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LONG-TIME ASYMPTOTICS FOR THE
DEGASPERIS-PROCESI EQUATION ON THE
HALF-LINE

by Anne BOUTET DE MONVEL,
Jonatan LENELLS & Dmitry SHEPELSKY (*)

Dedicated to the memory of Louis Boutet de Monvel

ABSTRACT. We analyze the long-time asymptotics for the Degasperis—
Procesi equation on the half-line. By applying nonlinear steepest descent tech-
niques to an associated 3 X 3-matrix valued Riemann—Hilbert problem, we find an
explicit formula for the leading order asymptotics of the solution in the similarity
region in terms of the initial and boundary values.

RESUME. — Nous étudions le comportement asymptotique en temps grand de
I’équation de Degasperis—Procesi sur la demi-droite. L’application de techniques
de descente de plus grande pente non linéaire & un probléeme de Riemann—Hilbert
matriciel 3 X 3 associé nous permet d’obtenir une formule explicite, en termes des
données initiale et au bord, pour le terme dominant de I’asymptotique de la solution
dans la région de similarité.

1. Introduction

The nonlinear steepest descent method introduced in [12] provides a
powerful technique for determining asymptotics of solutions of nonlinear
integrable PDEs. By appropriately deforming the contour of the associated
Riemann-Hilbert (RH) problem, the long-time behavior of the solution can
be determined by adding up the contributions from the individual critical
points. In this way the asymptotics associated with the modified KdV [12],
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the nonlinear Schrédinger [10], and several other integrable equations posed
on the real line have been rigorously established, see [2, 11, 15]. More
recently, a number of works treating periodic problems [16] as well as initial-
boundary value problems [1, 3] have also appeared.

In this paper we use the method of nonlinear steepest descent to analyze
long-time asymptotics for the Degasperis—Procesi (DP) equation

(1.1) Up — Upgpe + 3KUL + dUly — UpUpy — Ulgery = 0, k>0,
posed in the domain
(1.2) Q={(z,t) ER*|0< 2z <00, 0< t <o00}.

Our main result (see Theorem 5.1 below) gives an explicit formula for the
leading order asymptotics of u(z,t) in the similarity region 0 < ¥ < 3 in
terms of the initial and boundary values. In this region it has the form of
slowly decaying oscillations, whereas in the complementary region ¥ > 3 it
is dominated by solitons, if any, see [2, 3, 4].

Equation (1.1) was discovered in [8] using methods of asymptotic inte-
grability. A Lax pair and a bi-Hamiltonian structure were derived in [7].
An interesting aspect of (1.1) is the existence of peaked solutions [7] as
well as weak solutions with a very low degree of regularity [5]. The latter
class includes a class of discontinuous generalizations of the peakons called
shock-peakons [21]. The asymptotic behavior of the solution of (1.1) on the
line was determined in [4]. In [17] the solution of the initial-boundary value
problem of (1.1) on the half-line was expressed in terms of the solution of
a 3 x 3-matrix RH problem.

Compared with most other applications of the nonlinear steepest descent
approach, the asymptotic analysis of (1.1) presents a number of additional
difficulties:

(a) The RH problem associated with (1.1) involves 3 x 3 matrices in-
stead of 2 x 2 matrices. This implies that the standard uniqueness
results for L2-RH problems (such as Theorem 7.18 of [9]) do not
apply. However, it turns out that in an appropriate function space,
which we denote by L3, uniqueness holds also for 3x 3-matrix valued
RH problems, see [20].

(b) The t-part of the Lax pair associated with (1.1) has singularities
at the points K; = e =%, j =1,...,6. In [17] this difficulty
was overcome by utilizing two different sets of eigenfunctions which
were solutions of two different Lax pairs (a similar idea was used
already in [4] to recover u(z,t) for the problem on the line). Here we
adopt a similar approach; however, in order to obtain a RH problem
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LONG-TIME ASYMPTOTICS FOR THE DP EQUATION 173

suitable for the asymptotic analysis of (1.1), we use a modification
of the RH problem in [17]. The modified problem has the advantage
that, after the appropriate contour deformations prompted by the
nonlinear steepest descent method have been performed, the RH
problem involves only one set of eigenfunctions near each of the
twelve critical points. This leads to a jump matrix near each critical
point of an appropriate form.

(¢c) The Lax pair associated with (1.1) has singularities at the sixth
roots of unity s; = e%fl), j=1,...,6. In [4, 17] this difficulty
was overcome by considering a regular RH problem for an associated
row vector. Here, rather than trying to develop a nonlinear steep-
est descent approach for row vector RH problems, we carry out
the steepest descent analysis using a regular 3 x 3-matrix valued
solution which, in general, is different from the original solution.
However, by uniqueness for the row vector RH problem, the row
vectors associated with these two solutions coincide.

(d) On the half-line, the jump contour for the RH problem associ-
ated with (1.1) involves nontransversal intersection points, see Fig-
ure 2.1. This implies that the standard theory of LP-RH problems
does not apply. We circumvent this difficulty by employing the the-
ory of LP-RH problems developed in [20] for general Carleson jump
contours.

Our analysis determines the asymptotic behavior of u(z, t) provided that
all boundary values {97u(0,¢)}2 are known. However, for a well-posed prob-
lem, only a subset of the initial and boundary values can be independently
prescribed. If all boundary values are not known, our asymptotic formula
(see Theorem 5.1) still provides some information on the solution, but since
the function r(k) is unknown, the precise form of the asymptotics remains
undetermined. In general, the computation of the unknown boundary val-
ues (i.e. the construction of the generalized Dirichlet-to-Neumann map)
involves the solution of a nonlinear Volterra integral equation. We do not
consider the construction of the Dirichlet-to-Neumann map in this paper.
We also do not consider the existence of so-called linearizable boundary con-
ditions for which the unknown boundary values can be eliminated thanks
to additional symmetries.

In Section 2, we give a short review of the RH approach for (1.1) on the
half-line. In Section 3, we formulate a RH problem suitable for determining
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the long-time asymptotics. In Section 4, we prove a nonlinear steepest de-
scent theorem appropriate for analyzing the asymptotics in the similarity
region. In Section 5, we prove our main theorem.

2. Preliminaries

We consider initial-boundary value problems for (1.1) for which the initial
and boundary values

(2.1a)  up(z) = u(z,0), x>0,
(21b) gO(t) = U(O, t)v g1 (t) = uw(ov t)? gQ(t) = uxx(ov t)? t=>0,

satisfy the three conditions

(2.2a) uo () — Uozg(x) + £ >0, x>0,
(22b) go(t) - gz(t) + K >0, t>0,
(2.2c) go(t) <0, t>0.

The assumptions in (2.2) imply the following positivity condition which is
needed for the spectral analysis:

(2.3) w(w,t) — Upy (2, ) + £ > 0, (z,t) € Q.
In view of (2.3), we may define ¢(x,t) by
(2.4) gz, t) = (u(z, t) — upa (2, £) + 5) %, (2,) € Q.

We next give a short review of the RH approach for (1.1) on the half-line;
see [17] for further details. We suppose that {g;}2 belong to the Schwartz
class S(R;) and that there exists a unique smooth solution u(x,t) of (1.1)
in Q such that (2.1) and (2.2) are satisfied and u(-,t) € S(Ry) for each
t > 0. For simplicity, we henceforth assume that x = 1.

2.1. Lax pairs

Equation (1.1) admits the Lax pair [4, 6]

{1/1m(m,t, k) = Lz, t, k)(z, t, k),

(2.5)
Ye(x,t, k) = Z(x,t, k)Y(x,t, k),

ANNALES DE L’INSTITUT FOURIER
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where k € C = CU {o0} is the spectral parameter, ¥ (z,t, k) is a 3 x 3-
matrix valued eigenfunction, the 3 x 3-matrix valued functions L and Z are
defined by

0 10 Uy — 2 —u 3
Lz, t,k)=[ 0 0 1|, Z(z,tk) = u+1 35 —u ,
A 100 Uy — Mug® 1 —ugp + g%

and A = A\(k) is defined by

1 1
A= — (K + >
3\/3( k3
. Define {I;}? and {z;}$ by

(2.6) 1, (k) = — <wﬂ’k+w1,), zj(k)—\/§<(°"jk)2+(°"jk)2>, keC.

27i

Let w=1¢€73

V3 ik k3 4+ k=3
Let
1 1 1
(2.7) P(k) = | L(k) (k) (k) |, keC,

t

and define {V;(z,t, k), V;(z,t,k)}? by
0 0 0
Vl = P_1 0 0 0 Pa
M#—1) 0 0
Uy —U 0
Vo= P! u —u | P,

L
- q
Vi=P'l0 0 )P,
1 _ _4x
O q q q
_Uqe
) p 0 0 21 0 01
Vo=P! "71—1 0 0 |+ 3 00 0]|P
Z—g L_14+ug % 0 0 O

Let £ = diag(l1,1ls,l3) and Z = diag(21, 22, 23). The eigenfunctions ¥ and
U introduced by

(2.8) U, t, k) = P(k)U(z, b, k)etBrr2HE
(2.80) Wzt k) = Dlx, ) P(k) T (x, 1, k)EPWEO+200

TOME 69 (2019), FASCICULE 1
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where
(z,t)
y(z,t) = / q(z’ ") (da’ — u(z', ¢')dt"),
(0,0)
2.9 _1
(2.9) o5 00
D(.’E,t) = O 1 0 )
0 0 gz

satisfy the Lax pair equations

U, —[£, V] =01,
(2.10a)
U, — [2,7] =1L,

and
U, —[qL, 0] = W7,
(2.10b) Vo —loL, W] =W1¥,
\Ilt - [Z - Uqﬁ,\ll} = ‘/Q\I/a
respectively.

2.2. Analytic eigenfunctions

Let ;, j = 1,2, 3, denote contours in the (x,t)-plane connecting (x;,t;)
with (z,t), where (z1,t1) = (0,00), (z2,t2) = (0,0), and (x3,t3) = (00,1).
The contours can be chosen to consist of straight line segments parallel
to the z- or t-axis. For a diagonal matrix D, let D denote the operator
which acts on a matrix A by DA = [D, 4], i.e. ePA = ePAe=D. We
define solutions {W,, (z,t,k)}1* and {V,,(x,t, k)}1® of the Lax pairs (2.10a)
and (2.10b) respectively, by the solutions of the integral equations

(211a)  (n)ij(a, b, k) = 65 + / (L0 20w, (o k)

Vij Y

(2.11D) (@n)ij(x,t,k)=6¢j+/ (eﬁ(k)y(x,t)+2(k)th(x/,t/,k)) ’

vy ij

where k € Dy, i,j =1,2,3, n =1,...,18, and the contours ~;; are given
by
v, Reli(k) <Relj(k), Rez(k)> Rez;(k),
(2.12) 75 = {72, Reli(k) <Relj(k), Rezi(k) < Rez;(k),
vs3, Reli(k) = Rel;(k),
for k € D,
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Figure 2.1. The sets D,,,n =1,...,18, which decompose the complex
k-plane.

the closed one-forms W, (z,t, k) and W, (z,t, k) are defined by
W, = e L2 2t (Vida + Vadt)U,,, Wy = e 224 (Vida + Vadt) T,

and the open sets {D,, }18 are displayed in Figure 2.1. Precise definitions
of all the sets D,, can be found in [17]; here we only give the definitions of
the D,, relevant near the positive real axis and near Kj:

D; ={k e C|Rel;, < Rely < Rels and Rez; < Rez, < Rezs},
Dg ={k € @|Relg < Rely < Rels and Rezy < Rez; < Rezs},
D;={ke @|Rell < Rely < Rels and Re 23 < Rez; < Rezs},
Ds ={k € @|Rell < Rels < Relz and Rez; < Rezz < Reza},
Dig = {k € C|Rely < Rel; < Rels and Rez; < Rezy < Rezs).

Let K; = T %, j=1,...,6, denote the points where A = 0 and let
;= e%, j=1,...,6, denote the sixth roots of unity, see Figure 2.2.
Away from the sets {oo, 0}U{5; }$U{k;} and {5¢;, K;}$U{k;}, respectively,
v, and \Tln are bounded and analytic functions of & € D,, with continuous
extensions to D,,. Here {k;} denotes a possibly empty set of singularities

at which the Fredholm determinant of integral equations (2.11) vanishes;

TOME 69 (2019), FASCICULE 1
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-5 -1.0 -0.5 0.0 0.5 1.0 L5

Figure 2.2. The points K; = e%ij_%, j=1,...,6, where A = 0, and
wi(j—1)

the points »; =e~ 5, j=1,...,6, where P~'(k) has poles.

for simplicity, we henceforth assume that the set {k;} is empty (soliton-
less case). For those n for which the indicated limiting points lie on the
boundary of the corresponding D,,,

U, (z,t,k)=1+0(k—-K;) ask—K;, k€D, j=1,...,6,
U, (z,t, k) =1+ O(1/k) as k — oo, k € D,,,
U, (x,t, k) =1+ 0(k) ask —0, k€ D,

where I denotes the identity matrix.
We define spectral functions {S,,(k)}1® and {S,,(k)}1® by

(2.13) S, (k) =9,(0,0,k), S, (k) = ¥,(0,0,k), ke D,.

2.3. Symmetries

Define sectionally analytic functions S, (k) and S, (k) for k € C by setting
S.(k) = Sn(k) and S, (k) = S,,(k) for k € D,,. If f denotes one of the 3 x 3-
matrix valued functions £, Z, M, S,, or S, then f obeys the symmetries

ANNALES DE L’INSTITUT FOURIER
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(2.14a) f(k) = Af(wk)A™, keC,
(2.14b) f(k) = Bf(1/k)B, kecC,
(2.14c) F(k) = Bf(%)B, kec,
where A, B are defined by
001 010
(2.15) A=|1 0 0], B=[1 0 0
010 001

3. A Riemann—Hilbert problem

We use the eigenfunctions ¥,, and ¥,, to define a RH problem suitable
for analyzing the long-time asymptotics.

Choose a small radius » > 0 and let B; denote the open disk of radius r
centered at K, j =1,...,6. Let B = US_, B; and define open sets {E, }3°
by, see Figures 2.3 and 2.4:

(3.1) E,=D,\ B, E,i18 =D, NB, n=1,...,18.

The eigenfunctions {¥, }1® are well-behaved near k = co and k = 0 while
the eigenfunctions {W,,}1{® are well-behaved near the K;’s. We formulate a

TOME 69 (2019), FASCICULE 1
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Figure 2.4. The sets E,, for k near K;.

RH problem relative to the contour shown in Figure 2.3 (see also Figure 2.4)
by using U, and U,, for k in E,, and FE, 118, respectively.

Let y = y(z,t) be the function defined in (2.9). The map G : (x,t) —
(y,t) is a bijection from Q = {z > 0,t > 0} onto G(Q) C R2. Thus,
for each (y,t) € G(2), we may define a sectionally meromorphic function
M(y,t, k) by

(3.2) M(y,t,k)

B U, (x,t, k), ke E,,
P(k)ilp(xvt)ilp(k)\:[jn(xvtv k)e(w7y+u0)£(k)’ ke En+187

where n = 1,...,18 and the constant vy € R is defined by

Tr—r00

vg= lim (y —x) = /Ooo(q(x,O) —1)dez.
Let M,, denote the restriction of M to E,. The definition (3.2) and the
relations (2.8) imply that M satisfies the jump condition
(3.3) M, = My Jom o, ke E,NE,,
where
T (Y5t k) = V212 (81 (k) S, (K)).

(34) < Jnmprs(y, b, k) = eVEHEC, (k),
Imy18.nt18(y, 1, k) = eylHiZe—wol (St (k) Sn(k)),

m

n,m=1,...,18.

ANNALES DE L’INSTITUT FOURIER
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The functions {C,,(k)}1® are defined as follows. By (2.8) the functions

¥y, = DPU,e¥“ T2 = DPM,, eV 12

wn+18 — P\I/nex£+t2 — DPMn+186yE+t27VOE

solve the same differential equations (2.5), hence ¥, 1158 = 1, C, (k) with
C., (k) independent of (z,t). Thus, M, 1z = M,e?*t*2C,, (k) with C,, (k) =
Cy(k)eror, and C,, (k) = ¢y Ybpy 18€”0F satisfies

(3.5) Cn(k) = e V20, (2,t, k)" P(k)~?
X D(x,t) " P(k)W,, (x,t, k)e"FTtE oL,

PROPOSITION 3.1. — Let E = U35 | E,, and let (y,t) € G(Q2). Except

n

for possible singularities at the points {5;}%, M(y,t, k) is a bounded and
analytic function of k € E. Moreover,

M(z,t, k) =1+ O(1/k) uniformly as k — oo, k € C.
Proof. — Since P(k)~'D(z,t)~'P(k) is an analytic function of k € C

except for poles at the points s, the result follows immediately from the
properties of the functions ¥,, and W¥,,. O

The singularity structure of M,, at the s¢;’s implies that the function N
defined by

(3'6) N(y7 t? k) = (1’ 17 1)M(y’ t? k)? k € E?

is nonsingular at the s;’s, see [4, 17]. Together with Proposition 3.1 and
Lemma A.3, this implies that, for each (y,t) € G(Q),

N(y,t,-) € (1,1,1) + E*(E) N E®(E),

where the function spaces E3(E) and E*(FE) are defined in Appendix A.
Thus the following result holds.

TOME 69 (2019), FASCICULE 1
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PROPOSITION 3.2. — For each (y,t) € G(Q), the function N(y,t,-) is a
row vector solution of the L3-RH problem

am [Ny« Em)
’ No(y,t, k) = Ny (y, 8, k) n(y, t, k) for a.e. k € E,NE,,

where n,m =1,...,36.

Remark 3.3. — Although the RH problem formulated in (3.7) differs
from the one used in [17], both problems rely on the same idea of using the
U,,’s near the K;’s and the W,,’s near {0,00}. The RH problem formulated
in (3.7) is better adapted for our present purposes because it uses only one
set of eigenfunctions, namely the WU, ’s, near the three lines R, wR, and
Ww2R.

3.1. Jump matrix

Define functions {r(k), h(k),7#(k), ﬁ(k)7r1(k)7f1(k)} by
r(k) = (Sis(k) 7' S7(k))a1, k€ Br N Eus,
h(k) = (Se(k)"'Sis(k))21, k€ Eis,
. F8) = (Suk) " Sra)er, k€ Fro B
h(k) = (Sa(k) " S13(k))21, K € Ens,
ri(k) = (oK) 51 (K)m, K ER,,
P (k) = (Sa(k) ' S3(k))21, keER_.

The domains of definition of the functions h(k), h(k), r1(k), and 7 (k)
in (3.8) can be understood as follows. For j = 1,...,6, the function S; (k)
is defined in terms of the initial data alone. This means that S;(k) has
an analytic continuation to the sector argk € ((j — 1)w/3,j7/3) for each
j=1,...,6. It follows that h(k) and h(k) are well-defined for k € Eyg and
k € E\3, respectively. Similarly, r (k) and 7 (k) are well-defined for k € R
and k € R_, respectively.
From (2.14b) and (2.14c), we infer the symmetries

r(k) =r(k),  mET) =rk), Rk = h(k).
|r(E)| for k € E; N Eyg and |r(k~Y)| = |rq (k)| for

~

71, and h satisfy analogous symmetries.

In particular, |r(k—1)| =
k € R,. The functions 7,

ANNALES DE L’INSTITUT FOURIER
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The approach of Section 5 of [17] shows that with the contour oriented
as in Figure 2.3 the jump matrix for the RH problem (3.7) is given for k

near R by

1 —ri(k)e=t® 0
Jo1 = | ri(k)e'® 1—|7"1( )20
0 1
1 —r(k)e=t® 0
Jisg = | r(k)et® 1-— |r
0
1 h(k)e™*® 0
ho=lo 1 o,
0 0 1
1 0 0
Joas = | h(k)e!® 1 0f,
0 0 1
1 —71(k)e™*® 0
Jas = | (ke 1—|7(k)> O
0 0 1
1 —7(k)e”™® 0
Jiza2 = [ #(k)e!® 1—|#(K)* 0
0 0 1
1 hk)e® 0
J312=10 1 0],
0 0 1
1 0 0
Jiiz= | h(k)et® 1 0],
0 0 1

where @ := ®((, k) with { = y/t and

(3.10)

(¢, k) =

)

kEElﬂEG,

ke E70E18,

kGElﬂE%

ke E@ﬁElg,

k€E30E4,

k € E1oN Ey3,

ke EgﬂElg,

ke E4ﬁE'13,

(la(k) = 11 (R))C + (22(F) — 21 (k).

The matrices Ji 2, J56 and Js o, Ju5 are not listed in (3.9) because they
can be recovered by symmetries from J4 3 and Jg 1, respectively.

TOME 69 (2019),
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Proceeding as in Section 5 of [17] we also obtain the identities
ri(k) =r(k) + h(k), k€ E7n Eis,
F1(k) = #(k) + h(k), k€ Er1aN Exg.

The first of these identities ensures that appropriate cyclic products of the
relevant jump matrices equal the identity matrix at the intersection points
where the sets F1, Fg, E7, F1g meet. Similarly, the second identity ensures
that appropriate cyclic products of the jump matrices equal the identity
matrix where the sets Fs3, 4, F12, F13 meet.

In a similar way, we find that the jump matrix J for k£ near K; is given
by (see Figure 2.4)

1 fi(k) 0
Jigas =e¥cHZ Lo 1 o], k € Eyg N Esys,
@311 J= 00
1 0 0
J19,26 = eVEHE g 1 fa(k) | k € Ei9 N Eoag,
0 0 1

where the functions f; and fo are bounded and continuous on the given
subcontours.

We finally need the form of the jump matrix J for k£ on the circles where
the E,,’s and E,,+15’s meet.

LEMMA 3.4. — With the contour oriented as in Figure 2.3, we have
[t a(k) g2(R)
Jiio=e 210 1 gk)|, ke€EiNEpy,
0 0 1
X R 1 0 g4(1€)
(312) J =< Jros = eYEHtZ g5(]€) , ke E7 N EQ{,,
0 0 1
1 ge(k) gr(k)
Js.06 = eVETEE | 1 0 , k € Eg N Ea,
0 0 1

where the functions {g;(k)} are bounded and continuous on the given
subcontours.

ANNALES DE L’INSTITUT FOURIER
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Proof. — In view of (3.4), it is enough to show that

1 % %
Cl(k‘) =10 1 s ke Dl,
0 0
1 0 =x
(3.13) Co(k)=10 1 x|, kebDs,
0 0 1
1 % %
Cg(k‘) =10 1 0}, ke Dg,
0 0 1

where * denotes an entry which is bounded and continuous except for
possible singularities at the points s;, Kj;, 0, and oo. For n = 1,7, 8, the
matrices (7")i; = v;; are given by (see (2.12))

Y3 Y2 V2 Y31 2 Y3 Y2 72
V=l v 2|, "=n 1w 2], F={rn B xn
Y3 Y3 V3 Y3 Y3 V3 Y3 Y3 V3

Hence evaluation of (3.5) as (y,t) — (00, 0) yields

-1
*

1 % % 1 *

Cp(k) = yl;rgo e ke ke [0 1« 0 1 x|e¥= 1
0 01 0 0 1 0 0

for k € D, and n = 1,7,8. Moreover, thanks to the assumed decay of
the Dirichlet and Neumann values as ¢ — oo, the functions \Tln and ¥,
are bounded as (y,t) — (0,00) for each k € D,,. Consequently, using that
Rezy < Rez; < Rezg in D7 and Rez; < Rez3 < Rezy in Dg, evaluation
of (3.5) as (y,t) — (0,00) yields (C7(k))12 = 0 for k € D7 and (Cs(k))23 =
0 for k € Dg. This proves (3.13). O

o =
— % %

4. A nonlinear steepest descent theorem

We prove a nonlinear steepest descent theorem suitable for determining
the asymptotics of (1.1) in the similarity region.

For r > 0, let X" = X7 U---U X]J denote the cross X = X; U---U Xy
defined in (B.1) restricted to the disk of radius r centered at the origin, i.e.
X" = Xn{|z| < r}. The spaces EP and L? are defined in Appendix A. Let
Z C R be a (possibly infinite) interval. Let p,e : Z — (0,00) be bounded
strictly positive functions. Let ko : Z — [1/2,1) be a function such that

TOME 69 (2019), FASCICULE 1



186  Anne BOUTET DE MONVEL, Jonatan LENELLS & Dmitry SHEPELSKY

Im &

AV Rek

Figure 4.1. The contour I'x and the open set V (shaded).

ko(¢) +€(¢) < 1 and €(¢) < ko(¢)/2 for each ¢ € Z. We henceforth drop
the ¢ dependence of these functions and write simply p, €, ko for p(¢), €({),
ko(C), respectively.

Before stating Theorem 4.3 we list the necessary assumptions.

AssuMPTIONS 4.1 (Contour Assumptions). — Assume I' = TI'({) is a
family of Carleson jump contours parametrized by ¢ € Z such that:

(T'1) For each ¢ € Z, T’ contains the small crosses ko + X¢ as a subset.
(T'2) For each ¢ € Z, T is invariant as a set under the maps

(4.1) ko wk, ke 1/k.

Moreover, the orientation of I' is such that if k traverses I' in the
positive direction, then wk and 1/k also traverse I' in the positive
direction.

(T'3) Let V denote the union of the two disks {|k & ko| < €} and the sets
obtained by letting the symmetries in (4.1) act repeatedly on these
disks, see Figure 4.1. Let [’ = TUAY and assume that the boundary
of each of the 12 components of V is oriented counterclockwise.
Then, after reversing the orientation on a subcontour if necessary,
I is a Carleson jump contour for each ¢ € T.
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(I'4) The contour remains a bounded distance away from the point Ky :=
e forall ( € I:

A

(4.2) érelg dist(K7,T") > 0.

Assume also that the Cauchy singular operator Sy defined by

(Sph)(z) = lim i/F M) dz/,

20 TSR\ (| -2y 2T 2
is uniformly™™) bounded on L2(T), i.e.

(4.3) sup [|Spll (1)) < 00
cez

We consider the following family of L3-RH problems parametrized by
the two parameters ( € Z and t > 0:

(4.4) m((t,) € T+ E3(C\T),
. my(C,t, k) =m_(¢,t,k)v(¢,t, k) forae keT,
where the jump matrix v is assumed to fulfill the following conditions.

ASSUMPTIONS 4.2 (Jump Assumptions). — Assume the jump matrix v
obeys the symmetries (2.14a) and (2.14b) and satisfies

(4.5)  w(Ct,) =v((t,-)—Te LY T)NLeT), CeZ, t>0.

Let 7 := tp?. Let I'x denote the union of the two small crosses ko + X©
and the sets obtained by letting the symmetries in (4.1) act repeatedly on
these crosses. Let T' =T \ T'x and suppose

(4.62)  [w(Ct, oy = Oer7™h), 700, (€T, pe{l,3,3},
(4.6b)  [w(C,t,)llpeqy =0(""), T =00, (€T,

uniformly with respect to ( € Z. Moreover, let C = diag(l,—1,1) and
suppose that the normalized jump matrices

w0t 2) = Co(¢ b ko — Z)C,
(4.7) - seXP, Cel,
(¢, t,2) = Cv(c;t, —ko + ;)c

(M For any fixed ¢ € T, Sp is bounded on L2(I) as a consequence of (I'3).
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have the form

1 00
Rl(C,t7z)Z*ZiV(C)etq%(,z) 1 0], Lext
0 0 1
1 —Ry(C,t,2)22(Qemt9(02) @
1 0|, ze X5,
(4.8a) wo(C,t,2) = 0 1
1 0 0
_R3(C7t7Z)Z—2iu(4)6t¢(C,z) 1 0], ZGXg,
0 01
1 Ry((t, 2)227 Qe te(G2)
,  zeX}f,
0 1
and
1 00
Ri(Ct,2)2 27092 1 o,  zeXP
0 0 1
1 —Ry(C,t,2)220( e t10(G2)
0|, ze X5,
(4.8b) (¢, t,2) = 0 1
1 0 0
CRy(Cot,2) 227 Oete6) 1 0|, e X8,
0 0 1
1 Ri(Ct,2) 2270196 g
1 o, zeXy,
0 1

where:

e The phase ¢((, z) is a smooth function of (,z) € Z x C such that

0¢ 9?%¢

(49) ¢(C7O) € ZR? $(<70) = Oa @(<70) = i7 C € Iv
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and
2
(4.10a) Re¢((,2) < f%, ze X{UXE, CeT,
2
(4.10Db) Req&(g,z)}%, ze XFUX], CeT,
iz? | 2|3
(4100) ¢(Caz) - (b(c;O) - 7 < CT? z € va C € I7

where C' > 0 is a constant.
e There exist smooth functions q,q : Z — C and constants (a, L) €
[£,1) x (0,00) such that

sup [¢(¢)] < 1, sup [G(¢)] < 1,
¢ ¢ez

€z
and
Lo tlzl?

|R1(C7taz)_q(C)|<L|; s ZeXf,

Lo tlzl?
(4.11a) [Ba(G:t.2) = r=iigm | < LJ3[ "5 z€ X3,

. (€ z |« tl=1?
|R3(C,t, 2) — 1_1‘1q(2-)|2| < L|;‘ ; 6, zZ € Xg,
|Ra(¢,t,2) — q(Q)] < L|2["e™5, ze X?,
|R1(C7taz)7(j(<)|<L|%a t‘z‘ y ZGX{),

v < t]z|2
(4 llb) |R2(<7taz)_ 1_(‘1(§§2)|2| gL’% “e s s ZEXQP,

. 5 q Lotz
Bs(6:t.2) = higm | < LIF|"e ™ € X3,
[Ra(C,t,2) — GO < LIZ| e, e XY,

for( € Z andt > 0.
e The functions v({) and U({) are defined by

(112)  v(Q) = —5-log(L—[a(Q)P),  #(Q) = 5 log(1 — |i(O))

THEOREM 4.3 (Nonlinear steepest descent). — If the contour I and the
Jjump matrix v({,t, k) satisfy Assumptions 4.1 and Assumptions 4.2, then
the L3>-RH problem (4.4) has a unique solution for all sufficiently large
T = tp? and this solution satisfies

(4.13) (1,1, 1)m(¢,t, K1) = (1,1,1)
4 gz Re (716 = Pofl Fof = Fofl Fof = Fif) + O(er ™ 5)
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for ( € T as T — oo, where the error term is uniform with respect to ( € Z,
the functions F; = F;({), j = 1,2,3, are defined by

1—kw
ﬂ@:u+%m3%mV
1—kiw
(4.14) F2(0) = (ifko)(lJOrkoKl)’
. o k2
.EK)ﬁ:%%?’

and the functions 8 = (¢, t) and 3 = 3(¢,t) are defined by

(4.15a) B¢, t) = V(Oei(%*argq(C)+argF(Z’V(C)))6*t¢(4’0)t*il/(€),
(4.15D) B(C’t): D(Oei(%*argt?(C)+argF(iﬁ(C)))e*t¢>(<70)t*if1(€)'

Proof. — Since detv = 1 and we are considering an L3-RH problem for
a 3 x 3-matrix valued function, uniqueness follows from Lemma A.1.
Let m™ be the solution of Theorem B.1 and let

D(C.1) = diag (e_t¢<2c,0>t_iu£<)7€t¢<§,0>twéc) ),
. (€.0) 50 (€.0) ()
D(C,t):diag(e*wgot* > 7€t¢§ot 2 ,1).

Define my (¢, ¢, k) in neighborhoods of k = ko and k = —kgo by

D¢ tym* (), = (k = ko) ) DG 71C, k= kol <

mO(Cat7k) = " v
D¢ty (), Eh+ o) ) DGO, [k -+ kol < e

and extend it to all of V in such a way that mg obeys the symmetries (2.14a)
and (2.14b).

Lemma A.4 implies that m satisfies the L3-RH problem (4.4) if and only
if the function (¢, t, k) defined by

k), otherwise,

T?L(C,t,k) = {Z(C’t’k)mO(Catyk)_l, ke V’

satisfies the L3-RH problem

{mqﬁ,)ef+E%@\)
t, k)0

(4.16) .
ma (¢t k) = (¢, t,k)0(¢,t, k) forae kel
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where the jump matrix 9 is given by

0— (C,t,k)v((,t,k)m0+(g,t,k)_l, ke Va
(¢t k) = < mo(¢,t, k)7L, ke oy,
U(Ca t, k)? otherwise.

By construction, & = ¢ — I satisfies the symmetries (2.14a) and (2.14b).
The proofs of the following five claims can be found in Appendix C.

CLAIM 4.4. — The function W = 0 — I satisfies
(4.17) B(¢,t,k) = O(r S e maWFhl™y 7 o0 C €T, k€ £ho + XF,
where the error term is uniform with respect to ((, k) in the given ranges.

CrLAaIM 4.5. — We have

(4.18a) 10 (Cts gy = Ole377 %), 700, (€L,
(4.18b) (¢, >||Loo<r> o(r %), T 00, (€T,

and, for any p € [1,00),

(4.19) 190Gt M pozhpsxey = O(P7™ 57 %), 700, (€T,
(4.20) [[mo(C,t k)™ = Il oqroty|=e) = OlerT™3), T oo, (€L

where the error terms are uniform with respect to ¢ € Z.

Let C denote the Cauchy operator associated with I':
5 f(s) 4

C —
(CH) =5~ s

The operator Cy : L3(I') + L(I') — LP(I) is defined by Cy(h) = C_(hw),
where C_ f denotes the nontangential boundary value of ¢ f from the right
side of .

ds, zeC\T.

CLAIM 4.6. — There exists a T > 0 such that I — éw(q,t,~) e B(L3(I))
is invertible for all ((,t) € Z x (0,00) with 7 > T.

In view of Claim 4.6, we may define the 3 x 3-matrix valued function
fi(¢,t, z) whenever 7 > T by

(4.21) =1+ (I—Cy) Col eI+ L3(T).
CLAIM 4.7. — The function i((,t, k) satisfies
(4.22) IA(C,t) = Illgsy = O(e577%), 700, CEL,

where the error term is uniform with respect to ¢ € I.
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CLAIM 4.8. — There exists a unique solution m € I + E3(C\T") of the
L3-RH problem (4.16) whenever 7 > T. This solution is given by

(4.23) (Gt k) =T+ Cofi=1+ = / (¢t $)w(C, t, s)i.
2wt Jp s—k

Using the above claims we can complete the proof of Theorem 4.3 as
follows.

Let C(¢) denote the union of the two circles |k — ko| = € and |k + ko| =€
oriented counterclockwise. Let C'(¢)~! denote the image of C(¢) under the
map k + k1. The symmetry properties of v imply that A (¢, t,wk)A™!
I+ E3(C\T) and (¢, t,k) both satisfy the L3-RH problem (4.16); by
uniqueness they are equal, i.e.,

m(C,t k) = Am(C, t,wk) AL, keC\T.

Using this symmetry in (4.23), we obtain

(4.24) m(¢,t, Ky) =m(C,t, Ky) 1+—ZA Fo(Ct)+Gr(C )] A

dk
+—/ (Gt R (Gt ) 3

where

_ (G, t, k) (¢, t, k)dk
Fn(Cat)_/C(C) k—w nKl 9

_ (¢, t, k) (G, t, k)dk
Gn(C7t)_/;(<)l b — w— nKl

By (B.3), we have, as 7 — oo with ¢ € Z,

mo(Go .0 =D O (0.~ YTk k) ) D0 'C

(4.25a) BC.1) |
- A 0CT, =kl = e
mol k) = b (50, R B
(4.25D)
=I+\f((+k0)+0(7—1), |k + ko| = ¢,
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where B((,t) and B(C,t) are defined by

0 _B(Cvt) 0
B((,t) = ie (5((&) 0) )

0 0

0 0

¢ 0

0 0

B(¢,t) =€ | B(¢,t)

with
B¢, 1) = ﬁx(q(o)e—w(c,o)t—w(o’ 5(C,t) — ﬁX((j(g))e_W((’O)t_w(C).

Using (4.20), (4.22), and (4.25) we find

_ A(C k) (mo (¢, ¢, k)~ — I)dk

/ (mO(Cvtvk)_l — I)dk
oo kmwTG

f [ GCRR DGt
Q)

k — w*”Kl

_ _/ B(¢,t) dk
T kol VTR — ko) k— w K

+/ B 1) dk
ktkol=c VT(k+ko) k—w Ky
+O0(er™ ) +O0(la =l sy Imat = Tl 372 (c(cy))

_ 2 B B(¢.1) e
(4.26) = _ﬁ(ko ey o +wnK1> +O0(er™ %)

uniformly with respect to ( € Z as 7 — o0.
In order to compute the contribution from G,, we note that (4.25) implies

mo(C,t, k)~ = Bmo(¢,t, k™)' B
_ {I = BREUE L O(rY), |kt — kol =,

BB((,t)B _ _
I+ 255, + 00, K 4 ko = .
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Hence, proceeding as in (4.26), we find

_ (¢t k) (mo(¢,t, k)~ — T)dk
Gn(C7t)—/C(C) 1 P

_ / (mo(C,t, k)~! — I)dk
c)-t k—w K,

+/ (S, t, k) = D)(mo(C,t, k)~ = Idk
el(oh

k— w‘”Kl
That is,
B((,1)B dk
Gn 1) = _/
1) k=1 —kol=e VT(K™! = ko) k — w™" K}y
+/ BB(¢,t)B dk
k=1 4ko|—e VT(E™! + ko) k —w™" Ky

+O(€T_1)+O(||ﬂ_ll|L3(f) m 1 _IHL?’/Z(C(C)*I))
omi BB((,t)B BB((,t)B ) _ita
4.27 = — + +0
( ) VT (ko(l —kow™K71)  ko(1 4 kow "K7) (er™ )
uniformly with respect to ¢ € Z. On the other hand, using (4.2),

/ (¢, k)b (¢, ¢, k)dk /(,&—I)wdk+ wdk
T k— K1 T k—Kl Fk_Kl

<Ol = T sy lol g g, + Cllbll oy

The L'-norm of @ is O(er~"') on I” by (4.6a) and is O(eT_HTQ) on {tko +
X<} by (4.19). Hence [|@]| 1) = O(er—"%%). Similarly,
. 2 _ 2 1 .a

], 4, = O(eirt +ebr4-%)
by (4.6a) and (4.19). Since [|2—I||jar) = O(e'/3775) by (4.22) and 1/3 <
a < 1, we infer that

(¢t k)w(¢, t, k)dk _lta

/F ya =O0(er™ 72 ),

uniformly with respect to ¢ € Z. Equations (4.24), (4.26), (4.27), and (4.28)
yield

(4.28)

T—o00, (€L,

(€, 1) B(.t)
(4.29) m(C,t, Ky) =1 — —= ZA (ko Ky kK,
BB(C,t)B BB((,t)B .

) n 7%
" ko(l— kow—" K1) k0(1+k0w—nK1)>A +O(er™ ).
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Recalling that K; = e%, a tedious but straightforward computation gives
us (4.13). This completes the proof of the theorem. O

5. Long-time asymptotics in the similarity sector

Theorem 5.1 gives explicit formulas in terms of r(k) for the leading order
asymptotics of the solution of the DP equation on the half-line in the
asymptotic region

0<c<é<3, (3—6)7%— o,
where £ = z/t.

THEOREM 5.1 (Long-time asymptotics in the similarity region). — Let
ug and {g;}3 be functions in the Schwartz class S(R;) that satisfy the
assumptions (2.2). Suppose there exists a unique solution u(x,t) of equa-

tion (1.1) with k = 1 in the half-line domain Q = {z > 0,t > 0} such
that

e v is a smooth function of (z,t) € Q,
e u satisfies the initial and boundary conditions (2.1),
o u(-,t) € S(Ry) for each t > 0.

Let q(z,t) = (u(z,t) — g (x,t)+1)3. Define U, (x,t, k) for (x,t) in the set
{>20,t=0}U{z=0,t >0}

by the linear integral equations (2.11b). Define r(k) for k € (¥3=1, ¥/5+1)
by

r(k) = (F15(0,0, k)1 (0,0,k))ar e FF ) Jo (ale-0 =Dz
Suppose the set {k;} defined in Section 2 is empty and that

sup Ir(k)| < 1.
Mool oL

Then, for any « € [%, 1) and 0 < ¢ < 3, the following asymptotic formulas
are valid:

b1 (€)

(5.1) gz, t) =1+ i oS (b2()t — v(€) log(t) + bs(€))

+O(B=¢) Tt E), (3-8t — o0, c<E<3,
(5.2) u(z,t) = L@) cos (b2(§)t —v(&)logt+ b3(§))
’ (1+4k3(&) V1

1430 _ 14a
=)

+O(B-¢ Tt . (3-8)%t—o00, c<E<3,
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where the error terms are uniform with respect to £ in the given ranges
and the functions {b;(£)}3, v(€), and ko(§) are defined by

() — LR (3 + 4k3(€)) (1 + 4k3(©) (€)

! 1+ k2(€) 3ko(€) — 4k3(€) ’
B 48k3(§)

ba(§) = 7(14_4]{:2(0)2»

(4k3 () +1)*(4k5 (€) + 3))
£))

b3(§) = 7 — x0(&) +¥(¢) log ( 576k3(¢)(3 — 4k2(

+ arg T(iv/(€)) — arg r(ko(€)) — arctan (\/31“”0)

6
3/;0(5) kol(f) _ 1+ st
20 [ o1 o)) s

23+ yHETD
8¢ ’

V() = —5- log(1 ~ Ir(o(@)),  ol€) = ¢

ko(€) = —ko(€) + /1 + K3 (&),

_ 3 [P 1—|r(s)?
(5.3) xo(§) = 27 oo log | — 5 |r(k0(€)|2)

1
(o€ = U +5) + (1) KO +1)
R — @12 + 1) 4 50 |

5.1. Proof of Theorem 5.1

The basic idea of the proof consists of deforming the contour of the RH
problem (3.7) so that the jump matrix is exponentially close to the identity
everywhere except near a certain set of critical points. Near these critical
points the problem is solved locally and the asymptotic expansion of the
solution is extracted from the local solution.

Suppose ¢ = y/t € (0,3). In order to find the critical points, we note
that, for fixed ¢, the function ®(¢, k) defined in (3.10) can be written as

(¢, k) = (¢, k(k)) where

=z 7 6ik - 11
B(CR) = 2k - k(k)—2<k—k).
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The equation 9;®(¢, k) = 0 has two real solutions +kg, where ko = ko()
is defined by

~ —2¢ -3+ v24¢+9
ko = .
8¢
Consequently, there are four real points at which 0®/0k = 0; these are
given by +ko, +kgy ', where kg = ko(¢) is defined by

koz—]%o+\/1+]%(2).

It follows that for ¢ € (0,3) the RH problem (3.7) has twelve critical
points associated with it (the four points %k, kg 1 as well as the eight
points obtained by multiplying these four points by w and w?). Note that
0<ky< 1/2 and % < kg < 1 for 0 < ¢ < 3. We henceforth assume
that ¢ € Z, where Z = [¢,3) and ¢ > 0 is a small constant. The signature
table of Re ® for { in this range is displayed in Figure 5.1. The form of the
signature table can be deduced from the explicit formula

¢ +P(/<?17k2)>
K2+ k5 QR ka) )’

Re ®((, k1 + iko) = ko (k7 + k3 + 1) (

where
P(ky, ko) =3 (ki + k7 (2k3 —3) + k3 + k3 + 1),
Q(k1, ko) = k¥ + kS (4k3 — 2) + ki (6k5 — 2k3 + 3)

2k (2K 4 kE —5kE — 1) + (K + k3 +1)°.

The equation P = 0 implies Re(zy — 21) = 0 and defines the curves (D; N
D7) U (DgN Dyg) and (D3 N Dy2)U(DyN Dy3). The remainder of the proof
proceeds through seven steps.

Step 1: Deform contour. — We begin by deforming the contour so that it
passes through the twelve critical points, see Figures 5.2 and 5.3. For k near
ko and kg ! the contour deformation is achieved by defining M=M Ji. 71
for k€ FiNE; and M = MJG_’ll8 for k € Fs N E1g, where the sets {F),} are
as in Figure 5.3. We define M analogously near the other critical points
and set M = M otherwise.

Let T' denote the contour displayed in Figure 5.3. The matrix Js 5 in-

volves the factor h(k)e!®, which is bounded and analytic in Fs N Eig.
7N, —tD

Similarly, Ji7 involves the factor h(k)e™*®, which is bounded and an-
alytic in Fy N E;. Thus, except for possible singularities at the points

{5}$, M(y,t,k) is a bounded and analytic function of k € C\ T". Using

TOME 69 (2019), FASCICULE 1



198  Anne BOUTET DE MONVEL, Jonatan LENELLS & Dmitry SHEPELSKY

Ky

Figure 5.1. The regions in the complex k-plane where Re ®(¢, k) < 0
(shaded) and Re ®((, k) > 0 (white). The contour separating the sets
FE,, is dashed.

Figure 5.2. The jump contour I’ for k near R together with the regions
where Re ® < 0 (shaded) and Re ® > 0 (white).
Lemma A.4, we conclude that N = (1,1, I)M satisfies the L3-RH problem

(54) N(yat,‘)6(1a171)+E3(C\A)a
. Ny, t,k) = N_(y,t,k)J(y,t, k) forae. kel,

where the expression for J = jm’n for k € F,, N F,, coincides with the
expression for J on E,, N E,,, see equations (3.9), (3.11), and (3.12).
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F

Fs

Figure 5.3. The jump contour I for M.

Step 2: Conjugate. — On the circles where the E,,’s and E,,;13’s meet,
the jump matrix J (y,t, k) has exponential decay as t — oo. Indeed, the
circles where the F,’s and E,,t1s’s meet are the small circles centered at
K;, j =1,...,6, see Figure 2.3. By symmetry, it is enough to consider
the small circle centered at Kj. On this circle, the jump matrix is given
by the three formulas (3.12) in Lemma 3.4, see Figure 2.4. The (12), (13),
and (23) entries of the matrices in (3.12) involve the exponentials e ~*®(C¢:F)|
e!®(Cw’k) and e~ t®(Cwk) pegpectively; the decay now follows from (3.12)
and the signature table of Re ®, see Figure 5.1.

In order to arrive at a jump matrix with the appropriate decay properties
also on the remaining part of the contour, we need to perform a triangular
factorization of J. Such a factorization can be achieved by conjugating the
RH problem as follows. Let

3(C, kK)o (¢, w?k) ™ 0 0
A(G k) = 0 0(C, k) ~Ho(C, wk) 0 ;
0 0 3(¢, w?k)d(C,whk) ™t
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where, for k € C\ R,

(5.5) 8(C, k) = exp {41m /__ko log(1 — [¥(s)[?) (S ! - 1>ds

k log(1 — |r(s)|2)<8 - }C)ds}.

1 1
0(C k) ==—== )
(5 5(C, k) O(CETY)
imply that A((, k) obeys the three symmetries in (2.14). The function &
satisfies

n 1
47

The identities

5 (& kYA = [r(k)[*), ke (ko k),
01 (¢ k) = S 6_(C, k)X = [F(k)?), k€ (—ky", —ko),
0_(¢, k), otherwise,

and
S(CE) =% +0(k™h), k— oo, ke€C,

where the constant ¢ € R is given by

1 —ko . ds 1 %o ds
Y= log(1 —[7(s)[*)— + — log(1 — [r(s)|*)—-
mJox s AT Ji, s

Moreover, the representation

(kg = k) (ko — k) # (ko + k) (kg "+ k1) %ex(g,k)
‘5“”“)‘<<ko—k)<kol—kl>> ((kol+k)(k0+kl)) ’

where
1 [k 1 — |7(s)[? 1 1
k) =g [ o < : - )as
47i . L—|F(=ko)?J\s—k s—1
1
1 [%o 1—|r(s)? 1 1
—_— 1 - d
Jr47m'/,€0 Og<1—|r(k‘0)|2 s—k s—1 *

shows that

5(<a : )a 5(<a : )71 € EOO(C \ R)
We conclude that
AC-),A(G, )T eI+ E3(C\T)nE>(C\T).
The function M defined by

M(y,t, k) = M(y,t,k)A(C, k)
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satisfies the jump condition My = M_.J on I with J = A~'JA,. Define
ra(k) by
k _
Tg(ki):#)_, k e E;N Eqs.
1—rk)rk)

We find from (3.9) that

bl_lbua ve RN
BBy, k€ F;N Fig,
5(Cawk)S(C.” k) 7T —
1 S h(k)e™"® 0 o
’ ! 0|, ke FiNFy,
0 0 )
1 0
- o —_
Wmh(k)etq) L0 ) ke F6ﬂF187
- 0 .
J=<_\ . ) )
l b ke F3N Fy,
B;l vl? kEFumﬁlg’
5(Caok)5(C.k) T Ty
1 S5 h(k)e ™™ 0 -
0 01, ke F3 N F12,
0 1
1 0 0
5(¢,k)? 3 B )
W 1 0 k. c F4 ) F137
0 0 1
where
1 00
— §(< k)2 )
b= Wﬁ(k})et‘b@ Mo1 o],
0 1
§(¢.w » -
1 AR ) (F)et2(Ch)
0 0 .
1 0 0
2
Bl - %Tz(/ﬂet@(ﬁk) 1 0 ,
0 1
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Figure 5.4. The open sets {U;}}? and the jump contour I for k near R.

2y ——=
1 _Wﬁ(k)e—@(cm 0

b, = 0 1 0]
0 0 1

and l;l, B’u, Bl, b, are given by analogous expressions but with r and h
replaced with 7 and h, respectively.

Step 3: Introduce analytic approximations. — The next step consists of
splitting each of the functions r;, j = 1,2, into an analytic part r;, and a
small remainder 7; ;..

Define open sets U; := U;(¢), j = 1,...,12, as in Figure 5.4 so that
Re‘b((,k) > 0 in U1 U U4 U U7 U U10 and Re‘b(c,k’) < 0 in U3 U Uﬁ @]
Ug U Uya. Write Us = Ui U Uy, where U = Us N {Rek > ky'} and
Usg =UsN{Rek < ko}.

LEMMA 5.2 (Analytic approximations of r1 (k) and ro(k)). — There ex-
ist decompositions

T (k‘)
’I“Q(k‘)

ri,a(y, t k) + 110 (y, 8, k), ke U, NUs,
TZ,a(y7ta k) + TQ,T(?/at» k)a ke U?) N U4a

where the functions {r; ,, rj,,.}?:l have the following properties:

(a) For each ¢ € T and each t > 0, 1 4(y, t, k) is continuous for k € Us
and analytic for k € Ug, while r2 4(y, t, k) is continuous for k € Us
and analytic for k € Us.
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(b) There exists a constant C' independent of (,t, k such that

71y, t, k) — r1(ko)| < Clk — koled! Re®CRI ke U,
Ir1a(y, t, k) —ri(kg )| < Clk — kg 1\64\Re<1>(<’f>\ keUg,
Ir1,a(y, t, k)| < 1+‘k‘e4'Re‘I’<< R, ke Us,
and

DUt k) — ro(ko)| < Clk — koletIRe®(CR) -
(5.6) {|7“2, (y,t, k) — ra(ko)| | ole , ke

|T2,a(y7ta k) - 7”2(ko_l)| g C|k - k()_1|ei|Re¢)(C7k)|a

for( € Z andt > 0.

(c) The L', L?, and L™ norms on U; N Uy of the function 1 ,(y,t,)
are O(t=3/?) as t — oo uniformly with respect to ¢ € T.

(d) The L', L?, and L> norms on Uz N Uy of the function ro,.(y,t,-)
are O(t=3/?) as t — oo uniformly with respect to ¢ € T.

(e) The following symmetries are valid:

(57) Tj,a(yatv k) = Tj,a(yvta ];371% Tj,r(y»tv k) = Tj,r(yatv ];71)7 ] = 17 2.

Proof. — Analytic approximations of this type were introduced in [12].
The proof here follows the presentation of [18, 19] (see in particular Lem-
ma 4.8 of [19]). We will derive the decomposition of 7; in Ug . This de-
composition can easily be extended to U; by means of the symmetry

r1(k) = r1(k~1). The decomposition of r3(k) can be derived in a simi-
lar way.
Our assumption that ug and {g;}3 belong to the Schwartz class S(R.)
implies that 71 (k) has the following properties:
e 71(k) is a smooth function of k € (0, 00).
e There are functions {p;(¢)}§ such that

() = o ij (k=K 'Y | +O((k =k )*™™)

as k € R approaches k! for n=0,1,2 (in fact, p; (¢) := r:(tj)(kal)/j!).
e There are constants {r; j}3 C C such that

0= () o koo
We let
10
a;(¢)
fO(Cvk):l - ka ’
J=
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¢

J |

Figure 5.5. Graph of the function k — ¢((, k) defined in (5.9).

where the coefficients {a;(¢)}{° are determined by the conditions

7
folG k) =D pi(Q)(k =k +O((k =k )®),  k—ky', C€T,
j=0

folC. k) = T+ G +O0), koo, CET.

These ten linear conditions determine the coefficients a;(¢) uniquely and
we have sup,¢7 [a;(¢)| < oo for each j. For each ¢ € Z, fo((, k) is a rational
function of k& € C with no poles in U, which coincides with r1(k) to
seventh order at k¢ and to second order at co. In other words, the function

f(¢, k) defined by f(C, k) = ri(k) — fo((, k) satisfies
o"f {0<<k—k01>8—">, b kg,

5.8
(55) Fhn O(k=3), k — oo,

(¢, k) = KeR, (€T, n=0,12,
where the error terms are uniform with respect to ( € Z.

The decomposition of r1(k) can now be derived as follows. Define the
new variable ¢ by

6k Pk ok
1+ 4k2’ 2
and let ¢ := ¢o(¢) denote the value of ¢ at kg, i.e., ¢o(¢) = #(¢, kg t). For
each ¢ € Z, the map k — ¢ = ¢(C, k) is a decreasing bijection [kg ', 00) —
(=00, ¢o], see Figure 5.5.

Hence we may define a function F((, ¢) by

1R, 6 <,
07 QS z ¢07

(5.9) ¢ =—i®(C, k) = 2k¢ —

)

(5.10) F(¢ ¢) = (€T, ¢cR.
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For each ¢ € Z, the function F((,-) is smooth on R\ {¢¢} and
O"F

1 9\" k3
(5.11) Don (€, 9) = (8¢/8k6k> {k:—ko_l (Cvk):|a CEZ, ¢ < go.
We have
¢ 9
(5.12) %(C,k)z—gW—O(k ), k— o0, (€.
On the other hand, a computation shows that
¢

55 (GR) =ik — kg ") + do(Qk — kg )* + O((k =k 1)), CeT,

as k — ky ', where the coefficients {d;(¢)}? are bounded for ¢ € Z and
satisfy dy(¢) < 0 for ¢ € (0,3), d1(3) = 0, and da(3) # 0. In particular,
there exist constants ¢, C' > 0 independent of k, ¢ such that

o9 9%
ok Ok?
for all k > ky ' and ¢ € Z. Equations (5.8), (5.11), (5.12), and (5.13) show
that F(¢,-) € CH(R) for each ¢ and that

(5.13) >clk—ky'[* and

(¢ k)

(g,k)‘ <C

o"F C
< PR ’ I, = 7]-3 2;
where C' > 0 is independent of (, ¢, n. Hence
5.14 sup C,- < 00, n=20,1,2.
(514 cez || 09" () L2(R)

In particular, F((,-) belongs to the Sobolev space H?(R) for each ¢ € Z.
We conclude that the Fourier transform F((, s) defined by

n _ 1 —i¢ps
(515) P(G.) = 5 [ PlC.o)e*do
satisfies
(5.16) mezéﬁ@mmm
and
(5.17) sup [|s2F (¢, 8)|| L2 (r) < 00
CeT

In view of (5.10) and (5.16), we find

Y el Y N k), k>k!
B L S
R

k3 0, E<kyt,
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Let us write

(G k) = faly, t. k) + fr(y, £, k),  CE€Z, t>0, k= ko,
where the functions f, and f, are defined by

k*k_l oo _
Falyst. k) = ©— o / F(C,5)e N ds, CeT, t>0, ke T,
-4
and
E—kot 73
flrth) =S50 [ RCoetNds (e 1> 0 k> k!

The function f,(y,t,-) is continuous in Ugr and analytic in Ugr , because
Re ® < 0 in Us. Furthermore,

k— k-l ‘
(5.18) |fa(y.t, k) < ||k£|||F(g Mo sup ¢ s Re®(Ck)
Clk = ko '] s imeac, .
STTEE @ (e, t>0, keUy,
and
k—ky'| (7%
(519 bk <] e '/ 2IF(Cs)
c -3
< T I F @) leee / s1ds
C 3 -1
<1—|-|k:\2 ) CETL, t>0, k=k

Hence the L', L?, and L™ norms of f,. on (ky ', 00) are O(t~3/2) uniformly
with respect to ¢ € Z. Letting

Tl,a(y7t7k) :fO(C7k)+fa(y7t7 k)v ke Uga

rl,r(y’tak) :f?”(y7t7k)7 k> ko_17
we find a decomposition of r for & > kg ! with the properties listed in the
statement of the lemma. |

Using the decompositions of r1(k) and ro(k) established in Lemma 5.2,
we can factorize the matrices {b,, b, By, B;} as follows:

bu = bu,abu,ra bl = bl,abl,ra Bu = Bu,aBu,ﬂ Bl = Bl,aBl,m

where {by.a,b1,0; Bu.a, Bl.a} and {by,, b, Bur, Bir} are defined by the
same formulas as {by,b;, By, B;} except that the functions {r;(k)}} are
replaced by {r;.(k)}? and {r; . (k)}3, respectively.
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In the same way, we introduce decompositions

fl(k) = ’Fl,a(y, tﬂ k) + 7X1,T(ya t7 k)v
To(k) = T2.a(y, t, k) + 72, (y, t, k),

which lead to the factorizations

bu = Bu,agu,ra lv)l = Bl,agl,ra

v

v
Bu = Bu,aBu,rv

~

ke U7ﬂ012,
ke UgﬂUlo,

By = B, 4By .

207

Step 4: Deform again. — Let the sets {U;} and {V;} be as in Figure 5.4
and define m(y, ¢, k) for k near R by

(5.20) m(y,t, k) = M(y, t,k)G(y, t,k),

where

G(y,t, k) =

bua(y, t, k)Y, kel
Blya(y,t,k)’l, k € Us,
Bua(y,t,k)"Y, keUy,
bra(y.t, k)™, ke Us,
bualy, t, k)", keUs,
Bia(y,t,k)"', ke Uy,
Bua(y,t,k)"Y, ke U,
Bl7a(y,t,k)_1, k € Uys.

We define m analogously near the lines wR and w?R and set m = M
elsewhere. Let I' denote the jump contour for m; the part of I' near R
is displayed in Figure 5.4. The function m satisfies the jump condition
my =m_v on I', where, for k near R,

(5.21a) v(y,t, k) =

TOME 69 (2019), FASCICULE 1

bu,av

Bl,a7
Bu,a7
bl,aa
bu,ajl,'ﬁ
biaJs 18,
by burs

—1
By LBy,

ke U NV,
ke U,NUs,
keU,NUs,
ke Usn Vs,
ke U NUs,,
ke UsNUs,
ke U NUs,
ke UsNUy,
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and, for k near R_|

Bl,av ke UBQUE%
[v?u’a, ke U? N ‘_/237
b, k€ Uiz N Vi,
Bua, ke UyonUi,
(5.21D) o(y, t k) =<4 Zlon
bu,ad3,12, k€ U;NUs,
biaJs13, k€U NUp2,
lv)l_;lv)u)r, ke U7ﬂ012,
BE}-BI,M k € Uy N Uy,
with
5(¢,wk)d(¢,w? 7 7. —
) 1 e llBee B () 4 (k) — h(k))e™® 0
bu,aJl,Y =10 1 01,
0 0 1
1 0 0
bl7aJ6,18 = _m(?ﬁ’a(k) — h(k))etq’ 1 0 s
0 0 1
5(¢,wk)d(¢,w? - 7. i1 —
o 1 el B (7 4 (k) — h(k))e™® 0
bu,aJ3,12 =10 1 0]
0 0 1
1 0 0
v ~ 6 , 2 o v
badins = | = s om (Fa(k) = h(k)e!® 10
0 0 1

The jump matrix v obeys the symmetries (2.14a) and (2.14b). Lemma 5.2
implies that

Gy, t,-) e I+ E3U)nE>U),

where U = U1 UUsUU,UUgUU,UUgUUgUU7 2. Tt follows from Lemma A.4
that N(y,t,k) is a row-vector solution of the L3-RH problem (5.4) if and
only if the function n(y,t, k) defined by

(5.22) n(y,t,k) = (1,1, D)m(y, t, k), keC\T
is a row-vector solution of the L3-RH problem

{n(y,t, ) e (1,1,1) + E3(C\T),

(5.23)
ny(y,t, k) =n_(y,t,k)v(y,t, k) for ae. keT.
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Step 5: Apply Theorem 4.3. — Let o € [1,1) and ¢ € (0,3). Let e = 15k
(then 0 < e < 1 and ko+e€ < 1). We claim that Theorem 4.3 can be applied
to the contour I' and jump matrix v with

14 ky? [48ko(3 — 4K3)
2 (4k3 +1)3 7
2 2iv(¢) eQx({,k,o),r k 2iv(¢)
q(¢) = ( — ) ( 02) (p(k?o1 - ko)ko> ,
kot 4+ ko 6(C, wko)d(¢, w?ko) \ €

) 2\ MO5(¢, —who)d(¢, —who)
1= <k01 +ko> e2x(C,=ko) H(~ko)

p 2ii(¢)
x ((ko‘l - ko)k:0> ,

€

(5.24) T=1[c,3), p=ey/—iF" (ko) (ho)? = e

v(Q) = —g-los(1 — (ko)) () = 5= los(1 — [F(~ko)]?),

(;b(CvZ) = ¢<C7k0 - 62) = (b<<7 _kO + €Z>
p p

48ik3 i 5
:_W+§Z + 0(z?), z — 0.

Indeed, by adding a number of arcs on which v = I, we can ensure that '
is a Carleson jump contour which satisfies (I'1)-(T'4).

LEMMA 5.3. — The 3 x 3-matrix valued function w = v—1I satisfies (4.5)
and (4.6).

Proof. — This follows from the decay properties of e**®. Indeed, for
k € TV near R, the decay is a consequence of the expressions for the jump
matrix v given in (5.21) and the estimates in Lemma 5.2. By symmetry,
it follows that w has decay also near wR and w?R. On the other hand, we
already noted that w has exponential decay on the circles U?zlaBj, where
B; denotes the disk centered at K; along which the E,’s and E,s’s
meet (see Step 2 above). Thus, it only remains to verify that w is small on
I'n (U?lej). We will show that w is small on Eq9 N Eas; the other parts
of I N (U?ZlBj) can be handled in a similar way.

In view of (3.11), we have

w UJ2 —
1 9 5’2‘?}5% k)fl(k)e te(C.k) ) )
v(y,t,k) =10 1 0], ke&EgnN ks,
0 0 1
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where the functions %,W and f; (k) are bounded on Ejg N Eys. In

particular,
lw(y, t, k)| < Ce tRe®(GR) CeZ, ke Eign Ess.

It is therefore enough to show that there exists a constant ¢; > 0 indepen-
dent of {, k such that

(5.25) Re®((, k) > ¢1 > 0, CET, k€ Egn Eys.
In order to prove (5.25), we note that the curve E19N Eas C Dy N Dy is

determined by the equation Re(z; — z2) = 0. Hence the definition (3.10) of
D(¢, k) yields

ko(k? + k3 +1)¢
Bk

RGCI)(C7]€) = Re(ZZ - ll)C == k S Dl M D7.

Since ky = Imk is positive and bounded away from 0 on Ej9 N Ea5 and
T = [e,3) with ¢ > 0, the inequality (5.25) follows. O

The definition (5.21) of v implies that (4.7) and (4.8) are satisfied with

Ri(Gy1,2) = 5ieaSR s (r1.a (k) — h(k))22(©),
2 = .
R2(<7t Z) LI(S Wk)5(§ w'k) 27a(k.)z—2w(g)
2 .
R3(< t, 2) 75@ ‘j]g%’z% w2k)T2 (k?)ZQW(oy
Ra(C.t.2) = GRG0 (ry o (F) — h(R)) 272,

where k and z are related by k = ky — 27 and

v 2 = v = . v
Ri(C,t,2) = %W(rl’a(k) — h(k))227(©),
RQ(g, t, Z) W’MT\:Q a(l{})zfmlv’(o’

v 2 = .

Rs(C,t,2) = wEa(mzzw(g)’

; (8L ¥ A —2ii
Ra(Cot,2) = 5o (Faa () — hi(k))z=27(©),

where k and z are related by k = —ko + <. The definition (5.24) of ¢(C, 2)
shows that (4.9) and (4.10) hold. The symmetry 6(¢, k) = 1/5(¢, k) implies

that |6(¢, wko)d(C,w?ko)| = 1. Hence |q(¢)| = |r(ko)| and |£7(C)\ = |7X( ko)l;
this yields (4.12). To establish (4.11), we note that if k = kg — <, then

) -1 —1y\ ¥
Ra(Gt2) = (k5 = R0 = it (15200 1’;5)
0 0

e (G P\ 2O
5((, w]g)é(g w2k) (rl,a(k) - h(/{:)) <> .
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Since 71,4(ko) — h(ko) = 7(ko), this shows that ¢({) = R1(¢,t,0). Similarly,
if k = —ko + <=, then

(= R — k) ! h
flet )= ((kz — Rk - k—l)) ((k'o_l ) (ko + ’C‘l)k’%)
3(¢, wk)d (¢, wk)
X 62X(<7k) (

=<
=
)
—
1
N
I
=<
—~
1
N
=
N
(S
~~_
4
X
o

Since (71.q(—ko) — h(—ko)) = 7(—ko), this shows that ¢(¢) = Ry((,t,0).
The inequalities in (4.11) for Ry and R; are now a consequence of standard
estimates, cf. [12]. The inequalities in (4.11) for {R;, R;}4 are proved in a
similar way. This shows that the conditions of Theorem 4.3 are satisfied.

The conclusion (4.13) of Theorem 4.3 implies that the solution n(y,t, k)
of the L3-RH problem (5.23) satisfies

(526) n(yvtaKl):(171a1)+ Re(flﬁ_-/—:ééa‘F3B_f3ﬁvyf2ﬁ_ﬁl/é)

2¢
kov/T
+O(e7’71+7a), T=1tp> = o0, (€T,

where the error term is uniform with respect to { € Z and the functions
{F;}3, B, B are defined in (4.14) and (4.15).

Remark 5.4. — In general, the solution m of the L>-RH problem (4.4)
featured in Theorem 4.3 is different from the function m used in this section;
the former is regular at the points {%j}? whereas the latter, in general, is
singular at these points. However, by Lemma A.5, this discrepancy disap-
pears when premultiplying by (1,1, 1); hence the row vector solution n of

the L3-RH problem (5.23) satisfies (5.26).
Step 6: Find q(z,t) and u(z,t). — For k € Ea5 near K; we have
m=MA = P(k)"'D(x,t) " P(k) U@V H0EA,
Using the identity
(1,1,1)P(k)""D(z,t) " P(k) = q(z,t)(1,1,1),
this gives
n(y,t, k) = q(z,t)(1,1,1)U7(z,t, k)e" VI, k).
Since U, (z,t, K1) = I, evaluation of this equation at k = K; yields
n(y,t, K1) = qla,1)(1,1,1)ev oI Ky
= q(z, 1) T AL (¢, K1), Ao (€, K1), eV Ags (¢, K1)
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Hence, by (5.26),)

A1 (G K1) As3(C K) — na((t, Kana (¢t Ka)
A%2(€7K1) n%(g’thl)
as T — 00. Fixing ¢ € 7 on the left-hand side of this equation and letting
t — oo, we deduce that Ay (¢, K1)Asz3(¢, K1) = A3, (¢, K;) for ¢ € . Pro-
ceeding as in the proof of Proposition 4.2 of [4], we infer that Ass (¢, K1) =1
and |r(ko)| = |7#(—ko)| for all ¢ € Z. Tt follows that v(¢) = ¥(¢) for ¢ € Z.
The equation

=1+ 0(67'_1/2)

5(< k):€4mf o log(1—|r(s)| )(ﬁimfﬁ‘Fﬁ)ds

now shows that 6(¢, k) = §(¢, —k)~* and x(¢, k) = —x(¢, —k). In particu-

lar, ¢(¢) = (¢)e'(@rar(~ho)targriko)),
A computation shows that

(5.27) argq(C) = 2ulog( ) T x0(0) + argr(ko)

2
ko + ko |

+ 2vlog ((ko—l — ko)ko)

g | =R =) () k)

27 | (ko —k) (kg ' —k=1) (kg "+ k) (ko +5™1) lkmwn,
Y g [ (o ) o kT (R +R) (g " A7)

20 [(ko—k) (kg ' —k1) (kg ' +K) (ko + 1) iz,
= x0(¢) + argr(ky) — vlog?,

where

Xo(¢) = Im(2x(, ko) — x (¢, wko) — x (¢, w?ko))
and the function Y = Y (() is defined by
(4kZ + 1)2(4k32 + 3)
57T6k3(3 — 4k2)

Y(¢) =

Equations (5.26) and (5.27) yield

d ) o
(5.28) ni(y,t, K;) =1+ 7175 Re <(f16*1argr(k0) _ ]:'2€zarg7”(*k0))

v ei(dztfvlogt+d3)> + O(GT*HTO‘% T—00, (€L,

(2) All error terms of the form O(-) in the remainder of the proof are uniform with
respect to ¢ € Z.
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and
Q($7 t) = n2(y7 t7 Kl)
d , o .
=14+ =+ Re( F e—zargr(kg) _F elargr(—kg) ez(th—ulogt—i-dg))
Vi ( 3 3 )
(5.29) +O0(er— ), 100, (€T,
where the functions d; = d;((), j = 1,2, 3, are defined by
2 483
di = Vv dy = 0 ds = E—X(H—Z/logY—Fargf(iy).

(1+4k2)2 4

It can be seen from the proof of Theorem 5.1 that thanks to the uniform
decay and smooth dependence of the jump matrix v on ¢, the asymptotic
formula (4.13) can be differentiated in time without affecting the error

term. Hence equations (5.28) and (5.29) together with the fact that

kop

o nl(y,thl)
(5.30) y—x =log (”2(%7571(1)> —log A11(¢, K1) + v,
yield
(630 ulat)=o| (-
. , ot y fixed
_ g ﬁ i(dat—vlo ds)
- ot y fixed \/i fe (fe t o )
+ 2 log A1 (¢, K1) + Oer™ %),
ot y fixed
where
f(() _ (fg _ fl)efiargr(ko) _ (]}3 _ ]}2)eiarg%(fko).
As ¢ — 37, we have the expansions
(=30 06-0.  k=1-2"P 405
P 3= o _B-01 o
Fo= S 0G0, o= 030,
NZCER g _23-9)¢
d = EZE 4 0(3-0F), d =T 103 -0)),
A= oeogh, m-YE L op-oh,
Fs=—310(3-QY), v =292 oo
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We deduce that there exist constants c¢1,co > 0 such that
1632 < p(C) < 262, V() < gt f(¢) < cpet,
_s _
di(C) < coe™ 2, dy(C) < cae™?,

for all ¢ € Z. Moreover, since

(5.32)

[ o4
(533) A]l(C7 Kl) = 6% fkoo 10g(1—\7‘(s)|2) 1156 ds

)

we obtain the estimates
cre < |1 — A11(¢, K1)| < coe, cret < |0cA (¢ K| < eae,
which show that

9 OcA K
(5.34) ‘ log A11(¢, K1)| = M

ot
<Ce 't =0(2r7)

y fixed

as 7 — 0o. The above and the following estimates are uniformly valid for
¢ € Z. Using the estimates (5.32) and (5.34) together with the identities

d k
% :—£ and dz—l—tﬁzfii({,
at y fixed t at 1+ 4k3
equation (5.31) yields, as 7 — oo,
di 6k o idet—v _lta
(5.35) u(z,t) = NG Re (zfe (dat 10gt+d3)) +O0(er™ ).

Since & = q% we find uze = uyy + O(GT_H—TQ). Using that —L—(1 +

1+4k2
(%)2) =1, we conclude that

di - . .
(5.36) U — gy +1=1+ \7115%0 Re (z'fe“dzt*'flogﬂds)) +O(er15%).

Substituting (5.29) and (5.36) into the relation ¢* = u — u,, + 1, the terms
of order O(t~1/2) yield
(6];’02'(.7:3 - ]:1> - 3]:3) - (6];‘02(.7?3 - ]:-2) - 3]}3)eiarg7‘(—ko)+iargr(ko) = 0,
that is,

6koi(Fs — F1) — 3Fs 1 —whk?

(537) eiarg?‘(—ko)ﬁ-iargr(ko): - _ _ 3 _ )
6koi(F3 — F2) — 3F3 kg —w

Using (5.37) and the identity

L A 2
P b Wk _ 2v/3ko 1/ 4k3 +3e_iamtan (varsd)

k- 4k2 +1
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in (5.29), we find, as 7 — o0,

65:39) a(e.0) = 1+ 2 cos (a(0)t = 1(Q) low(t) + 2(0)) + Ofer5),
where
11—k [(3+4R2)(1 + 4k2)v 48k}
Cl(C) = ].—l—k%\/ 32;0 _4]'%8 > CQ(C) = (1+4]~€(2))25

1 2
c3(¢) = d3 — argr(kg) — arctan (\/51 + Zg)
— R

1 2
=T Xo0(¢) + vlogY + argI'(iv) — argr(ko) — arctan <\/§ + ko )

4 1— k2
Similarly, using (5.37) in (5.35), we find
G%le . — - 1- wk%)
) =——=—R Fs—Fi1— (Fzs— F
U(SU ) (1+4]€(2))\/£ e{z( 3 1 ( 3 2) k(2) o

14+

« ei(dgtulnt+d3argr(k0))} +O(67‘77).

In view of the identity

_ N wk% Z\/g 4];8 +3 —iarctan (\/§1+k8)

Fg—.Fl—(fg—fg)kg_w = 4]%3—’_1 e 1—kg s
this yields
(5.39) wu(x,t) = m?:fég((?))\/{ cos (c2(Q)t — v(¢) logt + ¢3(¢))
+ O(eTfHTa)

as 7 — oo uniformly with respect to ¢ € Z.

Step 7: Replace ( with &. — In the last step of the proof, we show that,
up to a phase shift, { = y/t can be replaced with & = x/¢ in the asymptotic
formulas (5.38) and (5.39) without affecting the error term. For clarity, we
reinsert the dependence on ¢ of the functions ko (¢), ko(¢), and €(¢).

By (5.28), (5.29), and (5.30), we have

y—x=—log A1 (¢, K1) + vo + O(e(Q)r~1/2).

Hence, as 7 — oo,

(—¢&= C(TO +O0(e(Q)t'772) = 0(3 - ()7t ) = 0(3 - &)=t ).
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The asymptotic sector {¢ € Z,7 — 0o} is equivalent to {¢ € Z,t(3— ()2 —
oo} and hence also to {¢ € Z,t(3 — €)7 — oo}. If @ € R and g(¢) is a
smooth function such that |¢'(¢)] < C(3 — ¢)® for all ¢ € Z, then

o= [ s < cra-g - -
< Cl¢ — ¢Jmax {(3 - ¢)* (3 - &)}
=0(B-6*3t7Y), 700, (T
The estimates
(O <CB=¢)"
(O <CB =0~
therefore imply

QI <CB-0F,  |GQl<CB -0

m\u Mw

le1(€)—cr(Q) = 0((3=6)71t7Y),  ea(€) —ca(¢)| = O((3—E)t71),
(540) |es(€)—es(Q)] = O((3=€)72t7Y),  [w(©)—v(Q)] =0(t™"),
le(6)—e(Q)] = O(t7), ko (&) —ko(¢)| = O(t™)
On the other hand, the identity
’ d62 dC >
(0 = 32 / =20, CeL

and the estimate

5] <CB-¢)75, (e,

imply
a4y 2O TeO= f~2/%o<£)(< O+ O3 - —6)?)

= 2ko(€)t " log A1y (¢, K1) + O((3 — €)1t 7).
Since

x<<,k>:;ﬂ/f10g <1l—_l|((/m))||2)

o 1 1 1 " 1 q

- — s
s—k s+k s—k' s+k1) 7
we see that xo(£) can be expressed as in (5.3). Employing (5.33), (5.40),

and (5.41), the asymptotic formulas (5.1) and (5.2) follow from (5.38)
and (5.39), respectively.
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Remark 5.5. — Substituting the asymptotic formula (5.2) for wu(z,t)
into (1.1), we can verify explicitly that the DP equation is satisfied to
leading order in the similarity region. Indeed, by (5.2), the nonlinear terms
in (1.1) are easily seen to be of order O(eT*HTa) as 7 — oo, and the linear

terms satisfy
1+o¢

(U — Uge )t + 3u, = O(er™ 2 )

as a consequence of the identity

Oby Ibs\ 2 by
(1’2‘ as)(”(as))”as 0.

Remark 5.6. — The main contributions to the asymptotic formula (5.2)
come from the critical points wjkoil located on the lines w/R, j = 0,1, 2.
On the other hand, the same is true for the asymptotics of the solution
of the whole line problem [4]. Therefore, the structure of the asymptotics
for the whole line and half-line problems is the same, the only difference
being in the determination of (k) which, in turn, determines v (hg in the
notation of [4]).

Following [4], these contributions can be determined by parametrizing
the neighborhood of & = kg using the rescaled spectral parameter z =
p“%(l} — ko), where (recall that ®(¢, k) = ®(¢, k(k)))

qbnew(g, Z) = &) (Ca 'Z~€0 + < Z) 5

48k (3 — 4k0

new = \/ — 282<I> k
P e (© (1 + 4k2)3

and we denote quantities defined using this rescaled spectral parameter by
the subscript/superscript new. It follows that (4.7) and (4.8) are satisfied
with

new J 2 g

1 (Ca t, Z) 5(C, w;g(;]z% w2k) (k)ZQ (C),

new C,wk)(C w2k r(k — 2

2 (Catv Z) u 6(2‘ I§)2 ) 1 r((k))r(i)z 2 (C)v

new 5(¢,k)2 r(k) 2iv(¢)

3 (C’ ¢ Z) 0(¢wk)o(Cw?k) §_ 1—r(k)r(k) : ’

new wk)o(C,wk — 2
Ry™((,t,7) = 2eb)icuh) 5(2 ,§§2 L (k)2 =219,

ko 4+ k=1\ "
R?CW:R1< 0 —1) )
k0+1€0
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and so ¢"°" = ¢q. The proof of Theorem 4.3 proceeds in the same way as
before except that equation (4.25) is replaced with

-1

mo(C,t, k)" = CD(C tym™ (q(@‘), I fco>) D(¢p~'e
B(G1)

vV 7-new(k' - kO)

as Thew := tP2., — 00. Hence, the contribution from the critical point at
ko to m(¢,t, Ky) is

=1+ + O(Tien): CeZ, |k—kol=¢

1 (¢t k) (mo(C,t k)~ = I)dk
270 J ke —kg|=c k— K,
- L/ (mo(¢,t, k)" — I)dk
270 J ko |=e k— K,
1 / (Aot k) — ) (mo(C, t, k)~ — TI)dk
270 S — ko | =e k— K,
1 B(¢,t) dk

2mi |k—ko|=e€ ‘/Tncw(iﬁ - ]210) k— Ky
+ O(eToen) + Ol = Il gy llmg = Tl Lor2(k—ro =)

= — + 0(67—new2 )
2ms V Tnew J|k—ko|=e (% - kio - (k - kO))(k - Kl)

B 2 B((,t) — e
(5.42) = Tnew(% 1) ko — K + O(enew” ).
This leads to the same formula for the asymptotics of u(z,t) as above
because 3 (1 + ky2)pnew = p-

Taking into account the correspondence of notations (v, kg, and ko in
the current paper correspond to hg, ko, and pg in [4], respectively), for-
mulas (5.2) and (5.3) actually correct the coefficients ¢; and ¢4 in the
corresponding asymptotic formula (4.1) in [4], where the contribution of
the critical points to m(K7) was treated incorrectly.

Remark 5.7. — We have assumed in Theorem 5.1 that the set of sin-
gularities {k;} related to the presence of solitons is empty. If there are
a finite number of points {k;} present at which the solution has simple
poles, then the RH problem can be supplemented with residue conditions
at these points, see Section 5 of [17]. The supplemented RH problem can
be mapped to a regular one coupled with a system of algebraic equations,
see Proposition 2.4 of [13].
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Appendix A. LP-Riemann—Hilbert problems

Since the jump contour for the RH problem associated with equation (1.1)
on the half-line has nontransversal intersection points (see Figure 2.1), spe-
cial care has to be taken when defining the notion of an LP-RH problem.
We will follow [20] where a theory of LP-RH problems with jumps across
Carleson contours is developed using generalized Smirnoff classes.

Let J denote the collection of all subsets I' of the Riemann sphere C =
C U {oo} such that T" is homeomorphic to the unit circle and

(A1) sup sup L0 D(z )| < 00,
zeI'NC r>0 r

where D(z,r) denotes the disk of radius r centered at z. Curves satisfy-
ing (A.1) are called Carleson curves; all contours considered in this paper
are Carleson. Let p € [1,00). If D is the bounded component of C\T where
I'e J and co ¢ T, then a function f analytic in D belongs to the Smirnoff
class EP(D) if there exists a sequence of rectifiable Jordan curves {C), }5°
in D, tending to the boundary in the sense that C,, eventually surrounds
each compact subdomain of D, such that

(A.2) sup/ |7 (2)|P|dz] < 0.
n>1Je,
If D is a subset of C bounded by an arbitrary curve in 7, E?(D) is defined
as the set of functions f analytic in D for which fop™! € EP(p(D)), where
o(z) = z_1ZO and zp is any point in C\ D. The subspace of EP(D) consisting
of all functions f € EP(D) such that zf(z) € EP(D) is denoted by EP(D).
If D= DyU---UD, is the union of a finite number of disjoint subsets
of C each of which is bounded by a curve in J, then E?(D) and E?(D)
denote the set of functions f analytic in D such that f|p, € EP(D;) and
flp, € EP(D;) for each j, respectively. We define E(D) as the space of
bounded analytic functions on D.
A Carleson jump contour is a connected subset I’ of C such that:

(a) T N C is the union of finitely many oriented arcs® each pair of
which have at most endpoints in common.

(b) C\ T is the union of two disjoint open sets D, and D_ each of
which has a finite number of simply connected components in C.

(¢) T is the positively oriented boundary of D, and the negatively
oriented boundary of D_,i.e. ' =0D, = —-0D_.

() A subset T' C C is an arc if it is homeomorphic to a connected subset of the real line
which contains at least two distinct points.
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(d) If {D;}7 and {D;}7" are the components of Dy and D_, then
8D;' €Jtorj=1,....,n,and 9D; € J for j=1,...,m.

We henceforth make the following assumptions: (a) p € (1,00) and n > 1
is an integer, (b) I' = 0D = —0D_ is a Carleson jump contour, and (c)
v:T — GL(n,C) is an n x n-matrix valued function. We define L?(T') as
the set of all measurable functions on I' such that |z — zo\lfgh(z) e LP(T)
for some (and hence all) zp € C\T. If f € EP(Dy) or f € EP(D_), the
nontangential limits of f(z) as z approaches the boundary exist a.e. on
I and the boundary function belongs to LP(T). Let D = Dy UD_. A
solution of the LP-RH problem determined by (I',v) is an n x n-matrix
valued function m € I 4+ EP(D) such that the nontangential boundary
values my satisfy my =m_v a.e. on I'.

LEMMA A.1 (Uniqueness). — Suppose 1 < n < p and detv =1 a.e. on
T. If the solution of the LP-RH problem determined by (T',v) exists, then
it is unique and has unit determinant.

If h € LP(T), then the Cauchy transform Ch defined by

211 s—z

(A.3) (Ch)(z) = — /Fh(s) ds, =zeC\T,

satisfies Ch € EP(D). We denote the nontangential boundary values of
Ch from the left and right sides of I' by C.h and C_h respectively. We
henceforth fix a point zy € C\ T and turn LP(T') into a Banach space with
the norm

_2
(A.4) ||hHLp(r) = |[ - *Zo|1 ?h| Lo (r).-
Then C4 and C_ are bounded operators on LP(I") and Cy —C_ = I. Given
a function w € LP(T") N L*°(T"), we define C,, : LP(T") + L*>°(T") — LP(T') by
Cw(h) = C_(hw). Then
(A.5) HCWHB(LP(F)) < Ollw|[zo(ry,
where C':= ||C— | g(jr(r)) < 00 and B(LP(T)) denotes the space of bounded

linear operators on LP(T").

LEMMA A.2. — Suppose w :=v—1I € LP(T)NL>(T). If m € I+ EP(D)
satisfies the LP-RH problem determined by (T',v), then u = m_ € I+LP(I)
satisfies

(A.6) p—1I=Cu(p) in LP(T).

Conversely, if i € I+LP(T) satisfies (A.6), then m = I[+C(pw) € I+EP(D)
satisfies the LP-RH problem determined by (T, v).
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LEMMA A.3. — Let D be an open subset of C bounded by a curve
I' € J withoo € T. Let zg € C\ D and let f : D — C be an analytic
function. Then f € EP(D) if and only if there exist curves {C,,}5° C J in
D, tending to I in the sense that C,, eventually surrounds each compact
subset of D, such that

(A.7) sup/ |z — 20[P 2| f(2)|P|dz| < oc.
n>1Jc,

LEMMA A.4 (Contour deformation). — Let v € J. Suppose that, re-
versing the orientation on a subcontour if necessary, = I'U~ is a Carleson
jump contour. Let By and B_ be the two components of @ \ 7. Let D,
be the open sets such that C\T'= D, UD_ and 8D, = —8D_ =T Let
D= f)+ UD_. Let v+ and y_ be the parts of v that belong to the bound-
aries of ﬁ+ N B+ and D_n B, respectively. Suppose v : I' = GL(n,C).
Suppose mg : D N By — GL(n,C) satisfies

(A.8) mo,mgt € I+ EP(DNBy)NE>(DNBy,).
Define ¢ : ' — GL(n,C) by

mo_vmo_ﬁ onI'N By,
-1

b= Mo+ on 74,
mo— on y-,
v onI'NB_.

Let m and m be related by

" e [ b0

m on DN B_.

Then m(z) satisfies the LP-RH problem determined by (', v) if and only if
1m(z) satisfies the LP-RH problem determined by (I',).

Proofs of the above statements can be found in [20]. We will also need
the following uniqueness result for row vector solutions.

LEMMA A.5. — Suppose 1 < n < p and detv = 1 a.e. on I'. Suppose
the LP-RH problem determined by (I',v) has a unique solution m. If N
is a row vector solution of the LP-RH problem determined by (I',v) in
the sense that N € (1,1,...,1) + E?(D) and Ny = N_v a.e. on T', then
N=(,1,...,)m.

Proof. — Let m denote the n x n-matrix valued function obtained from
m by replacing the first row with the row vector N. Then the n X n-matrix
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Figure B.1. The contour X = X; U---U X4.

valued function m € I + EP(D) defined by

1 -1 -1
0 1 0

m = ) m
0 0 1

satisfies the LP-RH problem determined by (T, v). Hence 7 = m by Lem-
ma A.1. Consequently, N = (1,1,...,1)m = (1,1,...,1)m. |

Appendix B. The solution on a cross

Consider the cross X = X; U---UXy C C where

(B.1) Xlz{ue% Ogugoo}, ng{uegffr ’Ogugoo},
' ng{ue_siﬂ‘ogugoo}, X4={U€_%’0<U<OO}7

and X is oriented as in Figure B.1.

Let D C C denote the open unit disk and define the function v : D —
(0,00) by v(q) = —5=1log(1 — [q|*). We consider the following family of
L3-RH problems parametrized by g € I:

(B.2)

m¥(g, ) € T+ B¥(E\ X),
mf(q, 2) =m*X(q,2)vX(q,2) forae. z¢€ X,
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where the jump matrix v (g, z) is defined by®*

1 0 0
gz 2 @es 1 0|, z€ Xy,
0 0 1
— - iz2
1 _1:\1q\2z2“/(q)67T 0
0 1 0l, ZeXQ,
0 0 1
X
v\g, %) =
(9,2) 1 0 0
. iz2
_1%7‘1‘22*2“/(‘1)67 1 0], z€X;s,
0 0 1
1 6z2i”(‘1)e_% 0
O 1 O 1) Z€X4
0 0 1

The RH problem (B.2) can be solved explicitly in terms of parabolic
cylinder functions [14] and this leads to the following standard result.

THEOREM B.1. — The L3-RH problem (B.2) has a unique solution
m™(q, z) for each ¢ € D. This solution satisfies

. S0 =B 0
(B.3) m (q,z)z[-i-; B8%(q) 0 0 —I—O(Zz), 2z — 00, q €D,
0 0 0

where the error term is uniform with respect to argz € [0,27] and ¢ in
compact subsets of D, and the function 3% (q) is defined by

(B4) B8¥(q) = Vu(g)e!(FreatarsTiv(@) - g e p,
Moreover, for each compact subset K of D,

sup sup |m~(q,z)| < oc.
q€K zeC\X

Appendix C. Proofs of claims

This appendix presents the proofs of the five claims used in the proof of
Theorem 4.3.

) Throughout the paper, complex powers and logarithms are defined using the principal
branch: If z,a € C and z # 0, then logz := log|z| + i Argz and 2% := e®1°8%  where
Arg z € (—m, 7] denotes the principal value of arg z.
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C.1. Proof of Claim 4.4

We first assume k € kg + X€. Then
W(C, 8, k) = mo— (¢t k)o(C, b k)mos (Gt k) = T
=mo— (¢, 1, k)u(C,t, kymor (¢, 6, k)7
where

) 1= (€)= DG (a0~ (= ) ) DI

The functions mo4 (¢, ¢, k) and mo— (¢, ¢, k) are uniformly bounded for ¢ > 0,
( €Z, and k € kg + X°©. Therefore, it is enough to prove that
(C1) u(Ct,k)=0(r Fe malt=holy 7 00 CeT, ke ko+ XS,

uniformly with respect to (¢, k). Introducing the function ug by
'U/O(Cv ta Z) = CU(C, ta kO - j)c
= UO(C) t, Z) - D(C7 t)UX (Q<<)> \/iZ)D(C7 t)_la

we can rewrite the condition (C.1) as follows:

o _tlz?

(C.2) uO(C,t,z):O(Tff *T), T—=o00, CEL, z€ XP,
uniformly with respect to (¢, z) in the given ranges. Using that

D(¢, v (q(¢), Vtz) D(¢,t) "

1 00
g(C)z~2 Q™5 eto(¢0) 1 g |, z € Xy,
0 0 1
1 *1—@”222“’(06’%2 e 0
1 o, z¢€ Xo,
B 0 1
B 1 00
e O 0 0)’ 2E X
0 0 1
1 szw(g)e—“;ze—m(c,o) 0
0 1 0], z € Xy,
0 0 1
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equation (C.2) follows from the assumptions (4.8)—(4.11). Indeed, we will
give the details of the proof of (C.2) in the case of z € X¥; the other cases
are similar.

Let z € X7. In this case only the (21) entry of ug((,t,2) is nonzero and

™

using that argz = 7 and sup.c7 [¢(¢)] < 1, we find

. . itz2
|(u0(<7t7z>)21‘ = ’R1(<7t7Z)Z_QZV(C)et¢(<7Z) - q(c)z—sz(ﬁ)e 2 €t¢(<,0)

=z *ZiV(C)HRl(C,t’Z)eté(C,Z) ||et¢> ¢0)e™ =
(C.3) < (R 2) —q(<)|etRe¢“’Z>
~ £12]2
el —1])e="=, ¢eZ, t>0, ze X,
1

where gZA>(§, z) = ¢(¢, z) — o(¢,0) — % The simple estimate

1
e — 1| = / we*ds| < |w| max e*Rew, w e C,
0 s€[0,1]
yields the inequality
(C.4) le® — 1] < |w|max(1,eR™), w e C.

On the other hand, by (4.9) and (4.10a),

[2* _ [z

(C5)  Red((,2) =Red((,2) + 5~ < -

Using (C.4), (C.5), and the fact that sup;c7[q(¢)| < 1 in (C.3), we find

CeTZ, ze XV,

\z|2

(1R t2) — Q)]+ ]0(¢ )] )
CeZ, t>0, ze X7,

|(U’0(C7 tv Z))21| <

By (4.10c), (4.11), and the fact that sup;c7 [v(¢)| < oo, the right-hand side
is of order

Liz|*  tC|z]? tlz1?
(C.6) 0(('1 4 1OlE >e-4'>
p P
(HD)™2 | @P)P? e
:O(< ey L
1 1 _tlz|? p
=0 Ta/2+m e "2 |, T—=00, (€L, z€ X,

uniformly with respect to ((,z) in the given ranges. This proves (C.2) in
the case of z € X7.
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Now let k € —kg + X°¢. Then

UA)(C7 tv k) = mo— (<7 ta k)v((, t7 k)m0+(C7 ta k)_l -1
= mO—(C? t, k)”(Cv t, k)mO-i-(Cv t, k)ila

where

\F

w(C,t, k) = v(C,t, k) — CD(C, )X ( (), Y=(k + k:o)> D¢, t)-C

The functions mo4 (¢, ¢, k) and mo— ({, t, k) are uniformly bounded for ¢ > 0,
(€T, and k € —kg + X¢. Therefore, it is enough to prove that

(C.7) u(C,t,k)=0(r Se mxlhthol®y  + o0 CeT, ke —ky+ X,

uniformly with respect to (¢, k). Introducing the function wuy by

ug((,t,2) = Cu(C,t, —ko + EpZ)C
= 90(¢, 1, 2) — D(¢, )o ™ (§(C), VE2)D(¢, 1),

we can rewrite the condition (C.7) as follows:

tlz|?

up((,t,2) =0 (7 %e” 5 ), T—o0, (€L, z€ XP,

uniformly with respect to (¢, z) in the given ranges. The rest of the proof
is as in the case of k € kg + X°©. O

C.2. Proof of Claim 4.5

In view of the symmetries (2.14a) and (2.14b),

= O(||w(<at7 : )”LB(F’) + ||m0(<at7 : )71 - IHLS(“C_ICO‘:e)
+lmo(Cots )™ = Il L3 (ihhol=0)

(s by + DG 8-kt )-

On T', the matrix & is given by either v — I or mg(v — I)mgy'. Hence
(¢t M isy = O(e/37=1) by the assumption (4.6a). Moreover,
by (B.3), m*(¢q,z) = I + O(%) as z — oo uniformly with respect to the
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argument of z and with respect to ¢ in compact subsets of D. Hence, as the
entries of D((,t) have unit modulus,

Mo (¢, t, k)™ = Il Lo (ko =0

CD@¢ﬂmX@«»—“Wk—m0_y—4D@¢rw

€

Lr (Jk—ko|=e)

O(e'/Pr=1/2) pe[1,00),
o), p=co,
uniformly with respect to ¢ € Z. This proves (4.20). The third term on
the right-hand side of (C.8) can be estimated in a similar way. The last
two terms in (C.8) can be estimated using (4.17). This yields (4.18a). The
proof of (4.18b) uses the assumption (4.6b) and is similar.
In order to prove (4.19), we note that (4.17) implies

(C.9) (¢t ) e (kot+x)
1
(/ e;ZZQMOQdm) )
ko+X¢

_O<T
:O(T_ (/ e'zi:?uzdu>p>7 T—00, (€T
0

vl

ol

Letting v = 55 u? we find

(C.10) /eﬂwmg/e;mhmﬂ@/e‘Mzww
0 0 VPT Jo VU N

Equations (C.9) and (C.10) yield (4.19). O

C.3. Proof of Claim 4.6

By (A.5) and (4.18b),
(C.11) ICallg(iscry < Cldl poo(y = O(T™

[N

), T — 00.

This proves the claim. O

C.4. Proof of Claim 4.7

The Neumann series

(C.12) (I-Ca) ' =)0
=0
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implies that

o0
. . 1
[[(T — Cw)flnB ity S ICall, ;0 oy = ————.
(2D jz::() BTN 1 —|1Call gy

Now (4.3) and the Sokhotski-Plemelj formula C_ = 1(—I + Sr) show that

sup é_ ety < O0.
SUP €= lczo ey

Thus,
A = Il gsey = 11 = Ca) ™" Cadll s sy

. o Clldll g
I = Ca) Mgz 16— (@) ey < —— 5o,
1= llCallsis ey

In view of (4.18a) and (C.11), this gives (4.22). O

C.5. Proof of Claim 4.8

Uniqueness follows from Lemma A.l since det® = 1. Moreover, equa-
tion (4.21) implies that i—I = Cyfi. Hence, by Lemma A.2, /i = I+C ()

satisfies the L3-RH problem (4.16). O
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