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A B S T R A C T

An improved understanding of the impact of tillage systems on soil hydraulic properties is necessary to
conserve and manage soil water under a changing climate. The objective of this study was to specifically
measure soil hydraulic properties (total porosity, water infiltration, saturated hydraulic conductivity, and
water retention characteristics) in no-till, chisel plow, disk, and moldboard plow systems under rainfed
continuous corn (Zea mays L.) after 35 yr on silty clay loam soils in eastern Nebraska. We measured
ponded water infiltration (positive soil water pressure) and tension (�1 kPa matric potential) infiltration
to exclude macropore (>125 mm diameter) flow. Tillage treatments affected ponded infiltration only.
Moldboard plow significantly increased ponded infiltration rate by 21.6 cm h�1 at 5 min and by 8.8 cm h�1

at 60 min compared with no-till. However, when compared with disk and chisel, moldboard plow
increased ponded infiltration rates at all measurements times, which lasted 3 h. Regarding cumulative
infiltration, moldboard plow increased cumulative infiltration by 26.9 cm to 39.0 cm after 3 h compared
with other tillage systems. Similarities in tension infiltration suggest that the higher ponded infiltration
for moldboard plow was most likely due to the presence of voids or fractures (>125 mm) created by full
inversion tillage. Total porosity, saturated hydraulic conductivity, and water retention among the
treatments did not differ. Overall, soil hydraulic properties did not differ among tillage systems except
water infiltration in these silty clay loam soils after 35 yr of management.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An improved understanding of the impacts of tillage systems on
soil hydraulic properties is necessary to conserve and manage soil
water under different soil types, management scenarios, and
climates. This knowledge is particularly important in water-limited
or rainfed regions such as the western Corn Belt. Soil hydraulic
properties such as water infiltration, hydraulic conductivity, and
water retention determine the ability of the soil to capture and
store precipitation or irrigation water. Soils that drain rapidly when
wet and retain water under drought conditions are important for
agricultural production under increasing climate fluctuations that
is expected to include more intense and frequent rainstorms or
droughts in the future (Pryor et al., 2014).

Different tillage practices could affect the ability of the soil to
adsorb and retain water, depending on the level of soil disturbance.
Previously published studies comparing soil hydraulic properties

among tillage systems have reported some inconsistent results. For
example, no-till management, which is a leading conservation
tillage system for reducing both soil erosion and production costs
may increase (Stone and Schlegel, 2010), reduce (Unger, 1992;
Baumhardt et al., 1993) or not affect (Unger, 1992; Pikul and Aase,
1995) water infiltration compared with other tillage systems.
Similarly, no-till management may also increase (Lyon et al., 1998)
or have no effect (McVay et al., 2006) on soil water retention.
Effects on saturated hydraulic conductivity can be even more
inconsistent (Blanco-Canqui et al., 2004). On one hand, tillage
could increase water infiltration by disrupting compacted layers
and loosening the soil relative to no-till management. On the other
hand, tillage can reduce infiltration by reducing soil aggregate
stability and macroporosity, increasing surface crusting, and
causing soil consolidation after tillage in the absence of crop
residues on the soil surface (Unger, 1992). The contrasting tillage
effects and mixed findings warrant the need for additional research
to better understand how tillage systems affect water flow and
retention characteristics in the soil.
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Duration of tillage management can be a major factor in
revealing tillage impact on soil hydraulic properties because these
properties are often measurable in the long term (>10 yr). Thus,
existing long-term tillage experiments could be ideal laboratories.
The scant data on soil hydraulic properties from long-term
experiments limit our understanding of the implications of
different tillage management scenarios on soil water management.
Thus, the objective of this study was to evaluate soil hydraulic
properties such as total porosity, water infiltration, saturated
hydraulic conductivity, and water retention characteristics under
no-till, chisel plow, disk, and moldboard plow systems in rainfed
continuous corn in eastern Nebraska.

2. Materials and methods

2.1. Site description

A long-term tillage experiment established in 1980 at the
University of Nebraska’s Rogers Memorial Farm (latitude 40.843,
longitude 96.465; 368 m above sea level) about 19 km east of
Lincoln, NE, under natural rainfall conditions was used for this
study. The mean annual precipitation from 2004 to 2013 for the
study site was 693 mm. The soil is classified as Aksarben silty clay
loam (fine, smectitic, mesic Typic Argiudolls) and Wymore silty
clay loam (fine, smectitic, mesic Aquertic Argiudolls). These upland
soils are deep, moderately well-drained, and formed in loess
parent material.

The experiment was originally designed as a randomized
complete block (six replications) with six tillage treatments in
continuous corn as main plots. The tillage treatments were chisel
plow, tandem disk, moldboard plow, no-till, ridge-till, and subsoil
tillage. Whole tillage plots were modified in the fall of 2014 by
converting all tilled treatments to no-till to answer other research
questions. Tillage operations were done in the fall after corn
harvest each year from 1980 to 2014. After grain harvest each year,
corn was chopped and tillage treatments were applied. Tillage
depth was 25 cm for the chisel and moldboard plow treatments.
Chisel shanks with straight points at 25 cm spacing were used. The
depth of tillage for the disk treatment was approximately 10 cm.
Residue was chopped in spring for the disk and no-till treatments.
All tilled treatments except ridge-till were disked to <10 cm depth
in spring before planting. No primary or secondary pre-plant
tillage operations were done on no-till treatment.

The original design was then modified in 1986 to a randomized
complete block design with a split-plot arrangement of cropping
systems. Subplot treatments were continuous corn, continuous
soybean (Glycine max L.), and a 2-yr soybean-corn rotation, with
both phases present each year. Whole tillage plots were 18.3 m
(24 rows, 0.76-m between rows) by 22.9 m. Subplots were 4.6 (six
rows, 0.76-m between rows) by 22.9 m. The present study
considers four tillage systems (no-till, tandem disk, chisel plow,
and moldboard plow) under continuous corn.

Corn was planted usually in the first two weeks of May at 76-cm
row spacing. Corn hybrids planted each year were chosen from
commercially available selections adapted to the area. However,
glyphosate-resistant corn hybrids have been planted since 1999.
Other cultural practices were similar to those used by local
producers. Nitrogen fertilizer was applied at the V3 growth stage
on the corn at 113 kg N ha�1 as ammonium nitrate from 1986 to
2003 and at 168 kg N ha�1 from 2004 to 2014 as urea (Sindelar
et al., 2015). Other plant nutrients were within acceptable levels
for corn and soybean production (Sindelar et al., 2015). Further
details on the experiment establishment and management are
described by Varvel and Wilhelm (2011) and Sindelar et al. (2015).

2.2. In situ field measurements and soil sampling

Field measurements and soil sampling were conducted in June
2015, which was about one year after the last tillage operations. We
measured water infiltration, bulk density to compute porosity,
saturated hydraulic conductivity, and water retention character-
istics. These properties were selected because data on the above
hydraulic properties from long-term (>35 yr) experiments are
limited and the few published data reported some mixed findings,
which warrant further investigation.

Water infiltration was measured under: i) �1 kPa matric
potential using tension infiltrometer (Perroux and White, 1988)
and ii) ponded conditions using double ring infiltrometers
(Reynolds et al., 2002a). Water infiltration under the negative
pressure (�1 kPa matric potential) was determined using a tension
infiltrometer with a wetting area of 0.03 m2 (Perroux and White,
1988). The negative pressure was used to exclude macropore
(>125 mm diameter) contribution to the total water flow in the soil,
allowing the measurement of water infiltration through the soil
matrix. Surface residues were removed and 4 mm layer of fine
silica sand was placed on the soil surface to provide good contact
between the soil and the tension infiltrometer (Perroux and White,
1988). The water infiltration under tension was measured for
30 min, with reservoir level readings taken every minute.

For the ponded water infiltration measurement, an inner ring
with 20 cm diameter was nested within an outer ring with 40 cm
diameter. The rings were carefully inserted to 10–15 cm depth of
the soil with surface free of cracks and plant residues. Tap water
was added to both rings and the water levels in both the outer and
inner rings were at the same height during the measurement. The
tap water had an electrical conductivity of 0.75 dS m�1 and a pH of
7.1. The infiltration rate was measured for 3 h by recording the
change in water level height in the inner ring at specific time
intervals. Water level in the rings was maintained between 5 cm
and 10 cm height. Water infiltration rate (cm h�1) and cumulative
water infiltration (cm) were computed after 3 h.

Intact soil cores were collected from non-trafficked rows for the
measurement of soil bulk density, saturated hydraulic conductivi-
ty, and water retention characteristics. Two intact soil cores (7.5 cm
diam. and 7.5 cm long) per plot were collected using a hammer-
driven core sampler for depths of: 0–7.5, 7.5–15,15–22.5, and 22.5–
30 cm. Soil cores were sealed in plastic bags, transported to the
laboratory, trimmed, and stored at 4 �C prior to laboratory
measurements.

2.3. Laboratory measurements and data analysis

Saturated hydraulic conductivity was measured using the
constant head method (Reynolds et al., 2002b). Soil cores were
slowly saturated for 24 h from the bottom with de-aired tap water
delivered using a Mariotte bottle at a constant flow rate of
5 mm h�1. The tap water had an electrical conductivity of 0.60 dS
m�1 and a pH of 7.4. Saturated soil cores were transferred to the
permeameter to measure saturated hydraulic conductivity under
constant head for 30 min. Immediately after saturated hydraulic
conductivity determination, water retention at 0, �1, and �3 kPa
matric potentials was determined on the intact soil cores using a
tension table Soil cores were slowly resaturated, weighed, and
placed on the tension table. The cores were drained on the tension
table and weighed at each pressure level. Next, water retention at
�10, �33, �100, �400 and �1500 kPa was determined by using
pressure plate apparatus (Dane and Hopmans, 2002). For water
retention determination at matric potentials between �10, and
�400 kPa, the intact soil cores were transferred from the tension
table to the pressure extractors, drained at each pressure head, and
weighed after drainage stopped. At the end of the determination at
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�400 kPa matric potential, all soil cores were weighed and a
subsample was oven-dried at 105 �C to determine gravimetric
water content and bulk density by the core method (Grossman and
Reinsch, 2002). Another subsample was air-dried, crushed, passed
through 2-mm sieves, and tightly packed in rubber rings to
determine water retention at �1500 kPa potential using pressure
extractors. Plant available water was computed as the difference in
water content between �33 and �1500 kPa matric potentials
(Dane and Hopmans, 2002). Porosity was computed from the bulk
density data assuming that particle density is equal to 2.65 Mg m�3

(Grossman and Reinsch, 2002).

2.4. Statistical analysis

The normality test using PROC UNIVARIATE in SAS showed that
data on saturated hydraulic conductivity were not normally
distributed. Log-transformation was used to normalize data prior
to the analysis of treatments effects. Statistical differences in the
measured soil properties among tillage treatments were analyzed
using PROC MIXED in SAS (SAS Institute, 2016). Tillage treatments
were the fixed factor and the replication was the random factor.
Analysis of differences in ponded and tension water infiltration
data was conducted by time. Differences among treatments means
are reported at the 0.05 probability level.

3. Results and discussion

3.1. Water infiltration

Tillage treatments had a significant effect on water infiltration
rates (Fig. 1A) and cumulative infiltration (Fig. 1B) when measured
under ponded conditions. Differences were, however, only
significant between moldboard plow and the rest of the tillage
systems (no-till, disk, and chisel plow). The trend followed this
order: Moldboard plow > No-till = Disk = Chisel plow (Fig. 1A and
B). Moldboard plow increased water infiltration rates between 74%
and 90% compared with no-till in the first 60 min of infiltration
(Fig. 1A). For example, infiltration rate under moldboard plow was
greater than under no-till management by 21.6 cm h�1 at 5 min and
by 8.8 cm h�1 at 60 min. Between 60 min and 180 min of
measurement, infiltration rates between moldboard plow and
no-till did not differ. In contrast, when compared with disk and
chisel plow systems, the moldboard plow system consistently
increased water infiltration rate during the 3 h of measurement
(Fig. 1A). Furthermore, differences in water infiltration between
moldboard and chisel plow were larger than between moldboard
plow and disk (Fig. 1A), indicating that chisel plow had the lowest
infiltration rate. Moldboard plow also had significant effects on
cumulative water infiltration (Fig. 1B). Cumulative infiltration
under moldboard plowed plots was larger than under no-till and
disked plots by 26.9 cm and larger than chisel plowed plots by
39.0 cm at the end of the 3 h of measurement (Fig. 1B). Similar to
the infiltration rates, the moldboard plow system had the highest
cumulative infiltration and chisel plow the lowest (Fig. 1B).

Our study also showed that tillage treatment effects on
infiltration rate and cumulative infiltration measured at �1 kPa
pressure head with the tension infiltrometer to reduce macropore
flow were not significant (Fig. 2A and B). Cumulative infiltration
measured by the tension infiltrometer was about half the
cumulative infiltration measured with the double ring infiltrom-
eters under ponded conditions (Fig. 2B). The lower cumulative
infiltration under the tension infiltrometer compared with that
under ponded conditions was expected as contribution of
macropores (>150 mm in diameter) to the total water flow is
reduced or eliminated under the negative pressure by the tension
infiltrometer.

Results indicate that moldboard plow increased ponded water
infiltration compared with no-till, disk, and chisel plow systems in
this soil. The higher infiltration in moldboard plowed soils can be
attributed to fractures or voids created by the intensive and deep
tillage. While soil porosity between moldboard plow and no-till
did not statistically differ (data not shown), based on visual
observations during the infiltration measurements, soil surface in
moldboard plowed plots appeared to be less consolidated than in
other tillage systems almost a year after tillage. The lower
infiltration in no-till compared with moldboard plowed plots
and no differences from disk and chisel plow indicate that long-
term no-till may not increase water infiltration relative to other
tillage systems. Previous studies have found that no-till manage-
ment may increase (Stone and Schlegel, 2010) or reduce
(Baumhardt et al., 1993 Wienhold and Tanaka, 2000) water
infiltration compared with plow till systems. It is important to note
that the use of moldboard plow system is no longer common in the
study region. Thus, the lack of significant differences in water
infiltration among no-till, disk, and chisel plow may have broader
and more practical implications for water management in this
region. Results of water infiltration suggest that these three tillage
systems were similar in their ability to capture precipitation or
irrigation water. Based on the results from both infiltration
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Fig. 1. Infiltration rate (A) and cumulative infiltration (B) measured under ponded
conditions for long-term (35 yr) tillage systems under continuous corn for a rainfed
experiment in eastern Nebraska. The error bars represent the LSD values to compare
means.
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techniques, the greater water infiltration rates and cumulative
infiltration found under ponded conditions (Fig. 1A and B) than
under tension (Fig. 2A and B) for moldboard plow were most likely

due to the presence of voids or fractures created by the full
inversion tillage. These results imply that water infiltration under
tension through the soil matrix did not benefit from macropore
channels or differ among the four tillage systems.

3.2. Soil porosity, hydraulic conductivity, and water retention

Differences in bulk density, soil porosity, saturated hydraulic
conductivity, water retention, and plant available water among the
four tillage treatments were not significant at any soil depth. Only
data for the 0–7.5-cm depth are reported in Table 1. Data on
saturated hydraulic conductivity were variable. The coefficient of
variation for the saturated hydraulic conductivity was 115%, which
is within the range of coefficient of variation (100–400%) reported
in similar studies (Reynolds et al., 2000; Gwenzi et al., 2011). Note
that the data on ponded steady-state infiltration rates (equilibrium
infiltration; Fig. 1A), which are similar to field saturated hydraulic
conductivity, were significant among the four treatments. This
finding corroborates that water infiltration measurement in the
field could be a more representative approach to estimate
saturated hydraulic conductivity and evaluate its differences
among treatments relative to the use of small soil cores for its
determination (7.5 cm by 7.5 cm; Reynolds et al., 2002b). Small
cores can be susceptible to compaction or disturbance during
sampling, which could rapidly alter hydraulic conductivity
measurements.

Results indicate that long-term tillage systems did not
differently impact soil porosity, saturated hydraulic conductivity,
water retention, and plant available water. For the same
experiment, Varvel and Wilhelm (2011) reported that the no-till
management had larger soil organic C stocks than the other tillage
systems. We thus expected that such an increase in soil organic C
could have resulted in improved soil porosity, saturated hydraulic
conductivity, and water retention capacity (Rawls et al., 2003), but
that was not the case in this study. The lack of significant tillage
differences in water retention is consistent with other studies
reporting mixed effects of no-till on water retention even in the
long term. No-till management may (Lyon et al., 1998; Tanaka and
Anderson, 1997; Stone and Schlegel, 2010) or may not (Blanco-
Canqui et al., 2004; McVay et al., 2006) increase soil water
retention. Additionally, Rawls et al. (2003) indicated that changes
in soil C concentration may or may not increase soil water
retention, depending on clay content, initial organic matter
content, and their site-specific interactions.

Data also suggest that no-till farming even in the long term
(35 yr) may have limited or no positive effect on increasing water
infiltration and retention compared with moldboard plow and
conventional tillage systems such as disk and chisel plow. Based on
the results, we suggest that additional practices such as addition of
cover crops may be needed to enhance the potential of no-till
farming to improve soil hydraulic properties relative to
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Table 1
Soil hydraulic properties for the 0–7.5 cm soil depth as affected by long-term (35 yr) tillage systems under continuous corn for a rainfed experiment in eastern Nebraska.
Similar to the 0–7.5 cm soil depth, differences in soil hydraulic properties at deeper depths were not significant and were not included in this table.

Treatment Bulk Density Saturated Hydraulic Conductivity Matric Potential (�kPa) Plant Available Water

0 �1 �3 �10 �33 �100 �400 �1500
Mg m�3 cm h�1 Volumetric Water Content (m3m�3) cm

Moldboard plow 1.19 12.71 0.52 0.48 0.44 0.40 0.38 0.37 0.34 0.21 1.27
No-till 1.19 20.77 0.52 0.47 0.44 0.39 0.38 0.37 0.34 0.20 1.35
Disk 1.22 3.80 0.50 0.47 0.45 0.40 0.38 0.36 0.33 0.19 1.42
Chisel plow 1.22 23.66 0.50 0.45 0.43 0.38 0.36 0.35 0.32 0.20 1.20
p-value 0.93 0.17 0.27 0.19 0.53 0.79 0.57 0.75 0.62 0.11 0.38
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conventional tillage systems in this region (Blanco-Canqui et al.,
2011). Our results also corroborate that no-till impacts on most soil
hydraulic properties can be highly site specific (Baumhardt et al.,
1993; Stone and Schlegel, 2010). Results also suggest that
management duration may not be the only factor that affects
changes in soil hydraulic properties.

It is important to restate that soil hydraulic properties in this
study were measured about one year after the last tillage
operations. Differences in soil hydraulic attributes among tillage
systems can vary with time after tillage (Strudley et al., 2008).
Thus, monitoring changes in soil hydraulic properties on a
temporal basis across seasons is needed to better characterize
tillage effects. For example, differences in water infiltration and soil
porosity between no-till and plow till soils can be the highest
immediately after tillage and decrease with time as the loose tilled
soil collapses and consolidates due to overburden pressure and
raindrop impacts (Strudley et al., 2008). Based on this consider-
ation, water infiltration in moldboard plowed plots would have
been larger than in no-till plots should we had measured these
properties soon after tillage. Hydraulic properties such as water
infiltration, porosity, and saturated hydraulic conductivity are
more readily altered by tillage operations due to changes in soil
structure compared with water retention capacity at high suctions
(i.e., �1500 kPa or permanent wilting point), which is less affected
by changes in soil structural characteristics. In this study, for the
given soil types, water retention between no-till and other tillage
systems did not differ (Table 1), suggesting that long-term no-till
may not improve water retention capacity regardless of measure-
ment time following tillage.

4. Conclusions

Results from this long-term study indicate that soil physical
characteristics among no-till, disk, chisel, and moldboard plow
were similar except for water infiltration under ponded con-
ditions. Moldboard plowed soils had greater ponded infiltration
rates and cumulative infiltration compared with no-till, disk, and
chisel plow systems. Infiltration rate and cumulative infiltration
determined at �1 kPa pressure head with the tension infiltrom-
eter to reduce macropore flow did not, however, differ among the
tillage treatments. Thus, the increased water infiltration under
ponded conditions for the moldboard plow system and similari-
ties in infiltration among tillage systems when macropore flow
was eliminated suggest that inversion tillage with moldboard
plow probably created some fractures in the soil structure, which
increased infiltration, relative to other tillage systems. Differences
in soil porosity, saturated hydraulic conductivity, and water
retention characteristics among the four tillage systems were not
significant. These results suggest that no-till management may
not retain more water than other tillage systems in this soil even
in the long term. While differences in ponded infiltration could be
the result of macropore flow, the other soil hydraulic parameters
appeared to be independent of that macropore contribution.
Overall, no-till management potential for improving soil

hydraulic properties appears to be limited under the conditions
of this study.

Acknowledgement

This work was in part supported by the USDA National Institute
of Food and Agriculture, Hatch project 1003527.

References

Baumhardt, R.L., Keeling, J.W., Wendt, C.W., 1993. Tillage and residue effects on
infiltration into soils cropped to cotton. Agron. J. 85, 379–383.

Blanco-Canqui, H., Gantzer, C.J., Anderson, S.H., Alberts, E.E., 2004. Tillage and crop
influences on soil properties for an Epiaqualf. Soil Sci. Soc. Am. J. 68, 567–576.

Blanco-Canqui, H., Mikha, M.M., Presley, D.R., Claassen, M.M., 2011. Addition of
cover crops enhances no-till potential for improving soil physical properties.
Soil Sci. Soc. Am. J. 75, 1471–1482.

Dane, J.H., Hopmans, J.H., 2002. Water retention and storage. In: Dane, J.H., Topp, G.
C. (Eds.), Methods of Soil Analysis. Part 4. Agron. Monogr., vol. 5. SSSA, Madison,
WI, pp. 671–717.

Grossman, R.B., Reinsch, T.G., 2002. Bulk density and linear extensibility. In: Dane, J.
H., Topp, G.C. (Eds.), Methods of Soil Analysis. Part 4. Agron. Monogr., vol. 5.
SSSA, Madison WI, pp. 201–225.

Gwenzi, W., Hinz, C., Holmes, K., Phillips, L.R., Mullins, I.J., 2011. Field-scale spatial
variability of saturated hydraulic conductivity on a recently constructed
artificial ecosystem. Geoderma 166, 43–56.

Lyon, D.J., Stroup, W.W., Brown, R.E., 1998. Crop production and soil water storage in
long-term winter wheat-fallow tillage experiments. Soil Tillage Res. 49, 19–27.

McVay, K.A., Budde, J.A., Fabrizzi, K., Mikha, M.M., Rice, C.W., Schlegel, A.J., Peterson,
D.E., Sweeney, D.W., Thompson, C., 2006. Management effects on soil physical
properties in long-term tillage studies in Kansas. Soil Sci. Soc. Am. J. 70, 434–
438.

Perroux, K.M., White, S.,1988. Designs for disc permeameters. Soil Sci. Soc. Am. J. 52,
1205–1215.

Pikul Jr., J.L., Aase, J.K., 1995. Infiltration and soil properties as affected by annual
cropping in the Northern Great Plains. Agron. J. 87, 656–662.

Pryor, S.C., Scavia, D., Downer, C., Gaden, M., Iverson, L., Nordstrom, R., Patz, J.,
Robertson, G.P., 2014. Ch. 18: midwest. climate change impacts in the United
States: the third national climate assessment. In: Melillo, J.M., Richmond, Terese
(T.C.), Yohe, G.W. (Eds.), U.S. Global Change Research Program, , pp. 418–440.
doi:http://dx.doi.org/10.7930/J0J1012N.

Rawls, W.J., Pachepsky, Y.A., Ritchie, J.C., Sobecki, T.M., Bloodworth, H., 2003. Effect
of soil organic carbon on soil water retention. Geoderma 116, 61–76.

Reynolds, W.D., Bowman, B.T., Brunke, R.R., Drury, C.F., Tan, C.S., 2000. Comparison
of tension infiltrometer, pressure infiltrometer, and soil core estimates of
saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 64, 478–484.

Reynolds, W.D., Elrick, D.E., Youngs, E.G., 2002a. The soil solution phase. Single-ring
and double- or concentric-ring infiltrometers. In: Dane, J.H., Topp, G.C. (Eds.),
Methods of Soil Analysis. Part 4. SSSA Book Ser. 5. SSSA, Madison, WI, pp. 821–
826.

Reynolds, W.D., Elrick, D.E., Youngs, E.G., 2002b. Field methods (vadose and
saturated zone techniques). In: Dane, J.H., Topp, G.C. (Eds.), Methods of Soil
Analysis. Part 4. Agron. Monogr., vol. 5. SSSA, Madison WI, pp. 817–877.

SAS Institute, 2016. The Analyst Applications. SAS Inst., Cary, NC.
Sindelar, A.J., Schmer, M.R., Jin, V.L., Wienhold, B.J., Varvel, G.E., 2015. Long-term

corn and soybean response to crop rotation and tillage. Agron. J.107, 2241–2252.
Stone, L.R., Schlegel, A.J., 2010. Tillage and crop rotation phase effects on soil

physical properties in the west-central Great Plains. Agron. J. 102, 483–491.
Strudley, M.W., Green, T.R., Ascough, J.C., 2008. Tillage effects on soil hydraulic

properties in space and time: state of the science. Soil Tillage Res. 99, 4–48.
Tanaka, D., Anderson, R.,1997. Soil water storage and precipitation storage efficiency

of conservation tillage systems. J. Soil Water Conserv. 52, 363–367.
Unger, P.W., 1992. Infiltration of simulated rainfall: tillage system and crop residue

effects. Soil Sci. Soc. Am. J. 56, 283–289.
Varvel, G.E., Wilhelm, W., 2011. No-tillage increases soil profile carbon and nitrogen

under long-term rainfed cropping systems. Soil Tillage Res. 114, 28–36.
Wienhold, B.J., Tanaka, D.L., 2000. Haying, tillage, and nitrogen fertilization

influences on infiltration rate at a Conservation Reserve Program site. Soil Sci.
Soc. Am. J. 64, 379–381.

42 H. Blanco-Canqui et al. / Soil & Tillage Research 170 (2017) 38–42

http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0005
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0005
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0010
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0010
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0015
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0015
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0015
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0020
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0020
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0020
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0025
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0025
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0025
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0030
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0030
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0030
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0035
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0035
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0040
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0040
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0040
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0040
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0045
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0045
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0050
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0050
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0055
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0055
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0055
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0055
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0055
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0060
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0060
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0065
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0065
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0065
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0070
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0070
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0070
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0070
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0075
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0075
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0075
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0080
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0085
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0085
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0090
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0090
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0095
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0095
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0100
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0100
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0105
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0105
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0110
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0110
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0115
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0115
http://refhub.elsevier.com/S0167-1987(17)30041-7/sbref0115

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2017

	Long-term tillage impact on soil hydraulic properties
	Humberto Blanco-Canqui
	Brian J. Weinhold
	Virginia L. Jin
	Marty R. Schmer
	Leonard C. Kibet

	Long-term tillage impact on soil hydraulic properties
	1 Introduction
	2 Materials and methods
	2.1 Site description
	2.2 In situ field measurements and soil sampling
	2.3 Laboratory measurements and data analysis
	2.4 Statistical analysis

	3 Results and discussion
	3.1 Water infiltration
	3.2 Soil porosity, hydraulic conductivity, and water retention

	4 Conclusions
	Acknowledgement
	References


