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LONG TIME DYNAMICS FOR THE ONE
DIMENSIONAL NON LINEAR SCHRÖDINGER

EQUATION

by Nicolas BURQ,
Laurent THOMANN & Nikolay TZVETKOV (*)

Abstract. — In this article, we first present the construction of Gibbs mea-
sures associated to nonlinear Schrödinger equations with harmonic potential. Then
we show that the corresponding Cauchy problem is globally well-posed for rough
initial conditions in a statistical set (the support of the measures). Finally, we
prove that the Gibbs measures are indeed invariant by the flow of the equation. As
a byproduct of our analysis, we give a global well-posedness and scattering result
for the L2 critical and super-critical NLS (without harmonic potential).
Résumé. — Nous présentons d’abord dans cet article la construction de me-

sures de Gibbs pour l’équation de Schrödinger non linéaire associée à un potentiel
harmonique. Nous démontrons ensuite que le problème de Cauchy correspondant
est globalement bien posé pour des données initiales très peu régulières (sur le
support de cette mesure). Finalement, nous démontrons aussi que ces mesures de
Gibbs sont invariantes par le flot ainsi défini. Nous obtenons comme conséquence
de cette approche que l’équation de Schrödinger non linéaire L2-critique et surcri-
tique sur R (sans potentiel harmonique) est globalement bien posée et diffuse pour
ces données initiales.

1. Introduction

The purpose of this work is twofold. First we construct Gibbs measures
and prove their invariance by the flow of the nonlinear (focusing and defo-
cusing) Schrödinger equations (defined in a strong sense) in the presence
of a harmonic potential. In the construction of these measures, most of the
difficulties appear for the focusing case (for which case our results are only

Keywords: Nonlinear Schrödinger equation, potential, random data, Gibbs measure,
invariant measure, global solutions.
Math. classification: 35BXX, 37K05, 37L50, 35Q55.
(*) The authors were supported in part by the grant ANR-07-BLAN-0250.



2138 Nicolas BURQ, Laurent THOMANN & Nikolay TZVETKOV

true for the cubic non linearity while in the defocusing case we have no
restriction on the size of the non linearity). The non linear harmonic oscil-
lator appears as a model in the context of Bose-Einstein condensates and
our result gives some insights concerning the long time dynamics of these
models. The second purpose of this work is to prove global well-posedness
for the L2 critical and super-critical nonlinear Schrödinger equation (NLS)
on R, with or without harmonic potential, for data of low regularity. Fur-
thermore, we also obtain scattering when there is no harmonic potential.
Such kind of result seems to be out of reach of the present critical regularity
deterministic methods.

1.1. The NLS with harmonic potential

Our analysis here on the NLS with harmonic potential enters into the
line of research initiated by Lebowitz-Rose-Speer in [23] and aiming to con-
struct Gibbs measures for Hamiltonian PDE’s. This program offers analytic
challenges both in the measure construction and in the construction of a
well-defined flow on the support of the measure. Usually the support of
the measure contains low regularity functions and this fact may be seen as
one of the motivations for studying low regularity well-posedness of Hamil-
tonian PDE’s. The approach of [23] has been implemented successfully in
several contexts, see e.g. Bourgain [4, 5], Zhidkov [42], Tzvetkov [37, 38, 36],
Burq-Tzvetkov [7], Oh [27, 26], and the references therein.
A very natural context where one may try to construct Gibbs measures

is the Nonlinear Schrödinger equation (NLS) with harmonic potential. In-
deed, in this case the spectrum of the linear problem is discrete and the
construction of [23] applies at least at the formal level. As we already men-
tioned this context is natural since the NLS with harmonic potential ap-
pears as a model in the Bose-Einstein condensates. As we shall see, it turns
out that the construction of [23] provides a Gibbs measure supported by
functions for which the corresponding Cauchy problem was not known to
be well-posed. In addition the density of the measure can not be evaluated
by applying only deterministic arguments such as the Sobolev inequality.
All these facts present serious obstructions to make rigorous the Gibbs
measure construction.

On the other hand, recent works as [7, 8, 36] showed that by applying
more involved probabilistic techniques in combination with the existing de-
terministic technology for studying these problems one may approach the
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above difficulties successfully. In particular, in [8, 9] an approach to han-
dle regularities for which the corresponding Cauchy problem is ill-posed is
developed. Our goal here is to show that the NLS with harmonic oscillator
fits well in this approach. In fact, the eigenfunctions of the linear operator
enjoy good estimates which is compensated by the bad separation proper-
ties of the spectrum. Such a situation is particularly well adapted for the
approach of [8, 9].
We are able to construct Gibbs measures and the corresponding flow for

the cubic focusing and arbitrary defocusing NLS in the presence of har-
monic potential. The analysis turns out to contain several significant new
points with respect to previous works on the subject. Indeed, it seems that
it is the first case where the construction and analysis of Gibbs measure
with a strong flow can be performed on a non compact phase space. Further-
more, taking into account the low regularity of the initial data, to develop a
nice local Cauchy theory at this level of regularity, one has to obtain some-
how a gain in terms of derivatives. In the context of wave equations, this
gain can be obtained (see [8, 9]) rather easily by first proving a gain at the
probabilistic level in terms of Lp regularity, and then balancing this gain
on the non linearity and using that the non homogeneous wave propagator
itself gains one derivative with respect to the source term regularity. For
Schrödinger equations, the situation is much less well behaved. Indeed, no
such gain of regularity occurs for the non homogeneous Schrödinger prop-
agator, and the starting point of our analysis was precisely that a gain of
derivatives occurs at the probabilistic level in terms of Lp regularity. How-
ever, this gain which would allow to perform the analysis for low power
nonlinearities (k 6 7) falls well short of what is needed to obtain the full
range result (k < +∞) in Theorem 2.4. As a consequence, our analysis re-
quires a full bi-linear analysis at the probabilistic level (see (1.2)). Finally,
let us mention some previous works on the non linear harmonic Schrödinger
equation (1.1). The (deterministic) Cauchy problem for (1.1) was studied
by Oh [28]. We refer to Zhang [41] for blow up and global existence results
and Fukuizumi [18] for the stability of standing waves associated to (1.1).
See also Carles [12] for the case of time-dependent potentials and the book
of T. Cazenave [13, Chapter 9] for more references.
Let us now describe in more details our results and consider thus the one

dimensional non linear Schrödinger equation with harmonic potential

(1.1)
{
i∂tu+ ∂2

xu− x2u = κ0|u|k−1u, (t, x) ∈ R× R,
u(0, x) = f(x),

TOME 63 (2013), FASCICULE 6
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where k > 3 is an odd integer and where either κ0 = 1 (defocusing case)
or κ0 = −1 (focusing case). Though we are not aware of physics models
involving other non linearities than cubic or quintic, (1.1) appears to be
an interesting models on the mathematical point of view. We now state
our result concerning (1.1). For more detailed results, see Theorem 2.3 and
Theorem 2.4 below.

Theorem 1.1. — Consider the L2 Wiener measure on D′(R), µ, con-
structed on the harmonic oscillator eigenbasis, i.e. µ is the distribution of
the random variable

∞∑
n=0

√
2

2n+ 1gn(ω)hn(x),

where (hn)∞n=0 are the Hermite functions (see (2.1)) and (gn)∞n=0 is a system
of standard independent complex Gaussian random variables. Then in the
defocusing case, for any order of nonlinearity, and in the focusing case for
the cubic non linearity, the Cauchy problem (1.1) is globally well posed
for µ-almost every initial data. Furthermore, in both cases, there exists a
Gibbs measure, absolutely continuous with respect to µ, which is invariant
by this flow.

The equation (1.1) is a Hamiltonian PDE with a Hamiltonian J(u)
(see (2.2) below). As usual the Gibbs measure is a suitable renormalisa-
tion of the formal object exp(−J(u))du. Let us recall that the distribution
function of a standard (0 mean and 1 variance) Gaussian complex random
variable is

1
π
e−|z|

2
dL,

where dL is the Lebesgue measure on C.
Notice that the results above are not in the "small data" class of results.

Indeed, it follows from our analysis that the measure µ is such that for
every p > 2 and every R > 0 µ(u : ‖u‖Lp > R) > 0, i.e. our statistical
set contains “many” initial data which are arbitrary large in Lp(R), p > 2.
Moreover, we use no smallness argument in any place of the proof.
We conjecture that our results hold when x2 is replaced with a potential

V ∈ C∞(R,R+), so that V (x) ∼ x2 for |x| � 1 and |∂jxV (x)| 6 Cj〈x〉2−|j|
(in particular in such a situation there exists C > 0 so that λ2

n ∼ Cn).
Let us define the Sobolev spacesHs, associated to the harmonic oscillator

−∂2
x + x2 via the norm ‖u‖Hs = ‖(−∂2

x + x2)s/2u‖L2 . As can easily be
seen, for any s > 0, the Sobolev space of regularity s, Hs(R) has zero
µ measure but for every s < 0 the space Hs is of full µ measure. As a
consequence, the initial data in our result is not covered by the present
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well-posedness theory for (1.1). What is even worse: according to Christ,
Colliander, Tao [14] and Burq, Gérard, Tzvetkov [6, Appendix] (notice that
these results do not apply stricto sensu to the harmonic oscillator, but
the proof can easily be modified), we know that as soon as k > 7 the
system (1.1) is supercritical and there exists no continuous flow on the
Sobolev spaces Hs, for s ∈ (0, 1

2−
2

k−1 ). As a consequence, even in the local
in time analysis we need to appeal to a bi-linear probabilistic argument.
The bi-linear nature of our probabilistic analysis can be seen through the
following statement

(1.2) ∀ θ < 1/2, ∀ t ∈ R, ‖(e−itHu)2‖Hθ < +∞, µ almost surely.

In our actual proof we do not make use of (1.2) but it was the starting point
of our analysis for large k’s. We give the proof of (1.2) in the appendix of
this article.

1.2. Global well-posedness and scattering for the “usual” L2

critical and super-critical NLS on R

It turns out that the result described in the previous section has an inter-
esting byproduct. Thanks to the lens transform which has been introduced
in [25, 31] (see also [10, 33]), we are able to prove a scattering result for
the L2 critical and super-critical equation

(1.3)
{
i∂tu+ ∂2

xu = |u|k−1u, k > 5, (t, x) ∈ R× R,
u(0, x) = f(x)

for f(x) of “super-critical” regularity.

Theorem 1.2. — The equation (1.3) has for µ-almost every initial data
a unique global solution satisfying for any 0 < s < 1/2,

u(t, ·)− eit∆f ∈ C
(
R;Hs(R)

)
(the uniqueness holds in a space continuously embedded in C

(
R;Hs(R)

)
).

Moreover, the solution scatters in the following sense. There exists µ a.s.
states g± ∈ Hs(R) so that

‖u(t, ·)− eit∆(f + g±)‖Hs(R) −→ 0, when t −→ ±∞.

The result of Theorem 1.2 is a large data result and apart from the very
recent result by Dodson [16] (global existence and scattering in L2 for the
critical quintic NLS), as far as we know there is no large data scattering
results for the problem (1.3) for data which are localized (tending to zero
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at infinity) but missing H1, i.e. it seems that the result of Theorem 1.2 is
out of reach of the present deterministic results to get scattering. We refer
to [24] for deterministic scattering results for (1.3) in Sobolev spaces, Hs,
s > 1. We also refer to [21] for an approach for obtaining scattering results
for L2 critical problems.
The result of Theorem 1.2 is based on a transformation which reduces

(1.3) to a problem which fits in the scope of applicability of our previous
analysis. However (except in the scale invariant case k = 5), the reduced
problem is not autonomous which makes the arguments more delicate. In
particular there is no conserved energy for the reduced problem. However,
we will be able to substitute this lack of conservation law by a monotonicity
property which in turn will lead to the fact that, roughly speaking, the
measure of a set can not decrease along the flow which is the key of the
globalization argument. As a consequence, we are able to carry out the
global existence strategy whilst no invariant measure is available (see also
Colliander-Oh [15] for results in this direction).

1.3. Plan of the paper

In the following section, we present in details the construction of the
Gibbs measure and we give a detailed measure invariance statement. In
Section 3, we give the proof of the approximation property of the Gibbs
measure by “finite dimensional” measures. In the next section, we establish
a functional calculus of −∂2

x +x2, fundamental for the future analysis. The
following two sections are devoted to establishing two families of linear dis-
persive estimates, namely the Strichartz and the local smoothing estimates.
Here we develop the very classical deterministic estimates but also the more
recent stochastic variants of them. The interplay between these two fami-
lies of estimates is at the heart of our approach. In Section 7, we use the
estimates of the two previous sections together with the functional calculus
to develop a local Cauchy theory. In Section 8, we present the global argu-
ments, leading to almost sure global well-posedness on the support of the
measure. Notice that the path followed here has been much clarified with
respect to our previous papers, and consequently is much more versatile.
In Section 9, we prove the measure invariance. Section 10 is devoted to the
proof of Theorem 1.2. Finally, in an appendix, we gathered some typical
properties of the measure µ. These properties are not necessary for the
understanding of the proofs of our main results, but they are important in
view of understanding the scope of these results.
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2. Hamiltonian formulation and construction of the Gibbs
measure

Set H = −∂2
x + x2. Let us recall some elementary facts concerning H

(see e.g. [29]). The operator H has a self-adjoint extension on L2(R) (still
denoted by H) and has eigenfunctions

(
hn
)
n>0 which form a Hilbertian

basis of L2(R) and satisfy Hhn = λ2
nhn with λn =

√
2n+ 1. Indeed, hn are

given by the formula

(2.1) hn(x) = (−1)ncn ex
2/2 dn

dxn
(
e−x

2 )
, with 1

cn
=
(
n !
) 1

2 2n2 π 1
4 .

The equation (1.1) has the following Hamiltonian

(2.2) J(u) = 1
2

∫ ∞
−∞
|H1/2u(x)|2 dx+ κ0

k + 1

∫ ∞
−∞
|u(x)|k+1 dx.

Write u =
∑∞
n=0 cnhn. Then in the coordinates c = (cn) the Hamiltonian

reads

J(c) = 1
2

∞∑
n=0

λ2
n|cn|2 + κ0

k + 1

∫ ∞
−∞

∣∣ ∞∑
n=0

cnhn(x)
∣∣k+1 dx.

Let us define the complex vector space EN by EN = span(h0, h1, · · · , hN ).
Then we introduce the spectral projector ΠN on EN by

ΠN

( ∞∑
n=0

cnhn
)

=
N∑
n=0

cnhn .

Let χ ∈ C∞0 (−1, 1), so that χ = 1 on [− 1
2 ,

1
2 ]. Let SN be the operators

(2.3) SN
( ∞∑
n=0

cnhn
)

=
∞∑
n=0

χ
( 2n+ 1

2N + 1
)
cnhn = χ

( H

2N + 1
)( ∞∑

n=0
cnhn

)
.

TOME 63 (2013), FASCICULE 6
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It is clear that ‖SN‖L2→L2 = ‖ΠN‖L2→L2 = 1 and we have

(2.4) SN ΠN = ΠN SN = SN , and S∗N = SN .

The interest of introducing the smooth cut-off SN is its better mapping
properties on Lp, p 6= 2, compared to ΠN (see Proposition 4.1).

Let us now turn to the definition of the Gibbs measure. Write cn =
an + ibn. For N > 1, consider the probability measures on R2(N+1) defined
by

dµ̃N =
N∏
n=0

λ2
n

2π e
−λ

2
n
2 (a2

n+b2
n)dandbn,

The measure µ̃N defines a measure on EN via the map

(2.5) (an, bn)Nn=0 7−→
N∑
n=0

(an + ibn)hn,

which will still be denoted by µ̃N . Notice that µ̃N may be seen as the
distribution of the EN valued random variable

(2.6) ω 7−→
N∑
n=0

√
2

λn
gn(ω)hn(x) ≡ ϕN (ω, x),

where (gn)Nn=0 is a system of independent, centered, L2 normalized complex
Gaussians on a probability space (Ω,F ,p).
In order to study convergence properties of ϕN as N → ∞, we define

Sobolev spaces associated to H.

Definition 2.1. — For 1 6 p 6 +∞ and s ∈ R, we define the space
Ws,p(R) via the norm ‖u‖Ws,p(R) = ‖Hs/2u‖Lp(R). In the case p = 2
we write Ws,2(R) = Hs(R) and if u =

∑∞
n=0 cnhn we have ‖u‖2Hs =∑∞

n=0 λ
2s
n |cn|2.

For future references, we state the following key property of the spaces
Ws,p, which is actually a consequence of the fact that H−s is a pseudo
differential operator in a suitable class (which ensures its Lp boundedness)

Proposition 2.2 ([17]). — For any 1 < p < ∞, s > 0, there exists
C > 0 such that

(2.7) 1
C
‖u‖Ws,p(R) 6 ‖〈Dx〉su‖Lp(R) + ‖〈x〉su‖Lp(R) 6 C‖u‖Ws,p(R).

Let σ > 0. Then (ϕN ) is a Cauchy sequence in L2(Ω;H−σ(R)) which
defines

(2.8) ϕ(ω, x) =
∞∑
n=0

√
2

λn
gn(ω)hn(x),
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as the limit of (ϕN ). Now the map ω 7→ ϕ(ω, x) defines a (Gaussian) mea-
sure on H−σ(R) which we shall denote by µ. Notice also that the measure
µ can be decomposed into

µ = µN ⊗ µ̃N
where µN is the the distribution of the random variable on E⊥N

∞∑
n=N+1

√
2
λn
gn(ω)hn(x).

• The defocusing case (κ0 = 1) and k > 3. In this case we can define
the Gibbs measure ρ by

(2.9) dρ(u) = exp
(
− 1
k + 1‖u‖

k+1
Lk+1(R)

)
dµ(u).

We also define its finite dimensional approximations

(2.10)
dρ̃N (u) = exp

(
− 1
k + 1‖SNu‖

k+1
Lk+1(R)

)
dµ̃N (u),

dρN (u) = exp
(
− 1
k + 1‖SNu‖

k+1
Lk+1(R)

)
dµ(u) = dµN ⊗ dρ̃N .

• The focusing case (κ0 = −1) and k = 3. Let ζ : R → R, ζ > 0 be a
continuous function with compact support (a cut-off). Define

(2.11) αN = E(‖ΠNu‖2L2),

and the measures ρ̃N , ρN as

(2.12)
dρ̃N (u) = ζ

(
‖ΠNu‖2L2(R) − αN

)
e

1
4

∫
R
|SNu(x)|4dxdµ̃N (u),

dρN (u) = dµN ⊗ dρ̃N .
We have the following statement defining the Gibbs measure associated

to the equations (1.1).

Theorem 2.3. — (i) Defocusing case (κ0 = 1) and k < +∞. Let the
measure ρ be defined by (2.9).
(ii) Focusing case (κ0 = −1) and k = 3 : The sequence

(2.13) GN (u) = ζ
(
‖ΠNu‖2L2(R) − αN

)
e

1
4

∫
R
|SNu(x)|4dx

,

converges in measure, as N → ∞, with respect to the measure µ. Denote
by G(u) the limit of (2.13) as N → ∞. Then for every p ∈ [1,∞[, G(u) ∈
Lp(dµ(u)) and we define dρ(u) ≡ G(u)dµ(u).
In both cases, the sequence dρN converges weakly to dρ and for any

borelian set A ⊂ H−σ, we have

(2.14) lim
N→+∞

ρN (A) = ρ(A).

TOME 63 (2013), FASCICULE 6
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The result in the defocusing case is quite a direct application of the argu-
ment of [1]. The construction of the measure in the focusing case is much
more involved and is inspired by the work [36] of the third author on the
Benjamin-Ono equation. The main difficulty in this construction lies in
proving that the weight G(u) belongs to L1(dµ). A first candidate for the
weight G(u) would have been exp(‖u‖4L4(R)/4), but then the large devia-
tion estimates (see Lemma 3.3) are too weak to ensure the integrability of
this weight with respect to the measure dµ. A second guess would have
been ζ(‖u‖L2) exp(‖u‖4L4(R)/4), as then the same large deviation estimates
and Gagliardo-Nirenberg inequalities (using the L2 bound induced by the
ζ cut-off) would ensure this integrability. Unfortunately, on the support
of the measure µ, the L2 norm is almost surely infinite and this choice of
weight would lead to a trivial (vanishing) invariant measure. The renor-
malized (square of the) L2 norm provides us with an acceptable substitute
to this latter choice. Let us also observe that if we vary ζ then we get the
support of µ (see Proposition 3.10 below). Notice also that this choice of
weight is reminiscent of Bourgain’s work [5] where a similar renormaliza-
tion is performed at the level of the equation itself rather than the level of
the Gibbs measure.
It is now a natural question whether the measure ρ constructed in The-

orem 2.3 is indeed invariant by a well-defined flow of (1.1). It turns out to
be the case as shows the following statement.

Theorem 2.4. — Assume that k = 3 in the focusing case and 3 6
k < +∞ in the defocusing case. Then the Cauchy problem (1.1) is, for
µ-almost every initial data, globally well posed in a strong sense and the
Gibbs measure ρ constructed in Theorem 2.3 is invariant under this flow,
Φ(t). More precisely,

• There exists a set Σ of full ρ measure and s < 1
2 (for k = 3,

s < 1
3 can be taken arbitrarily close to 1

3 while for k > 5, s can be
taken arbitrarily close to 1

2 ) so that for every f ∈ Σ the equation
(1.1) with initial condition u(0) = f has a global solution such
that u(t, ·) − e−itHf ∈ C

(
R;Hs(R)

)
. The solution is unique in

the following sense : for every T > 0 there is a functional space XT

continuously embedded in C
(
[−T, T ];Hs(R)

)
such that the solution

is unique in the class

u(t, ·)− e−itHf ∈ XT .

Moreover, for all σ > 0 and t ∈ R

‖u(t, ·)‖H−σ(R) 6 C
(
Λ(f, σ) + ln

1
2
(
1 + |t|

))
,

ANNALES DE L’INSTITUT FOURIER
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and the constant Λ(f, σ) satisfies the bound µ
(
f : Λ(f, σ) > λ

)
6

Ce−cλ2
.

• For any ρ measurable set A ⊂ Σ, for any t ∈ R, ρ(A) = ρ(Φ(t)(A)).

Notice that in this paper, we had to modify the definition of the finite
dimensional approximations measures ρN with respect to previous results
on the subject (see e.g. [4]). Indeed, the lack of continuity of the rough pro-
jectors ΠN on our resolution spaces forbid the usual approximation results
(see e.g. [38, Theorem 1.2]). As a consequence, our new measures enjoy
better approximation properties (see (2.14)), but the invariance properties
we have to prove are stronger (see Corollary 8.4). We believe nevertheless
this new approach is more natural.

3. Proof of Theorem 2.3

In this section we prove Theorem 2.3. As we already mentioned, the
main issue is the construction of the measure for (1.1) with k = 3 in the
focusing case. We fix once for all σ > 0.

3.1. Preliminaries and construction of the density

First we recall the following Gaussian bound (Khinchin inequality), which
is one of the key points in the study of our random series. See e.g. [8, Lemma
4.2.] for a proof in a more general setting. Let us notice that in our par-
ticular setting, the random variable being a Gaussian variable of variance∑
n>0 |cn|2, this estimate is also an easy consequence of the growth of the

r’th moments of centered Gaussians (uniform with respect to the variance).

Lemma 3.1. — Let
(
gn(ω)

)
n>0 ∈ NC(0, 1) be independent, complex,

L2- normalized Gaussian random variables. Then there exists C > 0 such
that for all r > 2 and (cn) ∈ l2(N)

‖
∑
n>0

gn(ω) cn‖Lr(Ω) 6 C
√
r
(∑
n>0
|cn|2

) 1
2 .

We will need the following particular case of the bounds on the eigenfunc-
tions (hn), proved for example by K. Yajima and G. Zhang [39] (see also
H. Koch and D. Tataru [22]) .
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Lemma 3.2 (Dispersive bound for hn). — For every p > 4 there exists
C(p) such that for every n > 0,

‖hn‖Lp(R) 6 C(p)λ−
1
6

n .

As a consequence, we may show the following statement. Recall that σ > 0
was fixed at the beginning of the section.

Lemma 3.3. — Fix p ∈ [4,∞) and s ∈ [0, 1/6). Then
(3.1)
∃C > 0,∃c> 0,∀λ> 1,∀N > 1, µ

(
u ∈ H−σ : ‖SNu‖Ws,p(R) > λ

)
6 Ce−cλ

2
.

Moreover there exists β(s) > 0 such that

(3.2) ∃C > 0,∃ c > 0, ∀λ > 1, ∀N > N0 > 1,

µ
(
u ∈ H−σ : ‖SNu− SN0u‖Ws,p(R) > λ

)
6 Ce−cN

β(s)
0 λ2

.

Proof. — We have that

µ
(
u ∈ H−σ : ‖SNu‖Ws,p(R) > λ

)
= p

(
ω : ‖

∞∑
n=0

χ
( 2n+ 1

2N + 1
)√2
λn

gn(ω)hn(x)‖Ws,p(R) > λ
)

= p
(
ω : ‖

∞∑
n=0

χ
( 2n+ 1

2N + 1
) √2
λ1−s
n

gn(ω)hn(x)‖Lp(R) > λ
)
.

Set

f(ω, x) ≡
∞∑
n=0

χ
( 2n+ 1

2N + 1
) √2
λ1−s
n

gn(ω)hn(x) .

Then for q > p, using the Minkowski inequality, we get

‖f(ω, x)‖LqωLpx 6 ‖f(ω, x)‖LpxLqω .

By Lemma 3.1 we get

‖f(ω, x)‖Lqω 6 C
√
q
( ∞∑
n=0

χ2
0
( 2n+ 1

2N + 1
) 2
λ

2(1−s)
n

|hn(x)|2
)1/2

6 C
√
q
( ∞∑
n=0

2
λ

2(1−s)
n

|hn(x)|2
)1/2

.

Since s < 1/6, using Lemma 3.2 and the triangle inequality, we get

‖f(ω, x)‖LqωLpx 6 C
√
q .

Using Bienaymé-Tchebichev inequality, we obtain

p
(
ω : ‖f(ω, x)‖Lpx > λ

)
6 (λ−1‖f(ω, x)‖LqωLpx)q 6 (Cλ−1√q)q .
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Thus by choosing q = δλ2, for δ small enough, we get the bound

p
(
ω : ‖f(ω, x)‖Lpx > λ

)
6 Ce−cλ

2
.

This in turn yields (3.1). The proof of (3.2) is very similar. Indeed, in this
case, we analyze the function

fN0(ω, x) ≡
∞∑
n=0

(
χ( 2n+ 1

2N + 1)− χ( 2n+ 1
2N0 + 1)

) 2
λ

2(1−s)
n

gn(ω)hn(x),

and we use that there is a negative power of N0 saving in the estimate.
Namely, there is γ(s) > 0 such that

‖fN0(ω, x)‖LqωLpx 6 C
√
qN
−γ(s)
0 ,

which implies (3.2). This completes the proof of Lemma 3.3. �

With the same arguments one can prove the following statement.

Lemma 3.4. — Let σ > 0, then

(3.3) ∃C > 0,∃c > 0,∀λ > 1, µ
(
u ∈ H−σ : ‖u‖H−σ(R) > λ

)
6 Ce−cλ

2
.

Lemma 3.5 (Gagliardo-Nirenberg inequality associated to H). — For
any s ∈ (0, 1/6), there exists p <∞ and θ < 2 such that

‖u‖4L4(R) 6 C‖u‖
4−θ
L2(R)‖u‖

θ
Ws,p(R) .

Proof. — First we prove that for any s ∈ (0, 1/6), there exists p < ∞
and θ < 2 such that

(3.4) ‖u‖4L4(R) 6 C‖u‖
4−θ
L2(R)‖u‖

θ
W s,p(R) ,

where W s,p is the usual Sobolev space.
Fix s ∈ (0, 1/6) and write

(3.5) ‖u‖4L4(R) 6 C‖u‖
2
L2(R)‖u‖

2
L∞(R) .

Using [32, Proposition A.3], we get that there exists p� 1 and κ > 0 such
that

(3.6) ‖u‖L∞(R) 6 C‖u‖κLp(R)‖u‖
1−κ
W s,p(R),

(indeed for large p the derivative loss tends to zero, i.e. we may assume
that it is smaller than s). Finally the Hölder inequality and (3.6) implies
that for any q > p there exists α > 0 such that

(3.7) ‖u‖Lp(R) 6 C‖u‖αL2(R)‖u‖
1−α
Lq(R) 6 C‖u‖

α
L2(R)‖u‖

1−α
W s,p(R) .

A combination of (3.5), (3.6) and (3.7) yields (3.4).
Finally, to complete the proof of the lemma use that thanks to (2.7)

‖u‖W s,p(R) 6 C‖u‖Ws,p(R) .
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This completes the proof of Lemma 3.5. �

Denote by
FN (u) = ‖ΠNu‖2L2(R) − αN .

As in [36], we need the following convergence properties of the sequence(
FN (u)

)
N>0.

Lemma 3.6. — The sequence (FN (u)) is a Cauchy sequence in
L2(H−σ(R),dµ). As a consequence, if we denote by F (u) its limit, the
sequence

(
FN (u)

)
N>0 converges to F (u) in measure :

∀ ε > 0, lim
N→∞

µ
(
u ∈ H−σ :

∣∣FN (u)− F (u)
∣∣ > ε

)
= 0.

Proof. — Let N > M > 0, then

‖FN (u)− FM (u)‖2L2(H−σ(R),dµ)

=
∫

Ω

∣∣(‖ϕN‖2L2(R) − αN
)
−
(
‖ϕM‖2L2(R) − αM

)∣∣2dp(ω),

where ϕN is defined in (2.6). By (2.11) we have

(3.8) ‖ϕN‖2L2(R) − αN =
N∑
n=0

2
λ2
n

(|gn(ω)|2 − 1),

and therefore

‖FN (u)− FM (u)‖2L2(H−σ(R),dµ)(3.9)

=
∫

Ω

∣∣ N∑
n=M+1

2
λ2
n

(|gn(ω)|2 − 1)
∣∣2dp(ω).

Now, as the random variables
(
gn(ω)

)
n>0 are normalized and independent,

for all n1 6= n2 we have∫
Ω

(
|gn1(ω)|2 − 1

)(
|gn2(ω)|2 − 1

)
dp(ω) = 0,

therefore from (3.9) we deduce

‖FN (u)− FM (u)‖2L2(H−σ(R),dµ) = c

N∑
n=M+1

1
λ4
n

6
C

M + 1 ,

as λ2
n = 2n+ 1. This proves the first assertion of the lemma.

By the Tchebychev inequality, L2 convergence implies convergence in
measure, hence the result. This completes the proof of Lemma 3.6. �

The following result is a large deviation bound for the sequence
(
FN (u)

)
.
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Lemma 3.7. — There exist C, c > 0 so that for all N > M > 0 and
λ > 0

µ
(
u ∈ H−σ :

∣∣FN (u)− FM (u)
∣∣ > λ

)
6 Ce−c(M+1)

1
2 λ.

Proof. — The result can be viewed as a consequence of a smoothing
property of a suitable heat flow, but we give here a direct proof. Define the
set

BM,N =
{
u ∈ H−σ :

∣∣FN (u)− FM (u)
∣∣ > λ

}
.

Then by (3.8) for N > M ,

µ(BM,N ) = p
(
ω :

∣∣( ‖ϕN‖2L2(R) − αN
)
−
(
‖ϕM‖2L2(R) − αM

)∣∣ > λ
)

= p
(
ω :

∣∣ N∑
n=M+1

2
λ2
n

(|gn(ω)|2 − 1)
∣∣ > λ

)
.(3.10)

By the Tchebychev inequality, for all 0 6 t 6 λ2
M+1
4 ,

(3.11) p
(
ω :

N∑
n=M+1

2
λ2
n

(|gn(ω)|2 − 1) > λ
)

6 e−λt E
[

exp
(
t

N∑
n=M+1

2
λ2
n

(|gn(ω)|2 − 1)
)]

= e−λt
N∏

n=M+1

∫
Ω
e

2t
λ2
n

(|gn(ω)|2−1)dp(ω)

= e−λt
N∏

n=M+1
e−

2t
λ2
n

(
1− 2t

λ2
n

)−1
.

Now observe that for all 0 6 x 6 1
2 , (1− x)−1 6 ex+x2 , hence (3.11) gives

p
(
ω :

N∑
n=M+1

2
λ2
n

(|gn(ω)|2 − 1) > λ
)
6 e−λt exp

(
4t2

∞∑
n=M+1

1
λ4
n

)
6 exp

(
− λt+ Ct2

M + 1
)
,

as λ2
n = 2n+1. Choose t = c(M+1) 1

2 , with c > 0 small enough and deduce

p
(
ω :

N∑
n=M+1

2
λ2
n

(|gn(ω)|2 − 1) > λ
)
6 Ce−c(M+1)

1
2 λ.
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Using a slight modification of the previous argument, we can show that

p
(
ω :

N∑
n=M+1

2
λ2
n

(|gn(ω)|2 − 1) < −λ
)
6 Ce−c(M+1)

1
2 λ,

and the result follows, by (3.10). This completes the proof of Lemma 3.7.
�

We are now able to define the density G : H−σ(R) −→ R (with respect
to the measure µ) of the measure ρ. By Lemmas 3.6 and 3.3, we have
the following convergences in the µ measure : FN (u) converges to F (u)
and ‖SNu‖L4(R) to ‖u‖L4(R). Then, by composition and multiplication of
continuous functions, we obtain

(3.12) GN (u) −→ ζ
(
F (u)

)
e

1
4

∫
R
|u(x)|4dx ≡ G(u),

in measure, with respect to the measure µ. As a consequence, G is measur-
able from

(
H−σ(R),B

)
to R.

3.2. Integrability of GN (u)

We now have all the ingredients to prove the following proposition, which
is the key point in the proof of Theorem 2.3.

Proposition 3.8. — Let 1 6 p < ∞. Then there exists C > 0 such
that for every N > 1,∥∥ζ(‖ΠNu‖2L2(R) − αN

)
e

1
4

∫
R
|SNu(x)|4dx∥∥

Lp(dµ(u)) 6 C .

Proof. — Our aim is to show that the integral
∫∞

0 λp−1µ(Aλ,N )dλ is
convergent uniformly with respect to N , where

Aλ,N =
{
u ∈ H−σ : ζ

(
‖ΠNu‖2L2(R) − αN

)
e

1
4

∫
R
|SNu(x)|4dx

> λ
}
.

Proposition 3.8 is a straightforward consequence of the following lemma.

Lemma 3.9. — For any L > 0, there exists C > 0 such that for every
N and every λ > 1,

µ(Aλ,N ) 6 Cλ−L.

We set
N0 ≡ (log λ)l,

where l is fixed such that l > max(2, 1
β(0) + 1) with β(0) defined by

Lemma 3.3.
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Let us first suppose that N0 > N . Using Lemma 3.5 and that ‖SNu‖L2 6
‖ΠNu‖L2 , we get for u ∈ Aλ,N ,∫

R
|SNu(x)|4dx 6 C‖SNu‖4−θL2(R)‖SNu‖

θ
Ws,p(R)

6 C(log log λ)2−θ/2‖SNu‖θWs,p(R) .

Therefore there exists δ > 0 such that

µ(Aλ,N ) 6 Cµ
(
u ∈ H−σ : ‖SNu‖Ws,p(R) > (log λ)1/2+δ),

and using Lemma 3.3, we obtain that for every L > 0 there exists CL such
that for every N and λ such that (log λ)l > N one has

(3.13) µ(Aλ,N ) 6 CLλ−L.

We next consider the case N > N0. Consider the set

Bλ,N =
{
u ∈ H−σ :

∣∣(‖ΠNu‖2L2(R) − αN )− (‖ΠN0u‖2L2(R) − αN0)
∣∣ > 1

}
.

By Lemma 3.7, we get

µ(Bλ,N ) 6 C exp(−c(log λ)l/2) 6 CLλ−L .

Hence it remains to evaluate µ(Aλ,N\Bλ,N ). Let us observe that for u ∈
Aλ,N\Bλ,N one has

‖ΠN0u‖2L2 = (‖ΠNu‖2L2 − αN )−
[
(‖ΠNu‖2L2 − αN )

− (‖ΠN0u‖2L2 − αN0)
]

+ αN0

6 C + C log(N0) 6 C log log λ .

Therefore Aλ,N\Bλ,N ⊂ Cλ,N where

Cλ,N ≡
{
u ∈ H−σ : ‖SNu‖L4 > c[log λ]1/4, ‖ΠN0u‖2L2 6 C log log λ

}
.

We next observe that thanks to the triangle inequality Cλ,N ⊂ Dλ,N∪Eλ,N ,
where

Dλ,N ≡
{
u ∈ H−σ : ‖SN0u‖L4 >

c

4 [log λ]1/4, ‖ΠN0u‖2L2 6 C log log λ
}
,

and
Eλ,N ≡

{
u ∈ H−σ : ‖SNu− SN0u‖L4 >

c

4 [log λ]1/4
}
.

The measure of Dλ,N can be estimated exactly as we did in the analysis
of the case N0 > N . Finally, using Lemma 3.3, thanks to the choice of N0,
we get

µ(Eλ,N ) 6 Ce−cN
β(0)
0 (logλ)1/2

6 CLλ
−L .

This ends the proof of the lemma, and Proposition 3.8 follows. �

We are now able to complete the proof of Theorem 2.3
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Proof of Theorem 2.3 (ii). — According to (3.12), we can extract a sub-
sequence GNk(u) so that GNk(u) −→ G(u), µ a.s. Then by Proposition 3.8
and the Fatou lemma, for all p ∈ [1,+∞),∫

H−σ(R)
|G(u)|pdµ(u) 6 lim inf

k→∞

∫
H−σ(R)

|GNk(u)|pdµ(u) 6 C,

thus G(u) ∈ Lp(dµ(u)).
Now it remains to check that for any borelian set, A ⊂ H−σ, we have

(3.14) lim
N→+∞

∫
H−σ(R)

1u∈AGN (u)dµ(u) =
∫
H−σ(R)

1u∈AG(u)dµ(u),

which will be implied by

(3.15) lim
N→+∞

∫
H−σ(R)

|1u∈A(GN (u)−G(u))|dµ(u) = 0.

For N > 0 and ε > 0, we introduce the set

BN,ε =
{
u ∈ H−σ(R) : |GN (u)−G(u)| 6 ε

}
,

and denote by BcN,ε its complementary.
Firstly, as 1u∈A is bounded, for all N > 0, ε > 0∣∣ ∫

BN,ε

1u∈A
(
GN (u)−G(u)

)
dµ(u)

∣∣ 6 ε.
Secondly, by Cauchy-Schwarz, Proposition 3.8 and as G(u) ∈ L2(dµ(u)),
we obtain∣∣ ∫

Bc
N,ε

1u∈A
(
GN (u)−G(u)

)
dµ(u)

∣∣ 6 ‖GN −G(u)‖L2(dµ)µ(BcN,ε ) 1
2

6 Cµ(BcN,ε ) 1
2 .

By (3.12), we deduce that for all ε > 0,

µ(BcN,ε ) −→ 0, N −→ +∞,

which yields (3.15). This ends the proof of Theorem 2.3 (ii). �

Notice that (3.15) with A = H−σ gives

(3.16) ρ
(
H−σ(R)

)
= lim
N→+∞

ρN
(
H−σ(R)

)
= lim
N→∞

ρ̃N (EN ).

Proof of Theorem 2.3 (i). — By the argument giving (3.1), ‖u‖Lp+1(R)
is µ almost surely finite. As a consequence, the measure ρ in the defocusing
case is nontrivial. The proof of the weak convergence of dρN to dρ can be
deduced from the proof in the focusing case. This completes the proof of
Theorem 2.3. �
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In the focusing case, the measure ρ = ρζ we have constructed depends on
ζ ∈ C∞0 (R). We now check that it is in general not trivial. Indeed we have
the following result

Proposition 3.10. — The supports of the measures satisfy⋃
ζ∈C∞0 (R)

supp ρζ = supp µ.

Proof. — By construction, it is clear that for all ζ ∈ C∞0 (R), the support
of ρζ is included in the support of µ.
Let R � 1 and ζ ∈ C∞0 (R) so that 0 6 ζ 6 1 with ζ = 1 on |x| 6 R, and
consider the associated measure ρζ . Let ε > 0. We will show that if R is
large enough

(3.17) µ
(
u ∈ H−σ : |F (u)| 6 R

)
> 1− ε,

which, as the density ρζ does not vanish on the set {u ∈ Hσ : |F (u)| 6 R}
will yield the result.
Write

(3.18)
{
u ∈ H−σ : |F (u)| > R } ⊂{

u ∈ H−σ : |FN (u)| > R− 1 } ∪
{
u ∈ H−σ : |F (u)− FN (u)| > 1 },

and{
|FN (u)| > R− 1 } ⊂

{
|FN (u)− F0(u)| > R− 1

2 } ∪
{
|F0(u)| > R− 1

2 }.

By Lemma 3.7 and by the direct estimate

µ(u ∈ H−σ : |F0(u)| > R− 1
2 ) 6 Ce−cR,

we obtain that (uniformly in N)

(3.19) µ(u ∈ H−σ : |FN (u)| > R− 1) 6 Ce−cR 6 ε/2,

if R is large enough. By Lemma 3.6, if N is large enough, we also have

(3.20) µ(u ∈ H−σ : |F (u)− FN (u)| > 1) 6 ε/2.

Hence from (3.18)-(3.20) we deduce (3.17). This in turn completes the proof
of Proposition 3.10. �

Let us remark that in the construction of the measure ρ in the focusing
case one may replace the assumption of compact support on ζ by a suf-
ficiently rapid decay as for example ζ(x) ∼ exp(−|x|K), |x| � 1 with K

large enough (see [23]).
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4. Functional calculus of H

We recall the classical Mehler formula for |t| < π/2, f ∈ L1(R), (see e.g.
[12] and references therein)

(4.1) e−itH(f) = 1
| sin(2t)|1/2

∫ ∞
−∞

ei
(x2/2+y2/2) cos(2t)−xy)

sin(2t) f(y)dy.

One may check (4.1) by a direct computation. The explicit representation
of the kernel of exp(−itH) given by (4.1) will allow us to develop the func-
tional calculus of H which will be of importance in several places of our
proof of Theorem 2.4. The representation of e−itH given by (4.1) is also the
key point of the proof of the local in time (deterministic) Strichartz esti-
mates of the next section. The goal of this section is to prove the following
statement.

Proposition 4.1. — Consider for ϕ ∈ S(R) the operator ϕ(h2H).
Then, for any 1 6 p 6 +∞ and any |α| < 1, there exists C > 0 such
that for any 0 < h 6 1, ‖〈x〉−αϕ(h2H)〈x〉α‖L(Lp(R)) 6 C.

One may prove Proposition 4.1 by using a suitable pseudo-differential
calculus. We present here a direct proof based on the Mehler formula. The
result of Proposition 4.1 is a consequence of the following lemma.

Lemma 4.2. — Let K(x, y, h) be the kernel of the operator ϕ(h2H).
Then there exists C > 0 such that for any 0 < h 6 1, we have

(4.2) |K(x, y, h)| 6 C

h(1 + (|x|−|y|)2

h2 )
.

Let us now show how Lemma 4.2 implies Proposition 4.1. By duality, it
suffices to consider the case α > 0.

For α > 0, we have∫ ∞
−∞
|K(x, y, h)|〈y〉αdy 6 C

∫ ∞
−∞

〈y〉α

h(1 + (|x|−|y|)2

h2 )
dy

6 2C
∫ ∞

0

〈y〉α

h(1 + (|x|−y)2

h2 )
dy 6 2C

∫ ∞
0

1 + |x|α + ||x| − y|α

h(1 + (|x|−y)2

h2 )
dy

6 2C〈x〉α + 2C
∫ ∞

0

||x| − y|α

h(1 + (|x|−y)2

h2 )
dy = 2C〈x〉α + 2C

∫ ∞
−∞

|hz|α

(1 + z2)dz

6 C ′〈x〉α .
On the other hand,∫ ∞

−∞
|K(x, y, h)|〈x〉−αdx 6

∫
||x|−|y||<|y|/2

· · ·+
∫
||x|−|y||>|y|/2

· · · .
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The contribution of the first term is bounded by C〈y〉−α, whereas, noticing
that in the second integral we have (|x| − |y|)2 > c(x2 + y2), the con-
tribution of the second term is also easily bounded by C〈y〉−α. Finally,
Proposition 4.1 follows by the Schur Lemma. Thus in order to complete
the proof of Proposition 4.1, it remains to prove Lemma 4.2.
Proof of Lemma 4.2. — We start from the representation

ϕ(h2H) = (2π)−1
∫
τ∈R

eiτh
2H ϕ̂(τ)dτ

and thus according to Mehler’s formula, we have

|K(x, y, h)| 6 C
∣∣ ∫
τ∈R

1
| sin(2h2τ)|1/2

eiψ(τ,h,x,y)ϕ̂(τ)dτ
∣∣,

where

ψ(τ, h, x, y) = − 1
sin(2h2τ)

(x2 + y2

2 cos(2h2τ)− xy
)
.

Next, we decompose

|K(x, y, h)| 6
∑
k∈Z

∣∣ ∫
−π2 +kπ<h2τ<π

2 +kπ

1
| sin(2h2τ)|1/2

eiψ(τ,h,x,y)ϕ̂(τ)dτ
∣∣,

we make the change of variables t = h2τ − kπ and use that |ϕ̂| 6 C〈x〉−2,
since ϕ̂ ∈ S. Thus

|K(x, y, h)|

6
C

h
+

∑
k∈Z\{0}

∣∣ ∫
−π2 +kπ<h2τ<π

2 +kπ

1
| sin(2h2τ)|1/2

eiψ(τ,h,x,y)ϕ̂(τ)
∣∣dτ

6
C

h
+ 1
h2

∑
k∈Z\{0}

∫ π
2

−π2

1
| sin(2t)|1/2

∣∣∣ϕ̂(kπ + t

h2

)∣∣∣dt 6 C

h
.

As a consequence, it is enough to prove

(4.3) |K(x, y, h)| 6 Ch

(|x| − |y|)2 .

The key point of the analysis will be the following estimates on the phase
function.

Lemma 4.3. — There exists C > 0 such that for any x, y ∈ R and any
0 < h 6 1 we have

∂τψ(x, y, τ, h) > h2x
2 + y2

2 .
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Proof. — Indeed,

(4.4) ∂τψ(x, y, τ, h) = 2h2

sin2(2h2τ)
(x

2 + y2

2 − xy cos(2h2τ))

and minimizing with respect to x the expression above gives

∂τψ(x, y, τ, h) > 2h2

sin2(2h2τ)
(y

2

2 sin2(2h2τ)) = h2y2 .

Similarly

∂τψ(x, y, τ, h) > 2h2

sin2(2h2τ)
(x

2

2 sin2(2h2τ)) = h2x2

and the result of Lemma 4.3 follows. �

Lemma 4.4. — There exists C > 0 such that for any x, y ∈ R, any τ ,
and 0 < h 6 1, we have

∂τψ(x, y, τ, h) > h2(|x| − |y|)2

sin2(2h2τ)
.

Proof. — Indeed, this estimate is a straightforward consequence of (4.4)
and

x2 + y2

2 − xy cos(2h2τ) > x2 + y2

2 − |xy| = (|x| − |y|)2

2 .

This completes the proof of Lemma 4.4. �

Let us now complete the proof of Lemma 4.2. To estimate K we integrate
by parts using the operator T = 1

∂τψ(x,y,τ,h)∂τ . Notice that according to
Lemma 4.4, the singularity of 1

| sin(2h2τ)|1/2 is harmless and we obtain

|K(x, y, h)| 6 C
∣∣ ∫
τ∈R

eiψ(x,y,τ,h)∂τ
( 1
| sin(2h2τ)|1/2

1
∂τψ

ϕ̂(τ)
)
dτ
∣∣.

In the expression above, we have three contributions according whether the
derivative falls on either terms. If the derivative falls on the last term, we
obtain a contribution which is, according to Lemma 4.4, bounded by

CN

∫
τ∈R

sin2(2h2τ)
| sin(2h2τ)|1/2h2(|x| − |y|)2 (1 + |τ |)−Ndτ

6 CN

∫
τ∈R

h3|τ |3/2

h2(|x| − |y|)2 (1 + |τ |)−Ndτ 6 Ch

(|x| − |y|)2 .
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If the derivative falls on the first term, we obtain a contribution which is
bounded by

C

∫
τ∈R

h2|ϕ̂(τ)|dτ
| sin(2h2τ)|3/2|∂τψ|

6 Ch
∫
τ∈R

| sin |1/2(2h2τ)
(|x| − |y|)2 |ϕ̂(τ)|dτ

6 C
∫
τ∈R

h|τ |1/2

(|x| − |y|)2 |ϕ̂(τ)|dτ 6 Ch

(|x| − |y|)2 .

Finally, the last case is when the derivative falls on the second term. In this
case, using the relation

∂2
τψ

(∂τψ)2 = −4h2 cos(2h2τ)
sin(2h2τ)∂τψ

+ 4h4xy

sin(2h2τ)(∂τψ)2 ,

Lemma 4.3 and Lemma 4.4, we obtain a contribution which is bounded by

C

∫
τ∈R

( h2

| sin(2h2τ)|3/2|∂τψ|
+ h4|xy|
| sin(2h2τ)|3/2(∂τψ)2

)
|ϕ̂(τ)|dτ

6 C
∫
τ∈R

∣∣ | sin |1/2(2h2τ)
(|x| − |y|)2 ϕ̂(τ)

∣∣dτ 6 Ch

(|x| − |y|)2

where to estimate h4xy
sin(2h2τ)(∂τψ)2 we used Lemma 4.3 to estimate one of the

∂τψ factors and Lemma 4.4 to estimate the other one. This concludes the
proof of (4.3) and hence of Lemma 4.2. �

5. Strichartz estimates

We state the Strichartz inequality (local in time) satisfied by the linear
evolution of the Schrödinger equation with harmonic potential.

Lemma 5.1. — Let us fix s ∈ R. For every p > 4, q > 2 satisfying
2
p + 1

q = 1
2 , every T > 0, there exists C > 0 and such that

(5.1) ‖e−itH‖Hs(R)→Lp((0,2π);Ws,q(R)) 6 C.

There is also a set of inhomogeneous Strichartz estimates which will not
be used here. This result is well-known (see e.g. [13]), but let us recall the
main line of the proof.
Proof. — Coming back to the definition of the spaces Ws,p(R), we first

observe that it suffices to consider the case s = 0. We have that

‖e−itH‖L2→L2 = 1.

Next, as a consequence of (4.1), ‖e−itH‖L1→L∞ 6 C/|t|1/2 for t close to
zero, i.e. the singularity of ‖e−itH‖L1→L∞ for t ∼ 0 is the same as for
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exp(it∂2
x) and thus (see e.g. [19]) e−itH enjoys the same local in time

Strichartz estimates as the Schrödinger equation without potential, which is
precisely the statement of (5.1). This completes the proof of Lemma 5.1. �

We need some stochastic improvements of the Strichartz estimates. The
following lemma shows that there is a gain of regularity in Lp spaces for
the free Schrödinger solution.

Lemma 5.2. — Let ε < 1
6 . For any p, q > 4, there exist C, c > 0 such

that

∀λ > 1, µ(u ∈ H−σ : ‖e−itHu‖Lp(0,2π)W
ε,q(R) > λ) 6 Ce−cλ

2

∀λ > 1, ∀N > 1, µ̃N (u ∈ EN : ‖e−itHu‖Lp(0,2π)W
ε,q(R) > λ) 6 Ce−cλ

2
.

Proof. — Let us prove the first estimate, the proof of the second being
similar. By the definition of µ, we have to show that

(5.2) p
(
ω ∈ Ω : ‖e−itHϕ‖Lp(0,2π)W

ε,q(R) > λ
)
6 Ce−cλ

2
.

Now by Lemmas 3.1, 3.2 and Minkowski’s inequality, for r > p, q, we obtain

‖e−itHϕ(ω, ·)‖Lr(Ω)Lp(0,2π)W
ε,q(R) 6 C‖〈H〉 ε2 e−itHϕ‖Lp(0,2π)L

q(R)Lr(Ω)

6 C
√
r
( ∞∑
n=0

λ2(ε−1)
n ‖hn‖2Lq

) 1
2

6 C
√
r
( ∞∑
n=0

λ
2(ε−1− 1

6 )
n

) 1
2 .(5.3)

Coming back to the definition of λn, we get that the sum (5.3) is finite.
The estimate (5.2) then follows from the Bienaymé-Tchebychev inequality:

p
(
ω ∈ Ω : ‖e−itHϕ‖Lp(0,2π)W

ε,q(R) > λ
)
6

(
‖e−itHϕ‖Lr(Ω)Lp(0,2π)W

ε,q(R)

λ

)r

6

(
C
√
r

λ

)r
,

and the choice r = ελ2 with ε > 0 small enough. This completes the proof
of Lemma 5.2. �

We shall in practice need the following consequence of Lemma 5.2
and (3.3).
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Lemma 5.3. — Let σ > 0, 0 < ε < 1
6 and p, q > 4. Then there exist

C, c > 0 so that for every λ > 1, every N > 1,

(5.4)
ρ
(
u ∈ H−σ : ‖u‖H−σ > λ

)
6 Ce−cλ

2
,

ρ̃N
(
u ∈ EN : ‖u‖H−σ > λ

)
6 Ce−cλ

2

and

(5.5)
ρ
(
u ∈ H−σ : ‖e−itHu‖Lp(0,2π)W

ε,q(R) > λ
)
6 Ce−cλ

2
,

ρ̃N
(
u ∈ EN : ‖e−itHu‖Lp(0,2π)W

ε,q(R) > λ
)
6 Ce−cλ

2
.

Proof. — In the defocusing case the proof is a straightforward conse-
quence of the bounds for µ, µ̃N we have already established. Namely, in
this case it is a straightforward consequence of the inequalities

ρ(A) 6 µ(A), ρ̃N (A) 6 µ̃N (A).

We thus only consider the focusing case which is slightly more delicate. We
prove (5.4). By the definition and the Cauchy-Schwarz inequality, we have

ρN
(
u ∈ H−σ : ‖u‖H−σ > λ

)
=
∫
H−σ

1‖u‖H−σ>λGN (u)dµ(u)

6 ‖GN (u)‖L2(dµ(u)) µ
(
u : ‖u‖H−σ > λ

) 1
2 ,

and we obtain

ρN
(
u ∈ H−σ : ‖u‖H−σ > λ

)
6 Ce−cλ

2
,

and the first claim follows by using (2.14). The proof of the three other
claims are similar. This completes the proof of Lemma 5.3. �

6. Local smoothing effects

The next result is based on the well-known smoothing effect.

Lemma 6.1 (Deterministic smoothing effect). — Let us fix two positive
numbers s and σ such that s < σ < 1/2. Then there exists C > 0 so that

(6.1)
∥∥〈x〉−σ√Hs

e−itHf
∥∥
L2([0,2π]×R) 6 C‖f‖L2(R).

Proof. — Inequality (6.1) is a slight variation of the “usual” local smooth-
ing effect for the harmonic oscillator, namely for α > 1/2,

(6.2)
∥∥〈x〉−α√H 1

2 e−itHf
∥∥
L2([0,2π]×R) 6 C‖f‖L2(R).
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We refer to [39, 40] for a proof of (6.2). Let us fix α > 1/2 such that
1 < 2α < σ/s. Take θ ∈ (0, 1) such that σ = θα. Then thanks to our choice
of α, we have that s < θ

2 . Applying (6.2) to hn gives that

‖〈x〉−α hn(x)‖L2(R) 6 Cλ
− 1

2
n .

Interpolation between the last inequality and the equality ‖hn‖L2(R) = 1
yields that

‖〈x〉−σ hn(x)‖L2(R) 6 Cλ
− θ2
n .

Since s < θ
2 , we obtain that there exists δ(s, σ) > 0 such that

(6.3) ‖〈x〉−σ hn‖L2(R) 6 Cλ
−δ(s,σ)−s
n .

The last estimate in conjugation with [35, Corollary 1.2] implies (6.1) (no-
tice that here we do not need the δ(s, σ) saving in (6.3)). This completes
the proof of Lemma 6.1. �

We also have the following stochastic improvement of the smoothing
effect.

Lemma 6.2 (Stochastic smoothing effect). — Let s, σ be two positive
numbers such that s < σ < 1/2 and q > 2. Then there exist C, c > 0 so
that for every λ > 0, every N > 1,

(6.4)
ρ
(
u ∈ H−σ :

∥∥ 〈x〉−σ√Hs
e−itHu

∥∥
Lq(0,2π)L

2(R) > λ ) 6 Ce−cλ
2
,

ρ̃N
(
u ∈ EN :

∥∥ 〈x〉−σ√Hs
e−itHu

∥∥
Lq(0,2π)L

2(R) > λ ) 6 Ce−cλ
2
.

Proof. — Again we only prove the first claim. We compute

〈x〉−σ
√
H
s
e−itHϕ(ω, x) =

∑
n>0

√
2

λ1−s
n

e−itλ
2
ngn(ω) 1

〈x〉σ
hn(x).

Then by Lemma 3.1

∥∥ 〈x〉−σ√Hs
e−itHϕ(ω, x)

∥∥
Lr(Ω) 6 C

√
r
(∑
n>0

1
〈λn〉2(1−s)

∣∣hn(x)
〈x〉σ

∣∣2) 1
2 .
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An application of the Minkowski inequality and (6.3) give∥∥ 〈x〉−σ√Hs
e−itHϕ(ω, x)

∥∥
Lr(Ω;Lq

T
L2(R))

6 C
√
r
(∑
n>0

1
〈λn〉2(1−s)

∥∥ hn
〈x〉σ

∥∥2
L2(R)

) 1
2

6 C
√
r
(∑
n>0

1
〈λn〉2+2δ(s,σ)

) 1
2

6 C
√
r.

Using the Tchebychev inequality, as we did in the proof of Lemma 5.2 yields

(6.5) µ
(
u ∈ H−σ :

∥∥ 〈x〉−σ√Hs
e−itHu

∥∥
Lq(0,2π)L

2(R) > λ ) 6 Ce−cλ
2
.

Finally we deduce (6.4) from (6.5) as we did in the proof of Lemma 5.3.
This completes the proof of Lemma 6.2. �

7. Local in time results for the nonlinear problem

In this section, we use the linear dispersive estimates established in the
previous sections to develop a local Cauchy theory. As the solution we
are looking for, will be the sum of the linear solution associated to our
initial data and of a smoother term, our functional spaces are naturally the
sum of two spaces: one which corresponds to the properties of the linear
probabilistic solutions, and the other one corresponding to the properties
of the deterministic smoother solutions. Fortunately, it turns out that these
two spaces have a non trivial intersection which is sufficient to perform the
analysis and hence avoid the technicalities involving sum spaces. In the
sequel, for conciseness, we shall denote by LqT the space Lq(0, T ).

7.1. Initial data spaces

For α ∈ R, we define the spaces Hs〈x〉α(R) equipped with the norm

‖u‖Hs〈x〉α = ‖〈x〉α
√
H
s
u‖L2 .

Recall that e−itH defines the free evolution. We define the spaces for the
initial data Y s

Y s =
{
u ∈ H−ε/10 : e−itH(u) ∈ L2(k−1)+ε

2π W
s+ε
k−1 ,r ∩ L2

2πHs〈x〉−s−ε/4

}
,
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where s is a positive number satisfying

(7.1) k − 3
2(k − 2) < s < min

(1
2 ,
k − 1

6
)
,

ε > 0, is a small number and r is a large number all depending on s to
be fixed. The values of ε, r in the definition of the space Y s (and also the
space Xs

T defined in the next section) will be fixed by the analysis of the
next two sections. Note that since e−itH is 2π periodic the interval [0, 2π]
in the definition of Y s may be replaced by any interval of size 2π. We equip
the spaces Y s with the natural norm

‖u‖Y s = ‖u‖H−ε/10 + ‖e−itHu‖
L

2(k−1)+ε
2π W

s+ε
k−1 ,r

+ ‖e−itHu‖L2
2πHs〈x〉−s−ε/4

.

Thanks to Proposition 4.1, we obtain that ‖SN‖Y s→Y s is bounded, uni-
formly in N , provided ε is small enough. The main property of the space
Y s we use, is the following Gaussian property.

Lemma 7.1. — For every s satisfying (7.1) there exists ε0 > 0 and two
positive constants C and c such that for every N > 1, every λ > 1, every
ε ∈ (0, ε0), every r > 4, every N

ρ(u ∈ H−ε/10 : ‖u‖Y s > λ) 6 Ce−cλ
2

ρ̃N (u ∈ EN : ‖u‖Y s > λ) 6 Ce−cλ
2
.

(recall that the dependence on ε and r of Y s is implicit).

Proof. — As before, we only prove the first claim. As a consequence of
Lemma 6.2, we get that for every s ∈ (0, 1/2) and every ε > 0,

ρ
(
u ∈ H−ε/10 :

∥∥e−itHu∥∥
L2

2πHs〈x〉−s−ε/4
> λ ) 6 Ce−cλ

2
.

Next, using Lemmas 3.4 and 5.3, we obtain that for every s ∈ (0, (k−1)/6)
and ε > 0 such that s+ ε < (k − 1)/6, every r > 4,

ρ
(
u ∈ H−ε/10 : ‖u‖H−ε/10 +

∥∥e−itHu∥∥
L

2(k−1)+ε
2π W

s+ε
k−1 ,r

> λ
)
6 Ce−cλ

2
.

This completes the proof of Lemma 7.1. �

7.2. Solution spaces and linear estimates

We define the solution spaces of functions on [−T, T ]× R, by

Xs
T =

{
u ∈ L∞T H−ε/10 ∩ L2(k−1)+ε

T W
s+ε
k−1 ,r ∩ L2

THs〈x〉−s−ε/4

}
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where s satisfies (7.1), ε is a small positive number and r � 1 is a large
number, to be chosen in function of s. We equip Xs

T with the norm

‖u‖Xs
T

= ‖u‖L∞
T
H−ε/10 + ‖u‖

L
2(k−1)+ε
T

W
s+ε
k−1 ,r

+ ‖u‖L2
T
Hs
〈x〉−s−ε/4

.

In the next lemma, we state the linear estimates.

Lemma 7.2. — For any T 6 2π,

‖e−itHu‖Xs
T
6 ‖u‖Y s ,

and for any fixed τ ∈ R,

‖e−iτHu‖Y s = ‖u‖Y s .

Moreover, if s satisfies (7.1), there exist ε0 > 0 and r0 > 2 such that for
ε, η ∈ (0, ε0), r > r0,

(7.2) ‖
∫ t

0
e−i(t−τ)H(F (τ))dτ‖Xs

T
6 C‖F‖L1

T
Hs−η

and for t ∈ [−T, T ]

(7.3) ‖
∫ t

0
e−i(t−τ)H(F (τ))dτ‖Y s 6 C‖F‖L1

T
Hs−η

(recall that the dependence on ε and r of Xs
T and Y s is implicit).

Proof. — The first estimate is a direct consequence of the conservation
of the H−ε/10-norm by the flow and the definition. The second estimate
is a consequence of the time periodicity of the flowthe definition. Let us
prove (7.2). We first observe that if s satisfies (7.1) then thanks to the
Sobolev inequality and (2.7) we have

(7.4) ‖u‖
L

2(k−1)+ε
T

W
s+ε
k−1 ,r

6 C(‖u‖L∞
T
Hs−η + ‖u‖L4

T
Ws−η,∞),

provided the positive numbers ε0 is small enough and r is large enough.
Indeed, thanks to the Sobolev embedding, we have that

‖u‖
L

2(k−1)+ε
T

W
s+ε
k−1 ,r

6 C‖u‖
L

2(k−1)+ε
T

W
s+ε
k−1 +σ, 4k−4+2ε

2k−6+ε
,

provided

σ >
2k − 6 + ε

4k − 4 + 2ε −
1
r
.

Observe that the couple (p, q) = (2(k− 1) + ε, 4k−4+2ε
2k−6+ε ) satisfies p > 4 and

2
p + 1

q = 1
2 . Therefore, (7.4) holds, if we can assure that

s− η > 2k − 6 + ε

4k − 4 + 2ε −
1
r

+ s+ ε

k − 1 .
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But the last condition follows from (7.1), provided 0 < ε, η < ε0, if ε0
is small enough and r large enough. This proves (7.4). Using (7.4), the
Strichartz estimates of Lemma 5.1 and the Minkowski inequality, we obtain
that

‖
∫ t

0
e−i(t−τ)H(F (τ))dτ‖

L
2(k−1)+ε
T

W
s+ε
k−1 ,r

6 C‖eiτHF (τ)‖L1
T
Hs−η = C‖F‖L1

T
Hs−η .

We next observe that as a consequence of Lemma 6.1, for every s satis-
fying (7.1) there exists ε0 such that for ε ∈ (0, ε0),

(7.5) ‖e−itH‖L2→L2
T
Hs
〈x〉−s−ε/4

6 C.

Using (7.5) and the Minkowski inequality, we obtain that

‖
∫ t

0
e−i(t−τ)H(F (τ))dτ‖L2

T
Hs
〈x〉−s−ε/4

6 C‖F‖L1
T
L2 6 C‖F‖L1

T
Hs−η .

The proof of (7.2) is completed by the straightforward bound

‖
∫ t

0
e−i(t−τ)H(F (τ))dτ‖L∞

T
H−ε/10 6 C‖F‖L1

T
H−ε/10 6 C‖F‖L1

T
Hs−η .

Let us now prove (7.3). Using (7.4), (7.5) and the Minkowski inequality, we
obtain that for t ∈ [0, T ],

‖
∫ t

0
e−i(t−τ)H(F (τ))dτ‖Y s 6 C‖e−i(t−τ)H(χ(τ, t)F (τ))‖L1

T
Hs−η

6 C‖F‖L1
T
Hs−η ,

where χ(τ, t) denotes the indicator function of τ ∈ [0, t]. This completes
the proof of Lemma 7.2. �

7.3. Multilinear estimates

Proposition 7.3. — Assume that s satisfies (7.1) and let η > 0. There
exist ε0 > 0 and r0 > 2 such that the following holds true. For every
ε ∈ (0, ε0), and every r > r0 satisfying 3εr > 4(k − 1), there exists κ > 0
such that for T 6 2π we have the estimates

(7.6) ‖u1 · · ·uk‖L1
T
Hs−η 6 CT

κ
k∏
j=1
‖uj‖Xs

T
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and, uniformly in N ,

‖SN ((SNu1)(SNu2) · · · (SNuk))‖L1
T
Hs−η 6 CT

κ
k∏
j=1
‖SNuj‖Xs

T

6 CTκ
k∏
j=1
‖uj‖Xs

T
.

(we recall again that the dependence on ε and r of Xs
T is implicit).

Proof. — Recall that by (2.3), SN = χ
(

H
2N+1

)
. Therefore the second

inequality is a consequence of the first as thanks to Proposition 4.1 the
map SN is bounded on Xs

T uniformly in N .
Let us now prove the first inequality. Consider a classical Littlewood-

Paley decomposition of unity with respect to H,

(7.7) Id =
∑
N

∆N ,

where the summation is taken over dyadic integers N = 2k, ∆0 = ψ0(
√
H)

and forN > 1, ∆N = ψ(
√
H/N), where ψ0, ψ are suitable C∞0 (R) functions

(the support of ψ does not meet zero). Estimate (7.6) is a consequence of
the following localized version of it.

Lemma 7.4. — For any δ > 0, there exists C > 0 such that for N1 6
· · · 6 Nk,

‖∆N1(u1) · · ·∆Nk(uk)‖L1
T
L2 6 CTκN−s+δk

k∏
j=1
‖uj‖Xs

T
.

Let us now explain how Lemma 7.4 implies Proposition 7.3. Using the
definition of Hs, after performing (7.7), we can write

‖u1 · · ·uk‖L1
T
Hs−η 6

C
∑
M

∑
N16···6Nk

∑
σ∈Sk

(1 +M)s−η‖∆M

(
∆N1(uσ(1)) · · ·∆Nk(uσ(k))

)
‖L1

T
L2 .

We now observe that Proposition 7.3 is a consequence of Lemma 7.4 (with
the choice δ = η/2) and the following statement, applied with α > 0 small
enough.

Lemma 7.5. — Let α > 0. For every K > 0, there exists C > 0 such
that for M > N1+α

k , N1 6 · · · 6 Nk,

(7.8) ‖∆M

(
∆N1(u1) · · ·∆Nk(uk)

)
‖L1

T
L2 6 CT (1 +M)−K

k∏
j=1
‖uj‖Xs

T
.
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Let us observe that in [6], a similar stronger property (assuming only
M > DNk, D � 1) in the context of the analysis on a compact Riemannian
manifold is proved, the projectors ∆N being replaced by the corresponding
objects associated to the Laplace-Beltrami operator. In the context of our
analysis below the argument is much simpler compared to [6].

Proof of Lemma 7.5. — Since the space Xs
T is embedded in L∞T H−ε/10

(which is the only L2 type component of our resolution space), by duality
and summing of geometric series the bound (7.8) is a consequence of the
eigenfunction bound

(7.9) ∀K > 0, ∃CK : ∀n1 6 n2 6 · · · 6 nk 6 n1+α
k 6 m,∣∣ ∫

R
hn1 · · ·hnkhm

∣∣ 6 CK(1 +m)−K

(the argument is trivial in the time variable). By writing

hm = 1
(2m+ 1)jH

jhm,

we make integrations by parts in the left hand-side of (7.9) and obtain

1
(2m+ 1)j

∫
R
Hj(hn1 · · ·hnk)hm.

Starting from the definition of hn (2.1) we have the relations

(7.10) h′n(x) =
√
n

2 hn−1(x)−
√
n+ 1

2 hn+1(x)

and
xhn(x) = h′n(x) +

√
2(n+ 1)hn+1(x),

which implies the bound (for p > 2),

(7.11) ‖xk1∂k2
x hn‖Lp(R) 6 Ck1,k2(1 + |n|)

k1+k2
2 .

Using (7.11) (applied when extending the powers of H) we obtain that
the left hand-side of (7.9) is bounded by Cj(nk/m)j which implies the
needed bound thanks to our restriction on M . This completes the proof of
Lemma 7.5. �

It remains to prove Lemma 7.4.

Proof of Lemma 7.4. — We take the parameters ε and r in the scope of
applicability of Lemma 7.1 and Lemma 7.2. By introducing artificially the
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weight 〈x〉s+ε/4, using the Hölder inequality and Proposition 4.1, we can
write

(7.12) ‖∆N1(u1) · · ·∆Nk(uk)‖L1
T
L2

6 C‖〈x〉−s−ε/4∆Nk(uk)‖L2
T
L2

k−1∏
j=1
‖〈x〉

s+ε/4
k−1 uj‖L2(k−1)

T
L∞

.

We now estimate the right hand-side of (7.12). First, we observe that there
exists κ > 0 such that for j = 2, · · · k, using the Sobolev inequality, and
the boundedness on Lr (1 < r < ∞) of zero-th order pseudo-differential
operators, we can write

(7.13) ‖〈x〉
s+ε/4
k−1 uj‖L2(k−1)

T
L∞
6 CTκ‖uj‖

L
2(k−1)+ε
T

W
s+ε
k−1 ,r

6 CTκ‖uj‖Xs
T
,

provided 3ε
4(k−1)r > 1. Next, using similar arguments as in the proof of

Lemma 7.5, we obtain the following statement.

Lemma 7.6. — For any κ > 0 and any K, there exists C such that for
any M satisfying M 6 N1−κ, we have

‖∆M 〈x〉−s−ε/4∆N (u)‖L2
T
L2 6 C(1 +M +N)−K‖u‖Xs

T
.

As a consequence of Lemma 7.6, we obtain for arbitrarily small κ > 0,

‖〈x〉−s−ε/4∆Nk(uk)‖L2
T
L2

6
∑

M>N1−κ
k

‖∆M (〈x〉−s−ε/4∆Nk(uk))‖L2
T
L2 + CN−sk ‖uk‖XsT

6 C
∑

M>N1−κ
k

‖∆M

√
H
s

Ms
(〈x〉−s−ε/4∆Nk(uk))‖L2

T
L2 + CN−sk ‖uk‖XsT

6 CN−s+κsk ‖
√
H
s
(〈x〉−s−ε/4∆Nk(uk))‖L2

T
L2 + CN−sk ‖uk‖XsT .

Using Proposition 4.1, we can write

‖
√
H
s
(〈x〉−s−ε/4∆Nk(uk))‖L2

T
L2

6 C‖uk‖L2
T
Hs
〈x〉−s−ε/4

+ ‖[
√
H
s
, 〈x〉−s−ε/4]∆Nk(uk)‖L2

T
L2 .

In order to estimate the commutator contribution, we shall use the Weyl-
Hörmander pseudo-differential calculus associated to the metric

(7.14) dx2 + dξ2

1 + x2 + ξ2 .
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The symbol classes Sm associated to (7.14) are the spaces of smooth func-
tions on R2 satisfying the bounds

(7.15) |∂αx ∂
β
ξ a(x, ξ)| 6 Cα,β〈|x|+ |ξ|〉m−β .

We refer to [20], Section 18.5, [30] or [3] for a background concerning
the analysis we perform now. First, using the functional calculus associ-
ated to the operator H, we obtain that for σ ∈ [0, 1] the operator

√
H
σ

is a pseudo-differential operator with symbol in Sσ (in fact even better
bounds than (7.15) are enjoyed by the x derivatives of the symbol of√
H
σ) . We have that 〈x〉−s−ε/4 is in S0 and therefore the commutator

[
√
H
s
, 〈x〉−s−ε/4] is a pseudo-differential operator with symbol in Ss−1. As

a consequence Hε/8[
√
H
s
, 〈x〉−s−ε/4] is a pseudo-differential operator with

symbol in Sε/8+s−1 ⊂ S0, provided ε� 1. Therefore, using the L2 bound-
edness of zero order pseudo-differential operators, we obtain that

‖[
√
H
s
, 〈x〉−s−ε/4]∆Nk(uk)‖L2

T
Hε/4 6 C‖∆Nk(uk)‖L2

T
L2

and by duality

‖[
√
H
s
, 〈x〉−s−ε/4]∆Nk(uk)‖L2

T
L2 6 C‖∆Nk(uk)‖L2

T
H−ε/4 6 CT

1
2 ‖uk‖Xs

T
.

Therefore, we obtain the bound

(7.16) ‖〈x〉−s−ε/4∆Nk(uk)‖L2
T
L2 6 CN−s+κsk ‖uk‖Xs

T
.

We now collect (7.12), (7.13) and (7.16) in order to complete the proof of
Lemma 7.4. �

This completes the proof of Proposition 7.3. �

7.4. Further properties of Y s with respect to the measure ρ

From now each time we invoke the space Y s, we mean that s satisfies
(7.1) and ε and r are in the scope of applicability of Lemma 7.1, Lemma 7.2
and Proposition 7.3. Let us next define some auxiliary spaces. Let Ỹ s be
defined by

Ỹ s =
{
u ∈ H−ε/20 : e−itH(u) ∈ L2(k−1)+ε

2π W
s+ε
k−1 ,r ∩ L2

2πHs〈x〉−s−ε/5

}
,

equipped with the natural norm. The remaining part of this section is
devoted to three lemmas needed in the proof of Theorem 2.4. Using the
density in Lp, 1 6 p < ∞ of the Schwartz class S(R), as a consequence of
Proposition 4.1 (and the fact that the result is straightforward if f ∈ S),
we have the following statement.
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Lemma 7.7. — For every f ∈ Y s, ‖(1 − SN )(f)‖Y s = o(1)N→∞. A
similar statement holds for Ỹ s.

One can easily see that the analysis of Lemma 5.2 and Lemma 6.2 implies
that ϕN , defined by (2.6) is a Cauchy sequence in L2(Ω;Y s) and thus we
may see the measures µ and ρ as finite Borel measures on Y s. We deduce,
thanks to Lemma 7.1

Lemma 7.8. — There exist C, c > 0 such that

ρ(u : ‖u‖Y s > λ) + ρ(u : ‖u‖Ỹ s > λ) 6 Ce−cλ
2
.

We also have the following statement.

Lemma 7.9. — Assume that s < s′ < s+ ε
20 . Then we have that Ỹ s ⊂

Y s and the embedding is compact. In particular, thanks to Lemma 7.8, for
every δ > 0 there exists a compact K of Y s such that ρ(Y s)− ρ(K) < δ.

Notice that as soon as we gain some positive power in H, we gain com-
pactness because powers of H controls both powers of |Dx| and of x. As a
consequence, the assumption s′ > s ensures that we have compactness in
terms of x derivatives and weights in 〈x〉 for the second norm, whereas it
ensures compactness in terms of derivatives in the third norm, while the
assumption s′ < s + ε

20 ⇒ s′ + ε
5 < s + ε

4 ensures compactness in terms
of weights in 〈x〉 in this last norm. Finally, since the second and the third
term in the definition of Y s are defined in terms of the free evolution, we
may exchange some saving derivatives in H for some compactness in time.
We omit the details.

7.5. Local well-posedness results

Using the results of the previous subsections, we can now get local well-
posedness results (uniform with respect to the parameter N) for

(7.17) (i∂t −H)u = κ0SN
(
|SNu|k−1SNu

)
, u(0, x) = u0(x) ∈ EN .

Here is a precise statement.

Proposition 7.10. — There exist C > 0, c ∈ (0, 1), γ > 0 such that
for every A > 1 and every N > 1, every u0 ∈ EN satisfying ‖u0‖Y s 6 A

there exists a unique solution of (7.17) on the interval [−cA−γ , cA−γ ] such
that ‖u‖Xs

cA−γ
6 A+A−1. In addition for t ∈ [0, cA−γ ],

(7.18) ‖u(t)‖Y s 6 A+A−1.
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Moreover, if u and v are two solutions with data u0 and v0 respectively,
satisfying ‖u0‖Y s 6 A, ‖v0‖Y s 6 A then ‖u − v‖Xs

cA−γ
6 C‖u0 − v0‖Y s

and for t ∈ [0, cA−γ ],

‖u(t)− v(t)‖Y s 6 C‖u0 − v0‖Y s .

Proof. — We rewrite (7.17) as the integral equation

u(t) = e−itH(u0)+κ0

∫ t

0
e−i(t−τ)H(SN(|SNu(τ)|k−1SNu(τ)

))
dτ ≡ Φu0(u).

Using Lemma 7.2 and Proposition 7.3, we infer the bounds

(7.19) ‖Φu0(u)‖Xs
T
6 ‖u0‖Y s + CTκ‖u‖kXs

T

and (after some algebraic manipulations on |u|k−1u− |v|k−1v)

(7.20) ‖Φu0(u)− Φu0(v)‖Xs
T
6 CTκ‖u− v‖Xs

T
(‖u‖k−1

Xs
T

+ ‖u‖k−1
Xs
T

).

Therefore if we choose T as T = cA−K with c � 1 and K > (k + 10)/κ,
the estimates (7.19) and (7.20) yield that the map Φu0 is a contraction on
the ball of radius 2A and centered at the origin of Xs

T . The fixed point of
this contraction is a solution of (7.17). The uniqueness and the estimate on
the difference of two solutions is a consequence of Proposition 7.3. Finally
coming back to (7.19), we infer that the solution satisfies

(7.21) ‖u‖Xs
T

= ‖Φu0(u)‖Xs
T
6 A+ Ccκ(1 +A)−κKAk 6 A+A−1,

for c small enough and by possibly taking K slightly larger (replacing K
by K+ 1/κ for instance). Let us now prove (7.18). Using Lemma 7.2 ( η in
the scope of its applicability), Proposition 7.3 and (7.21), we obtain from
Lemma 7.2,

‖u(t)‖Y s 6 ‖u0‖Y s + CTκ‖|u|k−1u‖L1
T
Hs−η

6 A+ CTκ‖u‖kXs
T

6 A+A−1.

This completes the proof of Proposition 7.10. �

Let us remark that the existence statement in Proposition 7.10 is not of
importance (indeed see the next section for a global existence statement).
The important point is the uniformness with respect to N of the bounds ob-
tained. Similarly, we can also obtain a well-posedness result for the original
problem

(7.22) (i∂t −H)u = κ0|u|k−1u, u(0, x) = u0(x) ∈ Y s.
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Proposition 7.11. — Then there exist C > 0, c ∈ (0, 1), γ > 0 such
that for every A > 1 if we set T = cA−γ for every u0 ∈ Y s satisfying
‖u0‖Y s 6 A there exists a unique solution of (7.22) on [−T, T ] such that
‖u‖Xs

T
6 A+A−1. In addition for t ∈ [0, T ],

‖u(t)‖Y s 6 A+A−1.

Moreover, if u and v are two solutions with data u0 and v0 respectively,
satisfying ‖u0‖Y s 6 A, ‖v0‖Y s 6 A then ‖u− v‖Xs

T
6 C‖u0 − v0‖Y s .

The proof of Proposition 7.11 is essentially the same as that of Proposi-
tion 7.10 and hence will be omitted.

8. Global well-posedness

In this section, we prove the global existence results for a full measure
set for (1.1). Moreover this set will be reproduced by the flow which is a
key element in the measure invariance argument of the next section.

8.1. Hamiltonian structure of the approximate problem

Here we consider again the problem

(8.1) (i∂t −H)u = κ0SN
(
|SNu|k−1SNu

)
, u(0, x) = ΠN (u(0, x)) ∈ EN ,

with κ0 = ±1 if k = 3 and κ0 = 1 if k > 5.
For u ∈ EN , write

u =
N∑
n=0

cnhn =
N∑
n=0

(an + ibn)hn, an, bn ∈ R.

Then we have the following result.

Lemma 8.1. — Set

J(a0, , · · · , aN , b0, · · · , bN )

= 1
2

N∑
n=0

λ2
n(a2

n + b2n) + κ0

k + 1‖SN
( N∑
n=0

(an + ibn)hn
)
‖k+1
Lk+1(R) .

The equation (8.1) is a Hamiltonian ODE of the form

(8.2) ȧn = ∂J

∂bn
, ḃn = − ∂J

∂an
, 0 6 n 6 N.
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In particular J is conserved by the flow. Moreover the mass

(8.3) ‖u‖2L2(R) =
N∑
n=0

(a2
n + b2n)

is conserved under the flow of (8.1). As a consequence, (8.1) has a well-
defined global flow Φ̃N .

Proof. — The proof of (8.2) is straightforward. Let us next show the
L2 conservation. Multiply the equation (8.1) with u and integrate over R.
First, by an integration by parts, we have

(8.4) −
∫
R
uHu =

∫
R
|H1/2u|2 ∈ R.

Then by (2.4), we deduce that∫
R
SN
(
|SNu|k−1SNu

)
u =

∫
R
SN
(
|SNu|k−1SNu

)
SNu(8.5)

=
∫
R

(
|SNu|k−1SNu

)
SNu ∈ R.

Hence, from (8.4) and (8.5) we infer that
d
dt‖u‖

2
L2(R) = 0.

This completes the proof of Lemma 8.1. �

Denote by Φ̃N (t) : EN −→ EN the flow of the ODE (8.1). We now state
an invariance result which holds both in the defocusing and in the focusing
cases.

Proposition 8.2. — The measure ρ̃N defined by (2.10) (or (2.12)) is
invariant under the flow Φ̃N of (8.1).

Proof. — The proof is based on the Liouville theorem which we recall
below. See e.g. [2, page 528].

Lemma 8.3. — Consider the ODE ẋ(t) = F (t, x(t)), x(t) ∈ Rn with a
local flow Φ(t). Suppose also that F is divergence free, i.e.

∑n
j=1 ∂jFj =

0 (∂j being the derivative with respect to the j’th variable). Then the
Lebesgue measure of Rn is invariant under the flow Φ(t).

Observe that the ODE’s in the scope of applicability of the Liouville
theorem are not necessarily autonomous. Let us now return to the proof
of Proposition 8.2. By Lemma 8.3, the measure dadb =

∏N
n=0 anbn is in-

variant under ΦN . Then, as the Hamiltonian J is conserved, the measure
d−1
N e−J

∏N
n=0 dandbn is also invariant by the flow of (8.1). This completes
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the proof in the defocusing case. A similar argument applies in the fo-
cusing case by invoking the L2 conservation. This completes the proof of
Proposition 8.2. �

Let us now decompose the space H−σ(R) = E⊥N ⊕ EN , and denote by
ΦN (t) = (eitH , Φ̃N (t)) the flow of the equation

(8.6)
(i∂t −H)u = κ0SN

(
|SNu|k−1SNu

)
,

u(0, x) = (uN0 , u0,N ) ∈ E⊥N ⊕ EN .

Corollary 8.4. — The measure ρN is invariant under the flow ΦN (t).

Indeed, it is clear for product sets A = AN × AN , AN ⊂ E⊥N , AN ⊂ EN
and these sets generate the Borelian σ-algebra.

8.2. Global existence

Here we show that the problem (1.1) is globally well-posed on a set of
full ρ measure. Our first result gives bounds (independent of N) on the
solution of the approximate equation (8.6).

Proposition 8.5. — There exists a constant C > 0 such that for all
m,N ∈ N∗, there exists a ρ̃N measurable set Σ̃mN ⊂ EN so that

i) The following estimate holds true

ρ̃N (EN\Σ̃mN ) 6 2−m;

ii) For all f ∈ Σ̃mN and t ∈ R

(8.7) ‖Φ̃N (t)f‖Y s 6 C
(
m+ log(1 + |t|)

) 1
2 ;

iii) There exists c > 0 such that for every t0, every m > 1 and N > 1,

(8.8) Φ̃N (t0)(Σ̃mN ) ⊂ Σ̃m+[c log(|t0|+1)]+3
N .

The property (8.8) allows to simplify the construction of a set invariant
by the limit flow, compared to a similar situation in [38, 7].

Proof. — We set, for m, j integers > 1,

B̃m,jN (D) ≡
{
u ∈ EN : ‖u‖Y s 6 D(m+ j) 1

2
}
,

where the number D � 1 (independent of m, j,N) will be fixed later.
Thanks to Proposition 7.10, there exist c > 0, γ > 0 only depending on s
such that if we set τ ≡ cD−γ(m+ j)−γ/2 then for every t ∈ [−τ, τ ],

(8.9) Φ̃N (t)
(
B̃m,jN (D)

)
⊂
{
u ∈ EN : ‖u‖Y s 6 D(m+ j) 1

2 +D−1(m+ j)− 1
2 6 D(m+ j + 1) 1

2
}
,
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provided D � 1, independently of m, j. Following [4], we set

Σ̃m,jN (D) ≡
[2j/τ ]⋂

k=−[2j/τ ]

Φ̃N (−kτ)(B̃m,jN (D)) ,

where [2j/τ ] stands for the integer part of 2j/τ . Notice that thanks to (8.9),
we obtain that the solution of (8.6) with data f ∈ Σ̃m,jN (D) satisfies

(8.10)
∥∥Φ̃N (t)(f)

∥∥
Y s
6 D(m+ j + 1) 1

2 , |t| 6 2j .

Indeed, for |t| 6 2j , we can find an integer k ∈ [−[2j/τ ], [2j/τ ]] and τ1 ∈
[−τ, τ ] so that t = kτ + τ1 and thus u(t) = Φ̃N (τ1)

(
Φ̃N (kτ)(f)

)
. Since

f ∈ Σ̃m,jN (D) implies that Φ̃N (kτ)(f) ∈ B̃m,jN (D), we can apply (8.9) and
arrive at (8.10).
By Proposition 8.2, the measure ρ̃N is invariant by the flow Φ̃N . Hence

ρ̃N
(
EN\Σ̃m,jN (D)

)
6 (2[2j/τ ] + 1)ρ̃N

(
EN\B̃m,jN (D)

)
6 C2jDγ(m+ j)γ/2ρ̃N

(
EN\B̃m,jN (D)

)
.

Now, by the large deviation bounds of Lemma 7.1

(8.11) ρ̃N
(
EN\Σ̃m,jN (D)

)
6 C2jDγ(m+ j)γ/2e−cD

2(m+j) 6 2−(m+j),

provided D � 1, independently of m, j,N .
Next, we set

Σ̃mN =
∞⋂
j=1

Σ̃m,jN (D) .

Thanks to (8.11), ρ̃N (EN\Σ̃mN ) 6 2−m . In addition, using (8.10), we get
that there exists C such that for every m, every N , every f ∈ Σ̃mN , every
t ∈ R, ∥∥Φ̃N (t)(f)

∥∥
Y s
6 C(m+ 2 + log(1 + |t|)) 1

2 .

Indeed for t ∈ R there exists j ∈ N such that 2j−1 6 1 + |t| 6 2j and we
apply (8.10) with this j. This proves (8.7).
Let us now turn to the proof of (8.8). Consider f ∈ Σ̃mN . Denote by j0

the integer part of 2 + log(1+|t0|)
log(2) . According to (8.10), as soon as j > j0,

we have |t0| 6 2j−1, and for any |t| 6 2j−1

(8.12) Φ̃N (t)Φ̃N (t0)f ∈ B̃m+2,j−1
N (D) ⊂ B̃m+j0+2,j−1

N (D),

which implies that

Φ̃N (t0)f ∈ Σ̃m+j0+2,j−1
N (D), ∀ j > j0.

On the other hand, the trivial relation (for j0−k > 0, i.e. k = 1, 2, · · · j0−1)

B̃m+2,j0
N (D) = B̃m+2+k,j0−k

N (D) ⊂ B̃m+j0+2,j0−k
N (D),
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and (8.12) (applied with j = j0 + 1) implies that for j < j0 and |t| 6 2j 6
2j0−1,

Φ̃N (t)Φ̃N (t0)f ∈ B̃m+j0+2,j
N (D), ∀ 1 6 j < j0,

and consequently

Φ̃N (t0)f ∈ Σ̃m+j0+2,j
N (D), ∀ j > 1.

This proves (8.8) and therefore the proof of Proposition 8.5 is completed.
�

For integers m > 1 and N > 1, we define the cylindrical sets

ΣmN ≡
{
u ∈ H−σ : ΠN (u) ∈ Σ̃mN

}
.

Next, for m > 1, we set

Σm =
{
u ∈ H−σ : ∃Nk, lim

k→+∞
Nk =∞,

∃uNk ∈ ΣmNk , lim
k→+∞

‖SNkuNk − u‖Y s = 0
}
.

Observe that Σm is a closed subset of Y s. Indeed, assume that there exists
uNk ∈ ΣmNk such that limk→+∞ ‖SNkuNk − u‖Y s = 0. Then for any P ∈ N,
as soon as Nk � P , we have

‖SP (uNk − u)‖Y s = ‖SP (SNkuNk − u)‖Y s 6 C‖SNkuNk − u‖Y s → 0.

As a consequence, using (8.7) (with t = 0), we deduce
‖SP (u)‖Y s 6 lim sup

k→+∞
‖SP (uNk)‖Y s = lim sup

k→+∞
‖SP (uNk)‖Y s

6 C sup
Q
‖SQ‖L(Lr(R))m

1/2

and passing to the limit P → +∞, we deduce

u ∈ Y s, ‖u‖Y s 6 C ′m1/2.

The closeness property is clear. Notice also that we have the following
inclusions

(8.13) lim sup
N→+∞

ΣmN =
∞⋂
N=1

∞⋃
N1=N

ΣmN1
⊂ Σm.

Indeed, if u ∈ lim supN→+∞ ΣmN , there exists Nk → +∞ such that

ΠNk(u) ∈ Σ̃mNk ,

and the same proof as above shows that

u ∈ Y s, ‖u‖Y s 6 C ′m1/2.
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Now, we clearly have

‖Snu− u‖Y s = o(1)n→+∞,

and since Sn(Πn(u)) = Sn(u), the sequence uNk ≡ ΠNk(u) is the one
ensuring that u ∈ Σm. This proves (8.13). As a consequence of (8.13), we
get

(8.14) ρ
(
Σm
)
> ρ
(

lim sup
N→+∞

ΣmN
)
.

Using Fatou’s lemma, we get

(8.15) ρ(lim sup
N→∞

ΣmN ) > lim sup
N→∞

ρ(ΣmN ) .

In the defocusing case, consider GN (u) = exp(− 1
k+1‖SNu‖

k+1
Lk+1(R)) and

G(u) = exp(− 1
k+1‖u‖

k+1
Lk+1(R)). In the focusing case, let GN be defined by

(2.13) and G by Theorem 2.3. We have that

ρ(ΣmN ) =
∫

Σm
N

G(u)dµ(u),

and

ρN (ΣmN ) =
∫

Σm
N

GN (u)dµN (u) =
∫

Σ̃m
N

GN (u)dµ̃(u) = ρ̃N (Σ̃mN ).

Therefore, thanks to (3.15), we get

lim
N→∞

(
ρ(ΣmN )− ρN (ΣmN )

)
= 0 .

Therefore, using Proposition 8.5 and (3.16), we obtain

lim sup
N→∞

ρ(ΣmN ) = lim sup
N→∞

ρN (ΣmN ) = lim sup
N→∞

ρ̃N (Σ̃mN )

> lim sup
N→∞

(
ρN (Y s)− 2−m

)
= ρ(Y s)− 2−m.

Collecting the last estimate and (8.14), (8.15), we obtain that

(8.16) ρ
(
Σm
)
> ρ(Y s)− 2−m.

Now, we set

(8.17) Σ ≡
∞⋃
i=1

Σm.

Then, by (8.16), the set Σ is of full ρ measure. It turns out that one has
global existence for any initial condition f ∈ Σ.
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Proposition 8.6. — For every integer m > 1 the local solution u of
(7.22) with initial condition f ∈ Σm is globally defined and we shall denote
it by u = Φ(t)f . Moreover, there exists C > 0 such that for every f ∈ Σm
and every t ∈ R,

‖u(t)‖Y s 6 C
(
m+ log(1 + |t|)

) 1
2 .

Furthermore, if fp ∈ ΣmNp and Np → +∞ are so that

lim
p→+∞

‖SNpfp − f‖Y s = 0,

then

(8.18) lim
p→+∞

‖u(t)− SNp(ΦNp(t)(fp))‖Y s = 0.

Finally, for every t ∈ R, Φ(t)(Σ) = Σ.

Proof. — The key point is now the following lemma.

Lemma 8.7. — There exist Λ0 > 0, C > 0, K > 0 such that the fol-
lowing holds true. Consider a sequence u0,Np ∈ ENp and u0 ∈ Y s. Assume
that there exists Λ > Λ0 such that

‖u0,Np‖Y s 6 Λ, ‖u0‖Y s 6 Λ, lim
p→+∞

‖SNpu0,Np − u0‖Y s = 0.

Then if we set τ = CΛ−K , ΦNp(t)(u0,Np) and Φ(t)(u0) exist for t ∈ [0, τ ]
and satisfy

‖ΦNp(t)(u0,Np)‖L∞τ Y s∩Xsτ 6 Λ + 1, ‖Φ(t)(u0)‖L∞τ Y s∩Xsτ 6 Λ + 1.

Furthermore

lim
p→+∞

‖SNpΦNp(t)(u0,Np)− Φ(t)(u0)‖L∞((0,τ);Y s) = 0.

Proof. — The first part of this lemma is a direct consequence of our local
well posedness results of Propositions 7.10, 7.11. For the second part, let
us write

Φ(t)(u0) ≡ u = e−itH(u0)+v, ΦNp(t)(u0,Np) ≡ up = e−itH(u0,Np)+vp,

and wp = v − SNpvp. We have

u− up = e−itH(u0 − SNpu0,Np) + wp

and by assumption,

‖e−itH(u0 − SNpu0,Np)‖Y s = ‖u0 − SNpu0,Np‖Y s = o(1)p→+∞.
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Therefore it remains to show that ‖wp‖L∞τ Y s = o(1)p→+∞, for τ chosen as
in the statement of the lemma. Observe that wp solves the problem

(i∂t−H)wp = κ0|u|k−1u− κ0S
2
Np(|SNpup|k−1SNpup)

= κ0(Id−S2
Np)(|u|k−1u)+κ0S

2
Np(|u|k−1u−|SNpup|k−1SNpup)(8.19)

with initial condition wp |t=0= 0. Using Proposition 7.3 and Proposi-
tion 7.11, we obtain that for η > 0

‖|u|k−1u‖L1((0,τ);Hs−η) 6 Cτ
κ‖u‖kXsτ 6 Cτ

κ(Λ + 1)k

and consequently,

(8.20) ‖(Id− S2
Np)(|u|k−1u)‖L1((0,τ);Hs−η) → 0 as p→ +∞ .

We estimate the second term in the r.h.s. of (8.19) by using a direct manip-
ulation on the expression |z1|k−1z1−|z2|k−1z2 and invoking Proposition 7.3.
This yields

(8.21) ‖|u|k−1u− |SNpup|k−1SNpup‖L1((0,τ);Hs−η) 6

6 Cτκ‖u− SNpup‖Xsτ (‖u‖k−1
Xsτ

+ ‖SNpup‖k−1
Xsτ

)

6 Cτκ(Λ + 1)k−1(‖e−itH(u0 − SNp(u0,Np))‖Y s + ‖wp‖Xsτ )

6 o(1)p→+∞ + Cτκ(Λ + 1)k−1‖wp‖Xsτ .

We deduce from (8.20), (8.21), (8.19) and Lemma 7.2 that if η � 1,

‖wp‖Xsτ 6 Cτ
κ(Λ + 1)k−1‖wp‖Xsτ + o(1)p→+∞ .

By taking Cτκ(Λ + 1)k−1 < 1/2, we infer that ‖wp‖Xsτ = o(1)p→+∞. Next
using (7.3) of Lemma 7.2, we obtain that ‖wp‖L∞τ Y s = o(1)p→+∞. This
completes the proof of Lemma 8.7. �

Let us now finish the proof of Proposition 8.6. By assumption, we know
that there exist sequences Np ∈ N, uNp ∈ Σ̃mNp (i.e. ΠNp(uNp) ∈ ΣmNk) such
that

lim
p→+∞

‖SNpuNp − u0‖Y s = 0.

Consequently, by Proposition 8.5, we know that

(8.22)
∥∥Φ̃Np(t)(ΠNpuNp))

∥∥
Y s
6 C(m+ log(1 + |t|)) 1

2 .

The strategy of proof consists in proving that as long as the solution
to (7.22) exists, we can pass to the limit in (8.22) and there exists a constant
C ′ (= supQ ‖SQ‖L(Y s)) such that

(8.23)
∥∥Φ(t)(u)

∥∥
Y s
6 C ′C(m+ log(1 + |t|)) 1

2
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which (taking into account that the norm in Y s controls the local existence
time), implies that the solution is global and satisfies (8.23) for all times.
Equivalently, let us fix T > 0 and Λ > Λ0 (the number Λ0 being fixed in

Lemma 8.7). We assume

(8.24)
∥∥ΦNp(t)(ΠNpuNp))

∥∥
Y s
6 Λ, for |t| 6 T

and we want to show

(8.25)
∥∥Φ(t)(u0)

∥∥
Y s
6 C ′Λ, for |t| 6 T.

As a first step, let us fix t = 0. For Q ∈ N, if Np > Q, ΠNp ◦ SQ = SQ and
consequently, using Proposition 4.1 and the definition of Σm, we obtain

‖SQ(u0)‖Y s = lim
p→+∞

‖SQΠNp(uNp)‖Y s 6 C ′Λ

and passing to the limit Q→ +∞, we deduce

‖u0‖Y s = lim
Q→+∞

‖SQ(u0)‖Y s 6 C ′Λ.

This implies that the sequences ΠNpuNp ≡ u0,p and u0 satisfy the assump-
tions of Lemma 8.7 (with Λ replaced by C ′Λ). As a consequence, we know
that

lim
p→+∞

‖ΦNp(t)(ΠNp(uNp))− Φ(t)(u0)‖L∞((0,τ);Y s) = 0

for τ ≡ cΛ−K . This convergence allows to pass to the limit in (8.24) for
t = τ , using again Proposition 4.1. Indeed, fix Q, then for Np � 2Q,

‖SQΦ(τ)(u0)‖Y s = lim
p→∞

‖SQΦNp(τ)ΠNp(uNp)‖Y s ,

and using first (8.24) and passing to the limit Q→ +∞, we deduce

‖Φ(τ)(u0)‖Y s = lim
Q→+∞

‖SQΦ(τ)(u0)‖Y s 6 sup
Q
‖SQ‖L(Y s)Λ.

Now, we can apply the results in Lemma 8.7, with the same Λ as in the
previous step, which implies that (8.25) holds for t ∈ [0, 2τ ], and so on and
so forth.
Notice here that at each step the a priori bound does not get worse,

because we only use the results in Lemma 8.7 to obtain the convergence
of ‖ΦNp(t)(ΠNp(uNp))−Φ(t)u0‖Y s to 0, and then obtain the estimates on
the norm ‖Φ(t)(u0)‖Y s by passing to the limit in (8.24) (applying first SQ,
passing to the limit p → +∞, then to the limit Q → +∞). A completely
analogous argument holds for the negative times t.
In order to prove the last statement in Proposition 8.6 we observe that,

according to (8.8) there exists c > 0 such that for any t ∈ R,

Φ(t)(Σm) ⊂ Σm+[c log(|t|+1)]+3
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which is a straightforward consequence of (8.18) and (8.8). As consequence
we have Φ(t)(Σ) ⊂ Σ and thanks to the reversibility of the flow Φ(t), we
infer that Φ(Σ) = Σ. This completes the proof of Proposition 8.6. �

9. Measure invariance

In this section, we prove the last part of Theorem 2.4. Recall that we
see ρ as a finite Borel measure on Y s. Let Σ be the set of full ρ measure
constructed in the previous section. This is the set involved in the statement
of Theorem 2.4. Recall that thanks to the last claim in Proposition 8.6,
Φ(t)(Σ) = Σ and thanks to the reversibility of the flow Φ(t), it suffices to
prove that for every ρ measurable set A ⊂ Σ and every t ∈ R, ρ(A) 6
ρ(Φ(t)(A)). We perform several reductions which will allow us to reduce
the matters to compact sets A and small times t. First by the regularity
properties of ρ, we may assume that A is a closed set of Y s. Then thanks
to Lemma 7.9, it suffices to prove ρ(K) 6 ρ(Φ(t)(K)) for K a compact
set of Y s. Let us fix a compact K of Y s and a time t > 0 (the case
t < 0 is analogous). Thanks to Proposition 8.6, there exists R > 1 such
that {Φ(τ)(K), 0 6 τ 6 t} ⊂ BR, where here and for future references BR
denotes the open ball of Y s centered at the origin and of radius R. We have
the following statement comparing Φ(t) and ΦN (t) for small (but uniform)
times and compacts contained in BR.

Lemma 9.1. — There exist c > 0 and γ > 0 such that the following
holds true. For every R > 1, every compact K of BR and every ε > 0
there exists N0 > 1 such that for every N > N0, every u0 ∈ K, every
τ ∈ [0, cR−γ ], ‖Φ(τ)(u0)− ΦN (τ)(u0)‖Y s < ε.

Proof. — To prove this lemma, take two new cut off SN,i = χi( H
2N+1 ),

i = 1; 2, with χ1χ = χ, χ2χ1 = χ1 so that SN,1SN = SN , SN,2SN,1 = SN,1.
Notice first that

‖Φ(τ)(u0)− ΦN (τ)(u0)‖Y s 6 ‖(1− SN,1)
(
Φ(τ)(u0)− ΦN (τ)(u0)

)
‖Y s

+ ‖SN,1
(
Φ(τ)(u0)− ΦN (τ)(u0)

)
‖Y s .

To bound the first term, we notice that

‖(1−SN,1)
(
ΦN (τ)(u0)

)
‖Y s = ‖(1−SN,1)

(
eitHu0

)
‖Y s = ‖(1−SN,1)(u0)‖Y s ,

and
lim

N→+∞
‖(1− SN,1)

(
Φ(τ)(u0)

)
‖Y s = 0
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uniformly with respect to u0 in a compact set of Y s. To bound the second
term, we notice that

‖SN,1
(
Φ(τ)(u0)−ΦN (τ)(u0)

)
‖Y s = ‖SN,1

(
Φ(τ)(u0)−SN,2ΦN (τ)(u0)

)
‖Y s .

Now to estimate this term we proceed as in the proof of Lemma 8.7, the
only additional point being the observation that SN,2(u) converges to u in
Y s, uniformly with respect to u in a compact of Y s. �

We next observe that we only need to prove ρ(K) 6 ρ(Φ(τ)(K)) for τ ∈
[0, cR−γ ], where R and γ are fixed by Lemma 9.1. Then we can iterate the
inequality on the same time intervals since we know that Φ(τ)(K) remains
included in BR as far as τ ∈ [0, t]. Using (2.14), Lemma 9.1 and the well-
posedness result of Proposition 7.10 (notice that, though only stated for the
flow Φ̃N (t) on EN , the result holds clearly for the flow ΦN = (eitH , Φ̃N (t))
on E⊥N × EN ), we can write

ρ(Φ(τ)(K) +B2ε) = lim
N→∞

ρN (Φ(τ)(K) +B2ε)

> lim sup
N→∞

ρN (ΦN (τ)(K) +Bε) > lim sup
N→∞

ρN (ΦN (τ)(K +Bαε)),

where α is a fixed constant depending on R but independent of ε. Next,
using the invariance of the measure ρN under the flow ΦN (t) and using
once again (2.14), we can write

ρ(Φ(τ)(K) +B2ε) > lim sup
N→∞

ρN (K +Bαε) = ρ(K +Bαε) > ρ(K) .

Using that Φ(t)(K) is closed and letting ε to zero, the dominated conver-
gence theorem implies that ρ(Φ(τ)(K)) > ρ(K). This proves the measure
invariance. The proof of Theorem 2.4 is therefore completed.

10. Proof of Theorem 1.2

We are looking fort a (global in time) solution v(s, y) of the system

(10.1) i∂sv + ∂2
yv = |v|k−1v, s ∈ R, y ∈ R, v |t=0= u0.

We define u(t, x) for |t| < π
4 , x ∈ R by

(10.2) u(t, x) = 1
cos 1

2 (2t)
v
( tan(2t)

2 ,
x

cos(2t)
)
e−

ix2tan(2t)
2 .

We then can check that v is a solution on Rt of (10.1) if and only if u is a
solution on (−π4 ,

π
4 )s of the system

(10.3) i∂tu−Hu = cos
k−5

2 (2t)|u|k−1u, |t| < π

4 , x ∈ R, u |t=0= u0.
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One also has that the map (10.2) sends solutions of the linear Schrödinger
equation without harmonic potential to solutions of the linear Schrödinger
equation with harmonic potential. We refer to [11] for a use of (10.2) in the
context of scattering for L2 critical problems, i.e. quintic nonlinearities in
1d. The problem (10.3) has also the following Duhamel formulation
(10.4)

u(t) = e−i(t−t0)H(u(t0))− i
∫ t

t0

e−i(t−τ)H( cos
k−5

2 (2τ)|u(τ)|k−1u(τ)
)
dτ

with t0, t ∈ (−π4 ,
π
4 ). The local analysis of (10.3) will be applied to (10.4)

which fits well in the framework of Propositions 7.10, 7.11. By the transfor-
mation (10.2) we may link the solutions of (10.1) on R×R to the solutions
of (10.3) on (−π/4, π/4)× R.

Remark 10.1. — Notice that the lens transform reduced the proof of
global existence for the non linear Schrödinger equation without potential
to the proof of a local existence result (s ∈ (−π4 ,

π
4 )) for an harmonic non

linear Schrödinger equation. However, this fact that we are only interested
in proving existence on a bounded time interval do not lead to any sub-
stantial simplification in the proof: indeed, in the previous section, we had
an invariant measure, ρ. As a consequence, any local well posedness on any
set of ρ mesure 1, S (with time existence T independent of the initial data),
implies automatically global existence on the set

S̃ = ∩k∈ZΦ(T )−k(S),

which, of course has also ρ measure 1. As a consequence, in our framework,
local and global existence results are are not essentially different, as long
as the time existence is uniform.

Let us now remark that thanks to (10.2) the Hs convergence in the
context of (10.3) implies theHs convergence for the original problem (10.1),
as shown in the following Lemma.

Lemma 10.2. — Let u and v be related together by the relation

u(x) = 1
cos1/2(τ)

v
( x

cos(τ)
)
e−

ix2 tan(τ)
2 .

Then for any τ0 > 0 there exists C > 0 such that for any s ∈ [0, 1] and any
τ0 6 τ 6 π

2 ,
‖v‖Hs 6 C‖u‖Hs .

Proof. — For s = 0, the inequality above is an equality with C = 1. As
a consequence, it sufficies to prove the estimate for s = 1, the general case
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follows by interpolation.

(10.5) ‖u‖2H1 =
∫ 1

cos3(τ) |∂xv|
2( x

cos(τ)
)

+ 1
cos(τ) tan2(τ)x2|v|

( x

cos(τ)
)

+ 1
cos(τ)x

2|v|2
( x

cos(τ)
)

+2Re i

cos2(τ) (∂xv)
( x

cos(τ)
)
× ix tan(τ)v

( x

cos(τ)
)
dx

The three first terms in the equation above sum up to∫ 1
cos2(τ) |∂xv(x)|2 + x2|v|2(x)dx,

while the last term is bounded (in absolute value) using Cauchy Schwarz
by ∫ 1

cos2(τ/2) |∂xv(x)|2 + cos2(τ/2)x2|v|2(x)dx.

�

The results of Theorem 1.2 will therefore be a consequence of the fol-
lowing result and the fact that the lens transform (10.2) maps the solution
to the linear Harmonic Schrödinger equation, e−itH(f±) to the solution to
the linear Schrödinger equation eit∂

2
y (f±).

Proposition 10.3. — The equation (10.3) has µ almost surely a unique
solution in C([−π4 ,

π
4 ];Y s). Moreover for any 0 < s < 1

2 , we can write the
solution as

u(t) = e−itH(u |t=0 +f±) + w±(t),
with f± ∈ Y s and where w± are such that

lim
t→±π/4

‖w±(t)‖Hs = 0 .

Proof of Proposition 10.3. — The proof of this proposition is very similar
in spirit to the proof of Theorem 2.4. The local analysis is essentially the
same, if one is interested only in proving that the solution exists, with a
time existence depending on the initial data (see Proposition 10.6). There
is however a nontrivial modification in the globalization arguments (i.e. in
the proof of the fact that the time interval of existence is [−π4 ,

π
4 ]) because

of the lack of energy conservation of (10.3), which implies that there is no
more any invariant measure. We consider the ODE

(10.6) i∂tu−Hu = cos
k−5

2 (2t)SN (|SNu|k−1SNu), u(0) ∈ EN .

One may multiply (10.6) by ū and integrate over R to obtain that the
L2 norm is conserved by the flow and combining this fact with the local
existence theory of ODE’s, we obtain that the ODE (10.6) with phase space
EN has a unique global in time solution. For two real numbers t1, t2 let us
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denote by Φ̃N (t1, t2) the flow of (10.6) from t1 to t2. We have the following
monotonicity property for the solutions of (10.6).

Lemma 10.4. — Set

EN (t, u(t)) = 1
2‖
√
H u(t)‖2L2(R) + cos k−5

2 (2t)
k + 1 ‖SNu(t)‖k+1

Lk+1(R) .

Then the solution of (10.6) satisfies

EN (t, u(t)) 6 EN (0, u(0)), |t| 6 π

4 .

Proof. — A direct computation shows that along the flow of (10.6) one
has

d

dt

(
EN (t, u(t))

)
= − (k − 5) sin(2t) cos k−5

2 (2t)
k + 1 ‖SNu(t)‖k+1

Lk+1(R) .

Therefore the function EN (t, u(t)) increases on the interval [−π/4, 0] and
decreases on the interval [0, π/4], and attains its maximum at 0. This com-
pletes the proof of Lemma 10.4. �

We shall prove that (10.3) is well-posed on [−π/4, π/4] ρ-almost surely
which in turn will imply the claimed well-posedness µ. The result of
Lemma 10.4 implies the following key measure monotonicity property,
which is our substitute for the fact that we do not have an invariant measure
any more.

Lemma 10.5. — For every Borel set A of EN and every |t| 6 π
4 ,

µ̃N (Φ̃N (t, 0)(A)) > ρ̃N (A).

Proof. — By definition

µ̃N (Φ̃N (t, 0)(A)) = dN

∫
Φ̃N (t,0)(A)

e
− 1

2‖
√
H u‖2

L2(R)du,

where du is the Lebesgue measure on EN induced by C(N+1) by the
map (2.5). Let us perform the variable change u 7→ Φ̃N (t, 0)(u). We can
apply the result of Lemma 8.3 to obtain that the Jacobian of this vari-
able change is one (the divergence free assumption can be readily checked
by expressing Φ̃N (t, 0)(u) in terms of its decomposition with respect to
h0, · · ·hN ). Thus we get

µ̃N (Φ̃N (t, 0)(A)) = dN

∫
A

e
− 1

2‖
√
H Φ̃N (t,0)(u)‖2

L2(R)du

> dN

∫
A

e
− 1

2‖
√
H Φ̃N (t,0)(u)‖2

L2(R)−
cos

k−5
2 (2t)
k+1 ‖SN Φ̃N (t,0)(u)‖k+1

Lk+1(R)du .
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Using Lemma 10.4 we hence obtain

µ̃N (Φ̃N (t, 0)(A)) > dN
∫
A

e
− 1

2‖
√
H u‖2

L2(R)−
1
k+1‖SN u‖k+1

Lk+1(R)du = ρ̃N (A).

This completes the proof of Lemma 10.5. �

For I an interval, we can define the spaces Xs
I similarly to the spaces

Xs
T by replacing [−T, T ] by I. We have the following well-posedness result

concerning (10.6).

Proposition 10.6. — There exist C > 0, c ∈ (0, 1), γ > 0, κ > 0
such that for every A > 1 and for every N > 1, every t0 ∈ [−π4 ,

π
4 ], every

u0 ∈ EN satisfying ‖u0‖Y s 6 A there exists a unique solution of (10.6)
with data u(t0) = u0 on the interval I = [t0 − cA−γ , t0 + cA−γ ] such that
‖u‖Xs

I
6 A+A−1. In addition for t ∈ I,

(10.7) ‖u(t)‖Y s 6 A+A−1.

Moreover, if u and v are two solutions with data u0 and v0 respectively,
satisfying ‖u0‖Y s 6 A, ‖v0‖Y s 6 A then ‖u − v‖Xs

I
6 C‖u0 − v0‖Y s and

for t ∈ I,
‖u(t)− v(t)‖Y s 6 C‖u0 − v0‖Y s .

Finally, if J ⊂ I is an interval, then for η > 0,

(10.8) ‖
∫
J

e−i(t−τ)H( cos
k−5

2 (2τ)|u(τ)|k−1u(τ)
)
dτ‖Hs−η 6 C|J |κA.

Proof. — The proof of this statement is completely analogous to that
of Proposition 7.10, one needs to observe that in Lemma 7.2 and Propo-
sition 7.3 one may replace [−T, T ] by an arbitrary interval, T by the size
of this interval and one may add the factor cos k−5

2 (2τ) with the same
conclusion. The only additional point is the estimate (10.8). To prove esti-
mates (10.8), we use that

‖
∫
J

e−i(t−τ)H( cos
k−5

2 (2τ)F (τ)
)
dτ‖Hs−η 6 C‖F‖L1

J
Hs−η

and apply the estimates of Proposition 7.3. �

The rest of the proof of Proposition 10.3 is very similar to the existence
part of Theorem 2.4. We start by the counterpart of Proposition 8.5.

Proposition 10.7. — There exists a constant C > 0 such that for all
m,N ∈ N∗, there exists a ρN measurable set Σ̃mN ⊂ EN so that for all
m,N ∈ N∗

ρ̃N (EN\Σ̃mN ) 6 2−m.
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For all f ∈ Σ̃mN and t ∈ [−π4 ,
π
4 ]

‖Φ̃N (t, 0)f‖Y s 6 Cm
1
2 .

Proof. — We set, for m an integer > 1, B̃mN (D) ≡
{
u ∈ EN : ‖u‖Y s 6

Dm
1
2
}
, where the number D � 1 (independent of m,N) will be fixed

later. Thanks to Proposition 10.6, there exist c > 0, γ > 0 only depending
on s such that if we set τ ≡ cD−γm−γ/2 then for every t1, t2, such that
|t1 − t2| 6 τ ,

(10.9) Φ̃N (t1, t2)
(
B̃mN (D)

)
⊂
{
u ∈ EN : ‖u‖Y s 6 D(m+ 1) 1

2
}
,

provided D � 1, independently of m. Set

Σ̃mN (D) ≡
[π/4τ ]⋂

k=−[π/4τ ]

Φ̃N (kτ, 0)−1(B̃mN (D)) .

Notice that thanks to (10.9), we obtain that the solution of (10.3) with
data f ∈ Σ̃mN (D) satisfies

(10.10)
∥∥Φ̃N (t, 0)(f)

∥∥
Y s
6 D(m+ 1) 1

2 , |t| 6 π

4 .

Indeed, for |t| 6 π
4 , we can find an integer k ∈ [−[π/4τ ], [π/4τ ]] and τ1 ∈

[−τ, τ ] so that t = kτ + τ1 and thus

Φ̃N (t, 0)(f) = Φ̃N (t, kτ)Φ̃N (kτ, 0)(f).

Since f ∈ Σ̃mN (D) implies that Φ̃N (kτ, 0)(f) ∈ B̃mN (D), we can apply (10.9)
and arrive at (10.10). It remains to evaluate the ρ̃N complementary measure
of the set Σ̃mN (D). Using Lemma 10.5, we can write

ρ̃N
(
EN\Σ̃mN (D)

)
6 (2[π/4τ ] + 1)ρN

(
Φ̃N (kτ, 0)−1(EN\B̃mN (D))

)
6 CDγmγ/2µ̃N

(
EN\B̃mN (D)

)
.

By the large deviation bounds of Lemma 7.1, we get

ρ̃N
(
EN\Σ̃mN (D)

)
6 CDγmγ/2e−cD

2m 6 2−m,

providedD � 1, independently ofm,N . This completes the proof of Propo-
sition 10.7. �

Since we are only concerned with a well-posedness statement, we need to
prove less compared with Theorem 2.4 (we do not need to prove that the
statistical ensemble is a set reproduced by the flow). For integers m > 1
and N > 1, we define the cylindrical sets

ΣmN ≡
{
u ∈ Y s : ΠN (u) ∈ Σ̃mN

}
.

ANNALES DE L’INSTITUT FOURIER



LONG TIME DYNAMICS FOR 1D NLS 2189

For m > 1, we set

Σm =
{
u ∈ Y s : ∃Nk ∈N, Nk→+∞,∃uNk ∈ΣmNk , SNk(uNk)→u in Y s

}
.

As in the proof of Theorem 2.4, we obtain the bound

(10.11) ρ
(
Σm
)
> ρ(Y s)− 2−m.

Next, we set

(10.12) Σ ≡
∞⋃
i=1

Σm.

and by (10.11), the set Σ is of full ρ measure. We now state a proposition
yielding the existence part of Proposition 10.3.

Proposition 10.8. — For every integerm > 1, every f ∈ Σm, the prob-
lem (10.3) with initial condition f has a unique solution in C([−π4 ,

π
4 ];Y s).

The proof of Proposition 10.8 is very similar (simpler) to that of Propo-
sition 8.6, by invoking the counterpart of the approximation statement of
Lemma 8.7. This implies the existence part of Proposition 10.3. Namely we
proved the well-posedness for data in Σ (defined by (10.12)) and since Σ is
of full ρ measure it is of full µ measure too.

To prove the last statement of Proposition 10.3, we write the obtained
solution as

u(t) = e−itH
(
u(0)− 2i

∫ π/4

0
eiτH

(
cos

k−5
2 (2τ)|u(τ)|k−1u(τ)

)
dτ
)

+ 2i
∫ π/4

t

e−i(t−τ)H( cos
k−5

2 (2τ)|u(τ)|k−1u(τ)
)
dτ

and we apply estimate (10.8). A similar argument applies near −π/4. This
completes the proof of Proposition 10.3, and hence of Theorem 1.2. �

Appendix A. Typical properties on the support of the
measure

In this section, we give some additional properties of the stochastic series

ϕ(ω, x) =
∞∑
n=0

√
2

λn
gn(ω)hn(x).
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A.1. Mean and pointwise properties

Proposition A.1 (Lp regularisation). — Let 2 6 p < +∞ and denote
by

θ(p) =
{ 1

2 −
1
p if 2 6 p 6 4,

1
3 ( 1

2 + 1
p ) if 4 6 p <∞.

Then for all s < θ(p), there exist C, c > 0 so that

p
(
ω ∈ Ω : ‖ϕ(ω, ·)‖Ws,p(R) > λ

)
6 Ce−cλ

2
.

In particular ‖ϕ(ω, ·)‖Ws,p(R) < +∞, p a.s.

Proof. — The proof is essentially the same as the proof of Lemma 3.3,
using the precise Lp bounds on the Hermite functions hn (see [39] or [34,
Theorem 2.1]). �

Corollary A.2 (Decay). — Let α < 1
6 . Then there exist C, c > 0 so

that for all x ∈ R

p
(
ω ∈ Ω : |ϕ(ω, x)| > λ

〈x〉α
)
6 Ce−cλ

2
.

In particular, for almost all ω ∈ Ω,

ϕ(ω, x) −→ 0 when x −→ ±∞.

Proof. — Let α < 1
6 . Then choose s > 0 so that s+ α < 1

6 and p > 4 so
that s > 1

p . Then by Sobolev, there exists C > 0 so that for all ω ∈ Ω

‖〈x〉αϕ(ω, ·)‖L∞(R) 6 C‖〈x〉αϕ(ω, ·)‖Ws,p(R).

Now by [40, Lemma 2.4],

‖〈x〉αϕ(ω, ·)‖Ws,p(R) 6 C‖ϕ(ω, ·)‖Ws+α,p(R),

thus{
ω ∈ Ω : 〈x〉α|ϕ(ω, x)| > λ

}
⊂
{
ω ∈ Ω : ‖ϕ(ω, ·)‖Ws+α,p(R) >

λ

C

}
.

and we can conclude with the Proposition A.1, as s+ α < θ(p). �

Proposition A.3 (Hölderian regularity). — Let α < 1
6 . There exist

C, c > 0 so that for all x, y ∈ R

p
(
ω ∈ Ω : |ϕ(ω, x)− ϕ(ω, y)| > λ|x− y|α

)
6 Ce−cλ

2
.

In particular, for almost all ω ∈ Ω, the function x 7−→ ϕ(ω, x) is α-
Hölderian on R.

ANNALES DE L’INSTITUT FOURIER



LONG TIME DYNAMICS FOR 1D NLS 2191

Proof. — By Lemma 3.2, for all x, y ∈ R we have

|hn(x)− hn(y)| 6 Cλ−
1
6

n .

By Lemma 3.2 again, we also have the bound (see (7.10))

|hn(x)− hn(y)| 6 ‖hn‖W1,∞(R)|x− y| 6 Cλ
5
6
n |x− y|,

and we can deduce by interpolation that for all 0 6 α 6 1,

|hn(x)− hn(y)| 6 Cλα−
1
6

n |x− y|α.

Now, by Lemma 3.1, for all r > 2

‖ϕ(ω, x)− ϕ(ω, y)‖Lr(Ω) 6 C
√
r
( ∞∑
n=0

1
λ2
n

|hn(x)− hn(y)|2
) 1

2

6 C
√
r|x− y|α

( ∞∑
n=0

1

λ
2(1−α+ 1

6 )
n

) 1
2

6 C
√
r|x− y|α,

for all 0 6 α < 1
6 . We conclude with the Tchebychev inequality. �

The Proposition A.1 does not yield a gain of derivatives in Hs spaces for
the random variables

(
gn(ω)

)
n>0 (and it can actually be shown that no

such gain is indeed true, see [8, Appendix B]), however we can prove a
local gain of regularity.

Proposition A.4 (Local smoothing). — Let ν > 0 and define Ψ(x) =
〈x〉− 1

2−ν . Then for all s < 1
2 , there exist C, c > 0 so that

p
(
ω ∈ Ω : ‖Ψϕ(ω, ·)‖Hs(R) > λ

)
6 Ce−cλ

2
.

In particular ‖Ψϕ(ω, ·)‖Hs(R) < +∞, p a.s.

Proof. — By [35, Corollary 1.2] the following bound holds

‖Ψhn‖L2(R) 6 λ
− 1

2
n .

Then we can perform the same argument as in the proof of Lemma 3.3. �

A.2. Spatial decorrelation

Define the function E for (x, y, α) ∈ R× R× [0, 1[ by

(A.1) E(x, y, α) =
∑
n>0

αn hn(x)hn(y).

Then we have an explicit formula for E.
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Lemma A.5. — For all (x, y, α) ∈ R× R× [0, 1[

(A.2) E(x, y, α) = 1√
π(1− α2)

exp
(
− 1− α

1 + α

(x+ y)2

4 − 1 + α

1− α
(x− y)2

4
)
.

Remark A.6. — Notice that by taking α = e2it, one can see that
Lemma A.5 is equivalent to Mehler formula (4.1), which in turn implies
that the function defined by (10.2) satisfies (10.3). Actually, one could
probably extend Lemma A.5 to more general potential (with quadratic
growth) by precisely writing down a parametrix for eit(−∂2

x+V (x)), or for
the heat kernel e−t(−∂2

x+V (x)).

Proof. — First we recall that the Fourier transform of the Gaussian reads

(A.3) e−σ
2x2

= 1
2σ
√
π

∫
R
eix ξ−

ξ2

4σ2 dξ,

thus, for all n > 1,

(A.4) dn

dxn
(
e−x

2 )
= 1

2
√
π

∫
R
(i ξ)n eix ξ−ξ

2/4dξ.

With (2.1) and (A.4), we deduce that

E(x, y, α)

= 1
4π3/2 e

(x2+y2)/2
∑
n>0

αn

2n n !

∫
R

(i ξ)n eixξ−ξ
2/4dξ

∫
R

(i η)n eiyη−η
2/4dη

= 1
4π3/2 e

(x2+y2)/2
∫
R2

∑
n>0

1
n !
(
− α ξ η

2
)nei(xξ+yη)−ξ2/4−η2/4dξ dη

= 1
4π3/2 e

(x2+y2)/2
∫
R2

e−α ξ η/2+ix (ξ+η)−ξ2/4−η2/4dξ dη.

To compute the last integral, we make the change of variables (ξ′, η′) =
1√
2 (ξ + η, ξ − η) and use (A.3). This completes the proof. �

Proposition A.7 (Spatial decorrelation). — There exists C > 0 so
that for all x, y ∈ R,

(A.5)
∣∣E[ϕ(x, ω)ϕ(y, ω)

]∣∣ 6 Ce− (x−y)2
4 .

Proof. — Consider the function F defined by

F (x, y, α) = 2
∑
n>0

α2n+1

λ2
n

hn(x)hn(y) = 2
∑
n>0

α2n+1

2n+ 1 hn(x)hn(y),
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for (x, y, α) ∈ R× R× [0, 1]. Thanks to the bound (3.2) we have∣∣α2n+1

λ2
n

hn(x)hn(y)
∣∣ 6 C 1

〈n〉
‖hn‖2L∞(R) 6 C

1
〈n〉1+ 1

6
,

hence F ∈ C
(
R× R× [0, 1];R

)
. Therefore,

(A.6) F (x, y, α) −→
∑
n>0

2
λ2
n

hn(x)hn(y) = E
[
ϕ(x, ω)ϕ(y, ω)

]
,

when α −→ 1.
Now observe that F is smooth in α ∈ [0, 1[. Thus (as F (x, y, 0) = 0)

(A.7) F (x, y, α) =
∫ α

0
∂αF (x, y, β)dβ.

By (A.2) we have

∂αF (x, y, β) = 2
∑
n>0

β2n hn(x)hn(y)

= 2√
π(1− β4)

exp
(
− 1− β2

1 + β2
(x+ y)2

4 − 1 + β2

1− β2
(x− y)2

4
)
.

Hence there exists C > 0 so that for all x, y ∈ R and β ∈ [0, 1[∣∣∂αF (x, y, β)
∣∣ 6 C√

1− β
e−

(x−y)2
4 ,

and this, together with (A.6) and (A.7) yields the estimate (A.5). �

A.3. Bilinear estimates

In this section we give a proof of (1.2). Observe that (1.2), applied with
t = 0 implies that ϕ2(ω, x) is a.s. in Hθ for every θ < 1/2 which is a
remarkable smoothing property satisfied by the random series ϕ(ω, x). The
key point in the proof of (1.2) is the following bilinear estimate for Hermite
functions.

Lemma A.8. — There exists C > 0 so that for all 0 6 θ 6 1 and
n,m ∈ N

(A.8) ‖hn hm‖Hθ(R) 6 C max (n,m)−
1
4 + θ

2
(

log
(

min (n,m) + 1
)) 1

2 .

Proof. — We give an argument we learned from Patrick Gérard. It suf-
fices to prove (A.8) for θ = 0 and θ = 1 (the general case then follows by
interpolation). The case θ = 1 can be directly reduced to the case θ = 0
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thanks to (7.10). Let us now give the proof of (A.8) in the case θ = 0. Con-
sider again the function E defined by (A.1) which can also be expressed by
(A.2). Let 0 6 α, β < 1 and x ∈ R. By (A.2) we have

E(x, x, α) = 1√
π

(1− α2)− 1
2 e−

1−α
1+αx

2
.

Therefore, if we set

I(α, β) ≡
∫
R
E(x, x, α)E(x, x, β)dx,

then we get

I(α, β) = 1
π

(1− α2)− 1
2 (1− β2)− 1

2

∫
R
e−
(

1−α
1+α+ 1−β

1+β

)
x2
dx

= 1√
2π

(1− α)− 1
2 (1− β)− 1

2 (1− αβ)− 1
2 .(A.9)

On the other hand, coming back to the definition

I(α, β) =
∑
n,m>0

αnβm
∫
R
h2
n(x)h2

m(x)dx.

Hence to get a useful expression for the L2 norm of the product of two
Hermite functions, it suffices to expand (A.9) in entire series in α and β.
Write

(1− x)− 1
2 =

∑
p>0

cpx
p, c0 = 1, cp = (2p− 1) !

22p−1 p ! (p− 1) ! , p > 1.

Therefore, by the Stirling formula, there exists C > 0 so that |cp| 6
C√
p+ 1

for all p > 0. Now by (A.9) and the previous estimate∫
R
h2
n(x)h2

m(x)dx = 1√
2π

∑
p,q,r>0

p+r=n, q+r=m

cp cq cr

6 C
∑

06r6min(n,m)

(n− r + 1)− 1
2 (m− r + 1)− 1

2 (r + 1)− 1
2 .

Without restricting the generality we may suppose that m > n. If m 6 2n
then we obtain the needed bound by considering separately the cases when
the sum runs over r < m/2 and r > m/2. If m > 2n, then we can write
(m−r+1)− 1

2 6 c(1+m)− 1
2 and the needed bound follows directly. Therefore

we get (A.8) in the case θ = 0. This completes the proof of Lemma A.8. �
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Denote by u(ω, t, x) the free Schrödinger solution with initial condition
ϕ(ω, x), i.e.

u(ω, t, x) = e−itHϕ(x, ω) =
∑
n>0

√
2

λn
e−itλ

2
n gn(ω)hn(x).

Write the decomposition u = u0 +
∑
N uN , where the summation is taken

over the dyadic integers and for N a dyadic integer

uN (ω, t, x) =
∑

N6n<2N
αn(t)hn(x)gn(ω), αn(t) =

√
2

2n+ 1e
−i(2n+1)t .

Let us fix t ∈ R and 0 6 θ < 1
2 . To prove (1.2), it suffices to show that the

expression
J(t, x, ω) ≡ |

∑
M

∑
N

Hθ/2(uN uM )|

belongs to L2(R× Ω) (here the summation is again taken over the dyadic
values of M,N). Using the Cauchy-Schwarz inequality, a symmetry argu-
ment and summing geometric series, for all ε > 0 we can write

(A.10) J(t, x, ω) 6 C
( ∑
N6M

Mε|Hθ/2(uN uM)|2) 1
2 .

Coming back to the definition we can write

Hθ/2(uN uM) =
∑

N6n62N
M6m62M

αn αm gn gmH
θ/2(hn hm).

We now estimate ‖Hθ/2(uN uM)‖L2(Ω). We make the expansion

|Hθ/2(uN uM)|2
=

∑
N6n1,n262N
M6m1,m262M

αn1 αn2 αm1 αm2 gn1 gn2 gm1 gm2 H
θ/2(hn1 hm1

)
Hθ/2

(
hn2 hm2

)
.

The random variables gn are centered and independent, and consequently,
E
[
gn1 gn2 gm1 gm2

]
= 0, unless the indexes are pairwise equal (i.e. (n1 = n2

and m1 = m2), or (n1 = m2 and n2 = m1), or (n1 = m1 and n2 = m2).
This implies that

(A.11)
∫

Ω
|Hθ/2(uN uM)|2 6 C ∑

N6n62N
M6m62M

|αn|2|αm|2|Hθ/2(hn hm)|2.
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We integrate (A.11) in x and by (A.8) we deduce that for all ε > 0∫
Ω×R
|Hθ/2(uN uM )|2 6 C

∑
N6n62N
M6m62M

|αn|2|αm|2
∫
R
|Hθ/2(hn hm)|2dx

6 C
∑

N6n62N
M6m62M

(max (M,N))− 1
2 +θ+ε|αn|2|αm|2.

Therefore using that |αn| 6 〈n〉−
1
2 , we get∫

Ω×R
(J(t, x, ω))2 6 C

∑
N6M

∑
N6n62N
M6m62M

M−
1
2 +θ+2ε|αn|2|αm|2

6 C
∑
N6M

∑
N6n62N
M6m62M

M−
1
2 +θ+2ε(MN)−1 <∞,

provided ε is small enough, namely ε such that − 1
2 + θ + 2ε < 0. This

completes the proof of (1.2).

BIBLIOGRAPHY

[1] A. Ayache & N. Tzvetkov, “Lp properties for Gaussian random series”, Trans.
Amer. Math. Soc. 360 (2008), no. 8, p. 4425-4439.

[2] D. Betounes, Differential equations: theory and applications, second ed., Springer,
New York, 2010, xiv+626 pages.

[3] J.-M. Bouclet, “Distributions spectrales pour des opérateurs perturbés”, PhD
Thesis, Nantes University, 2000.

[4] J. Bourgain, “Periodic nonlinear Schrödinger equation and invariant measures”,
Comm. Math. Phys. 166 (1994), no. 1, p. 1-26.

[5] J. Bourgain, “Invariant measures for the 2D-defocusing nonlinear Schrödinger
equation”, Comm. Math. Phys. 176 (1996), no. 2, p. 421-445.

[6] N. Burq, P. Gérard & N. Tzvetkov, “Multilinear eigenfunction estimates and
global existence for the three dimensional nonlinear Schrödinger equations”, Ann.
Sci. École Norm. Sup. (4) 38 (2005), no. 2, p. 255-301.

[7] N. Burq & N. Tzvetkov, “Invariant measure for a three dimensional nonlinear
wave equation”, Int. Math. Res. Not. IMRN (2007), no. 22, p. Art. ID rnm108, 26.

[8] ———, “Random data Cauchy theory for supercritical wave equations. I. Local
theory”, Invent. Math. 173 (2008), no. 3, p. 449-475.

[9] ———, “Random data Cauchy theory for supercritical wave equations. II. A global
existence result”, Invent. Math. 173 (2008), no. 3, p. 477-496.

[10] R. Carles, “Critical nonlinear Schrödinger equations with and without harmonic
potential”, Math. Models Methods Appl. Sci. 12 (2002), no. 10, p. 1513-1523.

[11] ———, “Rotating points for the conformal NLS scattering operator”, Dyn. Partial
Differ. Equ. 6 (2009), no. 1, p. 35-51.

[12] ———, “Nonlinear Schrödinger equation with time dependent potential. 9 (2011),
no. 4, 937–964.”, Commun. Math. Sci. 9 (2011), no. 4, p. 937-964.

ANNALES DE L’INSTITUT FOURIER



LONG TIME DYNAMICS FOR 1D NLS 2197

[13] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Math-
ematics, vol. 10, New York University Courant Institute of Mathematical Sciences,
New York, 2003, xiv+323 pages.

[14] M. Christ & T. Colliander, Jamesand Tao, “Ill-posedness for nonlinear
Schrödinger and wave equations”, Annales IHP, to appear, 2011.

[15] J. Colliander & T. Oh, “Almost sure well-posedness of the cubic nonlinear
Schrödinger equation below L2(T)”, Duke Math. Journal 161 (2012), no. 3, p. 367-
414.

[16] B. Dodson, “Global well-posedness and scattering for the defocusing,
L2-critical, nonlinear Schrödinger equation when d = 1”, Preprint,
http://fr.arxiv.org/abs/1010.0040.

[17] J. Dziubański & P. Głowacki, “Sobolev spaces related to Schrödinger operators
with polynomial potentials”, Math. Z. 262 (2009), no. 4, p. 881-894.

[18] R. Fukuizumi, “Stability and instability of standing waves for the nonlinear
Schrödinger equation with harmonic potential”, Discrete Contin. Dynam. Systems
7 (2001), no. 3, p. 525-544.

[19] J. Ginibre & G. Velo, “The global Cauchy problem for the nonlinear Schrödinger
equation revisited”, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 4,
p. 309-327.

[20] L. Hörmander, The analysis of linear partial differential operators. III,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985, Pseudodifferential
operators, viii+525 pages.

[21] R. Killip, T. Tao & M. Visan, “The cubic nonlinear Schrödinger equation in
two dimensions with radial data”, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 6,
p. 1203-1258.

[22] H. Koch & D. Tataru, “Lp eigenfunction bounds for the Hermite operator”, Duke
Math. J. 128 (2005), no. 2, p. 369-392.

[23] J. L. Lebowitz, H. A. Rose & E. R. Speer, “Statistical mechanics of the nonlinear
Schrödinger equation”, J. Statist. Phys. 50 (1988), no. 3-4, p. 657-687.

[24] K. Nakanishi, “Energy scattering for nonlinear Klein-Gordon and Schrödinger
equations in spatial dimensions 1 and 2”, J. Funct. Anal. 169 (1999), no. 1, p. 201-
225.

[25] U. Niederer, “The maximal kinematical invariance groups of the harmonic oscil-
lator”, Helv. Phys. Acta 46 (1973), p. 191-200.

[26] T. Oh, “Invariant Gibbs measures and a.s. global well posedness for coupled KdV
systems”, Differential Integral Equations 22 (2009), no. 7-8, p. 637-668.

[27] ———, “Invariance of the Gibbs measure for the Schrödinger-Benjamin-Ono sys-
tem”, SIAM J. Math. Anal. 41 (2009/10), no. 6, p. 2207-2225.

[28] Y.-G. Oh, “Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equations
with potentials”, J. Differential Equations 81 (1989), no. 2, p. 255-274.

[29] A. Parmeggiani, Spectral theory of non-commutative harmonic oscillators: an in-
troduction, Lecture Notes in Mathematics, vol. 1992, Springer-Verlag, Berlin, 2010,
xii+254 pages.

[30] D. Robert, Autour de l’approximation semi-classique, Progress in Mathematics,
vol. 68, Birkhäuser Boston Inc., Boston, MA, 1987, x+329 pages.

[31] A. V. Rybin, G. G. Varzugin, M. Lindberg, J. Timonen & R. K. Bullough,
“Similarity solutions and collapse in the attractive Gross-Pitaevskii equation”, Phys.
Rev. E (3) 62 (2000), no. 5, part A, p. 6224-6228.

[32] T. Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Math-
ematics, vol. 106, Published for the Conference Board of the Mathematical Sciences,
Washington, DC, 2006, Local and global analysis, xvi+373 pages.

TOME 63 (2013), FASCICULE 6



2198 Nicolas BURQ, Laurent THOMANN & Nikolay TZVETKOV

[33] ———, “A pseudoconformal compactification of the nonlinear Schrödinger equa-
tion and applications”, New York J. Math. 15 (2009), p. 265-282.

[34] L. Thomann, “Random data Cauchy problem for supercritical Schrödinger equa-
tions”, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 6, p. 2385-2402.

[35] ———, “A remark on the Schrödinger smoothing effect”, Asymptot. Anal. 69
(2010), no. 1-2, p. 117-123.

[36] N. Tzvetkov, “Construction of a Gibbs measure associated to the periodic
Benjamin-Ono equation”, Probab. Theory Related Fields 146 (2010), no. 3-4,
p. 481-514.

[37] N. Tzvetkov, “Invariant measures for the nonlinear Schrödinger equation on the
disc”, Dyn. Partial Differ. Equ. 3 (2006), no. 2, p. 111-160.

[38] ———, “Invariant measures for the defocusing nonlinear Schrödinger equation”,
Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, p. 2543-2604.

[39] K. Yajima & G. Zhang, “Smoothing property for Schrödinger equations with po-
tential superquadratic at infinity”, Comm. Math. Phys. 221 (2001), no. 3, p. 573-
590.

[40] ———, “Local smoothing property and Strichartz inequality for Schrödinger equa-
tions with potentials superquadratic at infinity”, Sūrikaisekikenkyūsho Kōkyūroku
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