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Abstract: Due to the complex coupling between phenology and climatic factors, the influence
mechanism of climate, especially preseason temperature and preseason precipitation, on vegetation
phenology is still unclear. In the present study, we explored the long-term trends of phenological
parameters of different vegetation types in China north of 30◦N from 1982 to 2014 and their compre-
hensive responses to preseason temperature and precipitation. Simultaneously, annual double-season
phenological stages were considered. Results show that the satellite-based phenological data were
corresponding with the ground-based phenological data. Our analyses confirmed that the preseason
temperature has a strong controlling effect on vegetation phenology. The start date of the growing
season (SOS) had a significant advanced trend for 13.5% of the study area, and the end date of the
growing season (EOS) showed a significant delayed trend for 23.1% of the study area. The impact of
preseason precipitation on EOS was overall stronger than that on SOS, and different vegetation types
had different responses. Compared with other vegetation types, SOS and EOS of crops were greatly
affected by human activities while the preseason precipitation had less impact. This study will help
us to make a scientific decision to tackle global climate change and regulate ecological engineering.

Keywords: phenology; preseason; precipitation; temperature; vegetation; climate change

1. Introduction

Vegetation phenology, the periodicity of growth and development of vegetation, plays
a prominent role in regulating the carbon balance of terrestrial ecosystems [1,2]. Climate
change, in turn, affects vegetation phenology [3]. Numerous studies have been conducted
to investigate complex causal relationships between vegetation phenology and various
climatic factors [4–6]. Studies have also attempted to reveal potential climate change
signals from vegetation phenology by analyzing comprehensive trends across different
vegetation types, phenology stages, and regions [7–9]. However, owing to the complex
coupling between phenology and climate factors [10–12], understanding the internal forcing
mechanism of climate-phenology interactions is not complete. As global climate change
is projected to intensify in the future [13–17], it is imperative to continue studying the
complex interacting mechanism of climate change and phenology to understand future
ecosystem dynamics [18].

Among the various climate factors, temperature and precipitation prior to the growing
season (hereinafter referred to as the “preseason”) play an important role in regulating
vegetation phenology. The start date (SOS) and end date (EOS) of the growing season are
essential indicators of vegetation phenology. They are directly associated with climatic
factors [19]. For example, the plant dormancy period is temperature-controlled vegetation
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phenology [20]. In regions with a cold season, vegetation must be exposed to sufficient
heat accumulation in the growing season in order to break its dormancy and start grow-
ing [19]. Therefore, temperature can be considered the most important factor affecting
vegetation phenology in many regions [21,22]. Additionally, precipitation is also a key
factor that regulates the spring phenology of vegetation in some areas and affects vegeta-
tion phenology to a greater extent than the temperature in some areas [23–25]. Autumn
phenology also plays a prominent role in regulating carbon balance and biomass regionally
and globally [26,27]. Studies have shown that temperature has a strong controlling effect on
the autumn phenology [28,29]. Higher temperatures tend to delay vegetation EOS [28,30].
However, the effect of temperature on EOS appears to be weaker in the Tibetan Plateau [31].
In the Greater Khingan Mountains, it has also been observed that precipitation, relative
to temperature, has a stronger control on EOS [32]. In short, the responses of phenology
to preseason temperature and precipitation vary in magnitude and direction, between
species and regions, and even between the same species in various regions [33]. These
complex response patterns have led to considerable spatial heterogeneity in the relationship
between phenology and climate. Although many studies have discussed the relationship
between preseason temperature and precipitation and vegetation phenology [24,34–39],
these conclusions cannot be applied to all regions or all vegetation. Therefore, it is necessary
to conduct a comprehensive study on the relationship between vegetation phenology and
climatic factors.

In addition, the cultivation methods in China are complex and extremely vulnerable
to human activities. This leads to it being more challenging to explore the response
patterns of different vegetation types to climate factors, and the complex response patterns
of phenology to preseason climate are still unclear for different vegetation types. In the
temperate zone north of 30◦N in China, vegetation types are abundant and seasonal, and the
satellite-derived vegetation index is less affected by solar zenith angle [40]. Compared with
south of 30◦N in China, the agricultural planting pattern is more simple, with single-season
or double-season crops, which is convenient for phenological data extraction. Therefore, we
selected the temperate zone north of 30◦N in China as the main study area to investigate the
relationships between vegetation phenology and preseason temperature and precipitation.

The main purpose of this study is to provide a more macroscopic and comprehensive
perspective to explore the response patterns of different vegetation types SOS and EOS
to preseason temperature and precipitation. Specifically, we used the GIMMS-NDVI3g
(Normalized Vegetation Index for the third generation Global Inventory Monitoring and
Modeling System from the AVHRR sensor) dataset to extract vegetation phenology param-
eters (SOS and EOS) validated by ground observation phenology data. In particular, we
considered the phenology of double-cropping crops, which is often ignored in many studies
on the relationship between vegetation phenology and climate. Then, we investigated the
integrated response of vegetation SOS and EOS to preseason temperature and precipitation
from 1982 to 2014. The relationships between the phenology of various vegetation types
(including deciduous broadleaf forest, deciduous needle leaf forest, mixed forest, grassland,
savanna, wheat, maize, and rice) and climatic factors were also discussed.

2. Materials and Methods
2.1. Study Area

The fluctuations in normalized difference vegetation index (NDVI) are not obvious
south of 30◦N in China, as a result of the most areas being covered by evergreen forests.
In addition, the crops in this area have a complicated planting pattern of three or more
seasons a year, which makes it difficult to identify. Therefore, our research focused on
the temperate regions of China (north of 30◦N; Figure 1a), where the vegetation index
retrieved by satellites is also less affected by the solar zenith angle [40]. Considering that
the spatial resolution of GIMMS data is 0.08333◦, we chose MOD12C1 classification data
with a spatial resolution similar to that of GIMMS for the purpose of avoiding the influence
of excessive interpolation and resampling on data accuracy. Therefore, based on land use
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type classification data MCD12C1 (Land Cover Climate Modeling Grid product) from
the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite, we excluded the
pixels with changes in land use/cover from 2001 to 2014 (data for land use/cover before
2001 were not available) to eliminate errors (Figure 1b). Specifically, we subtracted the
2001 land-use classification data from the 2014 land-use classification data. If the pixel
value was equal to 0, this meant that the land use type had remained unchanged, and vice
versa. Additionally, non-vegetation land-use types (including Barren, Water Bodies, Urban
and Built-up Lands, Permanent Snow and Ice, and Permanent Wetlands) and land-use
types of less than 100 pixels were also excluded. Thus, the remaining area in this study
was 4.54 million km2 (nearly half of the total land area of China). Vegetation types in the
selected study area were classified as listed in Table 1.
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Figure 1. (a) Selected temperate regions of China (north of 30◦N). (b) Change in land use from 2001
to 2014 in the study area. (c) Spatial distribution of land use in the final selected study area.

2.2. Datasets and Preprocessing

We used the NDVI product of the National Oceanic and Atmospheric Administration
(NOAA) Global Inventory Monitoring and Modeling System (GIMMS) to calculate the
SOS and EOS (the unit is the number of days in a year) of vegetation from 1982 to 2014.
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The GIMMS NDVI (version 3g.v1) dataset, which has a spatial resolution of 0.0833333◦

and a temporal resolution of twice a month, can be downloaded from https://iridl.ldeo.
columbia.edu/SOURCES (accessed on 19 January 2021).

Table 1. Selected vegetation types.

Vegetation Types Abbreviations in This Article Area (km2)

Deciduous broadleaf forest DBF 297,920
Deciduous needle leaf forest DNF 72,704

Mixed forest MF 10,880
Grassland GL 2,378,368
Savanna SA 390,720
Cropland CL 1,120,384

The ground-based data for crops were derived from the 10-day value dataset of
crop growth of China Meteorological Data Network (http://data.cma.cn/ (accessed on
23 January 2021)). It contains information on the development period, plant height, soil
moisture, etc., of different crops, observed at 778 sites from 1992 to 2013 and is widely used
in Crop Phenology research [41,42]. We finally selected crop growth records of wheat, corn,
and rice at 671 sites from 1992 to 2013 (some sites do not contain phenological information of
the required crop types). The turning-green period of maize, the emergence period of wheat,
and the transplanting period of rice in the ground-based dataset were defined as SOS, and
the maturity period of maize, wheat, and rice in the ground-based dataset corresponded to
EOS [43]. The meteorological data covering 33 years (1982–2014) of daily precipitation and
temperature from 786 monitoring stations were derived from the China Meteorological
Data Network (CMDN) (http://data.cma.cn/ (accessed on 18 January 2021)). We used the
spline interpolation method to generate raster data with a spatial resolution of 0.83333◦ to
match the phenological data in the study area [44].

MCD12C1 datasets contain 3 sets of land use classification schemes, among which
the IGBP (International Geosphere Biosphere Program Version 6) classification scheme
has been widely used in various vegetation studies [45–47]. Therefore, we used the IGBP
(International Geosphere Biosphere Program Version 6) classification data from MODIS
MCD12C1 in 2001 and 2014 for vegetation classification. The original data, with a spatial
resolution of 0.05◦, were resampled to generate a new dataset with a resolution of 0.83333◦

(with the nearest neighbor method). In addition, the IGBP classification system divides land-
use types into 17 categories, including land-use types without vegetation cover. Therefore,
according to the research needs of this study, we eliminated the following pixels:

• Pixels that showed changes in land-use type between 2001 and 2014;
• Minor vegetation types (less than 100 pixels) in the study area;
• Non-vegetated land-use types, such as bare land and urban built-up areas.

2.3. Calculation and Validation of Phenological Data

We used the Savizky–Golay (SG) filter to reconstruct the NDVI time series curve for
each pixel. The SG filter can retain data information to the greatest extent while removing
data noise, and it is more suitable for extracting double-season crop information [48]. The
formula of SG filtering is given as:

Fi =
1

2m + 1

j=m

∑
j=−m

Cj fi+j

where Fi and fi are the ith value of the filtered data and the original data, respectively, Cj is
the jth weight value of the filtering window and is calculated by polynomial fitting with
the polynomial order of 4, and m is half the size of the filtering window (=6). Finally, a
quadratic spline was used to interpolate the data to daily values [49].

https://iridl.ldeo.columbia.edu/SOURCES
https://iridl.ldeo.columbia.edu/SOURCES
http://data.cma.cn/
http://data.cma.cn/
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After reconstructing the NDVI time series curve, we selected pixels with one or two
maxima (the pixels with two maxima were the candidates for double-season crops) and
calculated the second derivative. Two local maximum (inflexion) points in the first half of
growth season were regarded as the SOS and the second half as the EOS [50]. To extract the
phenological parameters of different crops accurately, we determined the limited time win-
dow to be 30 days before and after the average value of the phenological parameters (SOS
and EOS) of various crops in different provinces based on ground-measured phenological
data [43]. If the estimated SOS and EOS meet the restricted time window of a certain crop
(i.e., maize, wheat, and rice), then the corresponding pixel is associated with the crop. If
the SOS and EOS of the pixel with a double-season crop meet the limited time windows of
both crops, then the pixel is associated with a double-season crop.

Finally, we used ground-based phenological dates to validate calculated phenological
dates for wheat, corn, and rice from 1992 to 2013. Four statistics were used to verify
the calculated phenological dates, including Nash coefficient of determination (R2) [51],
normalized root means square error (NRMSE) [52], Nash–Sutcliffe efficiency (NSE) [53],
and percentage bias (PBIAS) [54].

R2 =

 ∑n
i=1
(

Fi − F
)
∗
(

fi − f
)2√

∑n
i=1
(

Fi − F
)2

∑n
i=1

(
fi − f

)2


2

NRMSE =
RMSE

F
=

√
1
n ∑n

i=1(Fi − fi)
2

F

NSE = 1 − ∑n
i=1(Fi − fi)

2

∑n
i=1
(

Fi − F
)2

PBIAS =

(
f − F

)
F

∗ 100

where F and F are the predicted phenological sequence data and their mean values, and f
and f are the phenological series data and their mean values observed on the ground.

2.4. Statistical Analysis

The Theil–Sen (TS) method was used to estimate the long-term trend in EOS/SOS for
each pixel from 1982 to 2014 [55,56]. It is a robust method for monitoring trends in time
series and is only slightly affected by outliers [57]. The Mann–Kendall (MK) method was
used to test the significance of the long-term trend in EOS/SOS [58,59]. The TS and MK
methods have been widely used in detecting long-term phenological trends [60,61] and
have been shown to exhibit strong stability [57,62–64].

To explore the lag effects of temperature and precipitation on vegetation phenology,
we further calculated preseason lengths (in days) for SOS and EOS in each pixel. Here, the
preseason length is defined as the n days before the 33-year average SOS/EOS dates for
each pixel (1 ≤ n ≤ 180) (similar to “time window durations” discussed in Ren, Li, and
Peichl [22]). Preseason temperature and precipitation are the average daily temperature
and precipitation for different preseason lengths [65]. We used the partial correlation
analysis and T-test to investigate the correlation between SOS/EOS and the preseason
precipitation/temperature at each pixel for different preseason lengths (1–180 days). As
a result, we obtained 4 × 180 partial correlation coefficients per pixel (Figure 2). Finally,
the preseason length of the highest absolute value of the partial correlation coefficient
was selected as the optimal time scale of each category (similar to “best-performing time
window durations” in [22]). For example, as shown in Figure 2, the highest partial cor-
relation coefficient between the preseason temperature and SOS of the pixel in row i and
column j is −0.60. Therefore, −0.60 was defined as the final partial correlation coefficient
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between the preseason temperature of the pixel and SOS, and the corresponding presea-
son length 36 was the optimal time scale between the preseason temperature and SOS in
this pixel. Finally, we analyzed the partial correlation between EOS/SOS and preseason
temperature/precipitation for each vegetation type from 1982 to 2014 to further study the
response patterns of SOS and EOS of the various vegetation types to preseason temperature
and precipitation.
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Figure 2. The partial correlation coefficient matrix for pixel in row i, column j (*: p-value<0.05,
**: p-value < 0.01, ***: p-value < 0.001.). T and P stand for preseason temperature and preseason
precipitation. The red dotted circle represents the maximum value of each row, and its corresponding
preseason length is the optimal time scale.

3. Results
3.1. Validation of Phenological Data and Its Long-Term Trend
3.1.1. Validation of Satellite-Based Phenology Data

The phenological dates of ground observations for crops from 1992 to 2013 were
compared to the NDVI-based dates. The verification results were shown in Figure 3 and
Table 2. The crop phenology data were in good agreement with the ground observation
data, with R2 of 0.968, NRMSE of 10.2%, and PBIAS of −5.3%. The R2 of three crop types
(wheat, maize, and rice) were all ≥0.97. Except for wheat (the NRMSE equals 11.540), the
NRMSE of the other two crops were all <10%. In general, the extracted phenology data met
the data accuracy requirements.
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Table 2. Validation parameters of retrieved phenological data.

Crop R2 p-Value NRMSE (%) NSE PBAIS (%)

Maize 0.987 <0.0001 8.9 0.888 −6.5
Wheat 0.970 <0.0001 11.5 0.905 −6.3

Rice 0.996 <0.0001 6.6 0.957 −0.6
All crops 0.968 <0.0001 10.2 0.953 −5.3

3.1.2. Long-Term Change in Vegetation Phenology

There was an overall advanced SOS trend for a large portion of pixels from 1982 to
2014 over the whole study area (Figure 4a,c). A total of 19.3% of the study area (about
875,766 km2) had a significant change of SOS from 1982 to 2014 (p-value < 0.05), of which
13.5% (about 612,446 km2) showed an advanced trend and 5.8% showed a delayed trend.
On average, the SOS within this 19.3% of the study area was advanced by 0.15 days/yr
from 1982 to 2014 (Figure 4a,c). The spatial distribution shows that the delayed SOS
was relatively scattered over the study area, while advanced SOS was relatively concen-
trated at the intersection of the Inner Mongolia Autonomous Region and Jilin Province of
Northeast China (Figure 1a vs. Figure 4a,c). The SOS of deciduous broadleaf forest and
savanna have the largest advanced days, about 0.53 days/yr and 0.38 days/yr, respectively
(p-value < 0.05), while the SOS of maize and rice have the smallest advanced days, with
values of 0.04 days/yr and 0.06 days/yr, respectively (p-value < 0.05) (Figure 4e–l).

As for the EOS, there was an overall delayed trend for a large portion of the study area
(Figure 5a,c). There was a significant change of EOS in 27.5% (about 1.25 million km2) of the
study area (p-value < 0.05), of which 23.1% (about 1.05 million km2) showed a significantly
delayed trend and only 4.4% (about 201,122 km2) showed a significant advanced trend.
Overall, EOS was delayed by 0.19 days/yr in 27.5% of the study area. Compared with SOS,
the geographical distribution of EOS with a significant delay trend was more concentrated
for savanna in the northeast and cropland in the east (Figure 1a vs. Figure 5a,c). The
EOS of grassland and rice had the largest number of days’ delay, about 0.33 days/yr and
0.31 days/yr, respectively (p-value < 0.05), while the EOS of savanna and mixed forest
had the smallest number of days’ delay, with values of 0.06 days/yr and 0.03 days/yr,
respectively (p-value < 0.05) (Figure 5e–l).

3.2. Relationship between SOS and Preseason Temperature and Precipitation
3.2.1. Overall SOS Response and Spatial Distribution

Spatial distribution of the correlations between SOS and preseason temperature for
the first and second season of the double-season crop as well as single-season vegetation
are shown in Figure 6a,b. The SOS changing rate per preseason temperature and the
significance level of the correlations are shown in Figure 6c–f. We found that about 65.4%
(approximately 1.57 million km2) of the study area showed a negative correlation between
SOS and preseason temperature, with 42.3% (about 1.02 million km2) having a significant
negative correlation (p-value < 0.05, Figure 6g). About 16.4% (about 395,443 km2) of the
study area had a significant positive correlation (p-value < 0.05; Figure 6g). For every 1 ◦C
increased in preseason daily mean temperature at the optimal time scale, the SOS advanced
0.62 days (p-value < 0.05) (Figure 6h).

Spatial distribution of the correlations between SOS and preseason precipitation for
the first and second season of the double-season crop as well as single-season vegetation
are shown in Figure 6i,j. The SOS changing rate per preseason precipitation and the
significance level of the correlations are also shown in Figure 6k–n. The relationship
between vegetation SOS and preseason precipitation was not as significant as the preseason
temperature for the study area. We found that the SOS was negatively correlated with
preseason precipitation (p-value < 0.05) in 19.4% (about 465,440 km2) of the study area,
whereas the area in which SOS was positively correlated with preseason precipitation
was only 10.8% (about 260,502 km2) (p-value < 0.05) (Figure 6o). Apparently, preseason
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temperature and precipitation showed varying degrees of influence on SOS in the study
area. Although the influence of preseason precipitation on SOS was not obvious, preseason
precipitation explained variations in the SOS for areas where preseason temperature could
not, such as the border area between Inner Mongolia and Liaoning Province (Figure 6e,m).
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Figure 4. Spatial distribution of the changing trend (a) and p-value (b) of SOS for the single-season
vegetation and the first season of double-season vegetation. Spatial distribution of the changing
trend (c) and p-value (d) of SOS for the second season of double-season vegetation. (e–l) Histograms
of SOS change trends for different vegetation types. The black text in the upper right corner of the
histogram indicates the mean of the trend (days/yr), and the red text is the mean of the part with the
p-value < 0.05.

3.2.2. SOS Responses of Different Vegetation Types

The partial correlation between preseason temperature/precipitation and SOS for
the six vegetation types in the study area is shown in Figure 7a–l. The partial correlation
coefficient between preseason temperature and SOS were mostly negative (ranging from
−0.01 to −0.70), indicating similar response patterns for the six vegetation types. Among
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the six vegetation types, the partial correlations were stronger for the deciduous broadleaf
forest, deciduous needle leaf forest, mixed forest, and savanna, with R values of ≤−0.40
(p-value < 0.05), while for grassland and cropland, the partial correlations were relatively
weaker, with R values of −0.01 and −0.32, respectively. We found that the SOS advanced
for more than 2 days for every 1 ◦C increase in preseason temperature for deciduous
needle leaf forest, deciduous broadleaf forest, mixed forest, and savanna, indicating higher
sensitivity. However, there was no significant partial correlation between the preseason
precipitation and the SOS of each vegetation type.
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p-value < 0.05.
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Figure 7. Partial correlogram between preseason temperature (a–f)/precipitation (g–l) and SOS for
the various vegetation types, including DNF (deciduous needle leaf forest), DBF (deciduous broadleaf
forest), MF (mixed forest), GL (grassland), SA (savanna), CL (cropland). Frequency distribution (%)
of the areas with various R values between SOS and preseason temperature (m–r)/precipitation (s–x)
for the six vegetation types.
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The frequency distribution of partial correlation coefficients between preseason tem-
perature/precipitation and SOS for the six vegetation types is shown in Figure 7m–x. For
deciduous needle leaf forest, deciduous broadleaf forest, mixed forest, and savanna, partial
correlation coefficients between preseason temperature and SOS were mostly negative
(98.8%, 87.8%, 49.8%, and 93.8%, respectively; p-value < 0.05). The effect of tempera-
ture on vegetation spring phenology is stronger than that of precipitation on vegetation
spring phenology.

3.3. Relationship between EOS and Preseason Temperature and Precipitation
3.3.1. Overall EOS Response and Spatial Distribution

Spatial distribution of the correlations between EOS and preseason temperature for
the first and second season of the double-season crop as well as single-season vegetation
are shown in Figure 8a,b. The EOS changing rate per preseason temperature and the
significance level of the correlations are also shown in Figure 8c–f. The response of veg-
etation EOS to preseason temperature was overall opposite to that of SOS. About 74.0%
(about 1.78 million km2) of the study area showed a positive correlation between EOS
and preseason temperature, with the remaining 26.0% (about 626,360 km2) of the study
area showing a negative correlation. Among them, 42.6% (about 1.02 million km2) of the
area showed a significant positive correlation between EOS and preseason temperature
(p-value < 0.05), whereas only 8.3% (about 199,405 km2) of the area showed a significant
negative correlation between EOS and preseason temperature (p-value < 0.05) (Figure 8g).
For each 1 ◦C increase in the preseason daily mean temperature in the optimal time scale,
the appearance of EOS was estimated to be delayed by 2.01 days (Figure 8h).

Spatial distribution of the correlations between EOS and preseason precipitation for
the first and second season of the double-season crop as well as single-season vegetation are
shown in Figure 8i,j. The EOS changing rate per preseason precipitation and the significance
level of the correlations are also shown in Figure 8k–n. For preseason precipitation, about
55.6% (about 1.34 million km2) of the study area showed a significant correlation with EOS
(p-value < 0.05). Of this, about 31.1% and 24.6% of the study area showed a significant
positive and negative correlation, respectively, between EOS and preseason precipitation
(Figure 8o). On average, an increase in daily mean precipitation of 1 mm in the optimal
time scale caused a delay in EOS by 1.86 days (Figure 8p). In general, vegetation EOS in
most of the area has a significant positive correlation with preseason temperature, while
the correlation with preseason precipitation is subtle. However, preseason precipitation
can explain changes in EOS that cannot be explained by preseason temperature in some
regions, such as the border area of Inner Mongolia and Heilongjiang Province reflecting the
complex internal impact mechanism of preseason precipitation on EOS (Figure 8e,m).

3.3.2. EOS Responses of Different Vegetation Types

The partial correlation between preseason temperature/precipitation and EOS for the
six vegetation types in the study area is shown in Figure 9a–l. In contrast with the response
pattern of the SOS to preseason temperature, the partial correlations between preseason
temperature and EOS were mostly positive (ranging from 0.36 to 0.55; Figure 9g–l). Greater
correlation coefficients were found for deciduous needle leaf forest and savanna (0.55
and 0.52, respectively; p-value < 0.05). The EOS for mixed forest and savanna showed
greater sensitivity to preseason temperature, with more than 2 days delay per 1 ◦C increased
(Figure 9g,k). As opposed to the response pattern of the SOS/EOS to preseason temperature,
the partial correlation between preseason precipitation and EOS was inconsistent across
various vegetation types. For example, partial correlation coefficients between preseason
precipitation and EOS were mostly negative for deciduous needle leaf forest, deciduous
broadleaf forest, mixed forest, and savanna (−0.46, −0.42, −0.54, and −0.45, respectively;
p-value < 0.05), which was opposite to the partial correlation pattern between preseason
temperature and EOS. Among them, the EOS of the mixed forest was the most sensitive to
preseason precipitation, with more than 4 days’ delay per 1 mm increase in precipitation.
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Figure 8. Spatial pattern of the (a,b) R-value, (c,d) slope, and (e,f) statistical significance (p-value)
between EOS and preseason temperature in (a,c,e) the first season of the double-season crop, single-
season vegetation, and (b,d,f) the second season of the double-season crop. (g) Frequency distribution
histograms of R-value and (h) trends. The text in (g) indicates the area ratio of the R-value. (i–p) The
corresponding pictures mentioned before between EOS and preseason precipitation.
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Figure 9. Partial correlogram between preseason temperature (a–f)/precipitation (g–l) and EOS for
the various vegetation types, including DNF (deciduous needle leaf forest), DBF (deciduous broadleaf
forest), MF (mixed forest), GL (grassland), SA (savanna), CL (cropland). Frequency distribution (%)
of the areas with various R values between EOS and preseason temperature (m–r)/precipitation (s–x)
for the six vegetation types.

The frequency distribution of correlation coefficients between preseason tempera-
ture/precipitation and EOS for the six vegetation types is shown in Figure 9m–x. For
deciduous needle leaf forest, deciduous broadleaf forest, mixed forest, and savanna, the
partial correlation coefficients between EOS and preseason temperature were mostly pos-
itive (95.9%, 44.5%, 39.2%, and 69.7%, respectively; p-value < 0.05), while the partial
correlation coefficients between EOS and preseason precipitation were mostly negative
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(84.6%, 42.5%, 56.9%, and 61.1%; p-value < 0.05). For grassland, the partial correlation coeffi-
cients between preseason precipitation and SOS were mainly negative (with the proportion
of 21.6%), whereas the partial correlation coefficients with EOS were mainly positive (with
the proportion of 41.0%). The partial correlations between preseason precipitation and EOS
for grassland and cropland were not as significant as for the other vegetation types.

3.4. Optimal Time Scale for Preseason Temperature and Precipitation

Area percentage distribution of optimal time scale for preseason temperature and
precipitation impacts on SOS for different vegetation types are shown in Figure 10. In
general, the preseason length where the temperature had the greatest influence on SOS
was mainly concentrated at the range of 0–60 days. The optimal time scales for deciduous
needle leaf forest, deciduous broadleaf forest, and savanna were mostly concentrated in
20–40 days (79.3%; p-value < 0.05), 0–50 days (75.1%; p-value < 0.05), and 0–75 days (90.0%;
p-value<0.05), respectively. Please note that, as the preseason length increased, the influence
of preseason temperature on the SOS gradually diminished. In contrast, the distribution of
optimal time scale for the influence of preseason temperature on vegetation EOS was more
scattered. For example, although the optimal time scale of most pixels was concentrated
in 0–30 days, there are still about 17.8% (deciduous needle leaf forest), 8.4% (deciduous
broadleaf forest), 9.8% (mixed forest), 6.6% (grassland), 33.0% (savanna), 9.2% (maize), 6.4%
(wheat), and 17.7% (rice) of pixels with the optimal time scale concentrated in 150–180 days
(p-value < 0.05). Therefore, preseason temperature showed a more profound impact on
autumn vegetation phenology of vegetation in the study area.
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Area percentage distributions of optimal time scale for preseason temperature and pre-
cipitation impacts on EOS for different vegetation types are shown in Figure 11. Although
the optimal time scale pixels were mostly concentrated in 0–30 days, their distributions
were not concentrated for the SOS (Figure 11a–h), showing that the impact of precipita-
tion on vegetation SOS was not as significant as temperature. In contrast, the impact of
precipitation on vegetation EOS was stronger than the impact on SOS. The optimal time
scale was also concentrated in 0–60 days. At the same time, the rainfall in the 60–100 days
of many pixel seasons also had a strong control effect on the vegetation EOS. The impact
of preseason precipitation on EOS gradually diminished as the preseason time increased
(Figure 11i–p).

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 25 
 

 

 

Figure 11. (a–h) Histograms of the optimal time scale of different land-use types for SOS vs. presea-

son precipitation, and (i–p) for EOS vs. preseason precipitation. Red part means p-value < 0.05, while 

gray means p-value ≥ 0.05. 

4. Discussion 

4.1. Effects of Preseason Temperature on Vegetation Phenology 

In most temperate regions of China, we observed a significant negative correlation 

between the spring phenology of vegetation and preseason temperature, as well as a sig-

nificant positive correlation between autumn phenology and preseason temperature (Fig-

ures 6 and 8), which is consistent with observations of a previous study [25]. The results 

suggest that higher temperatures will advance SOS and delay EOS in most temperate re-

gions of China. Sufficient heat accumulation is required for the onset of vegetation growth 

[66]. Generally, the temperature in the study area needs to reach 0–5 °C in order to end 

the dormant period and meet the necessary weather conditions for leaf onset [19]. Higher 

temperatures can accelerate heat accumulation, thereby promoting the greening of vege-

tation. This is why the optimal time scale of the preseason temperature was concentrated 

in the 0–60 days prior to the mean SOS, which is also known as the dormant period.  

Preseason temperature also has a significant controlling effect on autumn phenology 

(Figure 8). According to reports, higher temperatures in summer and autumn will increase 

the activity of photosynthetic enzymes and reduce the degradation rate of chlorophyll, 

leading to the delay of EOS [32,67]. At the same time, higher preseason temperature is also 
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precipitation, and (i–p) for EOS vs. preseason precipitation. Red part means p-value < 0.05, while
gray means p-value ≥ 0.05.

4. Discussion
4.1. Effects of Preseason Temperature on Vegetation Phenology

In most temperate regions of China, we observed a significant negative correlation
between the spring phenology of vegetation and preseason temperature, as well as a
significant positive correlation between autumn phenology and preseason temperature
(Figures 6 and 8), which is consistent with observations of a previous study [25]. The re-
sults suggest that higher temperatures will advance SOS and delay EOS in most temperate
regions of China. Sufficient heat accumulation is required for the onset of vegetation
growth [66]. Generally, the temperature in the study area needs to reach 0–5 ◦C in order
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to end the dormant period and meet the necessary weather conditions for leaf onset [19].
Higher temperatures can accelerate heat accumulation, thereby promoting the greening of
vegetation. This is why the optimal time scale of the preseason temperature was concen-
trated in the 0–60 days prior to the mean SOS, which is also known as the dormant period.

Preseason temperature also has a significant controlling effect on autumn phenology
(Figure 8). According to reports, higher temperatures in summer and autumn will increase
the activity of photosynthetic enzymes and reduce the degradation rate of chlorophyll,
leading to the delay of EOS [32,67]. At the same time, higher preseason temperature is also
a sign of warm winter, which means that extreme weather conditions such as frost are less
harmful to vegetation [68]. In short, the senescence of vegetation is a complex and slow
process involving many non-biological factors [69,70], which are beyond the scope of this
article, except for preseason temperature and precipitation.

Although the optimal time scale of temperature for the EOS was mainly concentrated
at 0–60 days in the study area, there were also many areas where the optimal time scale of
temperature was concentrated at 120–180 days. This may be attributed to the fact that a
higher temperature in spring would quickly lead to the accumulation of the heat required
for vegetation growth, giving rise to the rapid growth of vegetation and promoting the
early start of autumn phenology [66]. In addition, the correlation between the SOS of
vegetation (grassland and cropland) and preseason temperature was weaker than that for
the other four vegetation types, as has also been reported in other studies [71].

4.2. Effects of Preseason Precipitation on Vegetation Phenology

Compared with temperature, the responses of vegetation phenology to preseason
precipitation in temperate regions of China were more complex. For deciduous needle leaf
forest, deciduous broadleaf forest, mixed forest, and savanna, the correlations between pre-
season precipitation and SOS were not significant. This may be due to the well-developed
root system of the woodland, the stronger soil water storage capacity, and therefore the
stronger resistance to drought [34]. Furthermore, temperate forests have relatively low
evapotranspiration and high precipitation. They can retain water for the next rainy season,
which reduces the impact of drought on vegetation [72]. Therefore, the change of preseason
precipitation has a minor influence on the spring phenology of forests.

Interestingly, we found that the EOS of deciduous coniferous forest, deciduous broad-
leaved forest, mixed forest, and savanna were mainly negatively correlated with preseason
precipitation. This may be related to the average precipitation in the region [71]. Excessive
precipitation may cause the vegetation growing season to end prematurely in areas with
abundant precipitation. Studies have shown that soil moisture affects the growth of
vegetation [73–77]. The increase in soil moisture may promote the photosynthesis of
vegetation, which in turn prompts the early end of the vegetation growing season [32,78].
Other climatic factors, such as snowmelt, may also replenish soil moisture, leading to an
earlier fall of vegetation phenology. In addition, due to the influence of permafrost in some
forests in cold regions, high soil moisture can easily limit the absorption of soil nutrients by
vegetation, thereby ending growth prematurely [32,79].

The impact of precipitation on vegetation EOS was greater than that on vegetation
SOS. For many vegetation types, the effect of precipitation on EOS was stronger and more
complex than that of temperature. The responses of vegetation phenology to precipitation
in various vegetation types and regions are different. Excessive rainfall surplus or deficit
can affect vegetation growth. In short, vegetation senescence is a complicated process and
the understanding of its relationship with climatic factors needs to be further investigated
in detail. There is no dispute that temperature has a strong control on EOS. However, the
effect of precipitation on vegetation phenology is more complex and is related to multiple
other factors. Therefore, the influence of extreme conditions and composite factors should
be further considered in future research on the relationship between vegetation phenology
and precipitation.
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4.3. Impacts, Limitations, and Future Work

This study showed that vegetation phenology was significantly correlated with presea-
son temperature and preseason precipitation. Generally, there was a negative correlation
between temperature and vegetation SOS, and a positive correlation between tempera-
ture and vegetation EOS in the temperate regions of China. The effect of precipitation
on vegetation phenology was much more complicated, with various patterns of influence
depending on the region and vegetation type. Overall, this study comprehensively ex-
plored the relationship between SOS/EOS of different vegetation types and preseason
temperature/precipitation, therefore contributing to the study of the complex influencing
mechanisms between vegetation phenology and climate.

Our study focused on the different response patterns between various vegetation
types. However, many studies have shown that phenology of the same vegetation type
may respond differently to climatic factors depending on other factors such as geographical
conditions [21]. This topic will be considered in future work. In addition, owing to
limitations in spatial resolution of used datasets, we only limited our study to five natural
vegetation types and three crops. With the help of higher-spatial-resolution data, it will
be necessary in future to explore the phenology variations of more vegetation types in
response to preseason temperature and precipitation.

5. Conclusions

In this study, we investigated long-term phenological trends in the mid-latitude
region of China from 1982 to 2014. In particular, we analyzed the SOS/EOS response
patterns of various vegetation types to preseason temperature and preseason precipitation.
The preseason length of optimal influence was also examined. Moreover, the complex
interaction mechanisms between vegetation phenology and climate were explored.

The results show that the SOS of vegetation in most regions within the study area had
an advanced trend, whereas the EOS had a delayed trend from 1982 to 2014. The phenology
of various vegetation types had the same response pattern to preseason temperature, which
exerted a strong controlling effect. In contrast, the phenology of various vegetation types
had different response patterns to preseason precipitation, which showed a stronger effect
on EOS than on SOS in many areas. The impact of precipitation on vegetation types was
relatively more complex.

In summary, this article presents a comprehensive analysis of SOS/EOS response
patterns of various vegetation types to preseason temperature and preseason precipitation
in the mid-latitude region of China from 1982 to 2014. We have discussed the influence of
water and heat conditions on vegetation phenology and further revealed the relationship
between vegetation phenology and climate factors.
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