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Long-time asymptotics for the focusing Fokas-Lenells

equation in the solitonic region of space-time

Qiaoyuan Cheng1, Engui Fan1∗

Abstract

We study the long-time asymptotic behavior of the focusing Fokas-Lenells (FL)

equation

uxt + αβ
2
u− 2iαβux − αuxx − iαβ

2|u|2ux = 0

with generic initial data in a Sobolev space which supports bright soliton solutions. The

FL equation is an integrable generalization of the well-known Schrodinger equation,

and also linked to the derivative Schrodinger model, but it exhibits several different

characteristics from theirs. (i) The Lax pair of the FL equation involves an additional

spectral singularity at k = 0. (ii) four stationary phase points will appear during

asymptotic analysis, which require a more detailed necessary description to obtain the

long-time asymptotics of the focusing FL equation. Based on the Riemann-Hilbert

problem for the initial value problem of the focusing FL equation, we show that inside

any fixed time-spatial cone

C (x1, x2, v1, v2) =
{

(x, t) ∈ R
2|x = x0 + vt, x0 ∈ [x1, x2] , v ∈ [v1, v2]

}

,

the long-time asymptotic behavior of the solution u(x, t) for the focusing FL equation

can be characterized with an N(I)-soliton on discrete spectrums and a leading order

term O(|t|−1/2) on continuous spectrum up to a residual error order O(|t|−3/4). The

main tool is the ∂ nonlinear steepest descent method and the ∂-analysis.
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B The parabolic cylinder model 65

1 Introduction

The study of long-time behaviors of solutions to nonlinear integrable systems goes

back to the work of Zakharov and Manakov [1]. Using the monodromy theory, Its was

able to reduce the Riemann-Hilbert (RH) problem formulation for the Schrödinger (NLS)

equation to a model case, which can then be solved explicitly, giving the desired asymptotics

[2]. Deift and Zhou developed a rigorous nonlinear steepest descent method to study the

oscillatory RH problem associated with the mKdV equation [3]. Later it becomes a powerful

tool for the long-time asymptotics of the integrable nonlinear evolution equations, such as

the NLS equation [4, 5], the KdV equation [6], the Camassa-Holm equation [7, 8], the

modified Camassa-Holm equation [9], the Degasperis-Procesi equation [10, 11], the sine-

Gordon equation [12, 13], the Fokas-Lenells equation [14] and so on. Recently the Deift-

Zhou steepest descent method was further extended to the ∂-steepest descent method of

McLaughlin and Miller, which first appeared in the orthogonal polynomial setting [15, 16].

The ∂-method follows the general scheme of the Deift-Zhou steepest descent argument,

while the nonanalytic data are now continued to the desired contours via the solution of

a ∂-equation. The ∂-steepest descent method allows asymptotic analysis for nonanalytic

phases with two Lipschitz derivatives near the stationary points. This method was adapted

to obtain the long-time asymptotics for solutions to the NLS equation and the derivative

NLS equation, with a sharp error bound for the weighted Sobolev initial data [17–20].

In this paper we study the long-time asymptotic behavior of the Fokas-Lenells (FL)

equation

utx + αβ2u− 2iαβux − αuxx + σiαβ2|u|2ux = 0, (1.1)

which is an integrable generalization of nonlinear Schrödinger equation, and is also related to

the derivative NLS model. As is well-known, the Camassa-Holm equation can be mathemat-

ically derived by utilizing the two Hamiltonian operators associated with the KdV equation

[21]. Similarly, by utilizing the two Hamiltonian operators associated with the NLS equa-

tion, it is possible to derive the FL equation [22]. In optics, considering suitable higher-order

linear and nonlinear optical effects, the FL equation has been derived as a model to describe

the femtosecond pulse propagation through single mode optical silica fiber, for which several
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interesting solutions have been constructed. It also belongs to the deformed derivative NLS

hierarchy proposed by Kundu [23, 24].

The soliton solutions for the FL equation have been constructed by the inverse scattering

transform method and the dressing method [25, 26]. Matsuno obtained the bright and the

dark soliton solutions for the FL equation by using the Hirota method [27, 28]. The double

Wronskian solutions for the FL equation was further given via bilinear approach [29]. The

lattice representation and the n-dark solitons of the FL equation have been presented in

[30]. The breather solutions of the FL equation have also been constructed via a dressing-

Bäcklund transformation related to the RH problem formulation [31]. It has been shown

that the periodic initial value problem for the FL equation is well-posed in a Sobolev space

[32]. A kind of rogue wave solution for the FL equation were obtained by using the Darboux

transformation [33]. The Fokas method was used to investigate the initial-boundary value

problem for the FL equation on the half-line and a finite interval, respectively [34, 35].

An algebro-geometric method was used to obtain algebro-geometric solutions for the FL

equation [36]. The explicit one-soliton of the initial value problem for the FL equation was

given by the RH method [37]. The inverse scattering transformation for the FL equation

with nonzero boundary conditions was further investigated by using the RH method [38].

It is noted that for the defocusing case σ = 1, the FL equation (1.1) with zero boundary

conditions does not admit a soliton solution. For the Schwartz initial value u(x, 0) ∈ S(R),
Xu obtained the long-time asymptotics for the FL equation without solitons by using the

Deift-Zhou method [14]. However, for the focusing case σ = −1, the FL equation (1.1) takes

utx + αβ2u− 2iαβux − αuxx − iαβ2|u|2ux = 0, (1.2)

u(x, 0) = u0(x), (1.3)

whose soliton solutions will appear for zero boundary conditions which correspond to discrete

spectrums. In this case, the long-time asymptotic behavior of solutions is more complicated

than the defocusing case due to the presence of solitons. A more detailed necessary descrip-

tion on the asymptotic analysis and some new techniques have to be adapted.

In this work, we apply the ∂̄-techniques to obtain the long-time asymptotic behavior of

solutions to the focusing FL equation (1.2) with a Sobolev initial data u0(x) ∈ H3,3(R).

Comparing with the classical NLS equation and the derivative NLS equation [18–20], to

conduct an asymptotic analysis on the FL equation (1.2) confronts with the following com-

plications,
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◮ The FL equation (1.2) belongs to a negative hierarchy, with two spectral singularities

at k = 0 and k = ∞ involved in its Lax pair.

◮ In comparison with the FL spectral problem (2.1), the Zakharov-Shabat spectral prob-

lem has no multiplication of matrix potential Ux by k. As a result, Neumann se-

ries solutions for the Jost functions of Zakharov-Shabat spectral problem converge if

u0(x) ∈ L1(R). However, for the FL spectral problem (2.1), the Voterra equation will

involve the term ku0x(x) (see (2.14) in next section ), which is not L2(R) bounded

since k may go to infinity. Through the small k and large k estimates respectively,

we overcome this difficulty and prove the existence and the differentiability of the

eigenfunctions, further establish the scattering map from the initial data u0(x) to the

scattering coefficient r(k).

◮ In the RH problem of the FL equation (1.2), the oscillatory term eitθ(k) involves four

stationary phase points: z1, z3 are located on the real axis and z2, z4 are located

on the imaginary axis. The corresponding local models need two kinds of parabolic

cylinder models to described in asymptotic analysis. To simplify the expression of the

RH problem formula in our analysis, we propose to use a uniform parabolic cylinder

model to match the solvable RH model of the four stationary phase points.

◮ When the variables x and t change inside a time-spatial cone C(x1, x2, v1, v2), the

corresponding discrete spectrums fall in a band region −v2/2 < Re(k) < −v1/2 for

the NLS equation and derivative NLS equation [18–20], while for our FL equation, the

discrete spectrums fall in a tyre region f(v1) < |k| < f(v2) (please see Figure 8 in

Section 7).

The structure of the paper is as follows. In Section 2, based on the Lax pair of the FL

equation (1.2) and through the small k and large k estimates, we prove the existence and

the differentiability of the eigenfunctions. We also establish the scattering map from the

initial data to the scattering coefficients, and study the analyticity, the symmetries and the

asymptotics of the eigenfunctions. In Section 3, inspired by [14], we construct a RH problem

for M(k) to formulate the initial value problem of the FL equation. In our Section 4, we

prove the existence and uniqueness of the RH problem. We first show that the Beals-Coifman

integral equation associated with the RH problem has a unique solution. Then we give a

reconstruction formula for the potential u in terms of the solution µ(k) of the Beals-Coifman
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integral equation. In Section 5, we introduce a function T (k) to transform M(k) into a new

RH problem for M (1)(k), which admits a regular discrete spectrum and two triangular

decompositions of the jump matrix near four stationary-phase points zn, n = 1, 2, 3, 4. By

introducing a matrix-valued function R(2)(k), we obtain a mixed ∂-RH problem for M (2)(k)

by a continuous extension of the M (1)(k). In Section 5.3, we decompose M (2)(k) into a

model RH problem for M rhp(k) and a pure ∂-Problem for M (3)(k). The M rhp(k) can be

obtained via an outer model M (out)(k) for the soliton components to be solved in Section

6, and an inner model M (in)(k) which are approximated by a solvable model for Mfl(k)

obtained in Section 7. In Section 8, we compute the error function E(k) with a small-norm

RH problem. In Section 9, we analyze the ∂-problem for M (3)(k). Finally, in Section 10,

based on the results obtained above, we find a decomposition formula

M(k) =M (3)(k)E(k)M (out)(k)R(2)(k)−1T (k)σ3 , (1.4)

which leads to the long-time asymptotic behavior for the solutions of the initial value problem

(1.2)-(1.3) for the FL equation.

2 Spectral analysis on Lax pair

In this section, we show the well-posedness for the initial value problem of the Fokas-

Lenells (FL) equation (1.2). We prove the existence of the eigenfunctions and establish the

scattering map from the initial data to the scattering coefficients.

2.1 Existence and differentiability of eigenfunctions

The FL equation (1.2) admits the Lax pair

{
ψx + ik2σ3ψ = kUxψ,

ψt + iη2σ3ψ = V ψ,
(2.1)

where ψ = ψ(x, t, k), and

σ3 =

(
1 0
0 −1

)
, U =

(
0 u
−ū 0

)
, (2.2)

η =
√
α(k − β

2k
), V = αkUx +

iαβ2

2
σ3(

1

k
U − U2).

With the transformation

ψ = ϕe−i(k2x+η2t)σ3 , (2.3)
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ϕ satisfies a new Lax pair {
ϕx + ik2[σ3, ϕ] = kUxϕ,

ϕt + iη2[σ3, ϕ] = V ϕ,
(2.4)

which can be written in the full derivative form

d(ei(k
2x+η2t)σ̂3ϕ) = ei(k

2x+η2t)σ̂3(kUxdx + V dt)ϕ, (2.5)

The Lax pair (2.4) has singularities at k = 0 and k = ∞, which is different from NLS and

derivative NLS equations. To control the behavior of solutions of (2.4) and construct the

solution u(x, t) of the FL equation (1.2), we should resort to the t-part and the expansion

of the eigenfunction as the spectral parameter k → 0. Specifically, we consider two different

asymptotic expansions respectively to analyze these two singularities k = 0 and k = ∞.

From the Lax pair (2.4), we obtain the following asymptotic expansion

ϕ(x, t, k) = I + kU +O
(
k2
)
, k → 0, (2.6)

ϕ(x, t, k) = ϕ0 +O(k−1), k → ∞, (2.7)

where U is given by (2.2) and

ϕ0(x, t) = e−
i
2

∫
x

−∞ |uy(y,t)|2dyσ3 . (2.8)

We introduce a new function ω = ω(x, t, k) by

ϕ(x, t, k) = ϕ0(x, t)ω(x, t, k), (2.9)

which satisfies the Lax pair

ωx + ik2 [σ3, ω] = V1ω, (2.10)

ωt + iη2 [σ3, ω] = V2ω, (2.11)

and can be written in full derivative form

d
(
ei(k

2x+η2t)σ̂3ω
)
=W (x, t, k), (2.12)

where

W (x, t, k) = ei(k
2x+η2t)σ̂3(V1dx+ V2dt)ω, (2.13)

and the matrices V1 and V2 are given respectively, by

V1 = e
i
2

∫
x

−∞ |uy(y,t)|2dyσ̂3(kUx +
i

2
|ux|2σ3),

V2 = e
i
2

∫
x

−∞ |uy(y,t)|2dyσ̂3(V +
iα

2
(|ux|2 − β2|u|2)σ3).
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Now we conduct a spectral analysis on the x-part of (2.10). Since the analysis takes place

at a fixed time, the t-dependence will be suppressed. Define two solutions ω±(x, k) of the

x-part of (2.10) by

ω±(x, k) = I +

∫ x

±∞
e−ik2(x−y)σ̂3

(
V1ω

±) (y, k) dy. (2.14)

Denoting ω±(x, k) =
(
ω±
1 , ω

±
2

)
, where the scripts 1 and 2 denote the first and second

columns of ω±(x, k), we have

D+

Re k

Im k

0

D+ D−

D−

Figure 1: The analytical domains D+ and D− for ω±(x, k).

Proposition 1. For u(x, 0) ∈ H3,3(R), there exist unique eigenfunctions ω±(x, k) which

satisfy (2.14), respectively. Moreover, ω−
1 (x, k), ω

+
2 (x, k) and a(k) are analytical in D+;

ω+
1 (x, k) and ω−

2 (x, k) are analytical in D−, where

D+ = {k : Imk2 > 0}, D− = {k : Imk2 < 0},

as Figure 1 shows.

By denoting ω±(x, k) = (ω±
ij(x, k)), from (2.14), we obtain two integral equations

ω±
11(x, k) = 1−

∫ ±∞

x

kuy(y)ω
±
21(y)dy −

∫ ±∞

x

i

2
|uy(y)|2ω±

11(y, k)dy, (2.15)

ω±
21(x, k) =

∫ ±∞

x

e2ik
2(x−y)kūy(y)ω

±
11(y, k)dy +

i

2

∫ ±∞

x

e2ik
2(x−y)|uy(y)|2ω±

21(y, k)dy,

(2.16)
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where ūx(x) is the substitution of ūxe
i
∫

x

−∞ |uy(y,t)|2.

Without loss of generality, we take ω+
1 = (ω+

11, ω
+
21)

T as an illustrative example to prove

Proposition 1 from the small-k estimates and large-k estimates.

2.1.1 Small-k estimates

By denoting

w =
(
ω+
11 − 1, ω+

21

)T
, (2.17)

we write (2.15)− (2.16) as the form

w = w0 + T0w, w0 ≡ T0e1, (2.18)

where T0 is an integral operator defined by

(T0h) (x) =

∫ ∞

x

K0(x, y, k)h(y)dy, (2.19)

and

K0(x, y, k) =

( − i
2 |uy|2 −kuy

e2ik
2(x−y)kūy

i
2 |uy|2

)
.

To study the k-derivatives of the solution, we solve the integral equations

wk = w0,k + T0,kw + T0 (wk) . (2.20)

A. Estimates on w0, T0 and their derivatives

In this part, we derive estimates on the terms w0, T0 and their derivatives with respect

to k, which we later use to estimate r(k) and r′(k).

Lemma 1. For k ∈ I0 = {k ∈ R ∪ iR : |k| < 1}, we have the following estimates

‖w0‖C0(R+,L2(I0))
. ‖u‖H2,2 , (2.21)

‖w0‖L2(R+×I0)
. ‖u‖H3,3 , (2.22)

‖w0,k‖C0(R+,L2(I0))
. ‖u‖H2,2 , (2.23)

‖w0,k‖L2(R+×I0)
. ‖u‖H2,2 . (2.24)

Proof. Noting that

w0 =

(∫ ∞

x

− i

2
|uy|2dy,

∫ ∞

x

e2ik
2(x−y)kūydy

)T

,
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whose first component is independent of k, bounded by ‖u‖H1 .

By letting ϕ ∈ C∞
0 (I0), we compute

∥∥∥∥
∫ ∞

x

e2ik
2(x−y)kū(y)dy

∥∥∥∥
2

L2(I0)

= sup||φ||=1

∫

I0

ϕ(k)

∫ ∞

x

e2ik
2(x−y)kūy(y)dy . c||uy||L1 ,

(2.25)

The first estimate is immediate and the second follows by integration in x. Therefore for

the second component, we have

∫

R+

∫

I0

∣∣∣∣
∫ ∞

x

e2ik
2(x−y)kuy(y)dy

∣∣∣∣
2

dkdx .

∫

R+

∣∣∣∣
∫ ∞

x

e2ik
2(x−y)kuy(y)dy

∣∣∣∣
2

dx . ||u||L1,1 ||uy||L1 .

Noting that

w0,k =

(
0∫∞

x g(x, y, k)dy

)
, (2.26)

where

g(x, y, k) = e2ik
2(x−y)(1 + 4ik2)(x− y)ūy(y),

the estimates of w0,k can be obtain in the same way.

The operator T0,k induces linear mappings from L2 (R+ × I0) to L2 (R+ × I0) and C0
(
R

+, L2 (I0)
)

by the formula g(x, k) = T0,k(f(·, k))(x) respectively. We need the following estimates on

these induced maps.

Lemma 2. Suppose that u(x, 0) ∈ H3,3(R), the following operator bounds hold uniformly

and the operators are Lipschitz functions of u.

‖T0‖L2(R+×I0)→C0(R+,L2(I0))
. ‖u‖H2,2 ,

‖T0,k‖L2(R+×I0)→L2(R+×I0)
. ‖u‖H3,3 ,

‖T0,k‖L2(R+×I0)→C0(R+,L2(I0))
. ‖u‖H3,3 .

Proof. For an operator T0(k) with an integral kernel K(x, y, k) satisfying the estimate

sup
k∈I0

|K(x, y, k)| 6 h(y), (2.27)

and satisfying K(x, y, k) = 0 if x > y, the L2 (R+ × I0)-norm is controlled by

(∫ ∞

0

∫ ∞

x

h(y)2dydx

)1/2

=

(∫ ∞

0

yh(y)2dy

)1/2

, (2.28)
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and the norm from L2 (R+ × I0) to C0
(
R

+, L2 (I0)
)

is controlled by supx

(∫ +∞
0 h(y)2dy

)1/2
.

The conclusions follow from this observation and the estimates
∫

I0

ϕ(k)

∫ ∞

x

|g(x, y, k)| dydk ≤
∫

I0

ϕ(k)

(∫ ∞

x

e2ik
2(x−y)ūydy +

∫ ∞

x

|4ik2|e2ik2(x−y)ūydy

)
dk

≤ c(

∫

I0

ϕ(k)2dk)1/2
∫ ∞

x

|ūy|dy . ||ϕ||L2 ||u||H1,1 .

B. Resolvent estimates

With the following lemma, we obtain the resolvent estimates in Lemma 4.

Lemma 3. Suppose that X is a Banach space and consider the Volterra-type integral equa-

tion

u(x) = f(x) + (Tu)(x), (2.29)

on the space C0 (R+, X), where f ∈ C0 (R+, X) and T is an integral operator on C0 (R+, X).

Let f∗(x) = supy>x ‖f(y)‖X, and assume there is a nonnegative function h ∈ L1 (R+) such

that

(Tf)∗(x) 6
∫ ∞

x

h(t)f∗(t)dt.

Then the equation (2.29) has a unique solution for each f . Moreover, the resolvent (I−T )−1

obeys the bound
∥∥(I − T )−1

∥∥
(C0(I,X))

6 exp

(∫ ∞

0

h(t)dy

)
.

Our construction of the resolvent is based on the estimate

(T0f)
∗ (x) 6

∫ ∞

x

σ(y)f∗(y)dy. (2.30)

In what follows, we define

σ(y) = 2|uy(y)|+ |iuy(y)|2 ,

which implies ‖σ‖L1 and ‖σ‖L2,2 since u ∈ H3,3(R).

Lemma 4. For each k ∈ R ∪ iR and u(x, 0) ∈ H3,3(R), the operator (I − T0)
−1

exists as

a bounded operator from C0 (R+) ⊗ C2 to itself. Moreover, (I − T0)
−1 − I is an integral

operator with a continuous integral kernel L0(x, y, k) such that L0(x, y, k) = 0 for x > y.

The integral kernel L0(x, y, k) satisfies the estimate

|L0(x, y, k)| 6 exp (‖σ‖L1) σ(y). (2.31)
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Proof. Since T0 is a Volterra operator, we can obtain precise estimates on the resolvent

through the Volterra series. The integral kernelK0(x, y, k) obeys the estimate |K0(x, y, k)| 6
σ(y). The operator

L0 ≡ (I − T0)
−1 − I, (2.32)

is an integral operator with an integral kernel L0(x, y, k) given by

L0(x, y, k) =

{∑∞
n=1Kn(x, y, k), x 6 y,

0, x > y,
(2.33)

where

Kn(x, y, k) =

∫

x6y16···6yn−1

K0 (x, y1, k)K0 (y1, y2, k) . . .K0 (yn−1, y, k) dyn−1 . . . dy1,

and the estimate

|Kn(x, y, k)| 6
1

(n− 1)!

(∫ ∞

x

σ(t)

)n−1

σ(y), (2.34)

holds. Therefore follows the estimate (2.31).

Now, we use the above estimates to solve (2.18) and (2.20). We first present the results

here.

Proposition 2. We suppose that u(x, 0) ∈ H3,3(R) and I0 = {k ∈ R ∪ iR : |k| < 1}, then

there exists a unique solution w ∈ C0
(
R+, L2 (I0)

)
∩L2 (R+ × I0) for (2.18) for each k ∈ I0

satisfies:

(i) The map u(x, 0) → w(x, k) is Lipschitz continuous from H3,3(R) to C0
(
R+, L2 (I0)

)
∩

L2 (R+ × I0);

(ii) The map u(x, 0) → wk(x, k) is Lipschitz continuous from H3,3(R) to C0
(
R

+, L2 (I0)
)
∩

L2 (R+ × I0).

2.1.2 Large-k estimates

First, we insert (2.10) to evaluate the derivative of ω±
11 in the following computation

ω±
11,x =

i

2
|ux|2ω±

11 + kūx, (2.35)

from which, by canceling out some opposite terms, we derive

ω±
11(x, k) = 1 +

i

2

∫ ±∞

x

ūy(y)

∫ ±∞

y

e2ik
2(z−y)ũ(z)ω±

11(z, k)dzdy, (2.36)

ω±
21(x, k) = − i

2k
ūx(x)ω

±
11(x, k)−

i

2k

∫ ±∞

x

e2ik
2(x−y)ũ(y)ω±

11(y, k)dy, (2.37)
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where

ũ(x) = ūxx(x) +
i

2
|ux(x)|2ūx(x). (2.38)

As ω±
21 does not occur in the equation for ω±

11, we solve the integral equation (2.36) for ω±
11,

and use the solution to compute ω±
21.

We introduce the following notations

η±11(x, k) = ω±
11(x, k)− 1, (2.39)

η±21(x, k) = ω±
21(x, k) +

i

2k
ux(x), (2.40)

which will facilitate the extraction of the leading order behavior of ω±
11 and ω±

21 for a large

k. From (2.36), (2.37), (2.39) and (2.40), we conclude that

η±11(x, k) = F±(x, k) +
(
T±η

±
11

)
(x, k), (2.41)

η±21(x, k) = G±(x, k) −
i

2k
ux(x)η

±
11 −

i

2k

∫ ±∞

x

e2ik
2(x−y)ũ(y)η±11(y, k)dy, (2.42)

where

F±(x, k) = −
∫ ±∞

x

kū(y)G±(y, k)dy, (2.43)

G±(x, k) = − i

2k

∫ ±∞

x

e2ik
2(x−y)ũ(y)dy, (2.44)

(T±f) (x, k) =
i

2

∫ ±∞

x

ū(y)

∫ ±∞

y

e2ik
2(y−z)ũ(z)f(z)dz. (2.45)

Let η± =
(
η±11, η

±
21

)
and I∞ ≡ {k ∈ R ∪ iR : |k| > 1}. We utilize the similar method

used in the above part to give the existence of ω± and ω±
k . To study η±11 and η±11,k, we take

k-derivatives at both sides of (2.41) which gives

η±11,k = F±,k + T±,kη11 + T±η
±
11,k. (2.46)

With good estimates for η±11 and its derivatives at hands, it is straightforward to prove the

corresponding estimates on η±21 using (2.42).

In the rest of this part, we drop the ± and derive estimates on η+11 and η+21. Similar

procedures can be used to obtain estimates on η−11, η
−
21. For simplicity, we write η11 for η+11,

F for F+, T for T+, etc. Recall that I∞ = {k ∈ R ∪ iR : |k| > 1}.

A. Estimates on F , G, T and their derivatives

In this part, we mainly give estimates on F , G, and T , so as their derivatives.
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Lemma 5. Suppose u(x, 0) ∈ H3,3(R), the following terms define Lipschitz maps from

H3,3(R) into C0
(
R+, L2 (I∞)

)
∩ L2 (R+ × I∞)

(i) G, (ii) F, (iii)
∂G

∂k
, (iv)

∂F

∂k
.

Proof. Observing that

‖F‖C0(R+,L2(I∞)) 6 ‖u‖W 1,1‖kG‖C0(R+,L2(I∞)), (2.47)

‖F‖L2(R+I∞) 6 ‖u‖H1‖kG‖L2(R+×I∞), (2.48)

it is obvious that (i) ⇒ (ii). To prove (i) we pick ϕ ∈ C∞
0 (I∞) and mimic the proof of

Lemma 1. The Lipschitz continuity follows from the fact that G is linear in ux and F is bi

linear in ux.

One can similarly check that (iii) ⇒ (iv), so it suffices to prove (iii). Next, we estimate

the derivative of G. Since
∂G

∂k
= h1(x, k) + h2(x, k), (2.49)

with

h1(x, k) = m1(x, k) +m2(x, k), (2.50)

h2(x, k) = s1(x, k) + s1(x, k), (2.51)

where

m1(x, k) =
i

4k2

∫ ∞

x

(x− y)e2ik
2(x−y)ūyydy,

m2(x, k) = − 1

8k2

∫ ∞

x

(x− y)e2ik
2(x−y)|uy|2ūydy,

s1(x, k) = 2k

∫ ∞

x

(x− y)e2ik
2(x−y)ūyydy,

s2(x, k) = ik

∫ ∞

x

(x− y)e2ik
2(x−y)|uy|2ūydy.

We can estimate m2(x, k) as before except for m1(x, k), s1(x, k) and s2(x, k), to estimate

which we integrate by parts to obtain

m1(x, k) =
i

4k2

∫ ∞

x

(
1 + 2ik2(y − x)2

)
ūy(x)e

2ik2(x−y)dy, (2.52)

s1(x, k) = − i

k

∫ ∞

x

((x− y)ūyyy − ūyy) e
2ik2(x−y)dy, (2.53)

s2(x, k) =
1

2k

∫ ∞

x

e2ik
2(x−y)(|uy| − (x− y)|uy|2ūyy + 2(x− y)|uy|ūyy|uy|y)dy. (2.54)
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Obviously, we can use the previous techniques to bound m1(x, k), s1(x, k) and s2(x, k) for

I∞.

Finally we elaborate on the mapping properties of the operators T and Tk.

Lemma 6. For large |k| > 1, we have the following estimates

‖T ‖L2(R+×I∞)→L2(R+×I∞) 6 ‖ũ‖L2,1 ‖u‖H1 , (2.55)

‖T ‖L2(R+×I∞)→C0(R+,L2(I∞)) 6 ‖ũ‖L2,1 ‖u‖H1,1 , (2.56)

‖Tk‖L2(R+×I∞)→L2(R+×I∞) 6 ‖ũx‖L2,1 ‖u‖H1 , (2.57)

‖Tk‖L2(R+×I∞)→C0(R+,L2(I∞)) 6 ‖ũx‖L2,1 ‖u‖H2,2 , (2.58)

Proof. We prove (2.57) and (2.58). The operator T defined in (2.45) has the integral kernel

K+(x, y, k) =

{(∫ y

x
e2ik

2(y−z)ūz(z)dz
)
ũ(y), x < y,

0 x > y.
(2.59)

From this computation, we have

(Tf)∗(x) 6

(
‖ūx‖L1

∫ ∞

x

|ũ(y)| dy
)
f∗(x). (2.60)

From the formula

∂T

∂k
[h](x, k) =

i

2

∫ ∞

x

ūy(y)

∫ ∞

y

4ik(y − z)e2ik
2(y−z)ũ(z)h(z, k)dzdy

= − i

k

∫ ∞

x

ūy(y)

∫ ∞

y

e2ik
2(y−z)(y − z) (ũ(z)h(z, k))z dzdy

(2.61)

Then we estimate
∣∣∣∣
∂T

∂k
[h](x, k)

∣∣∣∣ . ‖ũx‖L2,1 ‖h(·, k)‖H1

∫ ∞

x

|uy(y)|dy, (2.62)

with ‖h(·, k)‖H1 = 1. From which we conclude that

∥∥∥∥
∂T

∂k

∥∥∥∥
C0(R+,L2(I∞))

. ‖ũx‖L2,1 ‖u‖H1, (2.63)

∥∥∥∥
∂T

∂k

∥∥∥∥
L2(R+×I∞)

. ‖ũx‖L2,1 ‖u‖H2,2 . (2.64)
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B. Resolvent Estimates.

As an analogy to the above deduction, we utilize Volterra estimates to construct the

resolvent, from which an integral kernel is obtained. Finally, we extend the resolvent to a

bounded operator on the spaces C0
(
R+, L2 (I∞)

)
and L2 (R+ × I∞).

Lemma 7. We suppose that u(x, 0) ∈ H3,3(R). The resolvent (I−T )−1 exists as a bounded

operator in C0 (R+) and the operator L ≡ (I − T )−1 − I is an integral operator with an

integral kernel L(x, y, k) such that L(x, y, k) = 0 for x > y, continuous in (x, y, k) for x < y,

and obeys the estimates

|L(x, y, k)| 6 exp (‖u‖W 1,1 ‖ũ‖L1) ‖u‖w1,1 |ũ(y)| . (2.65)

Proof. The rest of the proof is parallel to the proof of Lemma 4.

According to the above analysis, we can estimate η11,k.

Proposition 3. Suppose that u(x, 0) ∈ H3,3(R) and k ∈ I∞, the the equation (2.46) admits

a unique solution η11 ∈ C0
(
R+, L2 (I∞)

)
∩ L2 (R+ × I∞). Moreover,

(i) u(x, 0) → η11(x, k) is Lipschitz continuous as a map from H3,3(R) to C0
(
R+, L2 (I∞)

)
∩

L2 (R+ × I∞).

(ii) u(x, 0) → η11,k(x, k) is Lipschitz continuous as a map from H3,3(R) to C0
(
R

+, L2 (I∞)
)
∩

L2 (R+ × I∞).

2.2 Symmetries and asymptotics of eigenfunctions

According to the Lax pair (2.1) and the transformation in (2.3), there exists a matrix

function S(k) such that

ω−(x, k) = ω+(x, k)e−ik2xσ̂3S(k). (2.66)

Below, we characterize the symmetry properties of ω±(x, k).

Proposition 4. ω±(x, k) and S(k) satisfy the symmetry relations

ω±(x, k) = σ2ω±(x, k̄)σ2, ω±(x, k) = σ3ω
±(x,−k)σ3, (2.67)

S(k) = σ2S(k̄)σ2, S(k) = σ3S(−k)σ3, (2.68)

where

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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From the symmetries (2.68), S(k) admits the form

S(k) =

(
a(k) b(k)

−b(k) a(k)

)
, (2.69)

where a(k) and b(k) are given by solving (2.66), i.e.,

a(k) = det(ω−
1 , ω

+
2 ) = ω−

11(0, k)ω
+
11(0, k̄)− ω−

21(0, k)ω
+
21(0, k̄), (2.70)

b(k) = det(ω−
2 , ω

+
2 ) = ω−

21(0, k̄) ω
+
11(0, k̄)− ω+

21(0, k̄) ω
−
11(0, k̄), (2.71)

where we denote the matrix eigenfunctions ω±(x, k) = (ωij(x, k))2×2. In terms of the

solutions η±11 and η±21, the functions a(k) and b(k) defined in (2.70) and (2.71) are expressed

as

a(k)− 1 = a1(k) + a2(k), b(k) = b1(k) + b2(k), (2.72)

where

a1(k) = η+11(0, k̄) + η−11(0, k) + η−11(0, k)η
+
11(0, k̄),

a2(k) =
1

4k2
|ux(0)|2 +

i

2k
ux(0) η

+
21(0, k̄)−

i

2k
ux(0)η

−
21(0, k) + η+21(0, k̄)η

−
21(0, k),

and

b1(k) =

(
−η+21(0, k̄) +

i

2k
ux(0)η

+
11(0, k̄)

)
+

(
η−21(0, k)−

i

2k
ux(0)η

−
11(0, k)

)
,

b2(k) = η+11(0, k̄) η
−
21(0, k̄)− η−11(0, k̄) η

+
21(0, k̄).

To prove that u(x, 0) → kr(k) is Lipschitz continuous from H3,3(R) to L2 (I∞), it suffices

to show that u(x, 0) → kb(k) has the same Lipschitz continuity.

Proposition 5. Suppose that u(x, 0) ∈ H3,3(R), then u(x, 0) → kb(k) is Lipschitz from

H3,3(R) to L2 (I∞).

Proof. Here we give the proof of the case k ∈ R, which the case k ∈ iR is analogous. We

rewrite (2.42) as

η±21 = − i

2k
ūxη

±
11 −

i

2k

∫ ±∞

x

e2ik
2(x−y)ũ(y)

(
1 + η±11

)
dy. (2.73)

Setting x = 0, (2.73) becomes

η±21(0, k) +
i

2k
ūx(0)η

±
11(0, k) = Q±, (2.74)

17



with

Q± = − i

2k

∫ ±∞

0

e−2ik2yũ(y)
(
1 + η±11

)
dy. (2.75)

And for kb(k), it is in a new form as

kb(k) = Q+(k) +Q−(k)− η−11(0, k)Q
+(k) + η+11(0, k)Q

−(k). (2.76)

According to the following estimate

∥∥Q±∥∥
L2(I∞)

6 ‖ũ‖L2(R)

(
1 +

∥∥η±11
∥∥
L2(R±×I∞)

)
, (2.77)

it suffices to show that u(x, 0) → Q±(k) is Lipschitz from H3,3(R) to L2 (I∞), from which

we obtain u(x, 0) → kb(k) is Lipschitz from H3,3(R) to L2 (I∞).

Lemma 8. The ω±(x, k) admit the asymptotics

ω±(x, k) ∼ I, as k → ∞, (2.78)

ω±(x, k) ∼ ϕ0(x), as k → 0. (2.79)

The a(k) and b(k) admit the asymptotics

a(k) = 1 +O(k−1), b(k) = O(k−1), as k → ∞, (2.80)

a(k) = e−
i
2d0σ3

(
1 +O

(
k3
))
, b(k) = O

(
k3
)
, as k → 0, (2.81)

where

d0 =

∫ +∞

−∞
|uy|2 (y, t) dy. (2.82)

Proof. The asymptotics (2.80) can be obtained by using (2.70)-(2.71). The ω±(x, k) and

the spectral data a(k), b(k) have the asymptotics at k = 0 [37].

2.3 Scattering map from initial data to scattering coefficients

First, we define the reflection coefficient

r(k) =
b(k)

a(k)
. (2.83)

From detS(k) = 1, by using the symmetry (2.67), we obtain

1 + |r(k)|2 =
1

|a(k)|2 , k ∈ R,

1− |r(k)|2 =
1

|a(k)|2 , k ∈ iR.
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In the absence of spectral singularities, there also exists a c ∈ (0, 1) such that c < |a(k)| < 1/c

for k ∈ Σ = R∪iR. To cope with the following derivation, we assume our initial data satisfies

the assumption below.

Assumption 1. The initial data u(x, 0) ∈ H3,3(R) generates generic scattering data that

satisfies

1. a(k) has no zeros on Σ,

2. a(k) only has a finite number of simple zeros.

Combining the above results, we immediately obtain the following theorem on r(k).

Theorem 1. For any given u(x, 0) ∈ H3,3(R), we have r(k) ∈ H1,1(Σ).

Proof. By using (2.80)-(2.81) and Definition (2.83), we have

r(k) = O(k3), k → 0, r(k) = O(k−1), k → ∞.

Again a(k) has no zeros on Σ by Assumption 1 above, we conclude that r(k) has no spectral

singularities on the contour Σ.

Combining (2.70)-(2.71), Proposition 2 and 3, we derive that

a(k), b(k) ∈ L∞(Σ) ∩ L2(Σ),

by definition (2.83), we then have

r(k) ∈ L2(Σ). (2.84)

Noting that

a′(k) = det(ω−
1,k, ω

+
2 ) + det(ω−

1 , ω
+
2,k), (2.85)

b′(k) = det(ω−
2,k, ω

+
2 ) + det(ω−

2 , ω
+
2,k), (2.86)

by Proposition 2 and 3, we obtain that a′(k), b′(k) ∈ L2(Σ). So we have

r′(k) =
b′(k)a(k)− a′(k)b(k)

a2(k)
∈ L2(Σ), (2.87)

which, combined with (2.84) and Proposition 5, finally gives the map u(x, 0) → r(k) is

Lipschitz continuous from H3,3(R) into H1,1(Σ).
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3 Construction of the RH problem

Since a(k) is an even function, each zero kj of a(k) is accompanied by another zero at −kj .
We assume that a(k) has 2N simple zeros {kj}2Nj=1 ⊂ D+ such that {kj}Nj=1 belong to the first

quadrant and kj+N = −kj , j = 1, . . . N . Similarly, a(k) has 2N simple zeros
{
kj
}2N
j=1

⊂ D−

such that
{
kj
}N
j=1

belong to the second quadrant and kj+N = −kj , j = 1, . . .N . They can

be denoted by

K = {kj , j = 1, · · · , 2N} ⊂ D+, K = {kj , j = 1, · · · , 2N} ⊂ D−.

We define a sectionally meromorphic matrix

M(k;x, t) =





(
ω−

1 (k;x,t)
a(k) , ω+

2 (k;x, t)
)
, k ∈ D+,

(
ω+
1 (k;x, t),

ω−
2 (k;x,t)

a(k̄)

)
, k ∈ D−,

(3.1)

which solves the following RH problem.

RH Problem 3.1. Find a matrix-valued function M(k) =M(k;x, t) which satisfies:

(a) Analyticity: M(k) is meromorphic in C\Σ and has single poles;

(b) Symmetry: M(k̄) = σ2M(k)σ2;

(c) Jump condition: M(k) has continuous boundary values M± on Σ and

M+(k) =M−(k)V (k), k ∈ Σ, (3.2)

where

V (k) =

(
1 + r(k)r(k̄) r(k̄)e−2itθ(k)

r(k)e2itθ(k) 1

)
; (3.3)

(d) Asymptotic behaviors:
{
M(k) = I +O

(
k−1

)
, k → ∞,

M(k) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0;

(3.4)

(e) Residue conditions: M has simple poles at each point in K and K with:

Res
k=kj

M(k) = lim
k→kj

M(k)R(kj), (3.5)

Res
k=kj

M(k) = lim
k→kj

M(k)σ2R(k̄j)σ2, (3.6)

where R(kj) is the nilpotent matrix

R(kj) =

(
0 0

cje
2itθ(kj) 0

)
,
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and θ(k) = k2 x
t +η

2(k), η(k) =
√
α(k− β

2k ). Intuitively, the contour, poles and the stationary

phase points of M(k) are illustrated in Figure 2.

Re k

Im k

0

Figure 2: The RH problem for M(k), where the jump contour Σ = R ∪ iR, the red dots ( � )
represent the poles, and the blue dots ( � ) represent the stationary phase points.

We denote the norming constant cj = c(kj) = b(kj)/a
′(kj) and the collection S =

{kj , cj}2Nj=1 is called the scattering data. The solution of the FL equation (1.2) can be

expressed by

ux(x, t) = m(x, t)e−i
∫

x

−∞ |m(x′,t)|2dx′
, (3.7)

where

m(x, t) = 2i lim
k→∞

(kM(x, t, k))12, (3.8)

we have

|ux(x, t)| = 4|m(x, t)|. (3.9)

4 Existence and uniqueness of solution to the RH prob-

lem

In this section, we prove the existence and uniqueness of solution for the initial value

problem (1.2)-(1.3). We first transform the basic RH Problem 3.1 to an equivalent RH

problem— RH Problem 4.1, whose existence and uniqueness are affirmed by proving that

the associated Beals-Coifman initial integral equation admits a unique solution for r(k) ∈
H1,1(Σ). We further show that the solution M(k) of the RH Problem 3.1 obeys the Lax
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pair (2.1) as a function of x and t, and give reconstruction formulas for u(x, t) in terms of

the solution µ(x, k) of the Beals-Coifman initial integral equation.

To replace the residue conditions (3.5)-(3.6) of the RH Problem 3.1 with Schwartz in-

variant jump conditions, for all poles kj ∈ D+ and k̄j ∈ D−, we trade their residues into the

corresponding jumps on circles γj centered at kj and γj centered at k̄j respectively. The

radii of these circles are chosen sufficiently small such that they are disjoint from all other

circles. Please see Figure 3.

Re k

Im k

0

γj

γj

Figure 3: The jump contour Σ′ of RH problem for M(k).

Let

Σ′ = Σ ∪ {γj}2Nj=1 ∪
{
γj
}2N
j=1

,

we then transform the RH Problem 3.1 to an equivalent RH problem (for simplicity, we still

use the notation M(k;x, t)) on the jump contour Σ′.

RH Problem 4.1. Find a matrix-valued function M(k) =M(k;x, t) which satisfies

(a) Analyticity: M(k;x, t) is analytic in C\Σ′;

(b) Jump condition: M(k;x, t) has continuous boundary values M±(k;x, t) on Σ′ and

M+(k;x, t) =M−(k;x, t)J(k), (4.1)
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where

J(k) =





(
1 + |r(k)|2 r(k)e−2itθ(k)

r(k)e2itθ(k) 1

)
, k ∈ R, (4.2)

(
1− |r(k)|2 −r(k)e−2itθ(k)

r(k)e2itθ(k) 1

)
, k ∈ iR, (4.3)

(
1 0

cje
2itθ(k)

k−kj
1

)
, k ∈ γj (4.4)

(
1

cje
−2itθ(k)

k−kj
,

0 1

)
, k ∈ γj ; (4.5)

(c) Asymptotic behaviors:

{
M(k) = I +O

(
k−1

)
, k → ∞,

M(k) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0.

(4.6)

We suppress the dependence of all quantities on t to emphasize the role of x (later x, t).

To study the existence and the uniqueness of the solution to the RH Problem 4.1, we need

the following RH problem with the jump contour Σ′.

RH Problem 4.2. Find a matrix-valued function M(k;x) with the following properties:

(a) Analyticity: M(k;x) is analytic in C\Σ′.

(b) Jump condition: M(k;x) has continuous boundary values M±(k;x) on Σ′ and

M+(x, k) =M−(x, k)J(k), (4.7)

where

J(k) =





(
1 + |r(k)|2 r(k)e−2ik2x

r(k)e2ik
2x 1

)
, k ∈ R, (4.8)

(
1− |r(k)|2 −r(k)e−2ik2x

r(k)e2ik
2x 1

)
, k ∈ iR, (4.9)

(
1 0

cje
2ik2x

k−kj
1

)
, k ∈ γj (4.10)

(
1

cje
−2ik2x

k−kj
,

0 1

)
, k ∈ γj . (4.11)

(c) Normalization

Type I. M(k;x) = I +O
(
k−1

)
as k → ∞,
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Type II. M(k;x) = O
(
k−1

)
as k → ∞,

where Type I with inhomogeneous boundary condition is needed for the reconstruction of

the potential ux(x). Type II is used to show the existence and uniqueness of the solution of

the RH Problem 4.2 with Type I.

4.1 Beals-Coifman integral equation

The unique solvability of the RH Problem 4.2 is equivalent to the unique solvability of

Beals-Coifman integral equation. We decompose the jump matrix (4.7) as

J(k) = (I − w−)
−1(I + w+), (4.12)

and let

µ =M+ (I + w+)
−1

=M− (I − w−)
−1
, (4.13)

from which we can write down µ explicitly: For k ∈ Σ

µ(x, k) =





(
ω−

1 (x,k)
a(k) ω+

2 (x, k)
)( 1 0

e2ik
2xr(k) 1

)
,

(
ω+
1 (x, k)

ω−
2 (x,k)

a(k̄)

)(1 e−2ik2xr(k̄)

0 1

)
.

(4.14)

and for k ∈ γj

µ(x, k) =





(
ω−

1 (x,k)

a(k) ω+
2 (x, k)

)( 1 0

− cje
2ixk2

k−kj
1

)
,




ω−
11(x,k)
a(k) − cje

2ik2xω+
12(x,k)

k−kj
ω+
12(x, k)

ω−
21(x,k)
a(k) − cje

2ik2xω+
22(x,k)

k−kj
ω+
22(x, k)



(
1 0

0 1

)
,

(4.15)

and for k ∈ γj

µ(x, k) =






ω

+
11(x, k)

ω12(x,k)
a(k) +

c̄je
−2ik2xω+

11(x,k)

k−k̄j

ω+
21(x, k)

ω−
22(x,k)
a(k) +

c̄je
−2ik2xω+

21(x,k)

k−k̄j



(
1 0

0 1

)
,

(
ω+
1 (x, k)

ω−
2 (x,k)

a(k̄)

)

1

c̄je
−2ik2x

k−k̄j

0 1


 .

(4.16)

From (4.13), we obtain

M+ −M− = µ(w+ + w−),
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then Plemelj formula gives the following Beals-Coifman integral equation for Type I nor-

malization in RH Problem 4.2

µ = I + Cwµ = I + C+
Σ′
(
µw−

x

)
+ CΣ′ (µw+) , (4.17)

where I is the 2× 2 identity matrix. And for Type II normalization:

µ = Cwµ = C+
Σ′ (µwx) + C−

Σ′ (µw+) . (4.18)

In Type I, for k ∈ Σ,

µ11(x, k) =1 +
1

2πi

∫

R

µ12(x, s)r(s)e
2is2x

s− k + i0
ds+

1

2πi

∫

iR

µ12(x, s)r(s)e
2is2x

s− k + 0
ds+

2N∑

j=1

µ12 (x, kj) cje
2ixk2

j

k − kj
,

µ12(x, k) =
1

2πi

∫

R

µ11(x, s)r̄(s)e
2is2x

s− k + i0
ds+

1

2πi

∫

iR

µ11(x, s)r̄(s)e
2is2x

s− k + 0
ds−

2N∑

i=1

µ11

(
x, kj

)
c̄je

−2ixk̄2
j

k − k̄j
,

µ21(x, k) =
1

2πi

∫

R

µ22(x, s)r(s)e
2is2x

s− k + i0
ds+

1

2πi

∫

iR

µ22(x, s)r(s)e
2is2x

s− k + 0
ds+

2N∑

i=1

µ22 (x, ki) cje
2ixk2

l

k − kj
,

µ22(x, k) =1 +
1

2πi

∫

R

µ21(x, s)r̄(s)e
2is2x

s− k + i0
ds+

1

2πi

∫

iR

µ21(x, s)r̄(s)e
2is2x

s− k + 0
ds−

2N∑

i=1

µ21

(
x, k̄j

)
c̄je

2ixk̄2
j

k − k̄j
.

and in order to close the system, we have

µ11

(
x, k̄j

)
=1 +

1

2πi

∫

Σ

µ12(x, s)r(s)e
2is2x

s− k̄j
ds+

2N∑

i=1

µ12 (x, ki) cie
2ik2

jx

k̄j − ki
,

µ12 (x, kj) =
1

2πi

∫

Σ

µ11(x, s)r̄(s)e
−2is2x

s− kj
ds−

2N∑

i=1

µ11

(
x, k̄j

)
c̄ie

−2ik̄2
i x

kj − k̄i
,

µ21

(
x, k̄j

)
=

1

2πi

∫

Σ

µ22(x, s)r(s)e
2is2x

s∓ k̄j
ds+

2N∑

i=1

µ22 (x, ki) cie
2ik2

i x

k̄j − ki
,

µ22 (x, kj) =1 +
1

2πi

∫

Σ

µ21(x, s)r̄(s)e
−2is2x

s− kj
ds−

2N∑

i=1

µ21

(
x, k̄i

)
c̄je

−2ik̄2
i x

kj − k̄i
.

Finally, we obtain

ux(x) = − 1

π

∫

Σ

e−2ik2xr̄(k)µ11(x, k)dk −
2N∑

j=1

2iµ11

(
x, k̄j

)
c̄je

−2ik̄2
jx. (4.19)

4.2 Application of Zhou’s vanishing lemma

It is found that the matrix J(k) in (4.8) is Hermitian for k ∈ R. In this case, we

can use Zhou’s Vanishing Lemma from [39] to obtain a unique solution of the RH Problem
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4.2. Though the matrices (4.9)-(4.11) are not Hermitian for k ∈ iR and k ∈ γj , γj , their

jump contours are oriented to preserve Schwartz reflection symmetry in the real axis R, and

the matrix-valued function F (k) = M(k)M(k̄)H is still analytic for k ∈ C\R. This indeed

fits into the framework of Zhou’s Vanishing Lemma and obtain the same conclusion in the

following Proposition.

Proposition 6. The solution to the RH Problem 4.2 with Type II normalization is identi-

cally zero.

Proof. We first recall that the symmetry reduction condition for the entries of the transition

matrix is given as follows: for k ∈ iR, r(k̄) = r(−k) = −r(k). So we conclude from (4.9)

that

J(k) = J(k̄)H , k ∈ iR, (4.20)

where H denotes the complex conjugation and transpose of a given matrix. From(4.10) and

(4.11), it is easy to check that the same equality holds on {γj ∪ γ̄j}2Nj=1. So we conclude that

(4.20) holds on Σ′\R.

Now we formulate the matrix-valued function

F (k) =M(k)M(k̄)H (4.21)

and we want to show that ∫

R

F±(k)dk = 0. (4.22)

It is clear that F (k) is analytic in C\Σ′ by the Schwartz reflection principle. For k ∈ C\R,

we then have

F+(k) =M+(k)M−(k̄)
H =M−(k)J(k)

(
J(k̄)−1

)H
M+(k̄)

H

=M−(k)M+(k̄)
H = F−(k).

By Morera’s theorem F (k) is analytic for k ∈ C\R. Since M±(x, ·) ∈ L2(R), F (k) is

integrable. By the Beal-Coifman theorem, we can write

M(x, k) =
1

2πi

∫

Σ′

µ(x, s) (w+(s) + w−(s))
s− k

ds

=
1

2kπi

∫

Σ′

s

s− k
µ(x, s) (w+(s) + w−(s)) ds−

1

2kπi

∫

Σ′
µ(x, s) (w+(s) + w−(s)) ds,

which implies that

M(x, k) ∼ O
(
k−1

)
, k ∈ C\R,
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and F (k) ∼ O
(
k−2

)
, k ∈ C\R by the definition (4.21). Then the equality (4.22) follows

from Jordon theorem and Cauchy integral theorem.

For k ∈ R, we have that

F+(k) =M+(k)M−(k)
H =M−(k)J(k)M−(k)

H , (4.23)

and

F−(k) =M−(k)M+(k)
H =M−(k)J(k)

HM−(k)
H , (4.24)

and from (4.22) we get

∫

R

M−(k)
(
J(k) + J(k)H

)
M−(k)

H = 0, (4.25)

where for k ∈ R,

J(k) + J(k)H = 2

(
1 + |r(k)|2 r(k)e−2ik2x

r(k)e2ik
2x 1

)

is positive definite since it is Hermitian and has positive eigenvalues. Thus from (4.25) we

conclude that M−(k) = 0 on R. Further we also have

M+(k) =M−(k)J(k) = 0, k ∈ R.

From Morera’s theorem we conclude that M(k) is analytic in a neighborhood of every point

on R. Since M(k) = 0 for k ∈ R, the analytic continuation gives us that M(k) = 0 holds all

the way up to the first complex part of Σ. Applying the jump condition on this part shows

that M±(k) vanishes. We can apply the same argument to the remaining parts of Σ′ and

conclude that M(k) ≡ 0 on the entire complex plane.

The following proposition is a standard result from the Fredholm alternative theorem.

Proposition 7. Let the initial date u(x, 0) ∈ H3,3(R), then the RH Problem 4.2 with Type

I normalization has a unique solution M(k).

4.3 Reconstruction of the potential

In this part we show that the solution to the RH Problem 4.2 with Type I normalization

solves the spatial spectral problem (2.10) and obtain explicit formulas for the potentials.

Lemma 9. Let

f(x, k) = µ(x, k) (w+(k) + w−(k)) , (4.26)
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then we have ∫

Σ′
snf(x, s)ds =

∫

Σ

snf(x, s)ds+

∫

Σ′\Σ
snf(x, s)ds (4.27)

is diagonal when n is add and off-diagonal when n is even.

Proposition 8. The functions M±(k) obey the spatial spectral problem (2.10), where M(k)

and Ux are constructed from the solution µ(k) of the Beals-Coifman integral equation (4.17)

as follows

M(x, k) = I +
1

2πi

∫

Σ′

µ(x, s) (w+(s) + w−(s))

s− k
ds, (4.28)

Ux(x) = − 1

π

[
σ3,

(∫

Σ′
µ11(x, s)r̄(s)e

−2is2xds

)]
. (4.29)

Proof. For k ∈ Σ′, differentiating the jump relation (4.7) with respect to x leads to

M+,x =M−,xJ +M−
(
−ik2[σ3, J ]

)

=M−,xJ +M−
(
−ik2[σ3,M−1

− M+]
)

=M−,xJ + ik2[σ3,M−]J − ik2[σ3,M+].

(4.30)

We conclude that

M+,x(x, k) + ik2[σ3,M+] =
(
M−,x(x, k) + ik2[σ3,M−]

)
J. (4.31)

Using the fact

M±(x, k)− I = C± [µ(x, ·) (w−(·) + w+(·))] , (4.32)

we conclude that

ik2[σ3,M±](x, k) = i

[
σ3, C

± ((·)2f(x, ·)
)
− k

2πi

∫

Σ′
f(x, s)ds− 1

2πi

∫

Σ′
sf(x, s)ds

]
,

where f(x, k) is given by (4.26). It follows from Lemma 9 that the matrix-valued integral
∫
Σ kf(x, k)dk is a diagonal matrix. Hence,

[
σ3,

∫

Σ′
sf(x, s)ds

]
= 0. (4.33)

Defining Ux by (4.29), we have

ik2[σ3, (M±) (x, k)] = i
[
σ3, C

± ((·)2f(x, ·)
)]

+ kUx(x). (4.34)
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Note that Cauchy projection is bounded on L2 and µ11(k) − 1 ∈ L2 for each fixed x. We

can show that the first term defines an L2 function of k for each x. Next, we observe that,

by (4.32),

kUx(x) (M± − I) = Ux(x)C
±[(·)f(x, ·)] − Ux(x)R(x), (4.35)

where R(x) is given by

R(x) =
1

2πi

∫

Σ′
µ(x, k) (w+(k) + w−(k)) dk (4.36)

and the first right-hand term of (4.35) is an L2 function of k for each x.

Now define

W± =M±,x + ik2[σ3,M±]− kUx(x)M±(x) − Ux(x)R(x)M±(x).

By (4.32),(4.34),(4.35), and the identity

−kUx(x)M±(x)− Ux(x)R(x)M±(x) = −kUx(x)− kUx(x) (M± − I)

− Ux(x)R(x) − Ux(x)R(x) (M± − I) ,
(4.37)

it now follows that (W+,W−) ∈ ∂CΣ

(
L2
)

for each fixed x. More explicitly,

W± =C±
x [f(x, ·)] + i[σx, C

± ((·)2f(x, ·)
)
]− Ux(x)

[
C±((·)f(x, ·))

]

− Ux(x)R(x)
[
C±((·)f(x, ·))

]
.

(4.38)

Also,

W+ =W−J. (4.39)

and we can check that W (x, k) has the same residue condition in the complex plane as the

RH Problem 4.2. It follows from Proposition 6 that W+ =W− = 0.

5 Deformation of the RH Problem

5.1 Conjugation

In the jump matrix (3.3), the oscillatory terms are e±itθ(k), where

θ(k) = k2
x

t
+ η2(k). (5.1)

It will be found that the long-time asymptotic of RH Problem 3.1 is affected by the growth

and the decay of the exponential function e2itθ(k) appearing in both the jump relation and
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the residue conditions. In this section, we introduce a new transform M(k) → M (1)(k),

from which we make M (1)(k) well-behaved as t→ ∞ along any characteristic line. Without

loss of generality, we focus on the case t > 0 below, while the case t < 0 can be handled

with the same approach (Appendix A).

Let ξ = x
t + α > 0, from (5.1), we find four phase points of the function θ(k)

zn = k0e
i(n−1)π

2 , n = 1, 2, 3, 4,

where |zn| = k0 = (αβ
2

4ξ )1/4. We further rewrite (5.1) in the form

θ(k) =
αβ2

4

(
k2

k40
+

1

k2

)
− αβ, (5.2)

which leads to

Re(iθ(k)) = −1

4
αβ2Imk2

(
1

k40
− 1

|k|4
)
. (5.3)

The sign signature of Re(iθ(k)) determines the decay domains of the oscillatory term eitθ(k)

with respect to t→ ∞, as Figure 4 shows.

Re k

Im k

z1

z2

z3

z4

∣∣e−itθ
∣∣→ 0

∣∣eitθ
∣∣→ 0

∣∣eitθ
∣∣→ 0

∣∣e−itθ
∣∣→ 0

∣∣eitθ
∣∣→ 0

∣∣e−itθ
∣∣→ 0

∣∣e−itθ
∣∣→ 0

∣∣eitθ
∣∣→ 0

Figure 4: The decay domains of exponential oscillatory terms, where |eitθ(k)| → 0 when
t→ ∞ in yellow-shaded regions, while in blank regions, |e−itθ(k)| → 0 when t→ ∞.

To facilitate the subsequent analysis in the remainder of this paper, we will uniformly

deal with the four stationary phase points zn, n = 1, 2, 3, 4. For this purpose, we introduce

some notations. We first divide Σ into the following eight intervals near the four stationary
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phase points zn, n = 1, 2, 3, 4:

In1 = (0, zn), In2 = (zn,+∞), n = 1, 2,

In1 = (zn, 0), In2 = (−∞, zn), n = 3, 4.

I+ = ∪4
n=1In2, I− = ∪4

n=1In1,

which is illustrated in Figure 5.

The partition ∆±
k0

for k0 ∈ R+ is defined as follows:

∆+
k0

= {j ∈ {1, . . . , 2N} : |kj | > k0} ,

∆−
k0

= {j ∈ {1, . . . , 2N} : |kj | < k0} ,

which splits the residue coefficients cje
2itθ(kj) into two sets.

Re k

Im k

z2

z4

z1z3

I41

I21

I22

I42

I31I32 I12I11

Figure 5: The division of the jump contour Σ = R ∪ iR.

We define

T (k) =
∏

j∈∆−
k0

(
k − kj
k − kj

)
δ(k), (5.4)
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where δ(k) is given by

δ(k) =
∏

n=1,3

(
k − zn
k

)iν(zn)

eχn(k)
∏

n=2,4

(
k

k − zn

)iν(zn)

eχn(k), (5.5)

ν(zn) = − 1

2π
ln[1 + r(zn)r(z̄n)], n = 1, 2, 3, 4,

χn(k) =
1

2πi

∫ zn

0

ln

(
1 + r(k′)r(k̄′)

1 + r(zn)r(z̄n)

)
dk′

k′ − k
, n = 1, 2, 3, 4.

Among all the formulas above, we choose the principal branch of logarithm functions.

Proposition 9. The function defined by (5.4) has following properties:

(a) T (k) is meromorphic in C\I−, i.e., for each j ∈ ∆−
k0

, T (k) has a simple pole at kj

and kj which belong to K ∪K,

(b) For k ∈ C\I−, T (k) = 1/T (k),

(c) For k ∈ I−, the boundary values T±(k) satisfy

T+(k)/T−(k) = 1 + r(k)r(k̄), (5.6)

(d) |k| → ∞ with | arg(k)| ≤ c < π

T (k) = 1 +
i

k


2

∑

j∈∆−
k0

Im(kj)−
∫

I−

k(s)ds


 +O

(
k−2

)
, (5.7)

(e) k → zn, n = 1, 2, 3, 4 along any ray zn + eiφR+ with |φ| ≤ c < π

|T (k)− T0(zn)(k − zn)
iν(zn)| ≤ c|k − zn|1/2, (5.8)

where

T0(zn) =
∏

j∈∆−
k0

(
zn − kj
zn − kj

)
eiβ(k,zn), (5.9)

β(k, zn) = −ν(zn) log
(
k − zn + e

i(n−1)π
2

)
+

∫

I−

ν(s)− χn(s)ν(zn)

s− k
ds, (5.10)

with n = 1, 2, 3, 4.

Using our partial transmission coefficient T (k) defined above, we make a transformation

M (1)(k) =M(k)T (k)−σ3 , (5.11)

32



which satisfies the following RH problem:

RH Problem 5.1. Find a matrix function M (1)(k) = M (1)(k;x, t) with the following

properties:

(a)Analyticity: M (1)(k) is meromorphic in C \ Σ;

(b)Symmetry: M (1)(k̄) = σ2M
(1)(k)σ2;

(c)Jump condition: M (1)(k) satisfies the jump condition

M
(1)
+ (k) =M

(1)
− (k)V (1)(k), (5.12)

the jump matrix V (1)(k) is defined by

V (1) =





(
1 0

( r(k)

1+r(k)r(k)
T−2
− (k)e2itθ 0

)
1 r(k̄)

1+r(k)r(k)
T 2
+(k)e

−2itθ

0 1


 , k ∈ I−,

(
1 r(k̄)T 2(k)e−2itθ

0 1

)(
1 0

r(k)T−2(k)e2itθ 1

)
, k ∈ I+;

(5.13)

(d)Asymptotic conditions :

{
M (1)(k) = I +O

(
k−1

)
, k → ∞,

M (1)(k) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0;

(5.14)

(e)Residue conditions: M (1)(k) has simple poles at each kj ∈ K ∪ K at which

Res
k=kj

M (1) = lim
k→kj

M (1)R±(kj), k ∈ ∆±
k0
, (5.15)

Res
k=kj

M (1) = lim
k→kj

M (1)σ2R±(kj)σ2, k ∈ ∆±
k0
, (5.16)

where

R−(kj) =

(
0 c−1

j (1/T )′(kj)−2e−2itθ(kj)

0 0

)
, R+(kj) =

(
0 0

cjT (kj)
−2e2itθ(kj) 0

)
. (5.17)

Proof. With Proposition 9 and the properties of M , M (1)(k) is unimodular, analytic in

C\(Σ ∪K ∪K), and approaches identity as k → ∞ by its definition. For the residues, since

T (k) is analytic at each kj , kj with k ∈ ∆+
k0
, the residue conditions at these poles are an

immediate consequence of (5.4). For k ∈ ∆−
k0
, T (k) has zeros at kj , and poles at kj so that

M
(1)
1 (k) = M1(k)T (k)

−1 has a removable singularity at kj but acquires poles at kj . For
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M
(1)
2 (k) = M2(k)T (k) the situation is reversed where it has a pole at kj and a removable

singularity at kj . At kj we have

M
(1)
1 (kj) =Res

k=kj

M1(k)T (k)
−1 = Res

k=kj

M1(k) · (1/T )′(kj)

=cje
2iθ(kj)M2(kj)(1/T )

′(kj),

Res
k=kj

M
(1)
2 (k) =Res

k=kj

M2(k)T (k) =M2(kj) [(1/T )
′(kj)]

−1

=c−1
j [(1/T )′(kj)]

−2
e−2itθ(kj)M

(1)
1 (kj).

from which the first formula in (5.15) clearly follows. The computation of the residue at kj

for k ∈ ∆−
k0

can be calculated in the same way.

5.2 A mixed ∂̄-RH problem

The main purpose of this section is to construct a new matrix function M (2)(k) for

deforming the contour Σ into a contour Σ(2) such that: (i) M (2)(k) has no jump on the real

and the imaginary axis. For this purpose, we choose the boundary values of R(2)(k) through

the factorization of V (1)(k) in (5.12) where the new jumps on Σ(2) match a well-known

model RH problem; (ii) We need to control the norm of R(2)(k), so that the ∂-contribution

to the long-time asymptotics of u(x, t) can be ignored; (iii) The residues are unaffected by

the transformation.

As Figure 6, we define a contour Σ(2) = L ∪ L0 ∪ L̄ ∪ L̄0, where L = L1 ∪ L2 ∪ L3 ∪ L4,

and

Lj = {k = zj + ue
3π
4 i, u ∈ (−∞,

1√
2
]}, j = 1, 4;

Lj = {k = zj + ue−
π
4 i, u ∈ (−∞,

1√
2
]}, j = 2, 3;

L0 =

{
k = ue

π
4 i, u ∈ [− 1√

2
,
1√
2
]

}
.
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Figure 6: The jump contour Σ(2) for the M (2), which is consist of blue lines and red lines. The red
lines decay along yellow domains; The blue lines decay along blank domains

Furthermore, the contour Σ(2) contains Σij with i = 0, 1, 2, 3, 4 and j = 1, 2, 3, 4. Σ

and Σ(2) further divides the complex plane C into 24 sectors denoted by Dnj, where n =

1, 2, 3, 4, 5, 6 and j = 1, 2, 3, 4, which is plotted in Figure 7.
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Figure 7: Jump contour Σ(2) and axis R∪ iR divide the complex plane C into 16 domains on which
we define the function R(2).

In addition, we define

ρ =
1

2
min

λ,µ∈K∪K
|λ− µ|. (5.18)

Note that, as poles come in conjugate pairs and no pole lies on the real axis, we have

ρ ≤ dist(K ∪ K,Σ). χK ∈ C∞
0 (C, [0, 1]) is supported near the discrete spectrum such that

χk(k) =

{
1 dist(k,K ∪ K) < ρ/3,
0 dist(k,K ∪ K) > 2ρ/3.

(5.19)

The region division and the jump lines near each stationary phase point can be unified

in the form of Figure 8.

Σn1

Σn2

Σn3

Σn4

zn

Dn3

Dn2

Dn1

Dn6

Dn5

Dn4

Figure 8: The contours and domains near the stationary phase points zn, n = 1, 2, 3, 4.
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In this way, there are the same contours and domains at each stationary phase point

zn, n = 1, 2, 3, 4, as illustrated in Figure 8. Further, we have the following proposition.

Lemma 10. It is possible to define functions Rn,j: Dnj → C, n = 1, 2, 3, 4; j = 1, 3, 4, 6

with boundary values satisfying:

Rn,1(k) =

{
r(k)T (k)−2, k ∈ In2,

fn,1 = r(zn)T0(zn)
−2(k − zn)

−2iν(zn)[1− χK(k)], k ∈ Σn1,
(5.20)

Rn,3(k) =





r(k̄)T 2
+(k)

1+r(k)r(k̄)
, k ∈ In1,

fn,3 = r(z̄n)

1+r(zn)r(z̄n)
T0(zn)

2(k − zn)
−2iν(zn)[1− χK(k)], k ∈ Σn2,

(5.21)

Rn,4(k) =





r(k)T−2
− (k)

1+r(k)r(k̄)
, k ∈ In1,

fn,4 = r(zn)

1+r(zn)r(z̄n)
T0(zn)

−2(k − zn)
−2iν(zn)[1− χK(k)], k ∈ Σn3,

(5.22)

Rn,6(k) =

{
r(k̄)T (k)2, k ∈ In2,

fn,6 = r(z̄n)T0(zn)
2(k − zn)

−2iν(zn)[1− χK(k)], k ∈ Σn4,
(5.23)

Rn,2(k) = Rn,5(k) = 1, if k ∈ Dn2 ∪Dn5. (5.24)

The functions Rn,j defined above have the following property:

|Rn,j(k)| . sin2 (arg (k − zn)) + 〈Re(k)〉−1/2, (5.25)
∣∣∂̄Rn,j(k)

∣∣ .
∣∣∂̄χK(k)

∣∣ + |r′(Re k)|+ |k − zn|−1/2
, (5.26)

and

∂̄Rn,j(k) = 0, if k ∈ Dn2 ∪Dn5 or dist(k,K ∪ K) < ρ/3. (5.27)

Proof. Without loss of generality, we only provide the detailed proof for R1,1, as other cases

can be proved in a similar way. Define the function

f1,1(k) = r(z1)T (k)
2T0(z1)

−2(k − z1)
−2iν(z1), k ∈ D11. (5.28)

Let k − z1 = seiφ, for k ∈ D11,

R1,1(k) = [f1,1(k) + (r(Re k)− f1,1(k)) cos(2φ)] T (k)
−2 (1− χK(k)) . (5.29)

Clearly, R1,1(k) satisfies the boundary conditions in this lemma, as cos(2φ) vanishes on Σ11

and χK(k) is zero on the real axis. First, consider |R1,1(k)| . We have

|R1,1(k)| ≤
∣∣2f1,1(k)T (k)−2 (1− χK(k))

∣∣ sin2(φ) +
∣∣T (k)−2 (1− χK(k)) cos(2φ)

∣∣ |r(Re k)|

≤ c
(
sin2(φ) + 〈Re k〉−1/2

)
,

(5.30)

37



where, in the first line, we have bounded the first factor in each term of the sum on the

left hand side using Proposition 9, Equation (5.19) and (5.28), by noting that the poles

of T (k)−2 are outside the support of (1− χK(k)). In the second line, we use the fact

that r(k) ∈ H1(R) implies that r is 1/2-Hölder continuous and |r(u)| ≤ c〈u〉−1/2. As

∂̄ = (∂x + i∂y) /2 = eiφ
(
∂s + iρ−1∂φ

)
/2, we have

∂̄R1,1(k) = − [f1(k) + (r(Re k)− f1,1(k)) cos 2φ]T (k)
−2∂̄χK(k)

+

[
1

2
r′(Re k) cos(2φ)− ieiφ

r(Re(k))− f1,1(k)

|k − kj |
sin(2φ)

]
T (k)−2 (1− χK(k)) .

(5.31)

According to the continuity and the decay of r(Re k) described above and the fact that both

1 − χK(k) and ∂̄χK(k) are supported away from the discrete spectrum, the poles and the

zeros of T (k) do not affect the bound. Finally, we arrive at (5.25)-(5.27), which gives the

first two terms in the bound. To calculate the last term we write

|r(Re k)− f1,1(k)| ≤ |r(Re k)− r(z1)|+ |r(z1)− f1,1(k)| , (5.32)

and use Cauchy-Schwarz inequality to bound each term as follows:

|r(Re k)− r(z1)| ≤
∣∣∣∣∣

∫ Re k

z1

r′(s)ds

∣∣∣∣∣ ≤ ‖r‖H1(R)|k − z1|1/2, (5.33)

and

|r(z1)− f1,1(k)| ≤ |r(z1)|
(
1 + |r(z1)|2

) ∣∣∣T (k)2 − T0(z1)
2(k − z1)

2iν(z1)
∣∣∣

≤ c‖r‖H1(R)|k − z1|1/2.
The last estimate uses (5.8) to bound T (k) and (k − z1)

iν(z1) in a neighborhood of k = z1.

(5.25)-(5.27) for k ∈ D11 follows immediately.

Now, we construct a matrix function R(2)(k) for n = 1, 2, 3, 4 by

R(2)(k) =





(
1 0

−Rn,1(k)e
2itθ 1

)
, k ∈ Dn1,

(
1 −Rn,3(k)e

−2itθ

0 1

)
, k ∈ Dn3,

(
1 0

Rn,4(k)e
2itθ 1

)
, k ∈ Dn4,

(
1 Rn,6(k)e

−2itθ

0 1

)
, k ∈ Dn6,

(
1 0

0 1

)
, k ∈ Dn2 ∪Dn5,

(5.34)
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by which we define a transformation

M (2)(k) =M (1)(k)R(2)(k), (5.35)

and obtain the following mixed ∂-RH problem.

RH Problem 5.2. Find a function M (2)(k) =M (2)(k;x, t) with the following properties.

(a) Analyticity: M (2)(k) is continuous in C, sectionally continuous first partial derivatives

in C\(Σ(2) ∪ K ∪K), and meromorphic in Dn2 ∪Dn5, n = 1, 2, 3, 4;

(b) Symmetry: M (2)(k̄) = σ2M
(2)(k)σ2;

(c) Jump condition: The boundary value M (2)(k) at Σ(2) satisfies the jump condition

M
(2)
+ (k) =M

(2)
− (k)V (2)(k), k ∈ Σ(2), (5.36)

where

V (2)(k) =





(
1 0

fn,1(k)e
2itθ 1

)
, k ∈ Σn1, n = 1, 2, 3, 4,

(
1 fn,3(k)e

−2itθ

0 1

)
, k ∈ Σn2, n = 1, 2, 3, 4,

(
1 0

fn,4(k)e
2itθ 1

)
, k ∈ Σn3, n = 1, 2, 3, 4,

(
1 fn,6(k)e

−2itθ

0 1

)
, k ∈ Σn4, n = 1, 2, 3, 4,

(
1 −(fj+1,3 − fj,3)e

−2itθ

0 1

)
, k ∈ Σ0j , j = 1, 3,

(
1 0

(fj+1,4(k)− fj,4(k))e
2itθ 1

)
, k ∈ Σ0j , j = 2, 4, f5,4

.
= f1,4;

(5.37)

(d) Asymptotic conditions :

{
M (2)(k) = I +O

(
k−1

)
, k → ∞,

M (2)(k) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0;

(5.38)

(e) Away from Σ(2), we have

∂M (2) =M (2)∂R(2), (5.39)
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which holds in C\Σ(2), where

∂R(2) =





(
1 0

(−1)j∂Rn,j(k)e
2itθ 1

)
, k ∈ Dnj , n = 1, 2, 3, 4; j = 1, 4,

(
1 (−1)j∂Rn,j(k)e

−2itθ

0 1

)
, k ∈ Dnj , n = 1, 2, 3, 4; j = 3, 6,

(
0 0

0 0

)
, k ∈ Dnj , n = 1, 2, 3, 4; j = 2, 5;

(5.40)

(f) Residue conditions: M (2)(k) has simple poles at each point in K ∪ K with:

Res
k=kj

M (2)(k) = lim
k→kj

M (2)(k)R±(kj), k ∈ ∆±
k0
, (5.41)

Res
k=kj

M (2)(k) = lim
k→kj

M (2)(k)σ2R±(kj)σ2, k ∈ ∆±
k0
, (5.42)

where R−(kj) and R+(kj) is defined in (5.17).

5.3 Decomposition of the mixed ∂-RH problem

To solve RH Problem 5.2, we decompose it into a model RH problem for M rhp(k) =

M rhp(k;x, t) with ∂R(2) = 0 and a pure ∂-Problem with ∂R(2) 6= 0. For the first step, we

establish a RH problem for the M rhp(k) as follows.

RH Problem 6.1. Find a matrix-valued function M rhp(k) with the following properties:

(a) Analyticity: M rhp(k) is analytical in C\(Σ(2) ∪K ∪ K);

(b) Symmetry: M rhp(k̄) = σ2M
rhp(k)σ2;

(c) Jump condition: M rhp(k) has continuous boundary values on Σ(2) and

M rhp
+ (k) =M rhp

− (k)V (2)(k), k ∈ Σ(2); (5.43)

(d) ∂̄-Derivative: ∂̄R(2) = 0, for k ∈ C;

(e) Asymptotic conditions :
{
M rhp(k) = I +O

(
k−1

)
, k → ∞,

M rhp(k) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0;

(5.44)

(f) Residue conditions: M rhp has simple poles at each point in K ∪K with:

Res
k=kj

M rhp(k) = lim
k→kj

M rhp(k)R±(kj), k ∈ ∆±
k0
, (5.45)

Res
k=kj

M rhp(k) = lim
k→kj

M rhp(k)σ2R±(kj)σ2, k ∈ ∆±
k0
, (5.46)
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with the definition of R±(kj) in (5.17). The existence and the asymptotics of M rhp(k) will

be presented in Section 8.

M rhp(k) can be used to construct a new matrix function

M (3)(k) =M (2)(k)M rhp(k)−1, (5.47)

in which the analytical component M rhp(k) disappears and it finally becomes a pure ∂-

problem.

RH Problem 6.2. Find a matrix-valued function M (3)(k) =M (3)(k;x, t) with the follow-

ing properties:

(a) Analyticity: M (3)(k) is continuous in C, continuous first partial derivatives in C\(Σ(2)∪
K ∪K);

(b) Symmetry: M (3)(k̄) = σ2M
(3)(k)σ2,

(c) Asymptotic conditions :
{
M (3)(k) = I +O

(
k−1

)
, k → ∞,

M (3)(k) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0;

(5.48)

(d) ∂̄-Derivative: For k ∈ C, we have

∂̄M (3)(k) =M (3)(k)W (3)(k),

where

W (3)(k) =M rhp(k)(k)∂̄R(2)M rhp(k)−1(k). (5.49)

Proof. By using the properties of the solutions M (2)(k) and M rhp(k) for RH Problem 5.1

and RH Problem 6.1, the analyticity and the asymptotics are obtained immediately. As

M (2) and M rhp have same jump matrix, we have

M
(3)
− (k)−1M

(3)
+ (k) =M

(2)
− (k)−1M rhp

− (k)M rhp
+ (k)−1M

(2)
+ (k)

=M
(2)
− (k)−1V (2)(k)−1M

(2)
+ (k) = I,

(5.50)

from which it follows that M (3) and its first partial derivative extend continuously to Σ(2),

which immediately gives M (3) has no pole. For kj ∈ K, we can verify that the coefficient

matrix of the leading term in the Laurent expansion of M (2)(k), denoted as Nj , is a nilpotent

matrix. Hence, we have the Laurent expansion of kj as

M (2)(k) = a(kj)

[
I +

Nj

k − kj

]
+O(k − kj), (5.51)

M rhp(k) = A(kj)

[
I +

Nj

k − kj

]
+O(k − kj), (5.52)
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where a(kj) and A(kj) are the constant terms in their Laurent expansion. Then from

M rhp(k)−1 = σ2M
rhp(k)Tσ2, M

(3) becomes

M (3)(k) =M (2)(k)M rhp(k)−1

=

{
a(kj)

[
I +

Nj

k − kj

]}{[
I − Nj

k − kj

]
A(kj)

−1

}
+O(k − kj)

= O(1),

(5.53)

which has only removable singularities at each kj . The last property follows from the

definition of M (3)(k), by exploiting the fact that M rhp(k) has no ∂ component.

We construct the solution M rhp(k) of the RH problem 5.1 in the following form

M rhp(k) =

{
E(k)M (out)(k), k /∈ C \ Uk0 ,

E(k)M (in)(k), k ∈ Uk0 ,
(5.54)

where Uk0 = ∪4
n=1Uzn , and Uzn is the neighborhood of zn:

Uzn =
{
k : |k − zn| ≤ min {k0/2, ρ/3} , ε

}
, (5.55)

which implies that M rhp(k) has no poles in Uk0 as dist(K∪K,Σ) > ρ. M rhp decomposes into

two parts M (out) and M (in): M (out) solves a model RH problem obtained by ignoring the

jump condition of RH Problem 6.1, which will be solved in Section 6; for M (in), its solution

can be approximated with parabolic cylinder functions if we let M (in) match to M (2) and

a parabolic cylinder model in Uk0 , which we elaborate on in Section 7. Besides, E(k) is an

error function, which is a solution of a small-norm RH problem, which is discussed in details

in Section 8. The jump matrix in RH Problem 6.1 admits the following estimates.

Proposition 10. For the jump matrix V (2)(k), we have the following estimates

‖V (2)(k)− I‖L∞(Σ(2)\Uk0
) = O

(
e
− αβ2

12k3
0

|k−zn|3(k−2−|k0|−2)t
)
, (5.56)

∥∥∥V (2)(k)− I
∥∥∥
L∞

(
Σ

(2)
0

) = O
(
e
− 3αβ2

8k2
0

t
)
, (5.57)

where the contours are defined by

Σ(2)
n = Σn1 ∪Σn2 ∪ Σn3 ∪Σn4, n = 1, 2, 3, 4. (5.58a)

Proof. Without loss of generality, we only prove (5.57) for k ∈ Σ01, as other cases follow in

a similar way. By using the definition of V (2) and (5.25), we have
∥∥∥V (2)(k)− I

∥∥∥
L∞(Σ01)

≤
∥∥(R2,3 −R1,3)e

−2itθ
∥∥
L∞(Σ01)

≤ c
∥∥e−2itθ

∥∥
L∞(Σ01)

. (5.59)
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Note that |k| <
√
2k0/2. Combined with (5.3), we find that

|e−2itθ| = e−Re2itθ = e
t
2αβ

2Imk2( 1

k4
0

− 1
|k|4 ) ≤ e

− 3αβ2

8k2
0

t → 0, as t→ ∞, (5.60)

which together with (5.59) gives (5.57). The calculation of Σ
(2)
n , n = 1, 2, 3, 4 is similar.

This proposition implies that the jump matrix V (2)(k) goes to I on both Σ(2) \Uk0 and

Σ
(2)
0 , so outside the Uk0 there is only a exponentially small error of t → ∞ by completely

ignoring the jump condition of M rhp(k). According to (5.57), it is clear that V (2)(k) − I

goes exponentially on Σ
(2)
0 and uniformly goes to zero as k → 0. Therefore, the case of the

neighborhood k → 0 requires no further discussion.

6 Outer model RH problem

In this section, we build an outer model RH problem and show that its solution can

approximated with a finite sum of soliton solutions. The key lies in the fact that we need

the property of M (out)(k) as k → ∞, from which we obtain the solution of the following

outer model problem.

6.1 Existence of soliton solutions

RH Problem 7.1. Find a matrix-valued function M (out)(k) with the following properties:

(a) Analyticity: M (out)(k) is analytical in C\(K ∪ K);

(b) Symmetry: M (out)(k̄) = σ2M
(out)(k)σ2;

(c) Asymptotic conditions :

{
Mout(k) = I +O

(
k−1

)
, k → ∞,

Mout(k) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0;

(6.1)

(d) Residue conditions: M (out) has simple poles at each point in K ∪ K satisfying the

residue conditions (5.45) and (5.46).

To show the existence and the uniqueness of the solution to RH Problem 7.1, we first

consider RH Problem 3.1 under the condition of no reflection, i.e., r(k) ≡ 0. In this case

the unknown function M(k) is meromorphic. The RH Problem 3.1 reduces to the following

RH problem.

RH Problem 7.2. Given the discrete data S = {(kj , cj)}2Nj=1, find a matrix-valued function

m(k|S) with the following properties:
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(a) Analyticity: m(k|S) is analytical in C\(K ∪ K),

(b) Symmetry:

m(k|S) = σ2m(k|S)σ2, (6.2)

(c) Asymptotic conditions :

{
m(k|S) = I +O

(
k−1

)
, k → ∞,

m(k|S) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0;

(6.3)

(d) Residue conditions: m(k|S) has simple poles at each point in K ∪ K satisfying

Res
k=kj

m(k|S) = lim
k→kj

m(k|S)τj , (6.4)

Res
k=kj

m(k|S) = lim
k→kj

m(k|S)τ̂j , (6.5)

where τj is a nilpotent matrix,

τj =

(
0 0
γj 0

)
, τ̂j = σ2τjσ2, γj = cje

−2itθ(kj), (6.6)

Moreover, the solution satisfies

∥∥m(k|S)−1
∥∥
L∞(C\(K∪K))

. 1. (6.7)

Proposition 11. The RH Problem 7.2 has a unique solution.

Proof. The uniqueness of the solution follows from the Liouville’s theorem. From the sym-

metries of m (k|S) and the residue of m(k|S) at k = kj , we know that it admits a partial

fraction expansion with the following form

m(k|S) = I +

2N∑

j=1

[
1

k − kj

(
νj(x, t) 0
ζj(x, t) 0

)
+

1

k − kj

(
0 −ζj(x, t)
0 νj(x, t)

)]
. (6.8)

Since det(m (k|S)) = 1, ‖m (k|S)‖L∞(C\(K∪K)) is bounded, by using a similar technique as in

Appendix B and from (6.8), we simply obtain (6.7) and prove the existence of the solution

for the RH Problem 7.2.

In the reflectionless case, the transmission coefficient admits the following trace formula

a(k) =

2N∏

j=1

(
k − kj

k − kj

)
, (6.9)
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whose poles can be split into two parts. Let △ ⊆ {1, 2, . . . , 2N}, we define

a∆(k) =
∏

j∈∆

(
k − kj

k − kj

)
. (6.10)

With a renormalization transformation

m∆(k|D) = m (k|S) a∆(k)σ3 , (6.11)

where the scattering data are given by

D =
{(
kj , c

′
j

)}2N
j=1

, c′j = cja∆(k)
2, (6.12)

it is clear that the transformation (6.11) splits the poles of m∆(k|S) into two columns by

the choice of ∆, after which it satisfies the following modified discrete RH problem.

RH Problem 7.3. Given the discrete data (6.12), find a matrix-valued function m∆(k|D)

with the following properties:

(a) Analyticity: m∆(k|D) is analytical in C\(K ∪ K);

(b) Symmetry: m∆(k|D) = σ2m
∆(k|D)σ2;

(c) Asymptotic conditions :

{
m∆(k|D) = I +O

(
k−1

)
, k → ∞,

m∆(k|D) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0;

(6.13)

(d) Residue conditions: m∆(k|D) has simple poles at each point in K ∪ K satisfying

Res
k=kj

m∆(k|D) = lim
k→kj

m∆(k|D)τ∆j , (6.14)

Res
k=kj

m∆(k|D) = lim
k→kj

m∆(k|D)τ̂∆j , (6.15)

where τ∆j is a nilpotent matrix satisfies

τ∆j =





(
0 0

γja
∆(kj)

2 0

)
, j /∈ ∆,

(
0 γ−1

j a′∆(kj)−2

0 0

)
, j ∈ ∆,

(6.16)

where

τ̂∆j = σ2τ∆j σ2, γj = cje
2itθ(kj). (6.17)
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Since (6.11) is an explicit transformation ofm(k|S), by Proposition 5, we obtain the existence

and the uniqueness of the solution of the RH Problem 7.3.

In the RH Problem 7.3, taking ∆ = ∆−
k0

and replacing the scattering data D with the

scattering data

D̃ = {(kj , c̃j)}Nk=1, c̃j = cjδ(kj)
2, (6.18)

we have the following corollary.

Corollary 1. There exists a unique solution for the RH Problem 7.1, which has the form

Mout(k) = m∆−
k0 (k|D̃), (6.19)

where scattering data D̃ is given by (6.18).

6.2 Long-time behavior of soliton solutions

By choosing ∆ appropriately, the asymptotic limits t → ∞ with ξ = x
t + α and k0 =

(αβ
2

4ξ )
1
4 bounded are under a better asymptotic control. Then we consider the long-time

behavior of soliton solutions.

By using the residue coefficients (6.17), if N = 1, in the reflectionless case, one soliton

solution is given by

ux(x, t) = 2ζ sech [4ξζ(x − vt)− δ0] e
−2iχ(x,t)+iκ0e−i{ ζ

ξ
tanh[4ξζ(x−vt)−δ0]+| ζξ |}, (6.20)

in which δ0 and κ0 are real parameters and the speed of soliton is

v = −α
(
1− β2

4|k|4
)
. (6.21)

Given a pair of points x1 ≤ x2 with x1, x2 ∈ R with velocities v1 ≤ v2 with v1, v2 ∈ R
−,

we define a cone

C(x1, x2, v1, v2) = {(x, t) ∈ R
2|x = x0 + vt, x0 ∈ [x1, x2], v ∈ [v1, v2]}, (6.22)

and denote

I = {k : f(v2) < |k| < f(v1)}, f(v)
.
= (

αβ2

4(v + α)
)1/4,

K(I) = {kj ∈ K : kj ∈ I}, N(I) = |K(I)|,

K+(I) = {kj ∈ K : |kj | > f(v1)}, K−(I) = {kj ∈ K : |kj | < f(v2)},

c±j (I) = cj
∏

Re kn∈I±\I

(
kj − kn

kj − kn

)2

exp[± 1

πi

∫

I±

log[1 + r(ζ)r(ζ)]

ζ − kj
dζ]. (6.23)
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k1−k1
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f(v2) f(v1)

(b)

Figure 9: (a) The time-spatial cone C(x1, x2, v1, v2); (b) In this example, the original scattering
data has two pairs of zero points of discrete spectrums, but inside the cone C(x1, x2, v1, v2) only one
pair of points with K(I) = {k1,−k1, k1,−k1}, and f(v2), f(v1).

For the (x, t) ∈ C (x1, x2, v1, v2), a direct calculation leads to

k ∈ I = {k : f (v2) ≤ |k| ≤ f (v1)} , (6.24)

which implies that a proportion of the discrete spectrums would fall in the circular region

K(I) = {kj ∈ K | kj ∈ I} .

Define

µ = min
kj∈K\K(I)

{
Re kj Im kjdist

(
vkj

− v
)}
,

where

vkj
= −α

(
1− β2

4 |kj |4

)
, (6.25)

is the velocity of one soliton corresponding to the discrete spectrum kj . The value vkj
− v

represents the difference between the velocity of one soliton corresponding to kj .

Proposition 12. The choice of normalization ∆ = ∆∓
k0

in RH Problem 7.3 ensures that as

t→ ∞ with (x, t) ∈ C (x1, x2, v1, v2) that

∥∥∥∥τ
∆∓

k0

j

∥∥∥∥ =

{
O(1), kj ∈ K(I),
O(e−4µt), kj ∈ K\K(I), t→ ∞. (6.26)
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Proof. We take ∆ = ∆−
k0

in the RH Problem 7.3. Then, for kj ∈ K−(I) and (x, t) ∈
C(x1, x2, v1, v2), by using the residue condition (6.14),

|γj(x0 + vt, kj)| ≤ c
∣∣∣e−2itθ(kj)

∣∣∣ , (6.27)

for the exponential part on the right, we have

−2itθ(kj) = −2ix0k
2
j − 2it(vk2j + αk2j − αβ +

αβ2

4k2j
). (6.28)

To get the modulus of e−2itθ(kj), we calculate the real parts of the right side

Re

(
−2ix0k

2
j − 2it(vk2j + αk2j − αβ +

αβ2

4k2j
)

)
= 2x0 Re kj Im kj − 4tRe kj Im kj(vj − v),

(6.29)

where we set

vkj
= −α

(
1− β2

4 |kj |4

)
. (6.30)

Therefore,

|e−2itθ(kj)| = e2x0RekjImkje−4tRekjImkj(vkj−v) ≤ ce−4µt. (6.31)

By using the above estimates, we obtain the following result.

Lemma 11. Fix the reflectionless data S = {(kj , cj)}Nj=1 ,D±(I) =
{(
kj , c

±
j (I)

)
|kj ∈ K(I)

}
.

Then as t→ ∞ with (x, t) ∈ C (x1, x2, v1, v2), we have

m
∆∓

k0 (k|D) = (I +O(e−4µt))m
∆∓

k0 (k|D±(I)), (6.32)

with

c±j (I) = cj
∏

Re kn∈I±\I

(
kj − kn

kj − kn

)2

.

Proof. Denote small disks centered at each kj ∈ K\K(I) with a radius smaller than µ(I)
as Sj respectively, with ∂Sj representing the boundary of Sj . Then we introduce a new

transformation which can remove the poles kj ∈ K\K(I) and these residues change to near-

identity jumps.

m̃∆−
k0 (k|D) =





m
∆−

k0 (k|D)(I − τj
k−kj

), k ∈ Sj ,

m
∆−

k0 (k|D)(I − σ2τjσ2

k−kj
), k ∈ Sj ,

m
∆−

k0 (k|D), elsewhere.

(6.33)
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Comparing with m∆−
k0 (k|D) the new matrix function m̃∆−

k0 (k|D) has a new jump in each

∂Sj which we denote by Ṽ (k)

m̃
∆−

k0
+ (k|D) = m̃

∆−
k0

− (k|D)Ṽ (k), k ∈ Σ̃, (6.34)

where

Σ̃ = ∪kj∈K\K(I)(∂Sj ∪ ∂Sj).

Then using (6.33), we have

‖Ṽ (k)− I‖L∞(Σ̃) = O(e−4µt). (6.35)

Since m̃∆−
k0 (k|D) has the same poles and residue conditions with m∆−

k0 (k|D), then

m0(k) = m̃
∆−

k0 (k|D)m
∆−

k0
(I)

(k|D±(I))−1, (6.36)

has no poles, but it has a jump matrix for k ∈ Σ̃

m+
0 (k) = m−

0 (k)Vm0 (k). (6.37)

Combine (6.34), (6.36), (6.37) and under the fact that the solution of RH Problem 7.2 has

no jump, the jump matrix Vm0(k) is given by

Vm0(k) = m(k|D±(I))Ṽ (k)m(k|D±(I))−1, (6.38)

which, by using (6.35), also admits the same decaying estimate

‖Vm0(k)− I‖L∞(Σ̃) = ‖Ṽ (k)− I‖L∞(Σ̃) = O(e−4µt), t→ ∞. (6.39)

Using the reconstruction formula to m
∆−

k0 (k|D), we immediately obtain the following

result.

Corollary 2. Let msol(x, t|D) and msol(x, t|D(I)) denote the N-soliton solution of (1.1)

corresponding to discrete scattering data S and D(I) respectively, with I, C(x1, x2, v1, v2),
D(I) given above. As t→ ∞ with (x, t) ∈ C(x1, x2, v1, v2), we have

2i lim
k→∞

k(m(k|D))12 = msol(x, t|D) = msol(x, t|D(I)) +O(e−4µt). (6.40)

From the outer model we arrive at the following corollary.
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Corollary 3. The RH Problem 7.1 has a unique solution M (out) with

M (out)(k) = m
∆−

k0 (k|D(out))

= m
∆−

k0 (k|D(I))
∏

Re kj∈I+\I

(
k − kj

k − kj

)−σ3

δ−σ3 +O(e−4µt),
(6.41)

where D(out) = {kj , cj(zn)}2Nj=1, n = 1, 2, 3, 4,

cj(zn) = cj exp


− 1

πi

∫

I+

log
[
1 + r(ζ)r(ζ)

]

ζ − zn
dζ


 . (6.42)

Then substituting (6.41) into (6.7) we immediately have

‖M (out)(k)−1‖L∞(C\K∪K) . 1, (6.43)

Moreover, we have the reconstruction formula

M (out)(k) = m(x, t|D(out)) = m(x, t|D(out)(I)) +O(e−4µt), (6.44)

and

msol(x, t|D(out)) = msol(x, t|D(I)) +O(e−4µt), t→ ∞. (6.45)

7 A local solvable RH model near phase points

From Proposition 4, we find that V (2)(k)−I in the neighborhood Uk0 of zn, n = 1, 2, 3, 4

does not have a uniformly small jump for t → ∞. Therefore, we establish a local model

M (in)(k) which exactly matches the jumps of M rhp(k) on Σ(2) ∩Uk0 for the function E(k).

Then it has a uniform estimate on the decay of the jump.

RH Problem 8.1. Find a matrix-valued function Mfl(k) such that

(a) Analyticity: Mfl(k) is analytical in C\Σfl, Σfl = ∪4
n,j=1Σnj ;

(b) Asymptotic conditions :

{
Mfl(k) = I +O

(
k−1

)
, k → ∞,

Mfl(k) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0;

(7.1)

(c) Jump condition: Mfl(k) has continuous boundary values Mfl
± (k) on Σfl and

Mfl
+ (k) =Mfl

− (k)V fl(k), k ∈ Σfl, (7.2)
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where the jump matrix V fl(k) is given by

V fl(k) =





(
1 0

r(zn)δ
−2(zn)(k − zn)

−2iν(zn)e2itθ(k) 1

)
, k ∈ Σn1, n = 1, 2, 3, 4,

(
1 r(z̄n)

1+r(zn)r(z̄n)
δ(zn)

2(k − zn)
2iν(zn)e−2itθ(k)

0 1

)
, k ∈ Σn2, n = 1, 2, 3, 4,

(
1 0

r(zn)

1+r(zn)r(z̄n)
δ(zn)

−2(k − zn)
−2iν(zn)e2itθ(k) 1

)
, k ∈ Σn3, n = 1, 2, 3, 4,

(
1 r(z̄n)δ(zn)

2(k − zn)
2iν(zn)e−2itθ(k)

0 1

)
, k ∈ Σn4, n = 1, 2, 3, 4.

(7.3)

For the soliton-free case when there are no discrete spectrum, the formula (5.10) reduces

to T0 (zn) = δ (zn). We take z3 as an example and other three stationary-phase points can

be handled in the same way. Expanding θ(k), we obtain

θ(k) =
αβ2

4
(
k2

k40
+

1

k2
)− αβ

=
αβ2

2k20
− αβ +

αβ2

k40
(k − z3)

2 + (
αβ2

4k30
− 3αβ2

4k40
)(k − z3)

3.

(7.4)

We define the following scaling transformation

N : f(k) → (Nf)(k) = f(
k20

2β
√
αt
ζ + z3), (7.5)

which acts on δ(k)e−itθ(k) and gives

(
Nδe−itθ

)
(k) = δ0(ζ)δ1(ζ), (7.6)

where

δ0(ζ) =
z
iν(z1)−2iν(z2)
3

(
√
αtβ)iν(z1)

2−iν(z2)e
i(αβ−αβ2

2z2
3

)t
eχ3(z3)eχ

′
3(z3), (7.7)

and

δ1(ζ) = ζiνe−i ζ
2

4 e
−i

k3
0ζ2

32
√

αtβ
( 1
ζ
− 3

k0
) z

2iν(z2)+iν(z3)
3

2iν(z3)−iν(z2)

(
k2
0

2
√
αtβ

ζ + 2z3)
iν

(
k2
0

2
√
αtβ

ζ + z3)2iν

× ((
k20

2
√
αtβ

ζ + z3 + z2)(
k20

2
√
αtβ

ζ + z3 + z4))
−iν̃

× e
χ3(

k2
0

2
√

atβ
ζ+z3)−χ3(z3)e

χ̃′
3(

k2
0

2
√

atβ
ζ+z3)−χ̃′

3(z3),

(7.8)
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for which

χ′
n(k) = e−

1
2πi

∫
zn
0

ln|k−k′|d ln(1−r(k′)r(k
′
)), n = 1, 2, 3, 4. (7.9)

The result here is based on [14]. Instead of using the Taylor expansion of θ(k), we explicitly

write the coefficients of the power terms in the form of splitting. The benefits of this method

will be made clear in our subsequent calculations.

Proposition 13. As t → ∞, for ζ ∈ {ζ = uk0e
± iπ

4 ,−ε < u < ε}, by observing δ1(ζ), we

have the following conclusion

δ1(ζ) ∼ ζiνe−i ζ
2

4 , (7.10)

by using the result of ∣∣∣∣e
−i

k3
0ζ2

32
√

αtβ
( 1
ζ
− 3

k0
)

∣∣∣∣→ 1, as t→ ∞. (7.11)

Proof. For ζ = uk0e
± iπ

4 , the index part becomes

− i
k30ζ

2

32
√
αtβ

(
1

ζ
− 3

k0
) =

−i
√
2k40

64
√
αtβ

u+
k40

32
√
αtβ

(

√
2

2
u− 3u2), (7.12)

so we have
∣∣∣∣e

−i
k3
0ζ2

32
√

αtβ
( 1
ζ
− 3

k0
)

∣∣∣∣ = e
Re

{
−i

k3
0ζ2

32
√

αtβ
( 1
k
− 3

k0
)

}

= e
k4
0

32
√

αtβ
(
√

2
2 u−3u2)

≤ e
k4
0

32
√

αtβ
(
√

2
2 |u|+3|u|2) ≤ e

k4
0

32
√

αtβ
(
√

2
2 ε+3ε2) → 1, as t→ ∞.

(7.13)

by which the effects of the third power can be ignored.

To solve this problem, we need to begin from the PC-model of four stationary-phase

points and their jump lines, as illustrated in Figure 10.

Σz1Σz3

Σz2

Σz4

Figure 10: The jump contour for the local RH problem near the phase points zn, n = 1, 2, 3, 4.
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We set

r0 = r(z3)δ(z3)
−2eiν(z3)(ln k4

0−ln 4αβ2t)e
2it(αβ2

2k2
0
−αβ)

. (7.14)

Moreover, with the notation in Proposition 3, we have

Mpc
z3 (ζ) = I +

Mpc
1 (z3)

iζ
+O(ζ−2), (7.15)

where

Mpc
1 (z3) =

(
0 β12(rz3)

β21(rz3) 0

)
. (7.16)

with

β12(rz3) =

√
2πeiπ/4e−πν(z3)/2

rz3Γ(−iν(z3))
. (7.17)

β21(rz3) = −
√
2πe−iπ/4e−πν(z3)/2

rz3Γ(iν(z3))
. (7.18)

For another three points, the calculation is proceeded in the same way.

Mpc
zn(ζ) = I +

Mpc
1 (zn)

iζ
+O(ζ−2), ζ → ∞, n = 1, 2, 4. (7.19)

We note that in the model RH problem, the origin is the reference point from which the

rays emanate. In the following sections, we fix the notation ζ for convenience. Since Mfl

satisfies the asymptotic property

Mfl = I +
1

iζ

4∑

n=1

Mpc
1 (zn) +O(ζ−2), ζ → ∞, (7.20)

Substituting (7.5) into (7.20), it becomes

Mfl = I +
k20

2β
√
αt

4∑

n=1

Mpc
1 (zn)

k − zn
+O(ζ−2), ζ → ∞. (7.21)

In the local circular domain of zn

| 1

k − zn
| ≤ c, (7.22)

where c is independent of k. The other three points can be controlled in the same way. We

can also reach a consistent conclusion that

|Mfl − I| . O(t−1/2). (7.23)

Besides, it is shown that
∥∥Mfl(ζ)

∥∥
∞ . 1, (7.24)
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We use Mfl(ζ) to define a local model

M (in)(k) =M (out)(k)Mfl(ζ), (7.25)

which is a bounded function in Uk0 and has the same jump matrix as M rhp(k).

8 Small-norm RH problem for error function

From the definition (5.54) and (7.25), we find a RH problem for the matrix function

E(k). In this section, we consider the error matrix-function E(k).

RH Problem 9.1. Find a matrix-valued function E(k) with following properties:

(a) Analyticity: E(k) is analytical in C\Σ(E) and

Σ(E) = ∪4
n=1∂Uzn ∪ (Σ(2)\Uk0),

where we orient ∂Uzn clockwise;

(b) Symmetry:

E(k) = σ2E(k)σ−1
2 ; (8.1)

(c) Asymptotic conditions :

{
E(k) = I +O

(
k−1

)
, k → ∞,

E(k) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0;

(8.2)

(d) Jump condition: E(k) has continuous boundary values E± on Σ(E) satisfying

E+(k) = E−(k)V
(E), (8.3)

where the jump matrix V (E) is given by

V (E)(k) =

{
M (out)(k)V (2)(k)M (out)(k)−1, k ∈ Σ(2)\Uk0 ,

M (out)(k)Mfl(k)M (out)(k)−1, k ∈ ∪4
n=1∂Uzn ,

(8.4)

which is shown in Figure 11.
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Figure 11: The jump contour Σ(E) for the E(k).

We will show that for large times, the error function E(k) solves the following small-norm

RH problem.

By using (6.43) and Proposition 2, we have the following estimates

∣∣∣V (E)(k)− I
∣∣∣ .





O
(
e
−αβ2

6k3
0
|k−zn|3t

)
, k ∈ Σ(2)\Uk0 ,

O
(
e
− 3αβ2

8k2
0

t
)
, k ∈ Σ

(2)
0 .

(8.5)

By using (6.43) with (7.23), we show that

Proposition 14. For k ∈ ∪4
n=1∂Uzn, we find that

∣∣∣V (E)(k)− I
∣∣∣ =

∣∣∣M (out)(k)−1(Mfl(k)− I)M (out)(k)
∣∣∣ = O(t−1/2). (8.6)

By using the Beal-Cofiman theory, the solution of RH Problem 9.1 can be expressed as

E(k) = I +
1

2πi

∫

Σ(E)

ρ(s)(V (E)(s)− I)

s− k
ds, (8.7)
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where ρ(s) ∈ L2(Σ(E)) is the solution of the following equation

(1− CE) ρ(s) = I. (8.8)

The singular integral operator CE is defined by

CEf = C−(f(V
(E) − I)), (8.9)

and C− is the Cauchy projection operator defined as

C−f(k) = lim
k′→k∈Σ(E)

1

2πi

∫

Σ(E)

f(s)

s− k′
ds.

By using estimates (8.5), (8.6) and (8.9), we show that

‖CE‖L2(Σ(E))→L2(Σ(E)) . t−1/2,

‖ρ(k)− I‖L2(Σ(E)) .
‖CE‖

1− ‖CE‖
. t−1/2, (8.10)

which implies that the operator equation (8.8) has a unique solution for a sufficiently large

t. Then the existence and the uniqueness of the RH Problem 9.1 is shown by the theorem

of a small-norm RH problem.

To reconstruct the solution ux(x, t) of the FL equation (1.2), we need the asymptotic

behavior of E(k) as k → ∞.

Proposition 15. As k → ∞, we have the asymptotic expansion

E(k) = I +
E1

k
+O

(
1

k2

)
, (8.11)

where

E1 =
k20

2iβ
√
αt

4∑

n=1

(−1)n+1M (out)(zn)M
pc
1 (zn)M

(out)(zn)
−1 +O(t−1). (8.12)

Proof. Combining (8.5), (8.6) and (8.10), we have

E1 = − 1

2πi

∮
∑4

i=1 ∂Uzn

(
V (E)(s)− I

)
ds+O

(
t−1
)

=
k20

2iβ
√
αt

4∑

n=1

(−1)n+1M (out)(zn)M
pc
1 (zn)M

(out)(zn)
−1 +O

(
t−1
)
.

(8.13)

Consider

2i (E1)12 = t−1/2f(x, t) +O(t−1), (8.14)
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where

f(x, t) =
k20
β
√
α

4∑

n=1

(−1)n+1
(
β12(rzn)M

(out)
11 (zn)

2 + β21(rzn)M
(out)
12 (zn)

2
)
. (8.15)

9 Asymptotic analysis on the pure ∂-problem

Under the discussion of M rhp(k) in Section 5.3 and 6, the part with ∂R(2)(k) = 0 can

be eliminated based on (5.47), after which we consider the properties and the long-time

asymptotics behavior of M (3)(k). The solution of RH Problem 6.2 is equivalent to the

integral equation

M (3)(k) = I − 1

π

∫

C

M (3)(s)W (3)(s)

k − s
dm(s), (9.1)

where dm(s) is the Lebesgue measure on the C. If we denote Ck is the left Cauchy-Green

integral operator,

fCk(k) = − 1

π

∫

C

f(s)W (3)(s)

k − s
dm(s), (9.2)

then above equation can be rewritten as

M (3)(k) = I · (I − Ck)
−1 , (9.3)

To prove the existence of operator (I − Ck)
−1, we need the following lemma.

Lemma 12. The norm of the integral operator Ck decays to zero as t→ ∞:

‖Ck‖L∞→L∞ ≤ ct−1/4, (9.4)

which implies that (I − Ck)
−1 exists.

Proof. For any f ∈ L∞

‖fCk‖L∞ ≤ ‖f‖L∞
1

π

∫

C

∣∣W (3)(s)
∣∣

|k − s| dm(s)

. ‖f‖L∞
1

π

∫

C

∣∣∂R(2)(s)
∣∣

|k − s| dm(s),

(9.5)

on account of

|W (3)(s)| ≤ ‖M rhp‖L∞ |∂R(2)(s)|‖M rhp‖−1
L∞ . |∂R(2)(s)|. (9.6)
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After simplifying, we only need to estimate

1

π

∫

C

∣∣∂R(2)(s)
∣∣

|k − s| dm(s). (9.7)

As ∂̄R(2)(s) is a piece-wise function, we detail the case in the region D11, and the other

regions can be handled in a similar way. From (5.26), we have

∫

D11

∣∣∂R(2)(s)
∣∣

|k − s| dm(s) ≤ F1 + F2 + F3, (9.8)

where

F1 =

∫ +∞

0

∫ +∞

z1+v

|∂XK(u)|e
αβ2uvt

(
1

(u2+v2)2
− 1

k4
0

)

√
(u− x)2 + (v − y)2

dudv, (9.9)

F2 =

∫ +∞

0

∫ +∞

z1+v

|r′(u)| eαβ
2uvt

(
1

(u2+v2)2
− 1

k4
0

)

√
(u − x)2 + (v − y)2

dudv, (9.10)

F3 =

∫ +∞

0

∫ +∞

z1+v

((u− z1)
2 + v2)−1/4e

αβ2uvt

(
1

(u2+v2)2
− 1

k4
0

)

√
(u− x)2 + (v − y)2

dudv. (9.11)

We denote s = u+ iv, k = x+ iy.

In the following calculation, we will use the inequality

‖|s− k|−1‖2L2(z1,+∞) =

∫ +∞

z1

1

|v − y| [(
u− x

v − y
)2 + 1]−1d(

u− x

|v − y| ) ≤
π

|v − y| . (9.12)

Without loss of generality, we suppose y > 0, because, if y < 0, we can directly remove the

absolute value sign and use the same way for estimation.

For F1, noting that αβ2uvt
(

1
(u2+v2)2 − 1

k4
0

)
is a monotonic decreasing function of u, we

have

F1 ≤
∫ +∞

0

‖|s− k|−1‖L2(v+z1,+∞)‖∂̄XK(s)‖L2(v+z1,+∞)e
αβ2v(v+z1)t

(
1

(z21+v2)2
− 1

k4
0

)

dv

≤ c

∫ +∞

0

|v − y|−1/2e
αβ2v(v+z1)t

(
1

(z2
1
+v2)2

− 1

k4
0

)

dv

≤ c

∫ ∞

0

|v − β|−1/2e
−αβ2

k4
0

tv2

dv ≤ ct−1/4.

The F2 has the same estimate with F1. For F3, we choose p > 2 and q Hölder conjugate to
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p. Then
‖(u− z1)

2 + v2)−1/4‖Lp(z1,+∞)

=

{∫ +∞

z1

[(u− z1)
2 + v2]−p/4dv

}1/p

=

{∫ +∞

z1

[1 + (
u− z1
v

)2]−p/4d(
u− z1
v

)

}1/p

v1/p−1/2

≤ cv1/p−1/2,

(9.13)

and

‖|s− k|−1‖Lq(z1,+∞) =

{∫ +∞

z1

[

(
u− x

v − y

)2

+ 1]−q/2d

(
u− x

|v − y|

)}1/q

|v − y|1/q−1

≤ |v − y|1/q−1,

(9.14)

where p > 2 and 1/p+ 1/q = 1. Then we have

F3 ≤
∫ +∞

0

‖|s− k|−1‖Lq‖((u − z1)
2 + v2)−1/4‖Lpe

αβ2v(v+z1)t

(
1

(z21+v2)2
− 1

k4
0

)

dv

≤
∫ +∞

0

v1/p−1/2|v − y|1/q−1e
αβ2v(v+z1)t

(
1

(z2
1
+v2)2

− 1

k4
0

)

dv

≤
∫ y

0

v1/p−1/2(y − v)1/q−1e
αβ2v(v+z1)t

(
1

(z2
1
+v2)2

− 1

k4
0

)

dv

+

∫ +∞

y

v1/p−1/2(v − y)1/q−1e
αβ2v(v+z1)t

(
1

(z21+v2)2
− 1

k4
0

)

dv.

(9.15)

For the first term, using the inequality e−z ≤ cz−1/4 for all z > 0 leads to

∫ y

0

v1/p−1/2(y − v)1/q−1e
αβ2v(v+z1)t

(
1

(z21+v2)2
− 1

k4
0

)

dv

≤ ct−1/4

∫ y

0

v1/p−1(y − v)1/q−1dv ≤ ct−1/4.

(9.16)

Similarly, we estimate the second term in the same way of estimating F1. Let w = v − y.

Then ∫ +∞

y

v1/p−1/2(v − y)1/q−1e
αβ2v(v+z1)t

(
1

(z21+v2)2
− 1

k4
0

)

dv

≤
∫ +∞

0

w1/q−1(w + y)1/p−1/2e
−αβ2

k4
0

t(w+y)2

dw

≤ ct−1/4

∫ +∞

0

w−1/2e
−αβ2

k4
0

tw2

dw ≤ ct−1/4.

(9.17)
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Finally, we have

F3 ≤ ct−1/4. (9.18)

Based on the previous formula we arrive at the primary result.

Consider the asymptotic expansion of M (3)(k) at k = ∞

M (3)(k) = I +
M

(3)
1 (x, t)

k
+O(k−2), k → ∞, (9.19)

where

M
(3)
1 (x, t) =

1

π

∫

C

M (3)(s)W (3)(s)dm(s), (9.20)

To reconstruct the solution ux(x, t) of the FL equation (1.2), we need the asymptotic be-

havior of M
(3)
1 (x, t).

Lemma 13. For a large t, we have

|M (3)
1 (x, t)| ≤ ct−3/4. (9.21)

Proof. By using (9.19) and (9.20), also noting the boundedness of M (3)(k) and M rhp(k), we

obtain that

‖M (3)
1 (x, t) ‖ ≤ 1

π

∫∫

D11

|M (3)M rhp∂̄R(2)M rhp−1|dm(s)

≤ c

∫ +∞

0

∫ +∞

z1+v

|∂̄R1(s)|e
αβ2uvt

(
1

(u2+v2)2
− 1

k4
0

)

dudv

≤ c(I1 + I2 + I3), (9.22)

with

I1 =

∫ +∞

0

∫ +∞

z1+v

|∂̄XK(s)|e
αβ2uvt

(
1

(u2+v2)2
− 1

k4
0

)

dudv, (9.23)

I2 =

∫ +∞

0

∫ +∞

z1+v

|r′(u)|eαβ
2uvt

(
1

(u2+v2)2
− 1

k4
0

)

dudv, (9.24)

I3 =

∫ +∞

0

∫ +∞

z1+v

((u− z1)
2 + v2)−1/4e

αβ2uvt

(
1

(u2+v2)2
− 1

k4
0

)

dudv. (9.25)
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We bound I1 by applying the Cauchy-Schwarz inequality:

I1 =

∫ +∞

0

∫ +∞

z1+v

|∂̄XK(s)|e
αβ2uvt

(
1

(u2+v2)2
− 1

k4
0

)

dudv

≤
∫ +∞

0

‖∂̄XK‖L2
u(v+z1,∞)

(∫ +∞

z1+v

e
2αβ2uvt

(
1

(u2+v2)2
− 1

k4
0

)

du

)1/2

dv

≤ c

(∫ +∞

0

(∫ +∞

z1+v

e
− 2αβ2

k4
0

uvt
du

)1/2
)
dv

≤ ct−1/2

∫ +∞

0

v−1/2e
− 2αβ2

k4
0

(z1+v)vt
dv

≤ ct−3/4.

(9.26)

The bound for I2 could be attained with the same method as for I1. For I3 we proceed as

with (9.13) applying the Hölder’s inequality with 2 < p < 4

I3 =

∫ +∞

0

∫ +∞

z1+v

((u − z1)
2 + v2)−1/4e

αβ2uvt

(
1

(u2+v2)2
− 1

k4
0

)

dudv

≤
∫ +∞

0

‖((u− z1)
2 + v2)−1/4‖Lp

(∫ +∞

z1+v

e
qαβ2uvt

(
1

(u2+v2)2
− 1

k4
0

))1/q

dv

≤
∫ +∞

0

v1/p−1/2

(∫ +∞

z1+v

e
− qαβ2

k4
0

uvt
du

)1/q

dv

≤ ct−1/q

∫ +∞

0

v2/p−3/2e
−αβ2

k4
0

(z1+v)vt
dv

≤ ct−3/4

∫ ∞

0

w2/p−3/2e
−αβ2

k4
0

w2

dw ≤ ct−3/4,

(9.27)

where we use the substitution w = t1/2v and the fact that −1 < 2/p− 3/2 < −1/2.

10 Large time asymptotic behavior for the FL equation

Now we begin to construct the long-time asymptotics of the FL equation (1.2). Inverting

the sequence of transformations (5.11), (5.35), (5.47) and (5.54), we have

M(k) =M (3)(k)E(k)M (out)(k)R(2)(k)−1T (k)σ3 , k ∈ C\Uk0 , (10.1)

where T (k)σ3 is a diagonal matrix.

To reconstruct the solution ux(x, t), we take k → ∞ along the straight line k ∈ D12 ∪
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D22 ∪D35 ∪D45, which means R(2)(k) = I. From (5.7), (6.45), (8.11) and (9.14), we have

M = (I +
M

(3)
1

k
+ . . .)(I +

E1

k
+ . . .)(I +

M
(out)
1

k
+ . . .)(I +

T σ3
1

k
+ . . .), (10.2)

which means the coefficient of the k−1 in the Laurent expansion of M is

M1 =M
(3)
1 + E1 +M

(out)
1 + T σ3

1 . (10.3)

We construct the solution ux(x, t) of (1.2) with initial data u0 by the transformation and

the final result is as follows:

Theorem 2. Assume that u(x, t) be the solution for the initial-value problem (1.2)-(1.3)

with the appropriate generic data u0(x). For fixed x1, x2, v1, v2 ∈ R with x1 ≤ x2 and

v1 ≤ v2 ∈ R−, we define two zones for the spectral variable k

I = {k : f(v2) < |k| < f(v1)}, (10.4)

with

K(I) = {kj ∈ K : kj ∈ I}, N (I) = |K(I)|,

and a cone for variables x, t

C(x1, x2, v1, v2) = {(x, t) ∈ R
2 | x = x0 + vt, with x0 ∈ [x1, x2], v ∈ [v1, v2]} (10.5)

as is shown in Figure 9. Denote msol(x, t|D(I)) be the N (I)-soliton solution corresponding

to the scattering data {kj , cj(I)}N (I)
j=1 which is given in (6.23). Then as t→ ∞ with (x, t) ∈

C(x1, x2, v1, v2), from (3.7), (6.45), (8.14) and (9.21) we have

m(x, t) = msol(x, t|D(I)) + t−1/2f(x, t) +O(t−3/4). (10.6)

Thus

|m(x, t)|2 = |(msol(x, t|D(I)) + t−1/2f(x, t) +O(t−3/4))|2

= |msol(x, t|D(I))|2 + 2t−1/2f(x, t)msol(x, t|D(I)) +O(t−3/4).
(10.7)

Based on the above discussion we can obtain

ux(x, t) =
(
msol(x, t|D(I)) + t−1/2f(x, t) +O(t−3/4)

)
e−i

∫
x

−∞ |m|2dx′
, (10.8)

where f(x, t) has been established in (8.15).
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A ∂-steepest descent analysis for large negative times

The steps in the steepest descent analysis of RH Problem 3.1 for t→ −∞ mirror those

presented in Sections 3-10 for t→ ∞. The differences that appear can be traced back to the

fact that the regions of growth and decay of the exponential factors e2itθ are reversed when

one considers t → −∞, as Figure 12 hows. In this part, we briefly sketch those changes,

leaving the detailed calculations to the interested reader.

Re k

Im k

z1

z2

z3

z4

∣∣eitθ
∣∣→ 0

∣∣e−itθ
∣∣→ 0

∣∣e−itθ
∣∣→ 0

∣∣eitθ
∣∣→ 0

∣∣e−itθ
∣∣→ 0

∣∣eitθ
∣∣→ 0

∣∣eitθ
∣∣→ 0

∣∣e−itθ
∣∣→ 0

Figure 12: In the shaded regions, |eitθ| → 0 when t → ∞, while, in the blank regions,
|e−itθ| → 0 when t→ ∞.

The first step in the analysis, as in Section 3, is a conjugation to well-condition the

problem for large-time analysis. Similar to (5.11) define

M (1)(k) =M(k)T (k)−σ3 (A.1)

T (k) can be defined in Proposition 9 with t < 0. Non-analytic extensions of the jump

matrices (5.13) are introduced to deform jump matrices onto contours along which they

decay to the identity as was done in Section 4 whose contours and domains are shown

below.

Accordingly, the definition of Rj is also slightly different from t > 0, i.e., we exchange the

definition of Rj on the two sides of steady-state phase points on the real and the imaginary
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axis. Once the functions are constructed, the transformation

M (2)(k) =M (1)(k)R(k). (A.2)

where R(k) is defined in each sector in Figure 11. We define a new unknown M (2)(k) which

satisfies

RH Problem A.1. Find a function M (2)(k) =M (2)(k;x, t) with the following properties.

(a)Analyticity: M (2)(k) is continuous in C, has sectionally continuous first partial deriva-

tives in C\(Σ(2) ∪ K ∪ K), and meromorphic in Dn2 ∪Dn5, n = 1, 2, 3, 4;

(b)Symmetry: M (2)(k̄) = σ2M
(2)(k)σ2;

(c)Jump condition: The boundary value M (2)(k;x, t) at Σ(2) satisfies the jump condition

M
(2)
+ (k) =M

(2)
− (k)V (2)(k), k ∈ Σ(2); (A.3)

(d)Asymptotic condition

{
M (2)(k) = I +O

(
k−1

)
, k → ∞,

M (2)(k) = e−
i
2 c−σ3

(
I + kU +O

(
k2
))
e

i
2d0σ3 , k → 0;

(A.4)

(e) Away from Σ(2) we have

∂M (2)(k) =M (2)(k)∂R(2) (A.5)

holds in C\Σ(2), where

∂R(2)(k) =





(
1 0

(−1)j∂Rn,j(k)e
2itθ 1

)
, k ∈ Dnj , n = 1, 2, 3, 4; j = 1, 4,

(
1 (−1)j∂Rn,j(k)e

−2itθ

0 1

)
, k ∈ Dnj , n = 1, 2, 3, 4; j = 3, 6,

(
0 0

0 0

)
, k ∈ Dnj , n = 1, 2, 3, 4; j = 2, 5;

(A.6)

(f) Residue conditions: M (2) has simple poles at each point in K ∪ K with:

Res
k=kj

M (2)(k) = lim
k→kj

M (2)(k)Rkj ,∓, k ∈ ∆±
k0
, (A.7)

Res
k=kj

M (2)(k) = lim
k→kj

M (2)(k)σ2Rkj ,∓σ2, k ∈ ∆±
k0
, (A.8)

where Rkj ,− and Rkj ,+ is defined in (5.17).
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Mimicking Sections 5− 10, the final steps of the analysis are to first construct a solution

M rhp(k) of the RH components of RH problem A.1, and then to use the solid Cauchy integral

operator to prove that the remainder M (3)(k) =M (2)(k)(M rhp)−1(k) is uniformly near the

identity with estimates identical to (9.21). When t → −∞ with (x, t) ∈ C(x1, x2, v1, v2), the

outer model takes the form

M (out)(k) =
[
I +O

(
e−4µt

)]
m

∆+
k0

(I) (
k | D−(I)

)
(A.9)

The local model M (in) is constructed as in Section 8. Define

N : f(k) → (Nf)(k) = f(
k20

2
√
αβ

√−t ζ − z3). (A.10)

Then the local model M (in) is given by

M (in)(k) =M (out)(k)σ3M
fl(−ζ(k))σ3

where Mfl(ζ, r) is the solution of RH Problem 8.1. The residual error E(k) now satisfies

RH Problem 9.1 but with (8.4) now given by

V (E)(k) =

{
M (out)(k)V (2)(k)M (out)(k)−1, k ∈ Σ(2)\Σ4

n=1Uzn ,

M (out)(k)σ3M
fl(−ζ(k))σ3M (out)(k)−1, k ∈ Σ4

n=1∂Uzn .
(A.11)

The small-norm theory again can be used to show that E(k) exists and satisfies

E(k) = I + k−1E1 +O
(
k−2

)
, (A.12)

with

E1 = − 1

2πi

∮
∑

4
i=1 ∂Uzn

(
V (E)(s)− I

)
ds+O

(
t−1
)

=
k20

2iβ
√
αt

4∑

n=1

(−1)n+1M (out)(zn)M
pc
1 (zn)M

(out)(zn)
−1 +O

(
t−1
)
.

(A.13)

The rest of the results can be given in the same way as showed in Section 11.

B The parabolic cylinder model

Here we describe the solution of the parabolic cylinder model problem introduced by Its

[2], which was later widely used to study the long-time asymptotics of integrable systems in
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the literature [3, 33]. For our FL equation, there are two phase points z1, z3 ∈ R and two

z2, z4 ∈ iR respectively, which need two kinds of parabolic cylinder models to describe.

Therefore, for r0 ∈ R, define

ν = ν(r0) = − 1

2π
ln(1 + εn|r0|2),

where εn = 1, for n = 1, 3; εn = −1, for n = 2, 4. Further define contours

Σpc = ∪4
j=1Σj , Σj = {ζ = R

+e
i(2j−1)π

4 , j = 1, 2, 3, 4}.

Then we have the following parabolic cylinder model problem.

RH Problem B.1. Find a 2 × 2 matrix-valued function Mpc(ζ, r0) with the following

properties:

(a) Mpc(ζ, r0) is analytic for C\Σpc;

(b) The boundary value Mpc(ζ, r0) at Σpc satisfies the jump condition

Mpc
+ (ζ, r0) =Mpc

− (ζ, r0)V
pc(ζ), ζ ∈ Σpc, (B.1)

where

V pc(ζ) =





(
1 0

r0ζ
−2iνei

ζ2

2 1

)
, ζ ∈ Σ1,

(
1 εnr0

1+εn|r0|2 ζ
2iνe−i ζ

2

2

0 1

)
, ζ ∈ Σ2,

(
1 0

r0
1+εn|r0|2 ζ

−2iνei
ζ2

2 1

)
, ζ ∈ Σ3,

(
1 εnr0ζ

2iνe−i ζ
2

2

0 1

)
, ζ ∈ Σ4.

(B.2)
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Ω1
Ω2Ω3

Ω4 Ω5
Ω6

(

1 0

r0ζ
−2iνei

ζ2

2 1

)

(

1
εnr0

1+εn|r0|2
ζ2iνe−i ζ

2

2

0 1

)

(

1 0

r0
1+εn|r0|2

ζ−2iνei
ζ2

2 1

)

(

1 εnr0ζ
2iνe−i ζ

2

2

0 1

)

Figure 13: Σpc and domains Ωj , j = 1, 2, 3, 4, 5, 6.

It can be shown that the RH Problem B.1 admits a solution

Mpc(ζ, r0) = I +
Mpc

1 (r0)

iζ
+O(ζ−2), (B.3)

where

Mpc
1 (r0) =

(
0 β12

−β21 0

)
,

with β12 and β21 being two complex constants

β12 =

√
2πeiπ/4e−πν/2

r0Γ(−iν)
, β21 = −

√
2πe−iπ/4e−πν/2

εnr0Γ(iν)
.
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