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Abstract

We analyze the long-time asymptotics of certain one-dimensional kinetic models
of granular flows, which have been recently introduced in [22] in connection with
the quasi elastic limit of a model Boltzmann equation with dissipative collisions
and variable coefficient of restitution. These nonlinear equations, classified as
nonlinear friction equations, split naturally into two classes, depending whether
their similarity solutions (homogeneous cooling state) extinguish or not in finite
time. For both classes, we show uniqueness of the solution by proving decay to
zero in the Vasershtein metric of any two solutions with the same mass and mean
velocity. Furthermore, if the similarity solution extinguishes in finite time, we
prove that any other solution with initially bounded support extinguishes in finite
time, by computing explicitly upper bounds for the life-time of the solution in
terms of the length of the support.
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1 Introduction

This paper is devoted to large-time behavior of solutions of the equation

∂f(v, t)
∂t

= λ
∂

∂v

[
f(v, t)

∫

R
|v − w|γ(v − w)f(w, t) dw

]
, (1)
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2 Asymptotics of granular flows

where the unknown f(·, t) is a time–dependent probability density on R, and γ > −1.
This equation, from now on called nonlinear friction equation, arises in the study of
granular flows, and has been introduced in [22], in connection with the quasi-elastic
limit of a model Boltzmann equation for rigid spheres with dissipative collisions and
variable coefficient of restitution.

Granular flows describe the evolution of materials composed of many small discrete
grains, which are inherently inelastic. Once initialized with a certain velocity distri-
bution, granular gases cool down due to inelastic collisions of their particles. Similar
as molecular gases, granular gases can be described at a mesoscopic level within the
concepts of classical statistical mechanics, by means of methods borrowed from the ki-
netic theory of rarefied gases. Many recent papers (see [3, 18, 19, 6] and the references
therein), consider in fact Boltzmann-like equations for partially inelastic rigid spheres.
This choice relies in the physical hypothesis that the grains must be cohesionless, which
implies the hard-sphere interaction only, and no long-range forces of any kind. Collapse
and clustering are collective phenomena which are peculiar of the dissipative nature of
granular flows [14, 17]. These phenomena are difficult to observe in realistic models
with few particles [13]. On the other hand, kinetic collisional models of Boltzmann
type are extremely complicated to study.

In reason of this, the study of the cooling of a granular gas has recently been
attacked by introducing simplified models, typically in one dimension of the velocity
variable. The idea of considering a simplification of the Boltzmann equation for rigid
spheres goes back to McNamara and Young [18], who derived equation (1), in their
paper called the test-particle equation, with γ = 1. The nonlinear friction equation
with γ = 1 was derived independently some year later in [3] in a suitable scaling limit
from a one-dimensional system of N particles colliding inelastically. We remark here
that γ = 1 corresponds to set the coefficient of restitution, which characterizes the
loss of energy of two colliding grains, equal to a material constant. This assumption,
however, does not only contradict experiments, but it contradicts even some basic
mechanical laws [21]. In one dimension of the velocity space, a Boltzmann equation for
dissipative collisions and a almost general variable coefficient of restitution has been
recently considered in [22]. When collisions are close to be elastic [22], the Boltzmann
collision operator simplifies, and it becomes convenient to use the nonlinear friction
operator on the right-hand side of (1). This choice leads to various advantages. In fact,
despite their relatively simple (with respect to the Boltzmann equation) structure,
the nonlinear friction equations exhibit the main properties of any kinetic model with
dissipative collisions, like conservation of mass and mean velocity and decay of the
temperature. Likewise, the equilibrium state is given by a Dirac mass located at the
mean velocity of particles. In addition, on the contrary to the Boltzmann models for
granular flows (see the discussion in [5]), these equations exhibit similarity solutions,
which are in general of noticeable importance to understand the cooling process of the
granular flow, and to construct reasonable macroscopic equations [18].

The study of these similarity solutions shows that the speed of relaxation of the
temperature (cooling process) is heavily dependent of the value of the dissipation pa-
rameter γ in (1). For positive γ the decay is shown to be proportional to t−2/γ , which
implies a decay as t−2 when γ = 1, in accord with the decay of the full Boltzmann
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equation with a constant coefficient of restitution found in [11]. The analysis of the
cooling of the similarity solutions implies in addition that this decay, at least for γ > 1,
can be very slow. This characteristic is peculiar to dissipative equations, in contrast
to what happens for the elastic Boltzmann equation and related conservative models,
where convergence to equilibrium is very fast [23], when not exponential in time. Thus,
when the cooling process is very slow, the problem of understanding the role played by
the similarity solution is of paramount importance.

A first attempt to give an answer to the aforementioned problem has been recently
done in [7]. The main goal of this paper, which is restricted to the case γ = 1, is the
proof of a condition from which one can argue that the similarity solution does not
represent in a strong sense the intermediate asymptotics of any other solution with the
same mass and momentum. Thus one arrives to the conclusion that, at least for γ = 1,
the homogeneous cooling state is not a good candidate for playing the fundamental role
attributed to locally Maxwellian states in the classical, elastic kinetic theory.

In this paper we push further the previous studies in two directions, which hopefully
clarify the meaning of the result of [7]. First, we obtain for all acceptable values of
the dissipation parameter γ an exact equation for the time-evolution of the Vasershtein
metric, from which one can easily reckon explicit rates of its time-decay. When γ > 0
one concludes that there is convergence towards a similarity solution at least at the
same rate at which the similarity solution approaches the equilibrium. In this sense,
at least when the relaxation process is very slow, the similarity solution remains a
candidate to approximate the cooling process of any other solution with the same mass
and momentum. Second, we prove finite time extinction of the solution whenever
−1 < γ < 0, by computing explicitly upper bounds for the life-time of the solution in
terms of the length of the support. In our opinion in this case the cooling process is so
rapid that it is difficult to justify a role for the similarity solution.

Some problem linked to dissipative equations containing the nonlinear friction op-
erator in (1) has been addressed before. Indeed, the long-time behavior of these and
more complex equations has been deeply investigated in [9]. In this paper, by means
of suitable generalization of logarithmic Sobolev inequalities and mass transportation
inequalities, the long-time asymptotics of certain nonlocal, diffusive equations with a
gradient flow structure has been analyzed. In particular, the results of [9] cover the
asymptotic behavior of the equation

∂f

∂t
= σ

∂2f

∂v2
+ µ

∂

∂v
(vf) + λ

∂

∂v

[
f(v, t)

∫

R
|v − w|γ(v − w)f(w, t) dw

]
. (2)

where γ > 0. The interest in (2) follows from the fact that a few years ago, Benedetto,
Caglioti, Carrillo and Pulvirenti [4] studied the asymptotic behavior of (2) when γ = 1,
via the study of the free energy, proving convergence to equilibrium in large time,
without obtaining any rate. The proof in [9] follows along the lines of the recent paper
by Otto [20], where the Vasershtein metric first entered as a main ingredient into the
study of the long–time behavior of nonlinear diffusion equations. In particular, in [20] it
has been shown that displacement convexity of the energy functional implies contraction
in Vasershtein metric for gradient flow, which was the basis for the Carrillo–McCann–
Villani paper. The case when there is no diffusion is included in the analysis of [9], but
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for interaction potentials which require γ > 0.
Since the main part of our analysis does not depend on the value of the constant γ

in (1), we will give a unified treatment of all cases for a large part of the paper, working
separately of the cases γ > 0 and γ < 0 only when they lead to different behaviors.

2 The extremal distributions and the Vasershtein

distance

Having in mind that the equilibrium solution to equation (1) is a Dirac mass, any con-
vergence result holds in weak∗-measure sense. Denote byM0 the space of all probability
measures in R and by

Mp =
{

F ∈M0 :
∫

R
|v|pdF (v) < +∞, p ≥ 0

}
, (3)

the space of all Borel probability measures of finite momentum of order p, equipped
with the topology of the weak convergence of the measures. Several types of metrics
on Mp can be considered (see [28]). For the purposes of this paper we will consider a
class of the so-called minimal metrics.

Let Π = Π(F, G) be the set of all cumulative probability distribution functions
H on R2 having F and G as marginals, where F and G have finite positive variances.
Within Π there are cumulative probability distribution functions H∗ and H∗ discovered
by Hoeffding [15] and Fréchet [12] which have maximum and minimum correlation. Let
x+ = max{0, x} and x ∧ y = min{x, y}. Then, in Π(F,G) for all (x, y) ∈ R2,

H∗(v, w) = F (v) ∧G(w) and H∗(v, w) = [F (v) + G(w)− 1]+.

The extremal distributions can also be characterized in another way, based on certain
familiar properties of uniform distributions. Let F−1(w) = inf{v : F (v) > w} denote
the pseudo inverse function of the distribution function F (v). If X is a real–valued
random variable with distribution function F , and U is a random variable uniformly
distributed on [0, 1], it follows that F−1(U) has distribution function F , and, for any
F, G with finite positive variances the pair [F−1(U), G−1(U)] has cumulative distribu-
tion function H∗ [27]. Let

Tp(F,G) = inf
H∈Π(F,G)

∫
|v − w|p dH(v, w). (4)

Then T
1/p
p metrizes the weak-* topology TW∗ on Mp. For a detailed discussion, and

application of these distances to statistics and information theory, see Vajda [25]. We
remark that T

1/2
2 is known as the Kantorovich-Vasershtein distance of F and G [16, 26].

In this case

d(F, G)2 = T2(F, G) = inf
H∈Π(F,G)

∫
|v − w|2 dH(v, w) =

∫
|v − w|2 dH∗(v, w). (5)
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In fact, if the random vector (X, Y ) has cumulative distribution function H with
marginals F and G, thanks to a result by Hoeffding [15]

E(XY )−E(X)E(Y ) =
∫

[H(v, w)− F (v)G(w)]dvdw ≤

≤
∫

[H∗(v, w)− F (v)G(w)]dvdw,

and this implies (5). Recalling now that [F−1(U), G−1(U)] has cumulative distribution
function H∗ [27], we conclude that the Vasershtein distance between F and G can be
rewritten as the L2-distance of the pseudo inverse functions

d(F, G) =
(∫ 1

0
[F−1(ρ)−G−1(ρ)]2 dρ

)1/2

. (6)

3 The nonlinear friction equation and the evo-

lution of Vasershtein distance

In this section we shall consider the time evolution of the Vasershtein distance (6)
along solutions of the nonlinear friction equation (1). For the sake of simplicity, we will
assume from now on λ = 1. The general case will follow easily through a time scaling.
Thus, we will study equation

∂f(v, t)
∂t

=
∂

∂v

[
f(v, t)

∫

R
|v − w|γ(v − w)f(w, t) dw

]
. (7)

As briefly discussed in the introduction, equation (7) arises in the study of granular
flows, and has been introduced in [22], in connection with the quasi-elastic limit of
a model Boltzmann equation for rigid spheres with dissipative collisions and variable
coefficient of restitution. The value of the dissipation parameter γ is linked to the
coefficient of restitution in the binary collision. A value of γ > 1 corresponds to grains
that are close to be elastic for small relative velocity. Of course, γ < 1 gives the opposite
phenomenon, namely the grains are close to be elastic for large relative velocities. We
will refer to this case as the case of “anomalous” granular materials. The separating
case γ = 1 refers to a constant coefficient of restitution, namely to a binary collision
in which the degree of inelasticity does not depend on the relative velocity. Since the
dissipative Boltzmann collision operator in [22] can be defined only when −1 < γ ≤ 2,
connections of the present results with the Boltzmann equation will be possible only in
this range of the parameter.

For each t ∈ R+, let F−1(ρ, t) = inf{v : F (v, t) > ρ} denote the pseudo inverse
function of the distribution function F (v, t). Then, a direct computation shows that,
if the probability density f(v, t) satisfies (7), F−1(ρ, t) solves

∂F−1(ρ, t)
∂t

= − 1
f(v, t)

∂F (v, t)
∂t

∣∣
v=F−1(ρ,t)
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= −
∫

R
|F−1(ρ, t)− w|γ(F−1(ρ, t)− w)f(w, t) dw

= −
∫ 1

0
|F−1(ρ, t)− F−1(p, t)|γ(F−1(ρ, t)− F−1(p, t)) dp . (8)

By a weak solution of the initial value problem for equation (7), corresponding
to the initial distribution F0(v) ∈ M2 we shall mean any distribution function F ∈
C1(R+

t ,M2) satisfying

d

dt

∫

R
ϕ(v)dF (v, t) = −

∫

R
|v − w|γ(v − w)ϕ′(v)dF (v, t)dF (w, t)

=
1
2

∫

R2

|v − w|γ(v − w)
[
ϕ′(w)− ϕ′(v)

]
dF (v, t)dF (w, t)(9)

for t > 0 and all ϕ ∈ C1(R), and such that for all ϕ ∈ C1(R)

lim
t→0

∫

R
ϕ(v)dF (v, t) =

∫

R
ϕ(v)dF0(v). (10)

Alternatively, we can define the same concept of weak solution, in terms of the
pseudo inverse function F−1(ρ, t). Under the same hypotheses on ϕ and on the initial
distribution F0(v), we say that F (v, t) is a weak solution to (7) if F−1(ρ, t) satisfies the
following equation

d

dt

∫ 1

0
ϕ(F−1(ρ, t))dρ

= −
∫ 1

0

∫ 1

0
|F−1(ρ, t)− F−1(p, t)|γ(F−1(ρ, t)− F−1(ρ, t))ϕ′(F−1(p, t)) dρ dp

= −1
2

∫ 1

0

∫ 1

0
|H(ρ, p)|γH(ρ, p)

[
ϕ′(F−1(ρ, t))− ϕ′(F−1(p, t))

]
dρdp (11)

where, to simplify notations, here and throughout this paper we set

H(ρ, p) =: F−1(ρ)− F−1(p). (12)

Let the random variable X have distribution function F (·, t), and let U be a random
variable uniformly distributed on [0, 1]. The equivalence between (9) and (11) can be
easily verified also recalling that, since F−1(U) has distribution function F ,

∫

R
ϕ(v)dF (v, t) = E(ϕ(X)) =

∫ 1

0
ϕ(F−1(ρ))dρ. (13)

Choosing ϕ(v) = v into (9) shows that the total momentum is conserved in time.
For this reason, and without loss of generality, we will consider in the rest of the paper
as initial values only probability measures with expectation equal to zero. In view of
(8), the time evolution of the square of the Vasershtein metric (6) is easily found to
satisfy

d

dt

∫ 1

0
[F−1(ρ)−G−1(ρ)]2 dρ
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=2
∫ 1

0
dρ[F−1(ρ)−G−1(ρ)]

(
∂

∂t
F−1(ρ)− ∂

∂t
G−1(ρ)

)

=− 2
∫ 1

0
dp

∫ 1

0
dρ[F−1(ρ)−G−1(ρ)] (|H(ρ, p)|γH(ρ, p)− |K(ρ, p)|γK(ρ, p)) , (14)

with H(ρ, q) defined by (12) and

K(ρ, p) =: G−1(ρ)−G−1(p). (15)

Since the equation (7) conserves mass and mean value, whenever X and Y are random
variables distributed according to F (v, t) and G(v, t) respectively, and E(X − Y ) = 0,
by definition, for all F (v, w) ∈ Π(F,G) it holds

∫

R2

(v − w)dF (v, w) = 0. (16)

Now, F−1(U) and G−1(U) have joint-distribution in the same class, which implies
∫ 1

0
[F−1(ρ)−G−1(ρ)] dρ =

∫

R2

(v − w)dF ∗(v, w) = 0. (17)

Hence, we have the equality

F−1(ρ)−G−1(ρ) =
∫ 1

0
dq[F−1(ρ)− F−1(q)− (

G−1(ρ)−G−1(q)
)
], (18)

and the equation (14) becomes

d

dt

∫ 1

0
[F−1(ρ)−G−1(ρ)]2 dρ = −Q(H, K)

=− 2
∫ 1

0
dρ

∫ 1

0
dp

∫ 1

0
dq[H(ρ, q)−K(ρ, q)]·

· [|H(ρ, p)|γH(ρ, p)− |K(ρ, p)|γK(ρ, p)]. (19)

Let us use the variable transformation ρ → p and p → ρ into Q. We obtain

Q(H,K) = −2
∫ 1

0
dρ

∫ 1

0
dp

∫ 1

0
dq[H(p, q)−K(p, q)]·

· [|H(ρ, p)|γH(ρ, p)− |K(ρ, p)|γK(ρ, p)]

=
∫ 1

0
dρ

∫ 1

0
dp

∫ 1

0
dq[H(ρ, q)−H(p, q)− (K(ρ, q)−K(p, q))]

· [|H(p, ρ)|γH(ρ, p)− |K(p, ρ)|γK(ρ, p)]

=
∫ 1

0
dρ

∫ 1

0
dp [H(ρ, p)−K(ρ, p)][|H(ρ, p)|γH(ρ, p)− |K(ρ, p)|γK(ρ, p)]. (20)

Finally, from (17), it follows that
∫ 1

0
dρ

∫ 1

0
dq[F−1(ρ)− F−1(q)− (

G−1(ρ)−G−1(q)
)
]2
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=
∫ 1

0
dρ

∫ 1

0
dq[F−1(ρ)−G−1(ρ)− (

F−1(p)−G−1(q)
)
]2

=2[d(F, G)]2 − 2
∫ 1

0
dρ

∫ 1

0
dq[F−1(ρ)−G−1(ρ)]

(
F−1(q)−G−1(q)

)

=2[d(F, G)]2, (21)

which implies

[d(F, G)]2 =
1
2

∫ 1

0
dρ

∫ 1

0
dp [H(ρ, p)−K(ρ, p)]2. (22)

To this point, let us remark that both F−1(ρ) and G−1(ρ) are nondecreasing for 0 ≤
ρ ≤ 1. Thus it follows that both H(ρ, p) and K(ρ, p) have the same sign; they are
nonnegative if ρ ≥ p, while they are nonpositive if ρ ≤ p. Thanks to the previous
remark, and grouping together (19) and (22) we finally obtain the evolution equation
for the square of the Vasershtein Metric

d

dt

∫ 1

0
dρ

∫ 1

0
dp (|H(ρ, p)| − |K(ρ, p)|)2

=− 2
∫ 1

0
dρ

∫ 1

0
dp (|H(ρ, p)| − |K(ρ, p)|)(|H(ρ, p)|1+γ − |K(ρ, p)|1+γ). (23)

Theorem 3.1 Let γ > −1, γ 6= 0, and let F (v, t), G(v, t) ∈ C1(R+
t ,M2) be two so-

lutions to the initial value problem for equation (7) corresponding to the initial distri-
butions F0(v), G0(v) ∈ M2, respectively. Then, for all time t ≥ 0, (23) holds, which
implies

d(F (t), G(t)) ≤ d(F (0), G(0)).

Equation (23) shows that the Vasershtein metric is non expanding with time along
trajectories of the nonlinear friction equation. As an immediate corollary, we obtain
that the solution to the Cauchy problem for equation (9) is unique.

Corollary 3.2 Let F0(v) ∈ M2 be a nonnegative measure with finite variance. Then,
there exists a unique weak solution F (t) ∈ C1(R+

t ,M2) of equation (7), such that
F (0) = F0.

4 Similarity solutions

In this section, we will show that the use of the pseudo inverse functions permit a
simple analysis of both the finding of the similarity solutions, and their importance as
intermediate asymptotics. The study of self-similar solutions to (7) has been performed
in [22], as a first step in the direction of understanding the cooling process of the
granular gas. Classical methods developed in [2] allow to conclude that these self–
similar solutions are obtained, though a suitable scaling in time, from the stationary
solutions of the equation

∂

∂t
g(v, t) =

∂

∂v

[
g(v, t)

∫

R
|v − w|γ(v − w)g(w, t) dw − vg(v, t)

]
, (24)
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More precisely, if g∞(v) is a stationary solution to (24), gs(v, t) = α(t)−1g∞(α(t)−1v)
is a self–similar solution to (7). These solutions are also called homogeneous cooling
states of the equation (7). The function α(t) is given by

α(t) =
[

1
ξγ + γt

] 1
γ

+

, γ ≥ −1, γ 6= 0, (25)

In (25) ξ is a positive constant. Moreover, we denoted by f+ the positive part of the
function f . Looking at the form of the function α(t), one concludes that, while for
γ > 0 there is no cooling in finite time, when γ < 0 one has cooling in finite time, and
the solution concentrates at time tc = ξγ/|γ|. This fact led to the conjecture that any
solution to the nonlinear friction equation corresponding to γ < 0 ceases to exist after
a finite time [22].

Writing equation (24) in terms of the pseudo inverse function, as we did in (8), we
can recover these stationary solutions in a simpler and direct way, which in addition
gives their uniqueness. To this aim, consider that equation (24) is equivalent to

∂F−1(ρ, t)
∂t

= −
∫ 1

0
|F−1(ρ, t)− F−1(p, t)|γ(F−1(ρ, t)− F−1(p, t)) dp + F−1(ρ, t)

= −
∫ 1

0

(|F−1(ρ, t)− F−1(p, t)|γ − 1
)
(F−1(ρ, t)− F−1(p, t)) dp . (26)

In (26) we used the equality

F−1(ρ, t) =
∫ 1

0
(F−1(ρ, t)− F−1(p, t)) dp, (27)

which holds for any distribution function with mean equal to zero. Hence, the stationary
solutions to (26) solve the equation

∫ 1

0

(|F−1(ρ)− F−1(p)|γ − 1
)
(F−1(ρ)− F−1(p)) dp = 0. (28)

It is immediate to conclude that the solutions to (28) are such that, for almost all ρ 6= p,
|F−1(ρ)− F−1(p)| = 1, or F−1(ρ) = F−1(p). Since F−1(ρ) is nondecreasing, and

∫ 1

0
F−1(p) dp = 0 (29)

in addition to the trivial solution F−1(ρ) = 0 a.e. we have only the possibility

|F−1(ρ)| = 1 a.e.,

which implies

F−1
∞ (ρ) = −1

2
0 ≤ ρ <

1
2
; F−1

∞ (ρ) =
1
2

1
2
≤ ρ < 1. (30)
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The solution (30) in nothing but the sum of two Dirac masses located symmetrically
which respect to the origin,

g∞(v) =
1
2
δ

(
v +

1
2

)
+

1
2
δ

(
v − 1

2

)
. (31)

For the similarity solution generated by (31), the constant ξ in (25) is easily recog-
nized to be related to the initial energy. One has

ξ =
1
2

(∫

R
v2gs(v, 0) dv

)−1/2

. (32)

The previous construction enlights remarkable similarities between equation (24)
and the Fokker–Planck like equations studied in [8]. In both cases the non trivial
stationary solution, for any given mass, is unique. In the Fokker–Planck equation this
stationary solution corresponds to a minimum of a convex functional (the free–energy
or entropy), which is used to get explicit rate of convergence towards the steady state
of the solution.

It is tempting to apply the same physical idea of looking for the decay of a free-
energy. Unlikely, we can only obtain weaker conclusions. As remarked in the paper
[4], and subsequently used in [9], we can associate to equation (24) a free–energy like
functional, we denote by H(F )

H(F ) =
1

2 + γ

∫

R2

|v − w|2+γdF (v)dF (w)− 1
2

∫

R2

|v − w|2dF (v)dF (w). (33)

H(F ) can be rewritten in terms of the pseudo inverse functions, to give the expression

H(F ) =
1

2 + γ

∫ 1

0

∫ 1

0
|F−1(ρ)− F−1(p)|2+γ dpdρ− 1

2

∫ 1

0

∫ 1

0
|F−1(ρ)− F−1(p)|2 dpdρ.

(34)
The time evolution of the free-energy is shown to satisfy

dH(F (t))
dt

= −I(F (t)), (35)

where

I(F ) =
∫ 1

0

[∫ 1

0

(|F−1(ρ)− F−1(p)|γ − 1
) (

F−1(ρ)− F−1(p)
)

dp

]2

dρ (36)

is the entropy production. It is immediate to recognize that the entropy production is
equal to zero if and only if F−1(ρ) is a stationary solution. Moreover, if γ > 0, the
free–energy, among all pseudoinverse functions satisfying (29) attains the minimum in
correspondance to the stationary solution (30). Hence, if we start with a distribution
different from a stationary one, by means of (35) we can conclude that the free energy
will converge towards its minimum. We conjecture that, when γ > 0, the free-energy
satisfies a Csiszar-Kullback type inequality with respect to the Vasershtein metric,
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namely, for some universal constant c, and for any distribution function F with zero
mean,

d(F, F∞)2 ≤ c[H(F )−H(F∞)]. (37)

The proof of this conjecture, coupled with a detailed analysis of the relationship between
free-energy and entropy production, will produce, as for general Fokker-Planck like
equations, an explicit rate of decay of the solution to (26) towards the stationary
solution.

The case γ < 0 is completely different. In this range of the parameter H(F ) is
not bounded from below, and we can repeat the previous analysis to conclude that
among all the distributions with zero mean, the free–energy attains the maximum in
correspondance to the stationary solution F∞. Hence, since the free energy decays, the
solution to equation (24) will never converge to the stationary solution F∞.

The previour analysis helps to recognize that, at least for γ < 0, the stationary
solutions to equation (24) do not play a general role of attraction, like it happens for a
large class of nonlinear Fokker-Planck like equations studied in [1, 8]. Reverting to the
old variables, the same conclusion can be drawn for the nonlinear friction equation. For
this dissipative model, the self–similar solutions do not play the same role of attracting
any other solution like it happens in linear and nonlinear diffusion equations.

5 The decay of Vasershtein metric for γ > 0

We will start the analysis of the time–decay of the Vasershtein metric with the relatively
simpler case γ > 0. We prove

Theorem 5.1 Let F (v, t), G(v, t) ∈ C1(R+
t ,M2) be two solutions to the initial value

problem for equation (7) corresponding to the initial distributions F0(v), G0(v) ∈ M2,
respectively. Then, if γ > 0, the Vasershtein distance of F (v, t) and G(v, t) is mono-
tonically decreasing with time, and the following decay holds

d(F (t), G(t)) ≤ d(F0, G0)
[
1 + 2γ/2γd(F0, G0)γt

]− 1
γ

. (38)

Proof We make use of the differential equation (23) to prove Theorem 5.1. For
simplicity, we often use H, K instead of H(ρ, p) and K(ρ, p). Without loss of generality,
we choose H > 0 and K > 0, H ≥ K. Then, H/K ≥ 1 and it holds

(H −K)(H1+γ −K1+γ) =Kγ+2

(
H

K
− 1

) ((
H

K

)γ+1

− 1

)

≥Kγ+2

(
H

K
− 1

) (
H

K
− 1

)γ+1

= (H −K)γ+2 (39)

because the function

W (a) = a1+γ − (a− 1)1+γ − 1, γ > 0,
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increases strictly for a > 1.
Therefore, by (23), and the fact

∫ 1

0
dρ

∫ 1

0
dp [H −K]2 ≤

{∫ 1

0
dρ

∫ 1

0
dp |H −K|γ+2

} 2
γ+2

,

we obtain the differential inequality

d

dt

∫ 1

0
dρ

∫ 1

0
dp [H −K]2 ≤ −2

{∫ 1

0
dρ

∫ 1

0
dp [H −K]2

} γ+2
2

. (40)

The Gronwall’s Lemma together with (22) yields (38).

Remark. Theorem 5.1 enlights the importance of the dissipation parameter γ on the
asymptotic decay of the solution. In [7], the main objection about the role of the similar-
ity solution as intermediate asymptotics of any other solution comes out from Corollary
1. This Corollary shows that, if γ = 1, given a probability measure F0(v) ∈M2, which
is not a symmetric convex combination of two delta masses, the corresponding solution
F (v, t) is such that there exists some constant K > 0, depending on F0, such that, as
T →∞, ∫ T

0
d(F (t), Gs(t))∆t ≥ K log log T.

¿From this inequality they conclude that extremely little is gained by replacing the
equilibrium solution by the similarity solution, in that the gain is at best logarithmic
in time [7]. Theorem (5.1) shows that the case studied in [7] is critical. Indeed, if
γ > 1 we can draw the same conclusions of Corollary 1 in [7]. On the other hands, if
0 < γ < 1, the bound (38) implies that

∫ ∞

0
d(F (t), Gs(t))∆t = C < ∞.

Hence, at least in this range of the parameter, the objection of [7] does not hold, and
some other argument has to be used to obtain similar conclusions.

We now proceed to study the time evolution of the support of the solution to
equation (7). This study can be easily done by passing to equation (8). In fact,
denoting with S(dF (t)) the measure of the support of the solution to equation (7), we
have the identity

S(dF (t)) = ‖F−1(., t)‖L∞ (41)

We prove the following

Theorem 5.2 Let the initial distribution dF0(v) have bounded support, S(dF0) = L <
∞. Then, if γ > 0, the support of the solution to (7) decays to zero, and the following
bound holds

S(dF (t)) ≤ S(dF0) [1 + γS(F0)γt]−
1
γ . (42)
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Proof To avoid inessential heavy notations, in the remaining of this section let us
simply set F−1(ρ, t) = h(ρ, t). Then, Eq.(8) reads

dh

dt
= −

∫ 1

0
|h(ρ, t)− h(p, t)|γ(h(ρ, t)− h(p, t))dp. (43)

For any convex function φ(r), r ≥ 0, we have

d

dt

∫ 1

0
φ(h)dρ =−

∫ 1

0
φ′(h(ρ, t))

∫ 1

0
|h(ρ, t)− h(p, t)|γ(h(ρ, t)− h(p, t))dpdρ

=
∫ 1

0
φ′(h(p, t))

∫ 1

0
|h(p, t)− h(ρ, t)|γ(h(p, t)− h(ρ, t))dpdρ.

Hence we obtain

d

dt

∫ 1

0
φ(h)dρ = −1

2

∫ 1

0
dp

∫ 1

0
dρ|h(p, t)− h(ρ, t)|γ ·

(h(p, t)− h(ρ, t))(φ′(h(p, t))− φ′(h(p, t)). (44)

Inequality (44) implies that equation (7) dissipates along any convex functional of the
solution, that is

d

dt

∫ 1

0
φ(F−1(ρ, t))dρ ≤ 0, t ≥ 0.

In particular, the Lp-norm of F−1(ρ, t) is non-increasing with respect to time for p ∈
(1,∞). Since ‖F−1(ρ, t)‖L∞ is the measure of the support of dF (v, t), we conclude that
the support of f(ρ, t) is non-increasing with respect to time.

Let us go further to analyze the evolution of the L2n-norm. Equation (44) implies
the formula

d

dt
‖h(., t)‖L2n =

d

dt

([∫ 1

0
|h(ρ, t)|2ndρ

]1/2n
)

=−
∫ 1
0 dp

∫ 1
0dρ|h(ρ)− h(p)|γ(h(ρ)− h(p))(h(ρ)2n−1 − h(p)2n−1)

2
∫ 1
0 h(ρ)2ndρ

‖h(., t)‖L2n . (46)

Here and after we just use h(ρ) instead of h(ρ, t) for simplicity. Since the total momen-
tum is conserved in time and is set to be zero,

∫ 1

0
xdF (ρ, t) =

∫ 1

0
F−1(ρ, t)dρ = 0, t ≥ 0,

we obtain
∫ 1

0
dp

∫ 1

0
dρ [h(ρ)− h(p)]2 h(ρ)2n−2

=
∫ 1

0
dp

∫ 1

0
dρ

[
h(ρ)2n − 2h(p)h(ρ)2n−1 + h(p)2h(ρ)2n−2

]
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=
∫ 1

0
dρh(ρ)2n +

∫ 1

0
dph(p)2

∫ 1

0
dρh(ρ)2n−2. (48)

We finally obtain the inequality
∫ 1

0
dρh(ρ)2n ≤

∫ 1

0
dp

∫ 1

0
dρ [h(ρ)− h(p)]2 h(ρ)2n−2 (49)

Now, consider that, by Hölder inequality, for all γ > 0
∫ 1

0
dp

∫ 1

0
dρ [h(ρ)− h(p)]2 h(ρ)2n−2 ≤

(∫ 1

0
dρh(ρ)2n−2

)γ/(γ+2) (∫ 1

0
dp

∫ 1

0
dρ [h(ρ)− h(p)]2+γ h(ρ)2n−2

)2/(γ+2)

≤
[(∫ 1

0
dρh(ρ)2n

) γ
γ+2

] 2n−2
2n (∫ 1

0
dp

∫ 1

0
dρ [h(ρ)− h(p)]2+γ h(ρ)2n−2

)2/(γ+2)

(50)

Hence, from inequality (49) we obtain

(∫ 1

0
dρh(ρ)2n

)1+γ/2n

≤
∫ 1

0
dp

∫ 1

0
dρ |h(ρ)− h(p)|2+γ h(ρ)2n−2

≤ 1
2

∫ 1

0
dp

∫ 1

0
dρ |h(ρ)− h(p)|2+γ [

h(ρ)2n−2 + h(p)2n−2
]

≤ 1
2

∫ 1

0
dp

∫ 1

0
dρ |h(ρ)− h(p)| (h(ρ)− h(p))

[
h(ρ)2n−1 − h(p)2n−1

]
. (51)

Substituting this inequality into (46) gives a differential inequality for the L2n-norm.

d

dt
‖h(., t)‖L2n ≤ ‖h(., t)‖1+γ

L2n . (52)

This inequality can be easily solved to give, reverting to old notations

‖F−1(., t)‖L2n ≤ ‖F−1
0 ‖L2n

[
1 + γ‖F−1

0 ‖γ
L2nt

]− 1
γ . (53)

Letting n →∞, we prove the result.

6 Finite time extinction

Let us now study the asymptotic behavior of the solution to (7) for −1 < γ < 0.
Looking at the finite-time extinction of the similarity solution, it was conjectured in
[22] that any solution with initially bounded support extinguishes in finite time. A
partial answer to this conjecture has been given in [24], where the finite extinction of
the support was proven, without any estimate of the time-decay of the support itself.
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In what follows we improve this result, obtaining un upper bound of the life-time of
the solution in terms of the initial support. To study the time evolution of the support
of the solution to equation (7) for γ > 0, we proceed as in the previous section. We
prove the following

Theorem 6.1 Let the initial distribution dF0(v) have bounded support, S(dF0) = L <
∞. Then, if −1 < γ < 0, the support of the solution to (7) decays to zero in finite
time, and the following bound holds

S(dF (t)) ≤
[
S(dF0)|γ| − |γ|

2|γ|
t

] 1
|γ|

+

. (54)

Proof We proceed as in the proof of Theorem 5.2. The starting point will be the
formulas (46) and (48). Setting as before F−1(ρ, t) = h(ρ, t), and using once more the
conservation of momentum, from (48) we finally obtain the inequality

∫ 1

0
dρh(ρ)2n ≤

∫ 1

0
dp

∫ 1

0
dρ [h(ρ)− h(p)]2 h(ρ)2n−2

≤1
2

∫ 1

0
dp

∫ 1

0
dρ [h(ρ)− h(p)]2

[
h(ρ)2n−2 + h(p)2n−2

]

≤1
2

∫ 1

0
dp

∫ 1

0
dρ [h(ρ)− h(p)]

[
h(ρ)2n−1 − h(p)2n−1

]
. (55)

Assume now that the support of dF (v, t) is bounded initially, i.e., ‖F−1(., t = 0)‖L∞ =
L. Using inequality (55) into (46), we obtain

∣∣∣∣∣
d

dt

([∫ 1

0
|h(ρ, t)|2ndρ

]1/2n
)∣∣∣∣∣

≤
[∫ 1

0
|h(ρ, t)|2ndρ

] 1−2n
2n

·
∫ 1

0
dp

∫ 1

0
dρ|h(ρ)− h(p)|1−|γ|h(ρ)2n−1

≤(2L)1−|γ| ·
[∫ 1

0
|h(ρ, t)|2ndρ

] 1−2n
2n

·
[∫ 1

0
|h(ρ, t)|2ndρ

] 2n−1
2n

≤(2L)1−|γ|. (56)

This implies the bound

∫ T

0

∣∣∣∣∣
d

dt

([∫ 1

0
|h(ρ, t)|2ndρ

]1/2n
)∣∣∣∣∣

2

dt ≤ T (2L)2−2|γ|.

Moreover, since

[∫ 1

0
|F−1(ρ, t)|2ndρ

]1/2n

≤ ‖F−1(., t)‖L∞ ≤ L,
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we have the bound

∫ T

0

([∫ 1

0
|F−1(ρ, t)|2ndρ

]1/2n
)2

dt ≤ L2T.

Let us set

fn(t) =
[∫ 1

0
|F−1(ρ, t)|2ndρ

]1/2n

, n ≥ 1,

We just proved that fn ∈ H1(0, T ). Since fn(t) converges pointwise to ‖F−1(., t)‖L∞ ,
we conclude easily that fn(t) also converges uniformly to ‖F−1(., t)‖L∞ on [0, T ]. In
fact, let us suppose that the sequence fn(t) does not converges uniformly to f∞(t) =:
‖F−1(., t)‖L∞ on C(0, T ). Then there are ε > 0 and a sequence {nk}∞k=1 satisfying
nk →∞ as k →∞ such that

‖fnk
− f∞‖C(0,T ) > ε.

On the other hand, since {fnk
}∞k=1 is uniformly bounded in H1(0, T ) and hence is rela-

tively compact on C(0, T ), there is a subsequence (still denoted by {fnk
}∞k=1) converging

strongly in C(0, T ) towards a function f ∈ C(0, T ), which is different from f∞. This
leads to a contradiction.

¿From the previous discussion we deduce that, for any given ε > 0, we can find
n̄ = n(ε) such that for all t ∈ [0, T ] and n ≥ n̄ it holds

f |γ|n (t) + ε ≥ f |γ|∞ (t), t ≥ 0. (57)

Let t be such that f
|γ|
∞ (t) ≥ δ > 0. Then by (55) we obtain

1
2

∫ 1

0
dp

∫ 1

0
dρ [h(ρ)− h(p)]γ (h(ρ)− h(p))

[
h(ρ)2n−1 − h(p)2n−1

]

≥ 1
21+|γ|‖F−1(., t)‖|γ|

∫ 1

0
dp

∫ 1

0
dρ [h(ρ)− h(p)]2

[
h(ρ)2n−1 − h(p)2n−1

]

≥ 1

2|γ|f |γ|∞ (t)

∫ 1

0
dρh(ρ)2n. (58)

Let us choose ε > 0 and n̄ = n(ε) such that (57) holds. Then, (46) implies

d

dt
fn(t) ≤ − fn(t)

2|γ|(f |γ|n (t) + ε)
= − fn(t)

2|γ|f |γ|n (t) + 2|γ|ε
.

We solve the above inequality and we obtain

2|γ|

|γ|
[
f |γ|n (t)− f |γ|n (0)

]
+ 2|γ|ε log

fn(t)
fn(0)

≤ −t. (60)

If f∞(t) ≥ δ at time t ≥ 0, we get

log
fn(0)
fn(t)

= log
fn(0)
f∞(0)

+ log
f∞(0)
f∞(t)

+ log
f∞(t)
fn(t)
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≤− log
δ

L
+ log

f∞(t)
fn(t)

. (61)

Let us choose ε ≤ δ|γ|/2. Then, by (57)

f |γ|n (t′) ≥ f |γ|∞ (t′)− ε ≥ δ|γ| − 1
2
δ|γ| =

1
2
δ|γ| ⇒ fn(t′) ≥ 2−|γ|δ, t′ ∈ [0, t].

Thus, as ε ≤ δ|γ|/2, it follows from (61) that

log
fn(0)
fn(t)

≤ − log
δ

L
+ log

2|γ|L
δ

≤
∣∣∣log 2|γ|L2δ−2

∣∣∣ ,

and then from (60), for all n ≥ n̄, that

2|γ|

|γ|
[
f |γ|n (t)− f |γ|n (0)

]
≤ −t + 2|γ|

∣∣∣log 2|γ|L2δ−2
∣∣∣ ε.

By letting n →∞ in the above inequality, we obtain

2|γ|

|γ|
[
f |γ|∞ (t)− f |γ|∞ (0)

]
≤ −t + 2|γ|

∣∣∣log 2|γ|L2δ−2
∣∣∣ ε,

which implies, by letting ε → 0, that

f |γ|∞ (t) ≤ f |γ|∞ (0)− |γ|
2|γ|

t. (66)

Reverting to the old notations, we obtain the inequality

‖F−1(., t)‖L∞ ≤
[
‖F−1(., 0)‖|γ|L∞ −

|γ|
2|γ|

t

] 1
|γ|

+

, (67)

which yields the finite time extinction of the support, as well as un upper bound on
the life-time of the support.

Remark. The result of Lemma 6.1 is optimal, in that the decay in time to zero of the
support is of the same order of the corresponding similarity solution.

A direct consequence of the previous lemma is the finite time decay to zero of the
Vasershtein metric.

Corollary 6.2 Let F (v, t), G(v, t) ∈ C1(R+
t ,M2n), n ∈ IN+, be two solutions to the

initial value problem for equation (7) corresponding to the initial distributions F0(v),
G0(v) with bounded support. Then, if −1 < γ < 0, the Vasershtein distance of F (v, t)
and G(v, t) decays to zero at finite time, and the following time-decay holds

d(F (t), G(t)) ≤ d(F0, G0)
[
1− |γ|

(2L)|γ|
t

] 1
2

�
1
|γ|−1

�
+

, (68)

where L denotes the maximum of the supports.
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Proof Let −1 < γ < 0. We claim that the following inequality holds

(H −K)2 ≤ 1
1 + γ

(H −K)(|H|γH − |K|γK)(|H|+ |K|)|γ|. (69)

Let H ·K > 0. It is enough to prove (69) for H ≥ K > 0. This follows from the fact
that, if 0 ≤ β = |γ| < 1 the function

W (a) = (a + 1)β(a1−β − 1)− (1− β)(a− 1) (70)

(which is equal to zero for a = 1) increases strictly for a = H/K > 1. When H ·K < 0,
it is obvious that

(H −K) = (|H|+ |K|) ≤(|H|1+γ + |K|1+γ)(|H|+ |K|)|γ|. (71)

Assume the initial distributions F0 and G0 have compact supports, so that dF0(v) =
0 and dG0(v) = 0 for v ≥ L for some L > 0. Once we have a formula for the time-decay
of the support, we can proceed to prove the decay of Vasershtein metric simply making
use of inequality (54) into (69). We have

(1 + γ)
(H −K)2

(|H|+ |K|)|γ| ≤ (H −K)(|H|γH − |K|γK). (72)

Now,

|H| = |F−1(ρ, t)− F−1(p, t)| ≤ 2‖F−1(., t)‖L∞

|K| = |G−1(ρ, t)−G−1(p, t)| ≤ 2‖G−1(., t)‖L∞ ,

and

(|H|+ |K|)|γ|

≤
(

2
[
‖F−1(., 0)‖|γ|L∞ − |γ|2−|γ|t

] 1
|γ|

+
+ 2

[
‖G−1(., 0)‖|γ|L∞ − |γ|2−|γ|t

] 1
|γ|

+

)|γ|

≤2|γ|
[
‖F−1(., 0)‖|γ|L∞ −

|γ|
2|γ|

t

]

+

+ 2|γ|
[
‖G−1(., 0)‖|γ|L∞ −

|γ|
2|γ|

t

]

+

=: A(t). (73)

Assume t̄ is the maximal time before extinction

t̄ = max

{
2|γ|‖F−1(0)‖|γ|L∞

|γ| ,
2|γ|‖G−1(0)‖|γ|L∞

|γ|

}
, (74)

then, for t ∈ [0, t̄] it follows from (23), (72) and (73) that

d

(
log

∫ 1

0
dρ

∫ 1

0
dp(H −K)2

)
≤ −2(1− |γ|) dt

A(t)
. (75)
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If ‖F−1(0)‖L∞ = ‖G−1(0)‖L∞ = L, the solution is trivial. In fact, in this case for
t ≤ t̄ =: (2L)|γ|/|γ|

A(t) = 2(2L)|γ| − 2|γ|t. (76)

Integrating (75) over [0, t] with t ≤ t̄, we have

log

∫ 1
0 dρ

∫ 1
0 dp(H −K)2(t)∫ 1

0 dρ
∫ 1
0 dp(H −K)2(0)

≤− 2 (1− |γ|)
∫ t

0

ds

2(2L)|γ| − 2|γ|s

=−
(

1
|γ| − 1

)∫ t

0

ds

|γ|−1(2L)|γ| − s

=
(

1
|γ| − 1

)
log

(2L)|γ| − |γ|t
(2L)|γ|

= log
[
1− |γ|

(2L)|γ|
t

] 1
|γ|−1

+

Thus, if both functions have the same support initially, we obtain

d(F,G)(t) ≤ d(F (0), G(0))
[
1− |γ|

(2L)|γ|
t

] 1
2

�
1
|γ|−1

�
+

.

The previous formula is applicable also to the general case, i.e. when the functions
have different support initially. This can be done by applying a similar argument, and
by choosing L the maximum of both supports. In this case the extinction time is given
by (74). We omit the details here.
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[8] J.A. Carrillo, A. Jüngel, P.A. Markowich, G. Toscani, A. Unterreiter, Entropy dissipa-
tion methods for degenerate parabolic equations and systems and generalized Sobolev
inequalities, Monatsch. Math., 131 2001, 1–82.

[9] J.A. Carrillo, R.J. McCann, C. Villani, Kinetic equilibration rates for granular media and
related equations: entropy dissipation and mass transportation estimates. Revista Mat.
Iberoamericana (in press)

[10] C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, Springer
Series in Applied Mathematical Sciences, Vol. 106 Springer–Verlag 1994.
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