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Abstract This paper presents a literature survey on time-

dependent statistical modelling of extreme waves and sea

states. The focus is twofold: on statistical modelling of

extreme waves and space- and time-dependent statistical

modelling. The first part will consist of a literature review of

statistical modelling of extreme waves and wave parame-

ters, most notably on the modelling of extreme significant

wave height. The second part will focus on statistical

modelling of time- and space-dependent variables in a more

general sense, and will focus on the methodology and

models used also in other relevant application areas. It was

found that limited effort has been put on developing statis-

tical models for waves incorporating spatial and long-term

temporal variability and it is suggested that model

improvements could be achieved by adopting approaches

from other application areas. In particular, Bayesian hier-

archical space–time models were identified as promising

tools for spatio-temporal modelling of extreme waves.

Finally, a review of projections of future extreme wave

climate is presented.

Keywords Extreme waves � Stochastic modelling �
Spatiotemporal modelling � Climate change � Risk

assessment

1 Introduction

According to casualty statistics, one of the major causes of

ship losses is bad weather (Guedes Soares et al. 2001),

which stresses the importance of taking extreme sea state

conditions adequately into account in ship design. There-

fore, a correct and thorough understanding of meteoro-

logical and oceanographic conditions, most notably the

extreme values of relevant wave and wind parameters, is of

paramount importance to maritime safety. Thus, there is a

need for appropriate statistical models to describe these

phenomena.

When designing ships and other marine and offshore

structures, relevant safety regulations and design standards

should be based on the best available knowledge. Meteo-

rological data for the last 50? years are available and this is

often assumed to be representative also for the current sit-

uation. However, ships and other marine structures are

designed for lifetimes of several decades and design codes

and standards should be based on knowledge about the

operating environment throughout the expected lifetime of

the structure—several decades into the future. Such

knowledge will also be crucial for any risk assessment of

maritime transportation or offshore operations.

According to the IPCC Fourth Assessment Report

(IPCC 2007), the globe is currently experiencing climate

change and the Earth is warming. It is also very likely that

human activities and emission of greenhouse gasses are

mainly responsible for the recent rise of global tempera-

tures. Projections of future climate indicate that it is very

likely that frequencies and intensities of extreme weather

events will increase (IPCC 2007). Model projections also

show a poleward shift of the storm tracks with more

extreme wave heights in those regions.

Thus, it is increasingly evident that climate change is a

reality. An overwhelming majority of researchers and sci-

entists agree on this and it is reasonable to assume that the

averages and extremes of sea states are changing and

cannot be considered stationary. Hence, it is no longer
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sufficient to base design codes on stationary wave param-

eters without any consideration of how these are expected

to change in the future. There is a need for time-dependent

statistical models that can take the time-dependency of the

integrated wave parameters into account, and also ade-

quately model the uncertainties involved, in order to pre-

dict realistic operating environments throughout the

lifetime of ships and marine structures.

This paper aims at providing a comprehensive, up-to-

date review of statistical models proposed for modelling

long-term variability in extreme waves and sea states as

well as a review of alternative approaches from other areas

of application. The paper is organized as follows: Section 2

outlines alternative sources of wave data, Sect. 3 comprises

a review of statistical models for extreme waves, Sect. 4

presents a review of relevant spatio-temporal statistical

models from other areas of application, Sect. 5 reviews

projections of future wave climate and Sect. 6 concludes

with some recommendations for further research. An

abbreviated version of this work was presented at the

OMAE conference this year (Vanem 2010).

Efforts have been made to include all relevant and

important work to make this literature survey as complete

as possible, and this has resulted in a rather voluminous list

of references at the end of the paper. Notwithstanding, due

to the enormous amount of literature in this field some

important works might inevitably have been omitted. This

is unintended and it should be noted that important con-

tributions to the discussion herein might exist of which I

have not been aware. Nevertheless, it is believed that this

literature study contains a fair review of relevant literature

and as such that it gives a good indication of state-of-the art

within the field and may serve as a basis for further

research on stochastic modelling of extreme waves and sea

states.

1.1 Integrated sea state parameters

The state of the sea changes constantly, and it is therefore

neither very practical nor very useful to describe the sea for

an instantaneous point in time. Therefore, sea states are

normally described by different averages and extreme

values for a certain period of time, often referred to as

integrated sea state parameters. Typically, such integrated

parameters include the significant wave height,1 mean

wave period, mean main wave direction, spread of the

wave direction and mean swell. Such integrated wave

parameters represent averages over a defined period of

time, typically in the order of 20–30 min.

Integrated wave parameters, which are averages over

different periods of time, will have its own averages and

extremes. Of particular interest may be the m-year return

value of the significant wave height, SWHm, which is

defined as the value of HS that is exceeded on average once

every m years. In ship design, the SWH20 has traditionally

been of particular interest since ships are normally

designed for a lifetime of 20 years. The modelling of such

extreme values, for example for the significant wave

height, is therefore of interest.

It is also of interest to investigate how such average

wave parameters vary over time. In particular, long term

variations (i.e. how these parameters will vary in the next

50–100 years) will be an important basis for design of

marine and offshore structures with expected lifetimes in

the range of several decades and also for maritime risk

analyses. This is of particular importance at times where

climate change indicates that the future is not well repre-

sented by today’s situation (i.e. where an increase in

extreme weather and sea state is expected).

1.2 Waves as stochastic processes

Although the dynamics of the sea and the mechanisms

underlying the generation of waves on the sea surface

inevitably follows the laws of physics and therefore, in

principle, the sea state could be described deterministically,

in reality this is not possible due to the complexity of the

system. Hence, the description of waves and the sea must

be done probabilistically. The sea is a dynamic system that

is influenced by innumerable factors and an infinite number

of interrelated parameters would be needed in order to

provide an exact description of the sea in any given point in

time. It is simply not possible to know all and every one of

these parameters. The unknown parameters introduce

uncertainties to any description of the system and an exact

description of the sea is therefore not feasible. Thus, the

problem of describing the sea turns into a statistical prob-

lem, and probabilistic models are needed in order to rep-

resent waves on the sea surface and to provide a better

understanding of the maritime environment in which ships

operate. In this regard stochastic models would seem to be

the most appropriate approach to describe extreme waves.

Also, the fact that the sea state is normally described

through different average and extreme properties, as dis-

cussed briefly above, indicates that statistical tools are

appropriate to model waves and sea states. A comprehen-

sive overview of statistical techniques, methodologies,

theories and tools used in climatic analyses is presented in

von Storch and Zwiers (1999).

Stochastic modelling of ocean waves can be performed

on two very different time scales. In the short-term models,

the parameters of most concern are those for individual

1 Significant waveheight, denoted SWH, HS or H1/3 is often defined

as the average wave height, from trough to crest, of the one-third

largest waves that is observed during the period.
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waves such as individual wave height, wave length and

period, etc. The times involved in such models are nor-

mally in the order from a few seconds to a couple of hours.

The long-term models mainly refer to the description of

spectral parameters, and the times that are involved nor-

mally span over many years. It is the latter time scales that

are of main interest in the present work, considering

modelling of possible long-term trends due to climate

change.

1.3 Predicting the impact of climate change on extreme

sea states

The state of the oceans and the characteristics of the waves

are influenced by innumerable external factors, and the

most influential boundary conditions are related to the

atmosphere and the global and local climate in general.

Atmospheric pressure, wind, temperature, precipitation,

solar radiation and heat, tidal movements, the rotation of

the earth and movements of the seabed (e.g. from earth-

quakes or volcanic activities) are examples of external

factors that jointly influence the generation of waves on the

sea surface. In one sense, some of the average and extreme

properties of the sea state can be regarded as stationary if

the overall average boundary conditions does not change.

That is, in spite of the continuous variations of sea states

over time, the averages such as seasonal average wave

heights and return periods for extreme waves can be con-

sidered as stationary if the average boundary conditions

(e.g. average atmospheric pressure, average wind, average

temperatures, etc.) remain stationary.

However, in recent years it has become increasingly

apparent that the climate system overall is not stationary

and that the climate will change in the near future—in fact

it has been observed that the climate is already undergoing

a change with a global long-term trend towards higher

temperatures and more frequent and intense severe weather

events, although local and regional trends may differ from

this global trend. These climate changes—man-made or

not—will thus change the overall boundary conditions for

the sea, and the assumption that the average sea states can

be regarded as stationary ceases to be valid.

In order to predict future trends in sea state parameters

in the non-stationary case, one may therefore start with

predicting the trends in the boundary conditions such as

temperature, atmospheric pressure and wind. Assuming

that a significant part of the climate change is man-made

and can be ascribed to the increasing emission of green-

house gases, most notably CO2, and aerosols, predictions of

climate change can be made based on various emission

scenarios or forcing scenarios (Nakićenović et al. 2000).

These forcing scenarios can then be fed into climate

models to predict global trends in meteorological variables,

which can again be used to predict trends in average and

extreme properties of sea waves. However, most wave

models are deterministic and not able to handle the

inherent uncertainties involved in a rigorous manner.

Estimates of future HS return values are difficult since

there are no projections of future HS fields. However,

projections of sea level pressure provided by climate

models are reasonable reliable and it is known that the HS

fields are highly correlated with sea level pressure fields.

Therefore, one approach could be to model HS fields by

regressing on projected sea level pressure fields, as was

done in Wang et al. (2004). Other covariates may also be

used to predict changes in extreme wave climate from

projected changes in the overall climate, and the utilization

of such dependencies may prove important in modelling

long-term trends in extreme waves.

2 Wave data and data sources

As in all statistical modelling, a crucial prerequisite for any

sensible modelling and reliable analysis is the availability

of statistical data. For example, if models describing the

spatio-temporal variability of extreme waves are to be

developed, wave data with sufficient spatio-temporal res-

olution is needed. Furthermore, the lack of adequate cov-

erage in the data will restrict the scope of the statistical

models that can be used.

Wave data can be obtained from buoys, laser measure-

ments, satellite images, shipborne wave recorders or be

generated by numerical wave models. Of these, buoy

measurements are most reliable, but the spatial coverage is

limited. For regions where buoy data are not available,

satellite data may be an alternative for estimation of wave

heights (Krogstad and Barstow 1999; Panchang et al.

1999), and there are different satellites that collect such

data. Examples of satellite missions are the European

Remote Sensing Satellites (ERS-1 and ERS-2), the Topex/

Poseidon mission and Jason-1 and -2 missions.

Wave parameters derived from satellite altimeter data

were demonstrated to be in reasonable agreement with

buoy measurements by the end of last century (Hwang

et al. 1998). More recently, further validation of wave

heights measured from altimeters have been performed,

and the agreement with buoy data is generally good

(Queffeulou 2004; Durrant et al. 2009). However, correc-

tions due to biases may be required, and both negative and

positive biases for the significant wave height have been

reported, indicating that corrections are region-dependent

(Meath et al. 2008). Sea state parameters such as signifi-

cant wave height derived from synthetic aperture radar

images taken from satellites were addressed in Lehner

et al. (2007).
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Ship observations are another source of wave data which

covers areas where buoy wave measurements are not

available. The Voluntary Observing Ship (VOS) scheme

has been in operation for almost 150 years and has a large

set of voluntary collected data. However, due to the fact

that ships tend to avoid extreme weather whenever possi-

ble, extreme wave events are likely to be under-represented

in ship observations and hence such data are not ideally

suited to model extreme wave events (DelBalzo et al.

2003; Olsen et al. 2006).

Recently, a novel wave acquisition stereo system

(WASS) based on a variational image sensor and video

observational technology in order to reconstruct the 4D

dynamics of ocean waves was developed (Fedele et al.

2009). The spatial and temporal data provided by this

system would be rich in statistical content compared to

buoy data, but the availability of such data are still limited.

In general, measurements of wave parameters are more

scarce than meteorological data such as wind and pressure

fields which are collected more systematically and cover-

ing a wider area. An alternative is therefore to use output

from wave models that uses meteorological data as input

rather than to use wave data that are measured directly.

Wave models are normally used for forecast or hindcast of

sea states (Guedes Soares et al. 2002). Forecasts typically

predicts sea states up to 3–5 days ahead. Hindcast modelling

can be used to calibrate the models after precise meteoro-

logical measurements have been collected. It can also be

used as a basis for design but it is stressed that quality control

is necessary and possible errors and biases should be iden-

tified and corrected (Bitner-Gregersen and de Valk 2008).

Currently, data are available from various reanalysis

projects (Caires et al. 2004). For example, 40 year of

meteorological data are available from the NCEP/NCAR

reanalysis project (Kalnay et al. 1996) that could be used to

run wave models (Swail and Cox 2000; Cox and Swail

2001). A more recent reanalysis project, ERA-40 (Uppala

et al. 2005), was carried out by the European Centre for

Medium-Range Weather Forecasts (ECMWF) and covers a

45-year period from 1957 to 2002. The data contain six-

hourly fields of global wave parameters such as significant

wave height, mean wave direction and mean wave period

as well as mean sea level pressure and wind fields and other

meteorological parameters. A large part of this reanalysis

data are freely available for download from their website

for research purposes.2

It has been reported that the ERA-40 dataset contains

some inhomogeneities in time and that it underestimates

high wave heights (Sterl and Caires 2005), but corrected

datasets for the significant wave height have been produced

(Caires and Sterl 2005). Hence, a new 45-year global six-

hourly dataset of significant wave height has been created,

and the corrected data shows clear improvements com-

pared to the original data. In Caires and Swail (2004) it is

stated that this dataset can be obtained freely from the

authors for scientific purposes.

3 Review of statistical models for extreme waves

In order to model long-term trends in the intensity and

frequency of occurrence of extreme wave events or

extreme sea states due to climate change, appropriate

models must be used. There are numerous stochastic wave

models proposed in the literature, but most of these are

developed for other purposes than predicting such long-

term trends. Models used for wave forcasting, for example

in operational simulation of safety of ships and offshore

structures typically have a short-term perspective, and

cannot be used to investigate long-term trends. Also, many

wave models assume stationary or cyclic time series, which

would not be the case if climate change is a reality.

There are different approaches to estimating the extreme

wave heights at a certain location based on available wave

data, and some of the most widely used are the initial dis-

tribution method, the annual maxima method, the peak-over-

threshold method and the MEan Number of Up-crossings

(MENU) method. The initial distribution method uses data

(measured or calculated) of all wave heights and the extreme

wave height of a certain return period is estimated as the

quantile hp of the wave height distribution F(h) with proba-

bility p. The annual maxima approach uses only the annual

(or block) maxima and the extreme wave height will have

one of the three limit distributions referred to as the family of

the generalized extreme value distribution. The peak-over-

threshold approach uses data with wave heights greater than

a certain threshold, and thus allows for increased number of

samples compared to the annual maxima approach. Waves

exceeding this threshold would then be modelled according

to the Generalized Pareto distribution. However, the peaks-

over-threshold method has demonstrated a clear dependence

on the threshold and is therefore not very reliable. The

MENU method determines the return period of an extreme

wave of a certain wave height by requiring that the expected

or mean number of up-crossings of this wave height will be

one for that time interval.

Another approach useful in extreme event modelling is

the use of quantile functions, an alternative way of defining

a probability distribution (Gilchrist 2000). The quantile

function, Q, is a function of the cumulative probability of a

distribution and is simply the inverse of the cumulative

density function: Q(p) = F-1(p) and F(x) = Q-1(x). This

function can then be used in frequency analysis to find

2 Data available from url: http://data-portal.ecmwf.int/data/d/era40_

daily/.
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useful estimates of the quantiles of relevant return periods

T of extreme events in the upper tail of the frequency

distribution, QT = Q(1 - 1/T).

Yet another approach for estimating the maxima of a sta-

tionary process is to model the number of extreme events,

defined as the number of times the process crosses a fixed level

u in the upward direction, as a Poisson process (a counting

process {N(t), t C 0} with N(0) = 0, independent increments

and with number of events in a time interval of length t Poisson

distributed with mean kt is said to be a Poisson process with

rate k) and apply the Rice formula to compute the intensity of

the extreme events (see e.g. Rychlik 2000).

In the following, a brief review of some wave models

proposed in the literature will be given. This includes a

brief description of some short-term and stationary wave

models as well as a more comprehensive review of pro-

posed approaches to modelling long term trends due to

global climatic changes. An introduction to stochastic

analysis of ocean waves can be found in Ochi (1998) and

Trulsen (2006), albeit the latter with a particular emphasis

on freak or rogue waves.

3.1 Short-term stochastic wave models

Waves are generated from wind actions and wave predic-

tions are often based on knowledge of the generating wind

and wind-wave relationships. Most wave models for

operational wave forecasting is based on the energy bal-

ance equation; there is a general consensus that this

describes the fundamental principle for wave predictions,

and significant progress have been made in recent decades

(Janssen 2008). Currently, the third-generation wave model

WAM is one of the most widely used models for wave

forecasting (The WAMDI Group 1988; Komen et al. 1994)

computing the wave spectrum from physical first princi-

ples. Other widely used wave models are Wave Watch and

SWAN, and there exist a number of other models as well

(The Wise Group et al. 2007). However, wave generation

is basically an uncertain and random process which makes

it difficult to model deterministically, and in Deo et al.

(2001), Bazargan et al. (2007) approaches using neural

networks were proposed as an alternative to deterministic

wave forecasting models.

There are a number of short-term, statistical wave

models for modelling of individual waves and for pre-

dicting and forecasting sea states in the not too distant

future. Most of the models for individual waves are based

on Gaussian approaches, but other types of stochastic wave

models have also been proposed to account for observed

asymmetries (e.g. adding random correction terms to a

Gaussian model (Machado and Rychlik 2003) or based on

Lagrangian models (Lindgren 2006; Aberg and Lindgren

2008)). Asymptotic models for the distribution of maxima

for Gaussian processes for a certain period of time exist,

and under certain assumptions, the maximum values are

asymptotically distributed according to the Gumbel distri-

bution. However, as noted in Rydén (2006), care should be

taken when using this approximation for the modelling of

maxima of wave crests. A similar concern was expressed in

Coles et al. (2003), albeit not related to waves.

Given the short-term perspective of these types of

models, they cannot be used to describe long-term trends

due to climate change, nor to formulate design criteria for

ships and offshore structures, even though they are

important for maritime safety during operation. Improved

weather and wave forecasts will of course improve safety

at sea, but the main interest in the present study is on long-

term trends in ocean wave climate, and the effect this will

have on maritime safety and on the design of marine

structures. Therefore, short-term wave models will not be

considered further herein.

3.1.1 Significant wave height as a function

of wind speed

The significant wave height for a fully developed sea,

sometimes referred to as the equilibrium sea approxima-

tion, given a fixed wind speed have been modelled as a

function of the wind speed in different ways, for example

as HS / U5=2 or HS / U2 (Kinsman 1965). This makes it

possible to make short-term predictions of the significant

wave height under the assumptions of a constant wind

speed and assuming unlimited fetch and duration. For

developing sea conditions, with limited fetch or limited

wind duration, the significant wave height as a function of

wind speed, U (m/s) and respectively fetch X (km) and

duration D (h) has been modelled in different ways, for

example as HS * X1/2U and HS / D5=7U9=7 (Özger and

Şen 2007).

However, it is observed that the equilibrium wind sea

approximation is seldom valid, and an alternative model

for predicting the significant wave height for wind waves,

HS from the wind speed U10 at a reference height of 10 m

were proposed in Andreas and Wang (2007), using a dif-

ferent, yet simple parametrization. 18 years of hourly data

of significant wave height and winds speed for 12 different

buoys were used in order to estimate the model which can

be written on the following form:

HS ¼ CðDÞIðU10� 4m=sÞ
þ aðDÞU2

10 þ bðDÞ
� �

IðU10 [ 4m=sÞ
ð1Þ

D denotes the water depth and C, a and b are depth-

dependent parameters. Based on comparison with mea-

surements it was concluded that this model is reliable for

wind speeds up to at least U10 = 25 m/s.
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It is out of scope of the present literature survey to review

all models for predicting wave heights from wind speed or

other meteorological data. Such models are an integral part

of the various wave models available for wave forecasting,

but cannot be used directly to model long-term variations in

wave height. However, given adequate long-term wind

forecasts, such relationships between wind speed and wave

height may be exploited in simulating long-term wave data

for long-term predictions of wave climate.

3.2 Stationary models

A thorough survey of stochastic models for wind and sea

state time series is presented in Monbet et al. (2007). Only

time series at the scale of the sea state have been considered

without modelling events at the scale of individual waves,

and only at given geographical points. One section of

Monbet et al. (2007) is discussing how to model non-sta-

tionarity such as trends in time series and seasonal compo-

nents, but for the main part of the paper it is assumed that the

studied processes are stationary. The models have been

classified in three groups: Models based on Gaussian

approximations, other non-parametric models and other

parametric models. In the following, the main characteristics

for these different types of wave models are highlighted.

Even though ocean wave time series cannot normally be

assumed to be Gaussian, it may be possible to transform these

time series into time series with Gaussian marginal distri-

butions when they have a continuous state space (Monbet

et al. 2007). The transformed time series can then be simu-

lated by using existing techniques to simulate Gaussian

processes. If {Yt} is a stationary process in Rd, assume that

there exists a transformation f: Rd ? Rd and a stationary

Gaussian process {Xt} so that Yt = f(Xt). Such a procedure

consists of determining the transformation function f, gen-

eration of realizations of the process {Xt} and then trans-

forming the generated samples of {Xt} into samples of {Yt}

using f. A number of such models for the significant wave

height have been proposed in the literature (e.g. Cunha and

Guedes Soares (1999), Walton and Borgman (1990) for the

univariate time series for significant wave height, Hs, Guedes

Soares and Cunha (2000), Monbet and Prevosto (2001) for

the bivariate time series for significant wave height and mean

wave period, (Hs, T) and DelBalzo et al. (2003) for the

multivariate time series for significant wave height, mean

wave period and mean wave direction, (Hs, T, Hm)). How-

ever, it is noted that the duration statistics of transformed

Gaussian processes has been demonstrated not to fit too well

with data, even though the occurrence probability is cor-

rectly modelled (Jenkins 2002).

Multimodal wave models for combined seas (e.g. with

wind-sea and swell components) have also been discussed

in the literature (see e.g. Torsethaugen 1993; Torsethaugen

and Haver 2004; Ewans et al. 2006), but these are gener-

ally not required to describe severe sea states where

extremes occur (Bitner-Gregersen and Toffoli 2009).

A few non-parametric methods for simulating wave

parameters have been proposed, as reported in Monbet et al.

(2007). One may for example assume that the observed time

series are Markov chains and use non-parametric methods

such as nearest-neighbor resampling to estimate transition

kernels. In Caires and Sterl (2005), a non-parametric

regression method was proposed to correct outputs of

meteorological models. A continuous space, discrete time

Markov model for the trivariate time-series of wind speed,

significant wave height and spectral peak period was pre-

sented in Monbet and Marteau (2001). However, one major

drawback of non-parametric methods is the lack of

descriptive power.

An approach based on copulas for multivariate model-

ling of oceanographic variables, accounting for depen-

dencies between the variables, were proposed in de Waal

and van Gelder (2005) and applied to the joint bivariate

description of extreme wave heights and wave periods.

Parametric models for wave time series include various

linear autoregressive models, nonlinear retrogressive mod-

els, finite state space Markov chain models and circular time

series models. A modified Weibull model was proposed in

Muraleedharan et al. (2007) for modelling of significant and

maximum wave height. For short-term modelling of wave

parameters, different approaches of artificial neural net-

works (see e.g. Deo et al. 2001; Mandal and Prabaharan

2006; Arena and Puca 2004; Makarynskyy et al. 2005) and

data mining techniques (Mahjoobi and Etemad-Shahidi

2008; Mahjoobi and Mosabbeb 2009) have successfully

been applied. A non-linear threshold autoregressive model

for the significant waveheight was proposed in Scotto and

Guedes Soares (2000).

3.3 Non-stationary models

Many statistical models for extreme waves assume the sta-

tionarity of extreme values, but there are some non-station-

ary models proposed in the literature. In the following, some

non-stationary models for extreme waves that are known and

previously presented in the literature will be reviewed. A

review of classical methods for asymptotic extreme value

analysis used in extreme wave predictions are presented in

Soukissian and Kalantzi (2006).

3.3.1 Microscopic models

A number of statistical models have been presented in the

literature where the focus has been to use sophisticated sta-

tistical methods to estimate extreme values at certain specific

geographical points (e.g. based on data measurements at that
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location). This approach is natural, given the limited spatial

resolution of available wave data, and aims at exploiting

available data measurements at certain locations to the

maximum, i.e. to obtain as good predictions as possible for

locations where wave data are available. In the following,

some of these will be briefly reviewed, even though it is noted

that the aim of this study is to extend the scope and broaden

the perspective of the statistical models to also include the

spatial dimension.

A method for calculating return periods of various levels

from long-term nonstationary time series data of significant

wave height based on a new definition of the return period is

presented in Stefanakos and Monbet (2006) and Stefanakos

and Athanassoulis (2006). This definition is based on the mean

number of upcrossings of a particular level and was first

introduced in the context of prediction of sea-level extremes in

Middleton and Thompson (1986). In Soukissian and Kalantzi

(2007) and Guedes Soares and Scotto (2004), new de-clus-

tering methods and filtering techniques are proposed in order

to apply the r-largest-order statistics for long-term predictions

of significant wave height. A new de-clustering method was

also suggested in Soukissian et al. (2006) for applying the

peaks-over-threshold method for Hs time series. An approach

using stochastic differential equations for clarifying the rela-

tionship between long-term time-series data and its proba-

bility density functions in order to extrapolate long-term

predictions from shorter historical data is proposed in Minoura

and Naito (2006). Two approaches for estimating long term

extreme waves are discussed in Hagen (2009) (i.e. an initial

distribution approach and a Peak Over Threshold (POT)

approach for storm events) and issues related to sampling

variability, model fitting and threshold selection (for the POT

analysis) are addressed.

Duration statistics of long time series of significant wave

height Hs (i.e. the duration of sea states with different

intensities) where analyzed in Soukissian and Samalekos

(2006) using a bottom-up segmentation algorithm. This

analysis makes use of the increasing or decreasing intensity

of successive sea state conditions, and subdivide long-term

Hs time series into subsequent series of monotonically

increasing or decreasing intensities. This would correspond

to developing and decaying sea states, and the segmenta-

tion algorithm should ensure that a meaningful subdivision

of the long-term time series are obtained. A sensitivity

analysis of this approach, investigating the effect of the

maximum allowed error on the segmentation of the Hs time

series is reported in Soukissian and Photiadou (2006).

Return periods of storms with an extreme wave above a

certain threshold are found based on an equivalent trian-

gular storm model in Arena and Pavone (2006). This

approach is extended to find return periods analytically for

storms with two or more waves exceeding the threshold in

Arena et al. (2009), Arena and Pavone (2009). The basic

idea behind the equivalent triangular storm model is that it,

for a fixed location, associates a triangle to each actual

storm and represents a significant wave height time series

by means of a sequence of triangular storms. The triangle

height is the maximum significant wave height during the

actual storm and the triangle base is such that the maxi-

mum expected wave height in the actual storm equals the

maximum expected wave height in the triangular storm

model (Bocotti 2000). The equivalent power storm model

was presented in Fedele and Arena (2009) as a general-

ization of the equivalent triangular storm model to predict

return periods for waves above a certain threshold. It is

noted that the equivalent triangular storm is firmly based on

what has become known as the Borgman Integral (Borgman

1973), which gives the distribution function for the largest

wave, Fm(h) = P(Hm B h) as follows, with Hm denoting the

largest wave height, a2(t) time varying Rayleigh parameter

and T(t) typical wave period at time t:

FmðhÞ ¼ e
R

log½1�e�h2=a2ðtÞ� dt
TðtÞ ð2Þ

A nonstationary stochastic model for long-term time

series of significant wave height was presented in

Athanassoulis and Stefanakos (1995) which were modelled

by decomposing detrended time series to a periodic mean

value and a residual time series multiplied with a periodic

standard deviation: XðsÞ ¼ XtrendðsÞ þ lðsÞ þ rðsÞWðsÞ: It

was then showed that W(s) could be considered stationary.

Short-term and long-term wave characteristics of ocean

waves were combined in order to develop nested, stochastic

models for the distribution of maximum wave heights in

Prevesto et al. (2000). Different time scales were introduced,

i.e. fast time and slow time, and a stochastic process was

modelled in the fast time where the state variables were

modelled as a stochastic process in the slow time.

The seasonal effect on return values of significant wave

height were investigated in Menéndez et al. (2009), where

a time-dependent generalized extreme value model was

used for monthly maxima of significant wave height. Non-

stationarity representing annual and semiannual cycles is

introduced in the model via the location, scale and shape

parameters and the inclusion of seasonal variabilities is

found to reduce the residuals of the fitted model substan-

tially. Hence, the model provides a way of quantitatively

examining the long-term seasonal distribution of signifi-

cant wave height.

Various other models for the long-term distribution of

significant wave height have been suggested (e.g. using the

Beta and Gamma models (Ferreira and Guedes Soares 1999),

using the Annual Maxima and Peak Over Threshold methods

(Guedes Soares and Scotto 2001) using non-linear threshold

models (Scotto and Guedes Soares 2000), using time-

dependent Peak Over Threshold models for the intensity
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combined with a Poisson model for frequency (Méndez et al.

2006, 2008), employing different autoregressive models

(Guedes Soares and Ferreira 1996; Guedes Soares et al.

1996), and using a transformation of the data and a Gaussian

model for the transformed data (Ferreira and Guedes Soares

2000)). Short- and long-term statistics were combined in

Krogstad (1985) in order to establish distributions of maxi-

mum wave heights and corresponding periods. Some con-

siderations of bias and uncertainty in methods of extreme

value analysis were discussed in Gibson et al. (2009), lead-

ing to some recommended approaches for such analyses and

applied on a set of wave data.

More recently, an interesting approach to long-term pre-

dictions of significant wave height, combining Bayesian

inference methodology, extreme value techniques and

Markov Chain Monte Carlo (MCMC) procedures is presented

in Scotto and Guedes Soares (2007). The benefits of using a

Bayesian approach compared to a traditional likelihood-based

approach is that prior knowledge about parameter values h can

be used together with observed data x to update a posterior

distribution p(h|x). Simulations of this posterior distribution

can be obtained by constructing a Markov Chain whose

invariant distribution, or target distribution, is proportional

to the posterior distribution by employing the Metropolis-

Hastings algorithm (see Robert and Casella 2004). This

Bayesian approach was used to analyze a dataset of significant

wave height collected in the northern North Sea.

Another Bayesian approach to estimating posterior dis-

tributions of return periods for extreme waves is proposed in

Egozcue et al. (2005). Here, the occurrence of extreme

events is modelled as a Poisson-process with extreme wave

heights distributed according to a generalized Pareto

distribution.

3.3.2 Combining long and short term wave height statistics

The Borgman Integral (Eq. 2) is a fundamental tool for

combining the long term distribution of significant wave

height with short term distribution for the individual wave

heights (Borgman 1973). This is often desired for estimating

the maximum wave or crest height occurring in a long return

interval. A similar method was proposed by Battjes (1972). It

is noted that the particular expression of the Borgman Inte-

gral as presented in Eq. 2 is based on the assumption of a

Rayleigh distribution for the individual wave height. A more

general form would be, letting P(h|Hs) denote the short-term

distribution of the individual wave height conditioned on the

sea state,

FmðhÞ ¼ e
R

log½PðhjHsÞ� dt
TðtÞ ð3Þ

Long time series of individual wave heights are typically

not available and calculations must therefore be based on

time series of sea state parameters such as the significant

wave height. Hence, the problem of modelling the

maximum wave height in a long time interval comprises

three aspects: modelling of long term sea state parameters

(e.g. significant wave height), short term modelling of

individual wave heights conditioned on the sea state and

combining the two distributions. This can be done by first

fitting a short-term distribution and then apply the

Borgman Integral to this distribution. Integration of

short-term second order models over time series of

measured sea states was performed by Krogstad and

Barstow (2004). A recent study concerned with finding the

most accurate method for combining long and short term

wave statistics was reported in Forristall (2008).

3.3.3 Spatio-temporal models for extreme waves

The spatial-temporal variability of ocean wave fields are

complex, and the fields will generally be inhomogeneous in

space and non-stationary in time, with strong temporal and

spatial variation (Jönsson et al. 2002). Different models

have been proposed in the literature for modelling these

variabilities and for analyzing and synthesizing spatio-

temporal wave data.

There has been significantly more focus on the temporal

variability compared to the spatial variability of wave

fields, but the spatial behavior (i.e. the spatial inter-

dependence and radius of influence of a set of spatially

distributed stations) of significant wave height is investi-

gated in Altunkaynak (2005). The methodology is based on

the concept of trigonometric point cumulative semivario-

grams, consisting of cumulative broken lines where the

angle between two successive lines connecting two station

records is a measure of the regional dependence, ranging

from 0 (complete independence) to 1 (complete depen-

dence). Another approach for predicting the maximum

wave height over a spatial area were proposed in Fedele

et al. (2009), based on 4D video data of sea states acquired

through a wave acquisition stereo system (WASS) and

using Euler Characteristics’ theory. A regional frequency

analysis of extreme wave heights, analyzing peaks-over-

threshold wave data from nine locations along the Dutch

North Sea coast was reported in Van Gelder et al. (2001).

The different locations could be considered as a homoge-

neous region and it was shown that the Generalized Pareto

Distribution is an optimal regional probability distribution

for the extreme wave heights for the region. Notable dif-

ferences were found for the regional quantile estimates

compared to the at-site quantile estimates, indicating that it

would be better to rely on the regional estimates in decision

making.

Models for stochastic simulation of the annual (Bou-

khanovsky et al. 2003a) and synoptic (Boukhanovsky et al.
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2003b) variability of inhomogeneous metocean fields were

proposed as expansions of the field f(r, t) in terms of

periodical empirical orthogonal functions in Boukhanovsky

et al. (2003a, b):

fðr; tÞ ¼ mðr; tÞ þ
X

k

akðtÞ/ktðr; tÞ þ �ðr; tÞ ð4Þ

where m(r, t) are the mathematical expectations, /kt(r, t)

are the spatio-temporal basis functions, e(k, t) are inho-

mogeneous white noise and ak(t) are the coefficients.

r denotes the geographical coordinates and t time. The

results of simulating these models is a set of simulated

metocean fields f(r, t) in a discrete set of grid points and at

discrete times. They could then be used to investigate the

field extremes and rare events in terms of both spatial and

temporal extremes, and wave data from the Barents Sea

region have been used to test the models with reasonable

agreement. The stochastic models for annual variability

can be regarded as field generalizations of periodically

correlated stochastic processes. The model for synoptic

variability uses a Lagrangian approach and the temporal

sequence of storm centres are modelled as a finite-state

Markov Chain with the storm extensions and field prop-

erties as spatio-temporal impulses.

Recently, spatio-temporal statistical models for the sig-

nificant wave height have been reported that describes the

variability of significant wave height over large areas by

stochastic fields (Baxevani et al. 2005, 2009).This is based

on constructing a homogeneous model valid for a small

region and then extending this to a non-homogeneous

model valid for large areas. Global wave measurements

from satellites have been used for model fitting, providing

wave data of spatial variability, but limited physical

knowledge about the wave phenomena have been incor-

porated into the models. The resulting models can then be

used to estimate the probability of a maximum significant

wave height to exceed a certain level or to estimate the

distribution of the (spatial) length of a storm (Baxevani

et al. 2007). However, the temporal validity of this model

is limited to the order of hours (Baxevani et al. 2009), and

therefore it does not seem suited for studying long-term

trends and the effects of climate change.

Caires et al. (2006b) used two approaches to model the

extremes of non-stationary time series, i.e. the non-homo-

geneous Poisson process and a non-stationary generalized

extreme value model. The non-homogeneous Poisson

process was used to model extreme values of the significant

wave height, obtained from the 40-year ECMWF re-anal-

ysis (ERA-40) (Uppala et al. 2005) and compared to esti-

mates obtained using a nonstationary generalized extreme

value model (NS-GEV). The parameter of the Poisson

distribution in this model was on the form k = $$k(t, x) dt

dx, where:

kðt; xÞ ¼ 1

rðtÞ 1þ nðtÞ x� lðtÞ
rðtÞ

� ��ð 1
nðtÞÞ�1

þ
ð5Þ

From projections of the sea level pressure under three

different forcing scenarios (Nakićenović et al. 2000; Boer

et al. 2000), projections of the parameters in the non-

homogeneous Poisson process are made up to the end of

the twenty-first century. Trends in these parameters are

then determined, projections of return value estimates of

HS are projected and their uncertainties are assessed.

4 Relevant statistical models from other areas

of application

Extreme value analysis has a wide area of applications

aside from ocean waves, in particular in various environ-

mental sciences where events are also associated with

spatio-temporal variations, and it is believed that some

lessons can be learned by examining different statistical

models for other types of extreme events.

An interesting discussion on the use of asymptotic

models for the description of the variation of extremes is

available in Coles et al. (2003), within the context of

extreme rainfall modelling. It is concerned with the lack of

ability of such models to predict extreme, catastrophic

events leading to inadequate designs and lack of prepared-

ness for such rare events. One of the reasons for this,

according to Coles et al. (2003) is models that do not take

the uncertainties in both model and predictions adequately

into account. For example, it is argued that even in cases

where data support the reduction of the generalized extreme

value model to a Gumbel model, this should not be done

without an appraisal of the uncertainty this decision intro-

duces and as a general advice it is suggested to use the

generalized extreme value model rather than Gumbel

reduction. Furthermore, the preference for Bayesian analy-

sis over the classical likelihood analysis is emphasized, even

if using diffuse priors.

In this section, a review of relevant time- and space-

dependent statistical models from other areas of application

is presented. Further work will then focus on how these

approaches can be used for statistical modelling of extreme

waves and sea states.

4.1 Bayesian hierarchical space–time models

Modelling of wave data in space and time is an alternative

to the common approach of extreme value analysis based

on a point process representation, provided that adequate

space–time wave data can be obtained. Wikle et al. (1998)

propose a hierarchical Bayesian space–time model as an

alternative to traditional space–time statistical models and
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apply it on an atmospheric data set of monthly maximum

temperatures. Such models generally consist of three stages

often referred to as the data stage, the process stage and the

parameter stage.

Similar models has also been used for modeling tropical

ocean surface winds (Wikle et al. 2001), North Atlantic sea

surface temperatures (Lemos and Sansó 2009), concentra-

tions of PM10 pollution3 (Cocchi et al. 2007), ozone levels

(Sahu et al. 2007) and earthquake data (Natvig and Tvete

2007) A brief overview of hierarchical approaches applied

to environmental processes is presented in Wikle (2003).

More recently, various hierarchical Bayesian space–time

models for extreme precipitation events were proposed in

Sang and Gelfand (2009). As a proxy for these Bayesian

hierarchical space–time models, the model for earthquake

data will be briefly reviewed in the following.

The modelling of earthquake data for earthquake pre-

diction, using a Bayesian hierarchical space–time approach

in Natvig and Tvete (2007) considered a spatial resolution of

0.5 9 0.5� (about 50 9 50 km) and a temporal resolution of

4 months. The observations are, for each time period, the

magnitude of the largest earthquakes (by the Richter scale)

observed within each grid. The model is implemented

within a Markov Chain Monte Carlo framework using Gibbs

sampling and additional Metropolis-Hastings steps. Four

different model alternatives were suggested in a hierarchical

structure, one main model and three levels of simplified

models, nested within the model at the higher level. The

main features of the main model are briefly outlined in the

following.

Denoting the discrete spatial and temporal locations

x = 1, …, X and t = 1, …, T, respectively, the observed

maximal magnitude earthquake at location x and time t is

M(x, t). The latent variable Y(x, t) is defined in order to

describe the maximal earthquake without a cut point at 0:

Mðx; tÞ ¼ Yðx; tÞ if Yðx; tÞ[ 0

0 otherwise

�
ð6Þ

Corresponding to the latent variable Y(x, t), for every

point in space–time (x, t) there is an underlying potential

for a maximal magnitude earthquake, modelled by the

hidden system state variables h(x, t). The latent variable is

then modelled as this potential and a random noise term as

follows:

Yðx; tÞ ¼ hðx; tÞ þ �Yðx; tÞ;
x ¼ 1; . . .;X;
t ¼ 1; . . .; T

ð7Þ

where the random noise are assumed independent and

normally distributed eY(x, t) * N(0, rY
2), rY

2 being a

random quantity. Furthermore, the earthquake potential is

assumed to be decomposed into a time-independent

contribution l(x) and a time-dependent distribution with a

spatial description hS(x, t):

hðx; tÞ ¼ lðxÞ þ hSðx; tÞ;
x ¼ 1; . . .;X;
t ¼ 1; . . .; T

ð8Þ

Now, the time-independent term is modelled as a

Gaussian Markov Random Field, with spatial dependence

only on its nearest neighbours, with the notation N = North,

E = East, S = South, W = West, and e.g. l(x)N the l
value in the grid cell north of x:

lðxÞ ¼ l0ðxÞ þ cNS lðxÞN � l0ðxÞN þ lðxÞS � l0ðxÞS
n o

þ cEW lðxÞE � l0ðxÞE þ lðxÞW � l0ðxÞW
� �

þ �lðxÞ; x ¼ 1; . . .;X ð9Þ

cNS, cEW are spatial dependence parameters in the north–

south and east–west directions respectively. The noise

terms are again normally distributed with variance rl
2.

In the expression above, l0(x) denote the Markov Ran-

dow Field mean in grid point x and this is modelled as

having a quadratic form, letting m(x) and n(x) denote

longitude and latitude corresponding to the grid point x, in

the following way (for x = 1, …, X):

l0ðxÞ¼l0½1�þl0½2�mðxÞþl0½3�nðxÞ
þl0½4�ðmðxÞÞ2þl0½5�ðnðxÞÞ2þl0½6�mðxÞnðxÞ ð10Þ

The space–time dynamic term are modelled with a vector

autoregressive model of order 1, with spatial dependence

only on its nearest neighbours (with same notation for North,

South, etc. as above, and for x = 1, …, X, t = 1, …, T):

hSðx; tÞ ¼ aðxÞhSðx; t � 1Þ þ bðxÞð Þ

� e�jðMðx;t�1Þ�3Þ2IðMðx;t�1Þ[ 3Þ

þ aNhSðx; t � 1ÞN þ aEhSðx; t � 1ÞE

þ aShSðx; t � 1ÞS þ aWhSðx; t � 1ÞW þ �hS
ðx; tÞ
ð11Þ

The exponential term in the equation above is included to

account for strain which is built-up in periods with only small

earthquakes and reduced when tension is released as a major

earthquake occurs. j is a positive parameter that regulates the

reduction in strain according to the largest earthquake at the

previous time period for a grid cell. a(x) and b(x) are mod-

elled in completely the same way as l(x) outlined above,

introducing parameters aNS, aEW, bNS and bEW accordingly.

The noise term �hS
ðx; tÞ is Gaussian Nð0; r2

hS
Þ and indepen-

dent in space and time. The various simplified, nested model

alternatives are obtained by

i. setting b(x) = 0

ii. setting e�jðMðx;t�1Þ�3Þ2IðMðx;t�1Þ[ 3Þ ¼ 1 to remove the

strain term

3 PM10 is the fraction of aerosol particles with aerodynamic diameter

less than 10 lm.
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iii. setting hSðx; tÞ ¼ 0 to obtain a time-independent

model

The model outlined above contains a large number of

parameters, and all prior parameter distributions are con-

sidered independent. A Markov Chain Monte Carlo

approach using the Gibbs sampler and also an additional

Metropolis-Hastings step for some of the parameters, was

adopted for generating independent samples from the pos-

terior distributions in order to arrive at posterior estimates

and predictions. For an introduction to Markov Chain Monte

Carlo methods, including the Gibbs sampler and the

Metropolis-Hastings algorithm, reference is made to Robert

and Casella (2004) or similar textbooks.

4.2 Continuous space models

Even though wave data are generally only available at cer-

tain specific locations, extreme waves should in principle be

considered as a continuous process in space and time rather

than a discrete process. Considering the continuous space

modelling of a process’ extremes, this would require the

specification of a continuous space model for the marginal

behaviour of the extremes of the process and a continuous

space specification of the dependence structure of the

extremes. Hence, a generalization of the dependence

structure of multivariate extremes to the infinite dimensional

case is needed, and one such generalization is provided by

the theory of max-stable processes (de Haan 1984). By

definition, a stochastic process {Yt} is called a max-stable

process if the following property holds:

If fYðiÞt gt2T ; i ¼ 1; . . .; r; are independent copies of the

process then the processfmax
i� r

Y
ðiÞ
t gt2T has the same

distribution as frY
ð1Þ
t gt2T :

In the following, a procedure for using the theory of max-

stable processes for modelling data which are collected on a

grid of points in space are reviewed. This approach is

considered as an infinite dimensional extension of

multivariate extreme value theory and has the advantage

that it can be used to aggregate the process over the whole

region and for interpolation to anywhere within the whole

region. Models based on the resulting family of multivariate

extreme value distributions are suitable for a large number

of grid points.

In Coles (1993), Coles and Tawn (1996) a class of max-

stable process models for regional modelling of extreme

storms were specified which can be estimated using all

relevant extreme data and which are consistent with the

multivariate extreme structure of the data. The essence of

this approach is to describe the process of storms by the

following components:

i. A phase space S of storm types so that the storm type is

independent of their size

ii. An index space T for the region, conveniently referred

to as the region itself

iii. A measure m(ds) on S describing the relative fre-

quency of storm types

iv. A function f(s, t) interpreted as the proportion of a

storm of type s observed at t

With xj interpreted as the size of the jth storm, sj the type of

the jth storm, if {(xi, si); i = 1, …} are taken to be the

points of a Poisson process on (0, ?) 9 S with inten-

sity l(dx, ds) = x-2dxm(ds) and letting f(x, s) be a positive

function on S 9 T, then the process

Zt ¼ max
i
fXif ðSi; tÞg ð12Þ

is a max-stable process for t [ T.

For statistical modelling of extreme storms as such a

max-stable process, it was assumed that the spatial vari-

ability of storms could be described adequately by vari-

ability within a subset of data sites T1 (Coles 1993). Then, a

multivariate extreme value model was fitted to the data for

this subset and the model is extended smoothly as a max-

stable process through suitable functions f(� , �) on the basis

of information from the remaining data sites. Such a model

was fitted for rainfall data collected from 11 sites, and in

spite of some interesting qualitatively observations, the

quality of fit of the model was rather poor.

In Buishand et al. (2008) a somewhat different approach of

using max-stable processes for the modelling of spatial

extreme rainfall is proposed based on random fields. Whereas

Coles (1993), Coles and Tawn (1996) indicate how to ana-

lytically calculate quantiles of areal rainfall, in Buishand et al.

(2008), the 100-year quantile of the total rainfall over an area

in Holland is found by simulating synthetic daily rainfall fields

using their estimated model. An extended Gaussian max-

stable model for spatial extreme rainfall was also presented in

Smith and Stephenson (2009), where Bayesian techniques are

used in order to incorporate information other than data into

the model, i.e. by using informative priors for the marginal site

parameters and non-informative priors for parameters relating

to the dependence structure of the process. The extended

model is estimated using a pairwise likelihood within the

Bayesian analysis and Markov chain Monte Carlo techniques

were used to simulate from the posterior distributions, using a

Gibbs sampler with a Metropolis step. Max-stable processes

have also been applied to e.g. modelling of extreme wind

speeds (Coles and Walshaw 1994).

4.3 Process convolution models

Several models for spatio-temporal processes based on

process convolution have been proposed in the literature
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(e.g. Higdon 1998; Calder 2007, 2008; Sansó et al. 2008).

The main idea is to convolve independent processes to

construct a dependent process by some convolution kernel.

This kernel may evolve over space and time thus specify-

ing models with non-stationary dependence structure.

The model proposed in Higdon (1998) is motivated by

estimation of the mean temperature field in the North

Atlantic Ocean based on 80 year of temperature data for a

region. First, the temperature field y(s, t) is modelled as a

process over space s and time t as the sum of two processes

yðs; tÞ ¼ zðs; tÞ þ �ðs; tÞ ð13Þ

where z(s, t) is a smooth Gaussian process and e(s, t) is an

independent error process. The smooth process z(s, t) is

constructed to model the data by taking the convolution of

a 3-dimensional lattice process. Given a grid process

x = (x1, …, xm) with space–time coordinates (x1, s1), …,

(xm, sm), the smooth field is expressed as

zðs; tÞ ¼
Xm

j¼1

Ksðs� xj; t � sjÞ � xj ð14Þ

where the properties of the convolution kernel determine

the smoothness of z. A separable kernel were used (i.e. a

product of a kernel that smooths over space and one that

smooths over time): Ks (Ds, Dt) = Cs (Ds) � R(Dt). Infer-

ence on the resulting model was made using a Bayesian

approach and simulating the posterior distribution of the

mean temperature field over space and time using Markov

chain Monte Carlo methods.

Following a similar approach, but using nonseparable,

discrete convolution kernels, regional temperature mea-

surements were modelled in space and time in Sansó et al.

(2008). Two alternative set of models were suggested. The

first was to convolute spatial Gaussian processes with a

kernel providing temporal dependencies and the second

was to convolute autoregressive models with a kernel

providing spatial interactions. In other words, the data

could either be considered as a number of time series at

each location (temporal convolution model) or as a number

of realizations of spatial processes observed at some

locations (spatial convolution model).

A dynamic process convolution model extends the dis-

crete process convolution approach by defining the

underlying process x to be a time-dependent process that is

spatially smoothed by a smoothing kernel at each time-step

(Calder 2007, 2008). Such models have been used in air

quality assessment (e.g. in bivariate modelling of levels of

particulate matter PM2.5 and PM10 in Calder (2008) and for

multivariate modelling of the concentration of five pollu-

tants in Calder (2007)). A continuous version in space and

time is considered in Brown et al. (2000), where a model is

formulated in discrete time and continuous space and a

limit argument is applied to obtain continuous time as well.

A general approach using cross-convolution of covariance

functions for modelling of multivariate geostatistical data

were proposed in Majumdar and Gelfand (2007). All of the

convolution models discussed above used bayesian

approaches and Markov chain Monte Carlo methods for

model specification.

Finally, it is noted that some limitations to the convo-

lution model approach is reported in Higdon (1998) and

Calder (2008). One is the impact of prior assumptions on

the posterior distributions. Furthermore, it is stated that it

would be preferable to allow the data to determine the

kernels, which could depend on space and time, rather than

specifying it a priori. In addition, the model for particulate

matter are not able to handle extreme observations very

well and permits nonsensible predictions.

4.4 Nonstationary covariance models

Many spatiotemporal models assumes separability in space

and time so that the space–time covariance function can be

represented as the product of two models: one as a function

of space and the other as a function of time. However, the

rationale for using a separable model is often convenience

rather than the ability of such models to describe the data

well, and the assumption is often unrealistic. Other sim-

plifying assumptions often employed are stationarity (e.g.

second order stationarity which means that the mean

function is assumed constant and the space–time covari-

ance function is assumed to depend only on the directional

distance between measurement sites) and isotropy (i.e. that

the covariance function is dependent only on the length of

the separation and not on its direction). An example of a

spatio-temporal covariance model where the assumptions

of stationarity and separability is relaxed is presented in

Bruno et al. (2009), applied to tropospheric ozone data.

Due to the increased availability of satellite measure-

ments of many geophysical processes, global data are

increasingly available. Such data often show strong non-

stationarity in the covariance structure. For example, pro-

cesses may be approximately stationary with respect to

longitude but with highly dependent covariance structures

with respect to latitude. In order to capture the nonsta-

tionarity in such global data, with a spherical spatial

domain, a class of parametric covariance models are pro-

posed in Jun and Stein (2008). These assume that processes

are axially symmetric, i.e. that they are invariant to rota-

tions about the earth’s axis and hence stationary with

respect to longitude.

Assuming a homogeneous, zero-mean process Z0, a

zero-mean nonstationary process Z may be defined by

applying differential operators with respect to latitude and
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longitude, letting L and l denote latitude and longitude

respectively (Jun and Stein 2007),

ZðL; lÞ ¼ AðLÞ o

oL
þ BðLÞ o

ol

� 	
Z0ðL; lÞ þ CZ0ðL; lÞ ð15Þ

Now, A and B denote nonrandom functions depending on

latitude (and may also in principle depend on longitude, but

this would break the axial symmetry). A non-negative

constant C corresponds to including homogeneous models

for the case A(L) = B(L) = 0. In order to apply this model

to real applications, the A and B functions need to be

estimated, and it is suggested to use linear combinations of

Legendre polynomials (Jun and Stein 2008).

The covariance model is applied to global column ozone

level data and it is shown that the strong nonstationarity

with respect to latitudes as well as the local variation of the

process can be well captured with only a modest number of

parameters. Thus, it may be a promising candidate for

modelling spatially dependent data on a sphere. Further-

more, an extension to spatio-temporal processes would be

obtained by introducing a similar differential operator with

respect to time in addition to the ones with respect to lat-

itude and longitude. Then, such models should be able to

capture spatial-temporal nonstationary behaviour and to

create flexible space–time interactions such as space–time

asymmetry. Review of various methods and recent devel-

opments for the construction of spatio-temporal covariance

models are presented in Kolovos et al. (2004) and Ma

(2008).

4.5 Coregionalization models

A multivariate spatial process is a natural modelling choice

for multivariate, spatially collected data. When the interest

is in modelling and predicting such joint processes it will

be important to account for the spatial correlation as well

as the correlation among the different variables. If this is

modelled using a Gaussian process, the main challenge is

the specification of an adequate cross-covariance function

(Schmidt and Gelfand 2003), which can be developed

through linear models of coregionalization (LMC). The

linear model of coregionalization is reviewed in Gelfand

et al. (2004) where the notion of spatially varying LMC are

proposed in order to enhance the usefulness by providing a

class of multivariate nonstationary processes.

Traditionally, linear models of coregionalization have

been used to reduce dimensions, approximating a multi-

variate process through a lower dimensional representation.

However, it may also be used in multivariate process

construction, i.e. obtaining dependent multivariate pro-

cesses by linear transformation of independent processes.

A general multivariate spatial model could be on the form

YðsÞ ¼ lðsÞ þ vðsÞ þ �ðsÞ ð16Þ

where �ðsÞ is a white noise vector (i.e. �ðsÞ�Nð0;DÞ where

D is a diagonal matrix with (Djj) = sj
2), v(s) arises from a

linear model of coregionalization from independent spatial

processes w(s) = (w1(s), … wp(s)): v(s) = A w(s) and

where lðsÞ may be assumed to arise linearly in the

covariates, i.e. lj(s) = Xj
T(s)bj where each component may

have its own set of covariates Xj and its own coefficient

vector bj. If ignoring the term lðsÞ and the wj(s) processes are

assumed to have mean 0, variance 1 and a stationary

correlation function qj(h), then E(Y(s)) = 0 and the cross-

covariance matrix associated with Y(s) becomes

RYðsÞ;Yðs0Þ � Cðs� s0Þ ¼
Xp

j¼1

qjðs� s0ÞTj; Tj ¼ aja
T
j

ð17Þ

with aj the jth column of A. Priors on the model parameters

h consisting of {bj}, {sj
2}, T and qj, j = 1, …, p would

then complete the model specification in a Bayesian

setting, obtaining the posterior distribution of the model

parameters

pðhjYÞ / f ðYj bj

� �
;D; qj

� �
;TÞpðhÞ ð18Þ

The extension to a spatially varying linear model of

coregionalization is obtained by letting A be spatially

dependent, i.e. replacing A with A(s) in v(s) =

A(s) w(s) (Gelfand et al. 2004). v(s) will then no longer

be a stationary process. Further extensions to spatio-

temporal versions of the model, modelling v(s, t) =

A(s, t)w(s, t), where the components of w(s, t) are

independent spatio-temporal processes may also be

feasible, but this was not further investigated.

A stationary Bayesian linear coregionalization model for

multivariate air pollutant data was presented in Schmidt

and Gelfand (2003) and Gelfand et al. (2004) presents a

commercial real estate example of a spatially varying

model. Rather than taking the Bayesian approach, an

Expectation-Maximization (EM) algorithm for the maxi-

mum-likelihood estimation of the parameters in a linear

coregionalization model is developed in Zhang (2007), and

applied on a spatial model of soil properties.

4.6 Generalized extreme value models

The generalized extreme value distribution is a cornerstone

of extreme value modelling, and in Huerta and Sansó

(2007) non-stationary, location-dependent processes are

studied using the GEV distribution where the parameters

are allowed to vary in space and time. The modeling is

based on a hierarchical structure assuming an underlying

spatial model. Parameter changes over time (i.e. for the
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location, scale and shape parameters) are modelled by use

of Dynamic Linear Models (West and Harrison 1997)

which is a very general class of time series models. Now,

the trends are not constrained to have a specific parametric

form and the significance of short term changes can be

assessed together with the long term changes. It is also

possible to estimate how the effects of covariates change

over time. An extension of this model to include changes in

space as well as in time is made using a process convo-

lution approach in defining a Dynamic Linear Model on the

parameters.

Several approaches for estimation of parameters and

quantiles of the GEV distribution have been applied, such

as maximum likelihood estimation, L-moments estimation,

Probability Weighted Moments estimation and the method

of moments. Recently, an alternative to these, employing a

full Bayesian GEV estimation method which contains a

semi-Bayesian framework of generalized maximum like-

lihood estimators and considers the shape, location and

scale parameters as random variables were developed

(Yoon et al. 2010). However, these approaches do not

consider non-stationarity.

A generalized Probability Weighted Moments (PWM)

method was suggested in Ribereau et al. (2008) to model

temporal covariates and provide accurate estimation of

return levels from maxima of non-stationary random

sequences modelled by a GEV distribution. This is a gen-

eralization of the PWM method that has proved to be

efficient in estimating the parameters of the GEV distri-

bution for IID processes and is an alternative to Maximum

Likelihood Estimation (MLE) for cases when the IID

assumption is violated (e.g. in non-stationary cases). The

approach is illustrated by applying it on time series of

annual maxima of CO2 concentrations and seasonal max-

ima of cumulated daily precipitations.

An alternative to GEV models could be to use threshold

models (Behrens et al. 2004). For example, various statis-

tical methods for exploring the properties of extreme

events in large grid point datasets were presented in Coelho

et al. (2008), and a flexible generalized Pareto model that

are able to account for spatial and temporal variation in the

distribution of excesses were outlined. The generalized

Pareto distribution parameters may incorporate the depen-

dence of the extreme values and different explanatory

variables related to spatial and temporal changes such as

climate change. The methods were illustrated using mean

surface temperatures of the Northern Hemisphere.

A generalized PWM method was introduced in Diebolt

et al. (2007) in order to estimate the parameters of the

generalized Pareto distribution (GPD) from finite length

time series. A Bayesian framework for analysis of extremes

in a non-stationary context was proposed in Renard et al.

(2006) with a case study on peak-over-threshold data.

Several probabilistic models, including stationary, step-

wise changing and linear trend models, and different

extreme value distributions were considered allowing

modelling uncertainty to be taken into account.

An alternative to the standard approach of modelling

non-stationarity in threshold models (i.e. retaining a con-

stant threshold and letting the parameters of the GPD be

functions of some covariates) is proposed in Eastoe and

Tawn (2009). This involves preprocessing; attempting to

model the non-stationarity in the entire data set and then

removing this non-stationarity from the data. If this pre-

processing is successful, the extremes of the preprocessed

data will have most, if not all, of its non-stationarity

removed and a simple extreme value analysis of the pre-

processed data can be employed. It is argued that this

approach provides improved description of the non-sta-

tionarity of the extremes, clearer interpretation, easier

threshold selection and reduced threshold sensitivity. The

approach was also found to be superior to approaches with

continuous varying thresholds.

4.7 Optimality models

One type of statistical models that has recently been

applied in evolutionary sciences are optimality models.

These assume the evolution of some biological trait

towards an optimal state dictated by the environmental

conditions. Due to a randomly changing environment, the

optimal state is assumed to change over time, and the

species are assumed to be adapting to this changing opti-

mality with a certain phylogenetic inertia. One choice of

process models for analysing such an adaptation-inertia

problem is the Ornstein-Uhlenbeck process, as suggested in

Hansen et al. (2008), represented by the stochastic differ-

ential equation

dy ¼ �aðy� hÞdt þ rydWy ð19Þ

Here, dy is the change in some random variable y over a

time step dt, a is a parameter measuring the rate of adap-

tation toward the optimum h, dWy is a random noise pro-

cess and ry is the standard deviation of the random

changes. Thus, evolution according to this model has two

components: one is a deterministic pull toward the primary

optimum and the other is a stochastic change without

direction.

A layered process is introduced for modelling adaptation

to a randomly changing optimum, assuming that the opti-

mum at any point on the phylogeny (that is, the history of

organismal lineages as they change through time) is a

function of a randomly changing predictor variable x. Thus,

the model is extended to the coupled stochastic differential

equations below where the predictor indirectly influences

the trait through its influence of the optimum.
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dy ¼ �aðy� hðxÞÞdt þ rydWy ð20Þ

dx ¼ rxdWx ð21Þ

Additional layers of hidden processes may also be

modelled in this way, where each layer is responding to

changes in the layer beneath. The model may also be

extended in that the predictor variable itself may be modelled

as an Ornstein-Uhlenbeck process, tracing some optimum.

The Ornstein-Uhlenbeck process has also been proposed for

modelling of drought and flood risks (Unami et al. 2010) and

survival data (Aalen and Gjessing 2004) and has been widely

used in financial modelling (Stein and Stein 1991; Barndorff-

Nielsen and Shephard 2001; Benth et al. 2007).

It could be worthwhile to investigate whether an analogy

to this approach would be appropriate for the development

of extreme waves, i.e. whether the distribution of extreme

sea states are trying to adapt to a changing mean state due

to the changing environment. For example, will there be a

certain average wave climate given the changing environ-

mental conditions such as the level of CO2 concentration in

the atmosphere, global temperatures, greenhouse gas

emissions etc.? In other words, it could be investigated

whether the distribution of extreme waves in a changing

environment could be adequately modelled using layered

Ornstein-Uhlenbeck processes in some way.

4.8 Bayesian maximum entropy models

Bayesian maximum entropy (BME) models have been used

to model spatiotemporal random fields. For example, in Choi

et al. (2009), this approach was used for developing a sys-

tematic epidemic forecasting methodology used to study the

space–time risk patterns of influenza mortality in California

during wintertime. Influenza mortality rates were repre-

sented as spatiotemporal random fields and the Bayesian

maximum entropy method was used to map the rates in space

and time and thus generate predictions. Bayesian maximum

entropy models have also been used for space–time mapping

of soil salinity (Douanik et al. 2004), urban climate (Lee

et al. 2008) and the contamination pattern from the Cher-

nobyl fallout (Savelieva et al. 2005) and for modelling

geographic distributions of species (Phillips et al. 2006).

In short, the principle of maximum entropy states that the

probability distribution best representing the current state of

knowledge, which may be incomplete, is the one with the

largest entropy. If some testable information about a prob-

ability distribution function is given, then, considering all

trial probability distributions that encode this information,

the probability distribution that maximizes the information

entropy is the true probability distribution with respect to the

testable information. This principle is applicable to problems

of inference with a well-defined hypothesis space and

incomplete data without noise and the Bayesian maximum

entropy method can be used to predict the value of a spa-

tiotemporal random field at an unsampled point in space–

time based on precise (hard) and imprecise (soft) data.

The BME method applied to influenza mortality risk (Choi

et al. 2009) consists of three stages with different knowledge

bases at each stage: the general knowledge base (core

knowledge), the specificatory knowledge base (case-specific

knowledge) and the integration knowledge base (union of the

general and specificatory knowledge bases). The influenza

risk is represented as a spatiotemporal random field

X(p) defined at each space–time point p = (s, t). The influ-

enza modelling approach then follows the three BME stages:

a. A probability density function, fg(xmap) is constructed on

basis of the general knowledge base, where the vector

xmap denotes a possible realization of the random field

associated with the point vector pmap. The xmap generally

includes hard data xhard = (x1, …, xh) at points phard =

(p1, …, pm_h), soft data xsoft ¼ ðxmhþ1; . . .;xmÞ at points

psoft ¼ ðpmhþ1; . . .; pmÞ and the unknown estimates xk at

points pk.

b. At the specificatory stage, the specificatory knowledge

base considers hard data and soft data

c. At the integration stage, the general and specificatory

knowledge bases are combined in a total knowledge

base to give the integration pdf fj(xj) at each mapping

point pk using the operational Bayesian formula

fjðxjÞ ¼ A�1

Z

D

fgðxmapÞdNSðxsoftÞ ð22Þ

where A is a normalizing constant and NS and D denote an

integration operator and the range determined by the

specificatory knowledge base respectively.

4.9 Stochastic diffusion models

A continuous time parameter stochastic process is referred to

as a diffusion process if it possesses the Markov property and

its sample paths X(t) are continuous functions of time t. Many

physical and other phenomena can be reasonably modelled

by diffusion processes. Diffusion processes may be charac-

terized by two infinitesimal parameters describing the mean

and the variance of the infinitesimal displacements, defined

as the following limits: Let the increment of the process

accrued over a time interval h be DhX(t) = X(t ? h) - X(t),

then the infinitesimal parameters of the process are:

lðx; tÞ ¼ lim
h!0

E DhXðtÞjXðtÞ ¼ x½ � ð23Þ

r2ðx; tÞ ¼ lim
h!0

E DhðXðtÞf g2jXðtÞ ¼ x
h i

ð24Þ

l(x, t) are sometimes referred to as the drift parame-

ter, infinitesimal mean or the expected infinitesimal
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displacement and r2(x, t) is called the diffusion parameter

or the infinitesimal variance and these are generally con-

tinuous functions in x and t. Alternative characterizations

of diffusion processes exist, e.g. based on stochastic dif-

ferential equations.

A methodology for analysing secular trends in the time

evolution of certain variables, modelling the variables by

nonhomogeneous stochastic diffusion processes with time-

continuous trend functions is proposed in Gutiérrez et al.

(2008). The methodology was applied to the evolution of

CO2 emissions in Spain with the Spanish GDP as an exog-

enous factor affecting the trend component and hence

introducing nonhomogeneity. The trend can be analysed by

means of statistical fit of the trend functions of the stochastic

diffusion model to the observed data, and the models were

also found appropriate for medium-term forecasts.

Stochastic diffusion models have been applied to other

temporal or spatial problems as well, such as modelling of

tumor growth (Albano and Giorno 2006), ion channel

gating (Vaccaro 2008), financial volatility (Todorov 2009)

and scaling behaviour of precipitation statistics (Kundu and

Bell 2006).

4.10 Regional frequency analysis

A method commonly used in hydrology, referred to as

regional frequency analysis, utilizes data from several

similar sites in order to estimate event frequencies, typi-

cally extreme events, at a particular site. The main idea is

that data from neighboring or other sites where the fre-

quency of the event to be investigated are similar provide

additional information and hence yield more accurate

predictions than data from the particular site alone. This

approach can also be used to interpolate to ungauged sites

where there are no data, based on data from similar sites.

The main idea is that, given data from N similar sites so

that one may assume the sites to form a homogeneous

region, i.e. that the frequency distributions of the different

sites are identical apart from a site-specific scaling factor,

the quantile function of the frequency distribution at a site

i can be modelled by this scaling factor and a regional

quantile function common to every site, referred to as the

regional growth curve:

QiðFÞ ¼ liqðFÞ; i ¼ 1; . . .;N ð25Þ

In the equation above, Qi(F) denotes the site-specific

quantile function at site i, li denotes the site-specific

scaling factor, often referred to as the index flood, and

q(F) is the regional growth curve. F is the cumulative

distribution function of the frequency distribution of the

quantity of interest (e.g. significant wave height).

A typical regional frequency analysis will consist of the

following four steps:

i. Screening of the data: Eliminating gross errors and

inconsistencies and checking whether the data are

homogeneous over time

ii. Identification of homogeneous regions: Assign the sites

to regions whose frequency distribution are similar

iii. Choice of regional frequency distribution

iv. Estimating the frequency distribution: Estimating the

distribution at each site to give a regional average

A thorough description of the regional frequency analysis

approach is given in Hoskins and Wallis (1997), together

with an outline of regional model estimators based on

L-moments, a widely used approach for estimation in

regional frequency analysis. Estimation based on Bayesian

Markov chain Monte Carlo methods in regional frequency

analysis were proposed in Gaume et al. (2010). Regional

frequency analysis are widely used in hydrology and there

are abundant literature on applications to extreme rainfall

(Yang et al. 2010; Nguyen et al. 2002; Fowler and Kilsby

2003) and flooding (Leclerc and Ourada 2007; Saf 2010).

Regional frequency analysis has also been applied in ocean

engineering problems such as modelling of significant wave

heights (Van Gelder et al. 2001; Ma et al. 2006) and the

height of wave crests (Izadparast and Niedzwecki 2009).

4.11 Selecting a modelling approach

In the preceding sections of the paper, a number of different

modelling approaches have been reviewed, which may all be

appropriate for modelling long-term trends in extreme wave

climate. However, the approach based on Bayesian hierar-

chical space–time models is believed to be superior and offer

several benefits compared to the other approaches that has

been reviewed. The hierarchical Bayesian approach to

modelling data and processes with different scales of spatial

and temporal variability consist of different stages (e.g. the

data stage, the process stage and the parameter stage) and

such models are generally very flexible and intuitive to work

with, as outlined in Wikle et al. (1998).

Some of the advantages of an hierarchical approach are

the flexibility such models allow. One may build up the

models in a modular, hierarchical manner where different

aspects of the model can be treated separately. Extensions to

the model may easily be incorporated, if necessary, and the

different modules may be updated individually as knowledge

and insight increase. Knowledge about physical aspects may

be incorporated in the models, as illustrated by the earth-

quake model in Natvig and Tvete (2007) and such models are

very flexible with regard to how they are built up. Further-

more, hierarchical models, incorporating knowledge about

the physical phenomena they represent, performs better with

regards to interpretation of results.
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One crucial assumption applied in the model of earth-

quakes (Natvig and Tvete 2007) was the Markovian

assumption (i.e. that the spatial process or field in one

location is only dependent on its nearest neighbors).

Although this assumption needs to be challenged on a case

by case basis, it is presumably a reasonable assumption

also for ocean waves. Hence, it may be reasonable to model

ocean waves as a random Markov field along the lines of

Natvig and Tvete (2007).

There are also benefits from utilizing a Bayesian

approach, related to the fact that knowledge about the

physical process and its characteristics may be exploited by

way of the prior distributions. This is clearly an advantage

in modelling of physical phenomena where such knowl-

edge are available, as is the case of ocean waves. Fur-

thermore, by adopting a Bayesian approach the uncertainty

in model parameters is taken into account. Hence, of all the

modelling approaches reviewed herein, Bayesian hierar-

chical space–time models are believed to be the most

promising candidate for further developments in long-term

time-dependent stochastic modelling of extreme waves and

it is suggested that further research and model development

are focused in this direction.

5 Wave climate projections

5.1 Climate change

The IPCC’s fourth assessment report states that ‘‘Warming

of the climate system is unequivocal, as is now evident

from observations of increases in global average air and

ocean temperatures, widespread melting of snow and ice

and rising global average sea level’’ (IPCC 2007). It pre-

dicts further global warming and that many changes in

the global climate are very likely to be larger during the

twenty-first century than what has been observed during the

twentieth century. Furthermore, the frequency and intensity

of extreme events are expected to change as the global

climate changes, some of which has already been observed.

A more recent up-to-date overview on climate change

research (Richardson et al. 2009) has as one of its key

messages that recent observations indicate that the climate

change may be more severe and occur earlier than the

fourth assessment report predicts.

However, in spite of climate change being a global

phenomenon, regional variability is large, and it has been

observed that for example the Arctic has warmed at double

rate compared to the rest of the world in recent decades

(ACIA 2005). Regional differences are also presumed to be

predominant in future changes of the climate, but overall,

the globe is expected to warm and the intensity and fre-

quency of extreme climatic events are likely to increase.

Hence, one important question for the stakeholders

involved in maritime transport is to what extent the

observed and projected global warming will influence the

wave climate on short and long term and what impact this

will have on the safety of maritime transportation. In the

following, a review of some projections of wave climate

within the context of this global warming will be presented

as well as analyses of previous and current trends.

5.2 Current trends in the wave climate

Evidence for a statistical significant increasing trend in

mean wave height in the North Atlantic was observed more

than 30 years ago (Carter and Draper 1988; Bacon and

Carter 1991). Since then, there are a number of studies

reported in the literature which try to identify and assess

previous and current trends in extreme wave climate, most

with a focus on the North Atlantic, by different hindcast

and reanalysis techniques combined with statistical analy-

ses (see e.g. Kalnay et al. 1996; Uppala et al. 2005; Ath-

anassoulis and Stefanakos 1995). Some of these will be

briefly outlined in the following.

Seasonal trends in extremes of significant wave height

were assessed in Wang and Swail (2001), Wang and Swail

(2002) for the North Atlantic and the North Pacific by

simulating a 40-year global wave hindcast. For both

oceans, no statistically significant changes were observed

for the last century, but significant changes were found in

some regions and for some seasons for the last four dec-

ades. Most notably an increase was found for the winter

season in the North Atlantic, matched by a decrease in the

subtropical North Atlantic and a significant increase in the

North Pacific for the winter and spring seasons. Extensive

validation of a 40 year global wave hindcast against

available wave observations (from buoys, platforms, ships

and satellites) has shown generally good agreement over

the entire frequency distribution for such reanalyzed data

(Cox and Swail 2001).

A previous study, somewhat limited in scope with

regards to the period and area covered compared to the

assessments in Wang and Swail (2001, 2002), reported a

similar increasing trend in significant wave height at sev-

eral northeast Atlantic locations since 1960, as well as a

decrease south of 40�N (Kushnir et al. 1997). Similar

patterns were also suggested in Sterl et al. (1998). An

increase in frequency of extreme events in the last four

decades were reported for the North Sea in Weisse and

Stawarz (2004), although no significant changes were

found with regards to intensity and duration. Also, an

analysis of wave hindcast for 1955–1994 reported in The

WASA Group (1998) suggests an increasing trend in both

the North Sea and the Norwegian Sea, but with decreasing

trends in other regions. A global wave climate trend
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analysis was reported in Caires and Swail (2004) where a

ERA-40 dataset, corrected for inhomogeneities, was used

and significant increasing trends for mean, 90- and 99-

percentiles were found for a large part of the global oceans.

An intercomparison of significant wave height data derived

from different reanalyses was presented in Caires et al.

(2004), and in spite of differences in the data quality and

scope, it was reported that most of the long-term charac-

teristics such as trends and variability, were equally present

in all datasets.

Hence, most studies from the turn of the century generally

agree that the wave climate of the North Atlantic became

rougher in the last decades of the twentieth century. These

general conclusions have been supported by analysis of

microseismological data (Grevemeyer et al. 2000), by sig-

nificant wave height data from ship observations (Gulev and

Hasse 1999) and by satellite altimetry data (Carter 1999;

Woolf et al. 2002). Buoy measurements have also suggested

an increase in wave height for the western Atlantic ocean, but

only for the summer hurricane season (Komar and Allan

2008). More recent studies observe the continuation of this

increasing trend into the twenty-first century (Caires et al.

2006a; Dodet et al. 2010), although there are still uncer-

tainties as to whether, or to what extent, the trend can be

ascribed to global warming (Wolf and Woolf 2006; Wang

et al. 2009). Increasing trends have also been found in other

oceans than the Atlantic (Sasaki et al. 2005; Gower 2002;

Caires and Swail 2004; Ruggiero et al. 2010).

However, it is noted that opposite trends have been

reported for different regions, some studies reporting

decreasing trends for particular regions (Martucci et al.

2009; Dupuis et al. 2006) and for different seasons (e.g.

decreasing trends for the months February was reported in

contrast to increasing trends in January for the Baltic Sea in

Rózyński (2010)) so care should always be exercised when

extrapolating conclusions arrived at from one location to

another or from one season to another. Notwithstanding,

there are evidence for a general overall trend of rougher

wave climate in the North Atlantic as well as in various

other ocean areas.

5.3 Prediction of future trends in the wave climate

In light of the observed increasing trends in recent extreme

wave climate in many areas of the world, a much relevant

question is whether, or to what extent, this trend will pre-

vail in the coming decades and how the future wave cli-

mate will develop. In the following, a review of some

attempts to make projections of future trends in the wave

climate will be presented, with an emphasis on the trends

for extreme waves.

The modelling approach outlined in Caires et al.

(2006b), modelling extreme waves as non-homogeneous

Poisson processes (NPP), utilizing the statistical relation-

ship between wave height and sea level pressure, and

compared to a non-stationary generalized extreme value

model (NS-GEV), is already discussed briefly in previous

sections. Previous work focusing on the relationship

between wave height and sea level pressure includes Wang

et al. (2004) and Wang and Swail (2006a, b). One inter-

esting finding is that the regression model best describing

the 20-year significant wave height time series towards

2099 is quadratic in time, in contrast to the present climate

where the trends are linear (Caires et al. 2002).

The changes of the projected extreme wave climate

towards 2099 arrived at from the NPP model were found to

be dependent on season and location and the spatial pat-

terns were very similar for the different scenarios that were

investigated. However, the magnitude of the estimated

changes as well as the time evolution of the projections (i.e.

how fast the changes will occur) were scenario dependent.

Comparing the projected times series of significant wave

height return values obtained from the NPP and the

NS-GEV models, it was found that they are highly corre-

lated and hence compatible in some sense, but significant

differences in means and variances were found, mainly in

tropical areas. The seasonal projections of the 20-year

significant wave height towards 2099, under different

forcing scenarios and using a NPP model with parameters

estimated from present climate data (Caires et al. 2006b),

predict significant changes in SWH20 in different regions of

the world. The rate of future changes depends on the sce-

nario, but under all scenarios considered, significant posi-

tive trends are predicted in the North Pacific. This is in

agreement with the projections made in Sasaki et al.

(2006), which predicts increases in significant wave height

by up to 0.4 m over a wide area of the western North

Pacific.

Projections of future wind, wave and storm surge cli-

mate in the North Atlantic based on regional wave models

are reported in Debernard et al. (2002) and Debernard and

Røed (2008), where a future climate for the period

2030–2050 was compared to a control climate for the

period 1980–2000. The initial study did not identify sta-

tistically significant changes in wave height (Debernard

et al. 2002), but when the study was revisited with more

recent IPCC scenarios, the following statistically signifi-

cant changes in extreme significant wave height were

found: Significant increases west of the British Isles and in

the eastern North Sea and in the Skagerrak and significant

decreases west of 30�W (Debernard and Røed 2008).

Projections of extreme wave heights for the Northwest

Pacific ocean towards the year 2032 were presented in

Ruggiero et al. (2010), based on various approaches, i.a. a

time-dependent Generalized Pareto-Poisson model with

time-dependent event rate, generalized extreme value-
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model with time-dependent trends in the location and scale

parameters of the GEV distribution and based on non-

stationary r-largest extreme value analysis. The projected

100-year return level from the different modelling

approaches showed a robust trend but with significant

spread for the year 2032. Projections further into the future

would yield still greater spread in the model projections. It

is therefore cautioned against using projected extreme

values in actual engineering problems and such projections

should be considered as uncertain until the underlying

causes of the long-term trends are better understood

Other wave climate projections based on dynamical

downscaling of projections from global atmosphere-ocean

climate models are reported for different regions of the

world in Andrade et al. (2007), Caires et al. (2008), Hemer

et al. (2009b), Lionello et al. (2008) and Perrie et al.

(2004), the details of which will not be covered herein. In

order to extend the confidence and coverage of future wave

climate projections a proposal for a coordinated effort

towards global wave climate projections was made in

Hemer et al. (2009a), suggesting a shift in focus from

regional projections.

Various downscaling methods for estimation of statistics

for significant wave height were investigated in Wang et al.

(2010), evaluated against the ERA-40 wave data. Statistical

downscaling approaches, typically based on the observed

statistical relationship between atmospheric variables and

wave height were deemed better than dynamical methods,

which typically involves using atmospheric variables to

drive ocean wave models. Furthermore, different atmo-

spheric covariates were analysed in nested regression

models (i.e. sea level pressure anomalies, sea level pressure

gradients and anomalies of seasonal mean squared surface

wind speeds) and analysis of the various models suggests

that it is sufficient to use the wind-based predictor alone

since this model performs very similar to the full model.

Projections made from the different approaches show

similar patterns for both seasonal means and extremes. In

wintertime, increases in the eastern and western subtropical

North Atlantic and decreases most other places were the

predominant pattern whereas autumn projections were

characterized by increases in the mid-latitudes and eastern

subtropical North Atlantic and decreases in some other

areas.

Dynamic and statistical downscaling techniques were

also investigated in Gaslikova and Weisse (2006), and a

combination of dynamical and statistical approaches was

proposed as a faster, less computational-intensive alterna-

tive to purely dynamical methods for downscaling of

medium-scale wave data, a conclusion supported by

Breivik et al. (2009). The method demonstrated reasonable

agreement with observed wave conditions for simulations

of a near-shore area around Helgoland.

The uncertainty of the impact of climate change on

future extreme wave conditions in the North Sea was

investigated in Grabemann and Weisse (2008) by running

the WAM wave model (The WAMDI Group 1988) over an

ensemble of four different climate change realizations for

the 30-year period 2071–2100. Wind field data sets were

obtained by simulation outputs from two global circulation

models for two emission scenarios, and compared to two

control scenarios. The study revealed that there are large

uncertainties in the magnitude and the spatial patterns of

the climate change signals, and results indicate that the

uncertainties due to different climate models are larger, by

a factor exceeding five in some regions, than the uncer-

tainties related to the different scenarios. Notwithstanding

these uncertainties, it was general agreement between the

simulations in that extreme wave heights will increase in

large parts of the North Sea and that the future frequency of

severe sea states will increase due to global warming.

6 Summary and conclusions

This paper has presented a comprehensive review of the

literature concerning probabilistic modelling of ocean waves

and sea states. It has addressed the importance of available

wave data in order to develop sensible probabilistic models,

and although buoy measurements are generally regarded as

most reliable, the spatial coverage of such data may be

inadequate for spatial models. Alternatives exist in satellite

data and in reanalysis data obtained from wave models

forced by various meteorological parameters. In particular,

data from the ERA-40 reanalysis project that are freely

available for scientific purposes have been identified.

Numerous statistical models for extreme waves have

been reported in the literature, and some of these have been

presented herein. Most of these either have short-term

scope or are microscopic in the sense that they focus on a

particular location where wave data have been available.

That is, the spatial variability is not covered by many of

these models. The long-term trends and time-dependencies

due to observed and projected climate change are also

poorly incorporated in some of these models. There have

been some attempts to develop spatio-temporal models for

extreme waves, and these have been discussed herein.

However, due to the modest number of attempts to estab-

lish spatio-temporal models for extreme waves, a glance at

models proposed in other areas of application has also been

reported. Hence, a review of some models used in earth-

quake modelling, storm modelling, temperature modelling

and air pollution modelling has been presented. It is sug-

gested that similar approaches might be appropriate for

spatio-temporal modelling of extreme waves and further

work should focus on developing such models.
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In particular, the framework of Bayesian hierarchical

space–time models have been identified as a promising

candidate for further development of long-term stochastic

models of extreme wave climate. It is believed that such a

framework offer significant improvements in the statistical

understanding and modelling of extreme waves and may be

used in modelling and projecting long-term trends due to

climate change.

Following the review of different stochastic models, a

review of projections of future wave climate has been pre-

sented. Most of these predict changes in the global wave

climate towards the end of the century, but the changes are

very region-dependent. However, the overall message is

that, at least for the Northern Atlantic, the wave climate will

tend to become rougher during the present century. This

means that historic wave data may no longer be adequate as

basis for design of ships and offshore structures or for use in

risk assessment and that new knowledge about the time-

dependence and long-term trends of extreme wave climate is

of crucial importance. This should motivate further research

into the statistical relationships and development of

improved spatio-temporal models for extreme waves.
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Gregory K, Grügler A, Jung TY, Kram T, La Rovere EL,

Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L,

Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M,

Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z

(2000) Emissions scenarios. Cambridge University Press,

Cambridge

Natvig B, Tvete IF (2007) Bayesian hierarchical space-time modeling

of earthquake data. Methodol Comput Appl Probab 9:89–114

Nguyen V, Nguyen T, Ashkar F (2002) Regional frequency analysis

of extreme rainfalls. Water Sci Technol 45:75–81

Ochi MK (1998) Ocean waves the stochastic approach. Cambridge

ocean technology series 6. Cambridge University Press,

Cambridge

Olsen A, Schrøter C, Jensen J (2006) Wave height distribution

observed by ships in the North Atlantic. Ships Offshore Struct

1:1–12

Özger M, Şen Z (2007) Triple diagram method for the prediction of

wave height and period. Ocean Eng 34:1060–1068

Panchang V, Zhao L, Demirbilek Z (1999) Eestimation of extreme

wave heights using GEOSAT measurements. Ocean Eng

26:205–225

Perrie W, Jiang J, Long Z, Toulany B, Zhang W (2004) NW Atlantic
wave estimates and climate change. In: Preprints of 8th

international workshop on wave hindcasting and forecasting

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy

modeling of species geographic distributions. Ecol Modell

190:231–259

Prevesto M, Krogstad HE, Robin A (2000) Probability distributions

for maximum wave and crest heights. Coast Eng 40:329–360

Queffeulou P (2004) Long-term validation of wave height measure-

ments from altimeters. Mar Geodesy 27:495–510

Renard B, Lang M, Bois P (2006) Statistical analysis of extreme

events in a non-stationary context via a Bayesian framework:

case study with peak-over-threshold data. Stoch Environ Res

Risk Assess 21:97–112

Ribereau P, Guillou A, Naveau P (2008) Estimating return levels from

maxima of non-stationary random sequences using the General-

ized PWM method. Nonlinear Process Geophys 15:1033–1039

Richardson K, Steffen W, Schellnhuber HJ, Alcamo J, Barker T,

Kammen DM, Leemans R, Liverman D, Munasinghe M, Osman-

Elasha B, Stern N, Wæver O (2009) International scientific

congress climate change: global risks, challenges & decisions—

synthesis report. Technical report. International Alliance of

Research Universities

Robert CP, Casella G (2004) Monte Carlo statistical methods, 2nd

edn. Springer, New York
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Sansó B, Schmidt AM, Nobre AA (2008) Bayesian spatio-temporal

models based on discrete convolutions. Can J Stat 36:239–258

Sasaki W, Iwasaki S, Matsuura T, Iizuka S (2005) Recent increase in

summertime extreme wave heights in the western North Pacific.

Geophys Res Lett 32:L15607

Stoch Environ Res Risk Assess (2011) 25:185–209 207

123



Sasaki W, Hibiya T, Kayahara T (2006) Interannual variability and

future projections of summertime ocean wave heights in the

western North Pacific. Ocean Sci Discuss 3:1637–1651

Savelieva E, Demyanov V, Kanevski M, Serre M, Christakos G

(2005) BME-based uncertainty assessment of the Chernobyl

fallout. Geoderma 128:312–324

Schmidt AM, Gelfand AE (2003) A Bayesian coregionalization

approach for multivariate pollutant data. J Geophys Res 108:STS

10.1–STS 10.8

Scotto M, Guedes Soares C (2000) Modelling the long-term time

series of significant wave height with non-linear threshold

models. Coast Eng 40:313–327

Scotto M, Guedes Soares C (2007) Bayesian inference for long-term

prediction of significant wave height. Coast Eng 54:393–400

Smith EL, Stephenson AG (2009) An extended gaussian max-stable

process model for spatial extremes. Journal of Statistical

Planning and Inference 139:1266–1275

Soukissian TH, Kalantzi GD (2006) Extreme value analysis methods

used for extreme wave prediction. In: Proceedings of the 16th

international offshore and polar engineering conference (ISOPE

2006), The International Society of Offshore and Polar Engi-

neering (ISOPE)

Soukissian TH, Kalantzi GD (2007) A new method for applying the

r-largest maxima model for design sea-state prediction. In:

Proceedings of the 17th international offshore and polar

engineering conference (ISOPE 2007), The International Society

of Offshore and Polar Engineering (ISOPE)

Soukissian TH, Photiadou CS (2006) A sensitivity analysis of the

bottom-up algorithm for the segmentation of Hs-time series. In:

Proceedings of the 16th international offshore and polar

engineering conference (ISOPE 2006), The International Society

of Offshore and Polar Engineering (ISOPE)

Soukissian TH, Samalekos PE (2006) Analysis of the duration and

intensity os sea states using segmentation of significant wave

height time series. In: Proceedings of the 16th international

offshore and polar engineering conference (ISOPE 2006), The

International Society of Offshore and Polar Engineering (ISOPE)

Soukissian TH, Kalantzi G, Karagali I (2006) De-clustering of Hs-

time series for applying the peaks-over-threshold method. In:

Proceedings of the 16th international offshore and polar

engineering conference (ISOPE 2006), The International Society

of Offshore and Polar Engineering (ISOPE)

Stefanakos CN, Athanassoulis GA (2006) Extreme value predictions

based on nonstationary time series of wave data. Environmetrics

17:25–46

Stefanakos CN, Monbet V (2006) Estimation of wave height return

periods using a nonstationary time series modelling. In:

Proceedings of the 25th international conference on offshore

mechanics and Arctic engineering (OMAE 2006), American

Society of Mechanical Engineers (ASME)

Stein EM, Stein JC (1991) Stock price distributions with stochastic

volatility: an analytic approach. Rev Financ Stud 4:727–752

Sterl A, Caires S (2005) Climatology, variability and extrema of

ocean waves: the web-based KNMI/ERA-40 wave atlas. Int J

Climatol 25:963–977

Sterl A, Komen G, Cotton P (1998) Fifteen years of global wave

hindcasts using winds from the European Centre for Medium-

Range Weather Forecast reanalysis: validating the reanalyzed

winds and assessing the wave climate. J Geophys Res

103:5477–5492

Swail VR, Cox AT (2000) On the use of NCEP-NCAR reanalysis

surface marine wind fields for a long-term North Atlantic wave

hindcast. J Atmos Ocean Technol 17:532–545

The WAMDI Group (1988) The WAM model—a third generation

oceanwave prediction model. J Phys Oceanogr 18:1775–1810

The WASA Group (1998) Changing waves and storms in the

Northeast Atlantic. Bull Am Meteorol Soc 79:741–760

The Wise Group, Cavaleri L, Alves JH, Ardhuin F, Babanin A,

Banner M, Belibassakis K, Benoit M, Donelan M, Groeneweg J,

Herbers T, Hwang P, Janssen P, Janssen T, Lavrenov I, Magne

R, Monbaliu J,Onorato M, Polnikov V, Resio D, Rogers W,

Sheremet A, McKee Smith J, Tolman H, van Vledder G, Wolf J,

Young I (2007) Wave modelling—the state of the art. Prog

Oceanogr 75:603–674

Todorov V (2009) Estimation of continuous-time stochastic volatility

models with jumps using high-frequency data. J Econom

148:131–148

Torsethaugen K (1993) A two-peak wave spectral model. In:

Proceedings of the 12th international conference on offshore

mechanics and Arctic engineering (OMAE 1993), American

Society of Mechanical Engineers (ASME)

Torsethaugen K, Haver S (2004) Simplified double peak spectral

model for ocean waves. In: Proceedings of the 14th international

offshore and polar engineering conference (ISOPE 2004), The

International Society of Offshore and Polar Engineering (ISOPE)

Trulsen K (2006) Weakly nonlinear and stochastic properties of ocean

wave fields. Application to an extreme wave event. In: Grue J,

Trulsen K (eds) Waves in geophysical fluids—tsunamis, rogue

waves, internal waves and internal tides, Chap 2. CISM courses

and lectures no. 489. Springer, New York, pp 49–106

Unami K, Abagale FK, Yangyuoru M, Alam AHMB, Kranjac-

Berisavljevic G (2010) A stochastic differential equation model

for assessing drought and flood risks. Stoch Environ Res Risk

Assess 24:725–733
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Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen

PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner

NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A,

Vasiljevic D, Vitebro P, Woolen J (2005) The ERA-40 re-analysis.

Q J R Meteorol Soc 131:2961–3012

Vaccaro S (2008) Position-dependent stochastic diffusion model of

ion channel gating. Phys Rev E 78:061915

Van Gelder P, De Ronde J, Neykov NM, Neytchev P (2001) Regional

frequency analysis of extreme wave heights: trading space for

time. In: Edge BL (ed) Coastal engineering (2000), proceedings

of the 27th international conference on coastal engineering held

in Sydney, Australia, 16–21 July 2000, American Society of

Civil Engineers, pp 1099–1112

Vanem E (2010) Stochastic models for long-term prediction of

extreme waves: a literature survey. In: Proceedings of the 29th

international conference on offshore mechanics and Arctic

engineering (OMAE 2010), American Society of Mechanical

Engineers (ASME)

von Storch H, Zwiers FW (1999) Statistical analysis in climate

research. Cambridge University Press, Cambridge

Walton TL, Borgman LE (1990) Simulation of nonstationary, non-

Gaussian water levels on Great Lakes. J Water Port Coast Ocean

Eng 116:664–685

Wang XL, Swail VR (2001) Changes of extreme wave heights in

northern hemisphere oceans and related atmospheric circulation

regimes. J Clim 14:2204–2221

Wang XL, Swail VR (2002) Trends of Atlantic wave extremes as

simulated in a 40-yr wave hindcast using kinematically reana-

lyzed wind fields. J Clim 15:1020–1035

Wang XL, Swail VR (2006a) Climate change signal and uncertainty

in projections of ocean wave heights. Clim Dyn 26:109–126

208 Stoch Environ Res Risk Assess (2011) 25:185–209

123



Wang XL, Swail VR (2006b) Historical and possible future changes

of wave heights in northern hemisphere ocean. In: Perrie W (ed)

Atmosphere-ocean interactions, vol 2, Chap 8. Advances in fluid

mechanics, vol 39. WIT Press, pp 185–218

Wang XJ, Zwiers FW, Swail VR (2004) North Atlantic ocean wave

climate change scenarios for the twenty-first century. J Clim

17:2368–2383

Wang XL, Swail VR, Zwiers FW, Zhang X, Feng Y (2009) Detection

of external influences on trends of atmospheric storminess and

northern oceans wave heights. Clim Dyn 32:189–203

Wang XL, Swail VR, Cox A (2010) Dynamical versus statistical

downscaling methods for ocean wave heights. Int J Climatol

30:317–332

Weisse R, Stawarz M (2004) Long-term changes and potential for

future developments of the North Sea wave climate. In: Preprints

of 8th international workshop on wave hindcasting and

forecasting

West M, Harrison J (1997) Bayesian forecasting and dynamic models,

2nd edn. Springer-Verlag, New York

Wikle CK (2003) Hierarchical models in environmental science. Int

Stat Rev 71:181–199

Wikle CK, Berliner LM, Cressie N (1998) Hierarchical bayesian

space-time models. Environ Ecol Stat 5:117–154

Wikle CK, Milliff RF, Nychka D, Berliner LM (2001) Spatiotemporal

hierarchical bayesian modeling: tropical ocean surface winds.

J Am Stat Assoc 96:382–397

Wolf J, Woolf DK (2006) Waves and climate change in the north-east

Atlantic. Geophys Res Lett 33:L06604

Woolf D, Challenor P, Cotton P (2002) Variability and predictability

of the North Atlantic wave climate. J Geophys Res 107:9-1–9-14

Yang T, Shao Q, Hao ZC, Chen X, Zhang Z, Xu CY, Sun L (2010)

Regional frequency analysis and spatio-temporal pattern char-

acterization of rainfall extremes in the Pearl River Basin, China.

J Hydrol 380:386–405

Yoon S, Cho W, Heo JH, Kim CE (2010) A full Bayesian approach to

generalized maximum likelihood estimation of generalized

extreme value distribution. Stoch Environ Res Risk Assess

24:761–770

Zhang H (2007) Maximum-likelihood estimation for multivariate

spatial linear coregionalization models. Environmetrics 18:

125–139

Stoch Environ Res Risk Assess (2011) 25:185–209 209

123


	Long-term time-dependent stochastic modelling of extreme waves
	Abstract
	Introduction
	Integrated sea state parameters
	Waves as stochastic processes
	Predicting the impact of climate change on extreme sea states

	Wave data and data sources
	Review of statistical models for extreme waves
	Short-term stochastic wave models
	Significant wave height as a function of wind speed

	Stationary models
	Non-stationary models
	Microscopic models
	Combining long and short term wave height statistics
	Spatio-temporal models for extreme waves


	Relevant statistical models from other areas of application
	Bayesian hierarchical space--time models
	Continuous space models
	Process convolution models
	Nonstationary covariance models
	Coregionalization models
	Generalized extreme value models
	Optimality models
	Bayesian maximum entropy models
	Stochastic diffusion models
	Regional frequency analysis
	Selecting a modelling approach

	Wave climate projections
	Climate change
	Current trends in the wave climate
	Prediction of future trends in the wave climate

	Summary and conclusions
	Acknowledgments
	References


