak loads from 2001 to 2015 are shown in Fig. 2a.

The system load is composed of 83 substation loads at 220

kV (N = 83), of which the corresponding peak load curves

are plotted in Fig. 2b.

Here, we construct a model based on the load data from

2001 to 2012, and conduct virtual forecasting from 2013 to

2015 to test its effectiveness. For comparison, four differ-

ent forecasting schemes are applied:

1) Direct method: construct an optimal ARIMA model

for the system load data in Fig. 2a directly and forecast

the system peak load.

2) Data-driven method: construct optimal ARIMA model

for each original subsequence in Fig. 2b and forecast

each one, then sum up all the forecasting results to

obtain the system load forecasting results.

3) DLC method: based on the subsequence data in

Fig. 2b, using the forecasting algorithm proposed in

Sect. 2 to obtain the system load forecasting results.

4) Classical methods: apply some classical forecasting

methods, such as the scrolling GM(1,1) model, the

elasticity coefficient model and a regression model to

forecast the system peak load.

Additionally, we apply the proposed DLC method to

another four cities to test its adaptability. Finally, we

forecast the future load in Shanghai from 2016 to 2020

based on DLC method.

4.1 Direct method

The optimal ARIMA model was applied directly fore-

cast the system load. The model fitting and forecasting

results are shown in Fig. 3.

The modelling error of the direct method is 2.18% and

the average forecasting error is 10.02%, so the random

error is 7.84%. From Fig. 3 we can see that the annual

system load curve in Shanghai is relatively smooth, which

is advantageous for modelling and leads to a high mod-

elling accuracy. However, the forecasting results are not

desirable. This is mainly due to the changing pattern of the

load growth. Shanghai has a high urbanization level and is

under industrial restructuring, in which backward produc-

tion facilities are closed down and the development of

tertiary industry is accelerated. Meanwhile, the population

in Shanghai is becoming saturated. Under such circum-

stances, the pattern of load growth is changing, having

shown significant fluctuation since 2009. This makes it

difficult for the direct method to work well. In order to

obtain a better forecasting result, more information about

the load system is required to explore the internal regularity

of the fluctuating system load.

4.2 Data-driven method

Optimal ARIMA modelling and forecasting was con-

ducted for each 220 kV substation load in Fig. 2b, and the

results are shown in Fig. 4.

The average modelling and forecasting error in Fig. 2a

are 20.32 and 26.46% respectively, so the average random

error is 6.13%. The significant increase of the modelling

error is due to the low load level and the high fluctuation of

substation loads, which has been discussed in Sect. 3. And

this is also the main reason for the large forecasting error

for individual substation loads.

After summing up the modelling and forecasting results

in Fig. 4a to obtain the system results in Fig. 4b, the system

modelling and forecasting errors are 2.35 and 3.65%

respectively, with a random error 1.30%. We can see that
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the random error has been effectively reduced from 7.84 to

1.30% compared with the direct method, therefore the

corresponding forecasting error is reduced. This is the

value of the data-driven method, which has also been

discussed in Sect. 3. But on the other hand, the modelling

error is 2.35% and becomes the major part of the fore-

casting error.

4.3 DLC method

In order to improve the modelling accuracy of the data-

driven method, the substation load data were preprocessed

using the proposed linear clustering method. The modelling

and forecasting results are shown in Fig. 5.

We can see from Fig. 5a that the preprocessed data

obtained by linear clustering method are much smoother

than the original data in Fig. 4a, making them more suit-

able for time series modelling. The average modelling error

has been reduced to 10.71%. Also, the number of subse-

quences is reduced from 83 to 30 (M = 30) so the com-

putational work is reduced. More importantly, the

forecasting results for substation load clusters are more

stable: the average forecasting error is reduced to 18.54%,

with a random error 7.76%.

After summing up the modelling and forecasting results

in Fig. 5a to obtain the system results in Fig. 5b, the system

modelling error is 1.40%, the forecasting error 2.67%, and

the random error 1.27%. The more accurate results prove

that the proposed DLC forecasting algorithm takes

advantage of clustering to limit the random error while

guaranteeing the modelling accuracy.

In the proposed linear clustering preprocessing method,

the clustering criterion in Step 4 in Sect. 2.1 is crucial.

Different clustering criteria will result in different clus-

tering results, thus leading to different modelling and

forecasting effects. In the DLC method presented above,

the clustering criterion is shown in (4), denoted ‘‘criterion

1’’. Consider relaxing it to (23), denoted ‘‘criterion 2’’:
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Ujmin\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2kmax þ u2j

q

ð23Þ

where uj is the RMS value of the linear fitting residual for

yjmin,t. The new modelling and forecasting results are

shown in Fig. 6.

We can see that after relaxing the clustering criterion,

the number of the subsequences has further reduced to 21

(M = 21), and each of them is smoother. The average

modelling error is 7.64%, forecasting error 14.96%, and

random error 7.32%. After summing them up to obtain the

system results in Fig. 6b, the modelling error is 1.34%, the

forecasting error 3.47%, and the random error 2.13%.

Generally, a relaxed criterion will result in smoother

load curves with a lower number of clusters, which is

advantageous to the modelling accuracy but disadvanta-

geous to reducing the random error. A stricter criterion will

lead to an opposite effect. Therefore, an ideal clustering

criterion should be a proper compromise between the

number of clusters and smoothness of load curves, so that

the forecasting accuracy can be optimized. In order to

obtain such an optimal criterion, characteristics of the load

should be considered, and clustering results with different

criteria should be analyzed and compared.
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Table 1 Results summary

Method Modelling

error (%)

Random

error (%)

Forecasting

error (%)

Direct 2.18 7.84 10.02

Data-driven 2.35 1.30 3.65

DLC-criterion 1 1.40 1.27 2.67

DLC-criterion 2 1.34 2.13 3.47

Regression 3.51 1.26 4.76

Scrolling GM (1,1) 5.97 5.28 11.25

Elasticity coefficient 1.22 8.21 9.43
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4.4 Classical methods

For further comparison, the classical scrolling GM(1,1)

model, the elasticity coefficient model and a regression

model are constructed to forecast the system power load

directly [42]. The modelling and forecasting results are

illustrated in Fig. 7.

The results show that all the three classical models have

an adequate modelling accuracy: 5.973.51 and 1.22%

respectively. However, they have common difficulty in

capturing the changing load pattern in the forecasting zone,

with the forecasting errors 11.25, 4.76 and 9.43%

respectively.

The final system forecasting results of forecasting

methods applied are summarized in Table 1.

In order to demonstrate the adaptability of the proposed

DLC method, we collected substation load data from four

different cities, which are shown in Fig. 8. Note that the

four cities are in different stage of urbanization. The

modelling and forecasting results of the DLC method with

both criteria for each city are also plotted in Fig. 9, and the

forecasting errors are shown in Table 2.

The comparison of results in Table 1 proves the effec-

tiveness of the proposed DLC forecasting method. Firstly,

the three methods based on the data-driven methodology

all show a successful reduction of random error when

compared with the other methods. Secondly, the DLC

method can provide modelling accuracy at almost the same

level as the direct method, so that the forecasting accuracy

is improved. The DLC method also performs better than

the three classical models mentioned above. Additionally,

the forecasting results for four different cities shown in
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Fig. 9 DLC modelling and forecasting results

Table 2 DLC forecasting error in four different cities

Method DLC forecasting error (%)

Beijing Hangzhou Chengdu Jiaxing Shanghai

DLC-

criterion 1

2.33 3.25 3.20 1.50 2.67

DLC-

criterion 2

2.67 2.74 3.81 0.87 3.47

Table 3 DLC forecasting results in Shanghai from 2016 to 2020

Year Forecasting value (GW) Annual growth rate (%)

2016 30.99 6.14

2017 31.54 1.79

2018 31.84 0.94

2019 32.98 3.57

2020 33.59 1.85
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Table 2 indicate the adaptability and stability of the DLC

method.

Finally, we forecast the peak load in Shanghai from

2016 to 2020, based on the proposed DLC method with

criterion 1 as an example in Table 3. Figure 10 shows load

growth and ARIMA forecasting results for each cluster and

the overall peak load growth.

The modelling error is 1.92%, and the average annual

growth rate from 2016 to 2020 for peak load in Shanghai is

2.86%.

5 Conclusion

In this paper, we propose a data-driven linear clustering

method to solve the long-term system load forecasting

problem caused by load fluctuations in some developed

cities. In order to grasp the internal structure of the system

load and improve the forecasting accuracy, we introduce a

data-driven method to conduct modelling and forecasting

based on a large quantity of substation load data. We have

theoretically proved that this data-driven method is effec-

tive in reducing the forecasting random error so that a more

stable result can be obtained. However, the data-driven

method can result in modelling difficulty, which is disad-

vantageous for forecasting accuracy. For this problem, we

propose a linear clustering method to preprocess the sub-

station load data, making it more smooth and thereby

reducing the modelling error. When applied to load data

from Shanghai the proposed DLC method is shown to be

effective in both reducing the forecasting random error and

guaranteeing the modelling accuracy, so that a more

stable and accurate system load forecasting result can be

obtained. Furthermore, applying the same method to load

data from another four cities indicates that the proposed

DLC method is adaptable and stable.

Future work could theoretically investigate the optimal

clustering criterion and level to further improve the fore-

casting stability and accuracy. Meanwhile, substation load

curves in the same cluster have a linear complementarity

property, which provides an opportunity to conduct corre-

lation analysis of urbanization characteristics such as

industrial structure, population and land utilization. This

would help to understand and quantify the structural

influences behind the changing peak load.
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[31] Kálmán T, Lóránt K, András O et al (2016) Classification for

consumption data in smart grid based on forecasting time series.

Electric Power Syst Res 141:191–201

[32] Liu D, Wang JL, Wang H (2015) Short-term wind speed fore-

casting based on spectral clustering and optimised echo state

networks. Renew Energy 78:599–608

[33] Goia A, May C, Fusai G (2010) Functional clustering and linear

regression for peak load forecasting. Int J Forecast

26(4):700–711

[34] Box GEP, Pierce DA (1970) Distribution of residual autocor-

relations in autoregressive-integrated moving average time ser-

ies models. J Am Stat Assoc 65(332):1509–1526

[35] Pappas SS, Ekonomou L, Karamousantas DC et al (2008)

Electricity demand loads modelling using Auto Regressive

Moving Average (ARMA) models. Energy 33(9):1353–1360

[36] Pesaran MH (2007) A simple panel unit root test in the presence

of cross-section dependence. J Appl Econom 22(2):265–312

[37] Zhang GP (2003) Time series forecasting using a hybrid

ARIMA and neural network model. Neurocomputing

50:159–175

[38] Hu S (2007) Akaike information criterion. Center for Research

in Scientific Computation, 2007

[39] Wei WWS (1994) Time series analysis. Addison-Wesley

Publication, New Jersey

[40] Tong X, Kang CQ, Chen QX et al (2014) Virtual bus technique

and its application Part II: virtual bus load forecasting. Proc

CSEE 34(7):1132–1139

[41] Shanghai Mulniciple Statistics Bureau (2015) Shanghai statis-

tical yearbook. China Statistics Press, Beijing

[42] Kang CQ, Xia Q, Liu M (2007) Power system load forecasting.

China Electric Power Press, Beijing

Yiyan LI received the B.E. degree in Electrical Engineering from

Shanghai Jiao Tong University, Shanghai, China, in 2014, where he is

currently pursuing the Ph.D. degree. His current research focuses on

the mid-long term load forecasting.

Dong HAN received the B.E. degree and the M.E. degree in Harbin

Institute of Technology University, Harbin, China, in 2007 and 2009,

respectively, and the Ph.D. degree in Shanghai Jiao Tong University,

Shanghai, China in 2016. His current research interests include

optimal operation of power system and electricity market.

Zheng YAN received the B.E. degree in Shanghai Jiao Tong

University, Shanghai, China, in 1984, the M.E. degree and the Ph.D.

degree in Tsinghua University, Beijing, China, in 1987 and 1991,

respectively. His main research interests include optimal operation of

power system, electricity market and stability analysis of power

system.

316 Yiyan LI et al.

123

http://dx.doi.org/10.1007/s40565-015-0110-6
http://dx.doi.org/10.1007/s40565-015-0110-6
http://dx.doi.org/10.1007/s40565-015-0138-7
http://dx.doi.org/10.1007/s40565-015-0144-9
http://dx.doi.org/10.1007/s40565-015-0144-9
http://dx.doi.org/10.7500/AEPS20140520001

	Long-term system load forecasting based on data-driven linear clustering method
	Abstract
	Introduction
	Data-driven linear clustering method
	Linear clustering preprocessing
	Optimal ARIMA modelling and forecasting

	Forecasting error analysis
	Modelling error
	Random error

	Application results
	Direct method
	Data-driven method
	DLC method
	Classical methods

	Conclusion
	Acknowledgement
	References


