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Gaël Raoul

gael.raoul@cmla.ens-cachan.fr

CMLA, ENS Cachan, CNRS, PRES UniverSud,
61 Av. du Pdt. Wilson, 94235 Cachan Cedex, France

Email: gael.raoul@cmla.ens-cachan.fr

Abstract: In this paper, we consider a long time and vanishing mutations limit of an
integro-differential model describing the evolution of a population structured with respect
to a continuous phenotypic trait. We show that the asymptotic population is a steady-
state of the evolution equation without mutations, and satisfies an evolutionary stability
condition.

Subject Class: 35B35, 35B20, 35Q80

1 Introduction

1.1 The model

We consider a population f(t, ·) structured by a phenotypic trait x ∈ X ⊂ Rd. We denote
by f(t, x) the density of the population of trait x ∈ X, at time t ≥ 0. The population
evolves through a process of mutations and selection, according to the integro-differential
model (see [17, 4, 7, 8]):{

f(0, x) = f 0(x), x ∈ X,
∂tf(t, x) = s[f(t, ·)](x)f(t, x) +

∫
X
m(x− y)f(t, y) dy, t ≥ 0, x ∈ X, (1)

where s[µ](x) denotes the fitness of individuals of trait x living among a population
µ ∈ M1

+(R), that is the birth rate minus the death rate of those individuals.
∫
X
m(· −

y)f(t, y) dy represents mutations (see [7, 21, 5]), with m : X − X → R+. In this paper,
we consider that the fitness s[µ] is of logistic type (see [1]), and more precisely that:

s[µ](x) := a(x)−
∫
X

b(x, y)µ(y) dy, (2)

where a(x) is the fitness of an individual of trait x ∈ X without competition. In this arti-
cle, we consider that the competition between two individuals depends on their respective
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traits, we thus consider a competition kernel b(·, ·) > 0. Throughout this article, we will
write abusively

∫
X
b(x, y)µ(y) dy instead of the correct

∫
X
b(x, y)dµ(y).

We introduce a parameter ε > 0, that represents the frequency of mutations (see
[10, 21]):

∂tf(t, x) = s[f(t, ·)](x)f(t, x) + ε(m ∗x f)(t, x). (3)

Since mutations are rare (especially those affecting the phenotype x ∈ X), we are
interested in the limit case ε → 0. More precisely, we are interested in the long-time
behavior of (3) when ε→ 0, we thus rescale the time variable: t̃ = εt. (3) then becomes:

∂tf
ε(t, x) =

1

ε
s[f ε(t, ·)](x)f ε(t, x) + (m ∗x f ε)(t, x). (4)

Remark 1. Notice that the scaling we chose is different from the scaling usually considered
for such equations (see [21, 2, 22]): the usual one would be t̃ =

√
εt. Eq. (3) rescaled

then becomes (with ε′ :=
√
ε):

∂tf
ε(t, x) =

1

ε
s[f ε(t, ·)](x)f ε(t, x) + ε(m ∗x f ε)(t, x). (5)

Since our timescale is faster than the usual one, we expect that the limit f of solutions
f ε of (4) when ε→ 0 will be constituted of steady-states of (1) without mutations (that is
with m = 0). Indeed, we will even show, in Prop. 4 that for a.e. t ≥ 0, f(t, ·) is a stable
(in the sense that it is an ESD, see Def. 1) steady-state of (1) with m = 0. This result
is the main result of this paper.

In evolution theory, and in particular in Adaptive Dynamics (see [15, 20, 13, 9]), the
notion of Evolutionary Stable Strategies (ESS) plays an important role for the evolution-
ary stability of a population (see [19, 3, 9]). However, this notion is not well-adapted for
general measure-valued populations, for which one should consider the following extension
of the notion of ESS (see [8, 16]):

Definition 1. f̄ ∈M1(X) is called an Evolutionary Stable Distribution of (2) if

∀x ∈ supp(f̄), s[f̄ ](x) = 0, (6)

∀x ∈ X, s[f̄ ](x) ≤ 0. (7)

We make the following basic assumptions:

Assumption 1: X ⊂ Rd compact, f 0 ∈M1
+(X), f 0 6= 0, and
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• a ∈ W 1,∞(X), O := {x; a(x) > 0} 6= ∅;

• b ∈ W 1,∞(X ×X), infx,y∈Y b(x, y) > 0;

• m ∈ W 1,∞(X −X) ∩ L1(X −X), m ≥ 0, m(0) > 0.

If Assumption 1 is satisfied, then there exists a unique solution f ∈ C([0,∞);M1
+(X))

of (1) (see Thm 2.1 of [8]). We also recall the uniform bound on ‖f(t, ·)‖M1(X) obtained
in [8]:

‖f‖L∞(R+,M1(X)) ≤
maxx∈X a(x) + maxx,y∈X m(x− y)

infx,y∈X b(x, y)
. (8)

Moreover, we make the following assumption on m and X:

Assumption 2: There exists I ∈ N and C > 0, such that for any x, y ∈ X,(
∗Ii=1m

)
(x− y) > C > 0,

where ∗Ii=1m = m ∗ (m ∗ (· · · ∗ (m) . . . )).

Since we assumed in Assumption 1 that m(0) > 0, Assumption 2 holds for compact
set X ⊂ Rd such that IntX is connected.

In this work, we will often use the integral formulation of f ε, following an idea from
[10]: for t ≥ 0, x ∈ X,

f ε(t, x) = f 0(x)e
1
ε

∫ t
0 s[f

ε(τ,·)](x) dτ +

∫ t

0

(m ∗x f ε)(σ, x)e
1
ε

∫ t
σ s[f

ε(τ,·)](x) dτ dσ. (9)

By a slight modification of Thm 3.1 from [8], one obtains that f ε converges (up to an
extraction) to a limit measure in the sense that:

Proposition 1. Assume that Assumptions 1 and 2 are satisfied, and for ε > 0, let f ε ∈
C([0,∞);M1

+(X)) be the solution of (4) given by [8]. Then, there exists a subsequence of
(f ε)ε, that we still denote (f ε)ε, and f ∈ L∞([0, T ],M1(X)) such that:

f ε →ε→0 f L∞
(
ω ∗ [0, T ], σ(M1, Cb)(X)

)
, (10)

and for every σ, t ∈ [0, T ],∫ t

σ

s[f ε(τ, ·)] dτ →
∫ t

σ

s[f(τ, ·)] dτ L∞ ([0, T ]×X) . (11)

In Subsection 1.2, we state the results of this paper, the main result being Prop. 4.
In subsection 1.3, we first discuss the interplay between previous results on asymptotics
for (1) and the results of this paper, then, we state two corollaries of Prop 4 that we find
particularly interesting. Finally, in Section 2, we proove the results stated in Subsection
1.2.
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1.2 Statement of the results

The main objective of this article is to characterize a limit f ∈ L∞([0, T ],M1
+(X)) of

the solutions f ε ∈ C([0,∞);M1
+(X)) to (4) given by Prop. 1. As mentioned in the

introduction, we expect f(t, ·) to be an ESD (see Def. 1) for a.e. t ≥ 0. To show this
property of f , the first step is to show that f(t, ·) satisfies (7) for a.e. t ≥ 0:

Proposition 2. Assume that Assumptions 1 and 2 are satisfied. For ε > 0, let f ε ∈
C([0,∞);M1

+(X)) be the solution of (4) given by [8], and f ∈ L∞([0, T ],M1(X)) be an
asymptotic population density given by Prop. 1.

Then, for a.e. t ∈ R+,
∀x ∈ X, s[f(t, ·)](x) ≤ 0.

To show Prop. 2, we will need the following Lemma, which provides a (non-uniform
in ε) lower bound on f ε:

Lemma 1. Assume that Assumptions 1 and 2 are satisfied, and for ε > 0, let f ε ∈
C([0,∞);M1

+(X)) be the solution of (4) given by [8].
Then, there exists C, κ > 0 such that for all ε > 0 small enough,

f ε(t, x) ≥ C εκ, for t ≥ 0, x ∈ X.

The second step is to show that f(t, ·) satisfies (6) for a.e. t ≥ 0:

Proposition 3. Assume that Assumptions 1 and 2 are satisfied. For ε > 0, let f ε ∈
C([0,∞);M1

+(X)) be the solution of (4) given by [8], and f ∈ L∞([0, T ],M1(X)) be an
asymptotic population density given by Prop 1.

Then, for a.e. t ∈ R+,

∀x ∈ supp f(t, ·), s[f(t, ·)](x) = 0. (12)

To show Prop. 3, we will use the following Lemma:

Lemma 2. Assume that Assumptions 1 and 2 are satisfied. For ε > 0, let f ε ∈
C([0,∞);M1

+(X)) be the solution of (4) given by [8], and f ∈ L∞([0, T ],M1(X)) be
an asymptotic population density given by Prop. 1.

If η, δ̄ > 0, there exists κ̄ ∈ (0, η) such that for any x̄ ∈ X and t̄ a Lebesgue point of
t 7→ s[f(t, ·)](x̄) satisfying

s[f(t̄, ·)](x̄) < −η,
there exists t1, t2 ∈ Q, t2 − t1 ≤ 1, such that t̄ ∈ (t1, t2) and:

1

|t1 − t2| |B(x̄, κ̄)|

∫
[t1,t2]

∫
B(x̄,κ̄)

f(t, x) dt dx ≤ C δ̄,

where C is a constant depending only on a, b, and m.
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Finally, if we combine the results of Prop. 2 and Prop 3, we obtain the main result of
this paper (thanks to Def. 1):

Proposition 4. Assume that Assumptions 1 and 2 are satisfied. For ε > 0, let f ε ∈
C([0,∞);M1

+(X)) be the solution of (4) given by [8], and f ∈ L∞([0, T ],M1(X)) be the
asymptotic population density given by Prop 1.

Then, for a.e. t ∈ R+, f(t, .) is an ESD of (2).

Note that in general, the limit population f given by Prop. 4 depends on the time
variable t, and on the subsequence of (f ε)ε extracted in Prop. 1.

Remark 2. For the sake of Proofs readability, we wrote our results under the non-optimal
assumptions 1 and 2. One can probably generalize our results to non-compact phenotypic
trait spaces X, provided that a(x) decreases fast enough when x → ∞. One can also
consider mutation kernels that depend resonably on ε.

1.3 Comments on our results

In the case when (2) admits a unique ESD f̄ = ρ̄δx̄ (x̄ is then called ESS of the system),
the convergence of the solution f of (1) to f̄ under an asymptotic of large time and
small mutations has been studied e.g. in [5, 6]. For competition kernels of the type
b(x, y) = b1(x)b2(y), the dynamics of the population can indeed be well understood using
the scaling (5), see [10, 21, 2].

For more general competition kernels such as we consider in this article (and that are
widely used in theoretical biology, see e.g. [17, 11, 24, 12]), the scaling (5) still can be
used (see [22]), but the asymptotic population f cannot be explicitly described, and we
don’t know then any result on the long-time properties of the population.

If mutations are neglected in (1), that is when m ≡ 0, (1) has been studied in [8, 23, 16].
In [8, 23], the local stability of some ESD of (2) for (1) without mutations have been
proven. More precisely, it is shown that an ESD f̄ =

∑n
i=1 ρ̄iδx̄i of (2) is a locally (in

the sense of the W∞ Wasserstein distance on measures) stable steady-state of (1) (with
m ≡ 0) if (x̄i)i is an Evolutionary Attractor, which is a stronger stability notion than
ESD (see [14, 18, 23]).

The case where mutations are neglected has also been studied in [16], under an as-
sumption on the competition kernel, which corresponds to b(x, y) = B(x − y) and the
Fourier transform of B is positive. Then, under the additional assumption that there
exists an ESD f̄ of (2), it is shown in [16] that f(t, ·) ⇀ f̄ (see [16] for a precise state-
ment). Cor. 1 below shows that this last assumption is always satisfied (under reasonable
assumptions on X, a and b, see also Rem 2).

We emphasize two important corollaries of the main result of this article (Prop. 4),
which are of particular interest:
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The first corollary states that for any coefficients a, b satisfying Assumption 1, there
exists at least one ESD of (2):

Corollary 1. If Assumption 1 is satisfied, then there exists an ESD f̄ ∈M1(X) of (2).

To prove this result, one may choose for instance a mutation kernel m(x) := 1, and
apply Prop. 4.

The second corollary states that if (2) admits only one ESD f̄ , then the solutions (f ε)
of (4) converge asymptotically to f̄

Corollary 2. Assume that Assumptions 1 and 2 are satisfied, and for ε > 0, and let
f ε ∈ C([0,∞);M1

+(X)) be the solution of (4) given by [8].
If (2) admits a unique ESD f̄ ∈M1(X) of (2), then

f ε →ε→0 f̄ L∞
(
ω ∗ [0, T ], σ(M1, Cb)(X)

)
.

This corollary is a direct consequence of Prop. 4 and Prop 1. Notice that in evolution
theory, and in particular in Adaptive Dynamics theory, one often assume (usually implic-
itly) that a unique ESS (ESD being a generalization of the notion of ESS) of the system
exists. Cor. 2 then identifies the asymptotic behaviour of the population, with very few
assumptions on the initial population and on a, b, m.

2 Proofs of the results.

2.1 Proof of Lemma 1

.
Step 1: We show that there exists C1 > 0 such that for any t > 0, x ∈ X, if ε > 0 is

small enough, then f ε(t, x) ≥ C1ε
I infσ∈[t−Iε,t] ‖f(σ, ·)‖L1(X).

Let t > 0, x ∈ X. If ε > 0 is small enough, t− Iε ≥ 0, and then we get from (9):

f ε(t, x) ≥
∫ t

t−ε
(m ∗x f ε)(σ, x)e

1
ε

∫ t
σ s[f

ε(τ,·)](x) dτ dσ,

≥ e−
ε
ε
‖s‖L∞(X)

[
m ∗x

(∫ t

t−ε
f ε(σ, ·) dσ

)]
(x),

and further,

6



f ε(t, x) ≥ e−‖s‖L∞(X)m ∗x
(∫ t

t−ε

(∫ σ

σ−ε
m ∗x f ε(σ̃, x)e

1
ε

∫ σ
σ̃ s[f

ε(τ,·)](x) dτ dσ̃

)
dσ

)
≥ e−‖s‖L∞(X)

(
e−

ε‖s‖L∞(X)
ε

)
m ∗x

(∫ t

t−ε

∫ σ

σ−ε
m ∗x f ε(σ̃, ·) dσ̃ dσ

)
(x)

≥ ε

2

(
e−‖s‖L∞(X)

)2
m ∗m ∗x

(∫ t− 1
2
ε

t− 3
2
ε

f ε(σ, ·) dσ

)
(x).

Iterating this estimation, we get, for I ∈ N:

f ε(t, x) ≥
(ε

2

)I−1 (
e−‖s‖L∞(X)

)I (∗Ii=1m
)
∗x

(∫ t− I−1
2
ε

t− I+1
2
ε

f ε(σ, ·) dσ

)
(x),

≥
(ε

2

)I−1 (
e−‖s‖L∞(X)

)I
min
y∈X

(
∗Ii=1m

)
(y)

∫ t− I−1
2
ε

t− I+1
2
ε

‖f ε(σ, ·)‖L1(X) dσ.

Thanks to Assumption 2, we get:

f ε(t, x) ≥ C
(ε

2

)I−1 (
e−‖s‖L∞(X)

)I ∫ t− I−1
2
ε

t− I+1
2
ε

‖f ε(σ, ·)‖L1(X) dσ

≥ C1 ε
I inf
σ∈[t−Iε,t]

‖f(σ, ·)‖L1(X).

Step 2: We show that there exists C, κ > 0 such that for t > 0, if ε > 0 is small enough,
then, ‖f ε(t, ·)‖L1 ≥ C εκ.

Let C1 be the constant of Step 1, and X1 := {x ∈ X; a(x) ≥ 1
2

maxy∈X a(x)}. Let:

∆T :=
4ε

max a
ln

(
2

C1|X1|εI

)
,

Λ := min

{
‖f 0‖L1(X)e

−‖s‖∞I ,
max a

4‖b‖∞
e
−‖s‖∞∆T

ε

}
,

T := inf
{
t > 0; ‖f ε(t, ·)‖L1(X) ≤ Λ

}
,

where ‖s‖∞ <∞ denotes the uniform bound on s[f ε](·) (see Assumption 1 and (8)):

‖s‖∞ = ‖a‖∞ + ‖b‖∞max

(
maxx∈X a(x) + maxx,y∈X m(x− y)

infx,y∈X b(x, y)
, ‖f 0‖M1(X)

)
.

We want to show that T =∞, using a reductio ab absurdum argument.
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If t ≤ Iε, thanks to (9),

‖f ε(t, ·)‖L1(X) ≥ ‖f 0‖L1(X)e
−‖s‖∞Iε

ε ≥ Λ,

and then, T ≥ Iε.
Assume now that T ≥ 2∆T is finite. Then, [T − Iε, T ] ⊂ R+, and we can apply the

result of step 1: for x ∈ X,

f ε(T −∆T, x) ≥ C1ε
I inf
σ∈[t−Iε,t]

‖f ε(σ, ·)‖L1(X) ≥ C1ε
IΛ. (13)

Moreover, using the definition of ∆T , we can bound ‖f ε(t, ·)‖L1(X) from above using
an integral formulation of f similar to (9): for t ∈ [T −∆T, T ] and x ∈ X,

f ε(T, x) ≥ f ε(t, x)e
1
ε

∫ T
t s[fε(τ,·)](x) dτ

≥ f ε(t, x)e
−‖s‖∞

ε
∆T .

Thus, thanks to an integration over X, we get for t ∈ [T −∆T, T ]:

‖f ε(t, ·)‖L1(X) ≤ Λe
1
ε
‖s‖∞∆T

≤ max a

4‖b‖∞
,

and then, for t ∈ [T −∆T, T ] and x ∈ X1,

∂tf
ε(t, x) ≥ 1

ε

(
1

2
max a− ‖b‖∞‖f ε(t, ·)‖L1(X)

)
f ε(t, x)

≥ max a

4ε
f ε(t, x). (14)

Then, f ε(T, x) ≥ f ε(T −∆T, x)e
max a

4ε
∆T , and thanks to (13), we get for x ∈ X1:

f ε(T, x) ≥ C1ε
IΛe

max a
4ε

∆T ,

and then,
‖f ε(T, ·)‖L1(X) ≥ ‖f ε(T, ·)‖L1(X1) ≥ C1|X1|εIΛe

max a
4ε

∆T ,

which implies, thanks to the definition of ∆T that ‖f ε(T, ·)‖L1(X) > 2Λ, which is absurd.
Then, necessarly, T =∞, which proves Step 2, since for t ≥ 0, ‖f ε(t, ·)‖L1(X) ≥ Λ and Λ
can be bound from below by a polynomial in ε:

Λ = min

{
‖f 0‖L1(X)e

−‖s‖∞I ,
max a

4‖b‖∞
e
−‖s‖∞∆T

ε

}

= min

‖f 0‖L1(X)e
−‖s‖∞I ,

max a

4‖b‖∞

(
C1|X1|εI

2

) 4‖s‖∞
max a

 .

Finally, the combination on of Step 1 and Step 2 proves Lem. 1.
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2.2 Proof of Prop. 2

We assume that there exists x̄ ∈ Int(X) and a Lebesgue point t̄ > 0 of t 7→ s[f(t, ·)](x̄)
such that:

s[f(t̄, ·)](x̄) > 0. (15)

Step 1: We will show that this assumption leads to a contradiction.

Since t̄ is a Lebesgue point of t 7→ s[f(t, ·)](x̄),

1

δ

∫ t̄

t̄−δ
s[f(τ, ·)](x̄) dτ →δ→0 s[f(t̄, ·)](x̄) > 0.

Then, there exists δ̄ > 0 such that:∫ t̄

t̄−δ̄
s[f(τ, ·)](x̄) dτ > C > 0. (16)

Thanks to the limit (11), (16) implies that there exists ε̄ > 0 such that:

∀ε ∈ (0, ε̄),

∫ t̄

t−δ̄
s[f ε(τ, ·)](x̄) dτ > C > 0. (17)

Finally,
(
x 7→

∫ t̄
t1
s[f ε(τ, ·)](x̄) dτ

)
ε

is uniformly Lipschitz-continuous thanks to As-

sumption 1, and then, there exists κ̄ > 0 such that:

∀ε ∈ (0, ε̄), ∀x ∈ B(x̄, κ̄),

∫ t̄

t1

s[f ε(τ, ·)](x) dτ > C > 0,

where B(x̄, κ̄) := {x ∈ X, |x − x̄| < κ̄}. Then, using an integral formulation of f ε (see
(9)), we get:

f ε(t̄, x) ≥ e
1
ε

∫ t̄
t̄−δ̄ s[f

ε(σ,·)](x) dσf ε(t̄− δ̄, x)

≥ e
C
ε
δ̄f ε(t̄− δ̄, x), (18)

where C > 0. Thanks to Lem. 1,if ε̄ > 0 is small enough,

∀ε ∈ (0, ε̄), ∀x ∈ B(x̄, κ̄), f ε(t̄− δ̄, x) ≥ e
C
ε
δ̄Cεκ

where C, κ > 0, and then,

‖f ε(t̄, ·)‖L1(X) =

∫
B(x̄,κ̄)

f ε(t̄, x) dx ≥ C |B(x̄, κ̄)| εκe
C
ε
δ̄ →ε→0 ∞,
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which is in contradiction with the uniform a priori bound (8) on f ε.

Step 2: We will show that Step 1 implies Prop. 2.

Let η > 0. Since X is bounded, there exists N ∈ N and x1, . . . , xN ∈ X such that

X ⊂ ∪Ni=1B(xi, η). (19)

For i ∈ {1, . . . , N}, there exists a negligeable set Ni ⊂ R+ (that is |Ni| = 0), such
that any t ∈ R+ \ Ni is a Lebesgue point of s[f(t, ·)](xi), and then, thanks to Step 1,
s[f(t, ·)](xi) ≤ 0. Since this is true for i = 1, . . . , N ,

∀i = 1, . . . , N, ∀t ∈ R+ \
(
∪Ni=1Ni

)
, s[f(t, ·)](xi) ≤ 0. (20)

Since {x1, . . . , xN} satisfies (19) and ‖∂xs[f ]‖L∞(R+×X) ≤ ‖a′‖+‖∂1b‖∞‖f‖L∞(R+,M1(X)) <
∞, we get from (20):

∀t ∈ R+ \
(
∪Ni=1Ni

)
, ∀x ∈ X, s[f(t, ·)](xi) ≤ C η,

that is |{t ∈ R+; ∃x ∈ X, s[f(t, ·)](x) ≥ C η}| = 0, and since this is true for any η > 0,
Prop. 2 follows.

2.3 Proof of Lem. 2

Since t̄ > 0 is a Lebesgue point of t 7→ s[f(t, ·)](x̄), then

1

δ

∫ t̄

t̄−δ
s[f(τ, ·)](x̄) dτ →δ→0 s[f(t̄, ·)](x̄) ≤ −η < 0,

and therefore, there exists δ ∈ (0, δ̄) such that:∫ t̄

t̄−δ
s[f(τ, ·)](x̄) dτ ≤ −1

2
η δ < 0. (21)

Thanks to the limit (11), (21) implies that for some ε̄ > 0, we have:

∀ε ∈ (0, ε̄),

∫ t̄

t̄−δ
s[f ε(τ, ·)](x̄) dτ ≤ −1

4
η δ < 0.

Since ‖∂xs[f ε]‖L∞(R+×X) ≤ ‖a′‖+‖∂1b‖∞‖f ε‖L∞(R+,M1(X)) <∞ is uniformly bounded,
for ε ∈ (0, ε̄),

∫ t

t̄−δ
s[f ε(τ, ·)](x) dτ =

∫ t̄

t̄−δ
s[f ε(τ, ·)](x̄) dτ +O(δ|x− x̄|) +O(|t− t̄|)

≤
(
−1

4
η + ‖∂xs[f ε]‖L∞(R+×X) |x− x̄|

)
δ +O(|t− t̄|).
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Let κ̄ := min
(

η
8‖∂xs[fε]‖L∞(R+×X)

, η
)

. Then, there exists t1, t2 ∈ Q ∩ R+, t2 − t1 ≤ 1,

such that t ∈ (t1, t2), and :

∀ε ∈ (0, ε̄), ∀(t, x) ∈ (t1, t2)×B(x̄, κ̄)∩(R+×X),

∫ t

t−δ
s[f ε(τ, ·)](x) dτ ≤ −C < 0. (22)

Notice that |t2 − t1| depends on δ, it is thus impossible to control uniformly |t2 − t1|
from below, as we do for κ̄.

Let t ∈ (t1, t2), and x ∈ B(x̄, κ̄). Thanks to (9),

f ε(t, x) = f 0(x)e
1
ε

∫ t
0 s[f

ε(τ,·)](x) dτ +

∫ t−δ

0

m ∗x f ε(σ, x)e
1
ε

∫ t
σ s[f

ε(τ,·)](x) dτ dσ

+

∫ t

t−δ
m ∗x f ε(σ, x)e

1
ε

∫ t
0 s[f

ε(τ,·)](x) dτ dσ.

For σ ≤ t− δ, we use Prop. 2 and (22) to estimate:∫ t

σ

s[f ε(τ, ·)](x) dτ =

∫ t−δ

σ

s[f ε(τ, ·)](x) dτ +

∫ t

t−δ
s[f ε(τ, ·)](x) dτ

≤ 0− C < 0,

and if σ > t− δ, thanks to Prop. 2,
∫ t
σ
s[f ε(τ, ·)](x) dτ ≤ 0. Then,

f ε(t, x) ≤ f 0(x)e
−C
ε +

∫ t−δ

0

‖m‖L∞(X−X)‖f ε(σ, ·)‖L1(X)e
−C
ε dσ

+‖m‖L∞(X−X)‖f ε‖L∞(L1(X))

∫ t

t−δ
e0 dσ,

≤ oε(1) + C δ̄,

where the constant C only depends on a, b and m.

Let now φ ∈ Cc(X) be a test-function such that:

0 ≤ φ ≤ 1, supp(φ) ⊂ B(x̄, κ̄), φ|B(x̄, κ̄
2

) ≡ 1. (23)

Then: ∫ t2

t1

∫
X

f ε(t, x)φ(x) dx dt ≤
∫ t2

t1

∫
B(x̄,κ̄)

f ε(t, x) dx dt

≤
∫ t2

t1

∫
B(x̄,κ̄)

(
oε(1) + C δ̄

)
dx dt

≤ |t1 − t2| |B(x̄, κ̄)|
(
oε(1) + C δ̄

)
. (24)

11



Thanks to (23), if we let ε 7→ 0, we get from (24) and (10):

1

|t1 − t2| |B(x̄, κ̄)|

∫ t2

t1

∫
B(x̄, κ̄

2
)

f(t, x) dx dt ≤ C δ̄.

Note that the constant C does not depend on δ̄, but only on a, b and m.

2.4 Proof of Prop. 3

Let T > 0, η > 0, δ̄ > 0, and κ̄ the constant appearing in Lem. 2. We will show that∫ T
0

∫
X
f(t, x)1s[f(t,·)](x)<0 dx dt = 0.

Since X is bounded, there exists N ∈ N and x1, . . . , xN ∈ X such that

X ⊂ ∪Ni=1B(xi, κ̄). (25)

For i ∈ {1, . . . , N}, there exists a negligeable set Ni ⊂ [0, T ] such that any t ∈ [0, T ]\Ni

is a Lebesgue point of s[f(t, ·)](xi). We define N := ∪Ni=1Ni.

If x̄ ∈ X and a Lebesgue point t̄ ∈ [0, T ] \ N of t 7→ s[f(t, ·)](x̄) are such that
s[f(t̄, ·)](x̄) < −η − κ̄ ‖∂xs[f ]‖L∞(R+×X), then there exists i ∈ {1, . . . , N} such that
|x̄− xi| ≤ κ̄, and then, thanks to the definition (25) of x1, . . . , xN ,

s[f(t̄, ·)](xi) ≤ s[f(t̄, ·)](x̄) + κ̄‖∂xs[f ]‖L∞(R+×X) ≤ −η.

Then, {
(t, x) ∈ ([0, T ] \N)×X; s[f(t, ·)](x) ≤ −η − κ̄‖∂xs[f ]‖L∞(R+×X)

}
⊂ ∪Ni=1Ti ×B(xi, κ̄) (26)

where Ti := {t ∈ R+ \N ; s[f(t̄, ·)](xi) < −η}.

Lem. 2 applies to (t, xi) for i ∈ {1, . . . , N} and t ∈ Ti: there exists tt,i1 , t
t,i
2 ∈ Q,

t ∈ (tt,i1 , t
t,i
2 ) such that

1

|tt,i1 − t
t,i
2 | |B(x̄, κ̄)|

∫
[tt,i1 ,tt,i2 ]

∫
B(x̄,κ̄)

f(t, x) dt dx ≤ C δ̄. (27)

Let consider a fixed i ∈ {1, . . . , N}. Since tt,i1 , t
t,i
2 ∈ Q (see Lem. 2), the set {(tt,i1 , t

t,i
2 ) ∈

[0, T ]2; t ∈ Ti} is indeed countable. There exits then an increasing sequence (Ωk)k∈N of
finite subsets of {(tt,i1 , t

t,i
2 ) ∈ [0, T ]2; t ∈ Ti} such that ∪∞K=0Ωk = {(tt,i1 , t

t,i
2 ); t ∈ Ti}. Thanks

to the monotone convergence theorem,

12



∫
Ti

∫
B(xi,κ̄)

f(t, x) dx dt ≤
∫
∪t∈Ti [t1,t2]

∫
B(xi,κ̄)

f(t, x) dx dt (28)

≤ lim
k→∞

∫
∪

(t1,t2)∈Ωk
[t1,t2]

∫
B(xi,κ̄)

f(t, x) dx dt. (29)

Before using estimate (27), we modify the finite sets Ωk so that intervals
{

[t1, t2]; (t1, t2) ∈ Ωk
}

do not intersect too much. To do so, we proceed as follows:

• We order Ωk = {(t11, t12), (t21, t
2
2), . . . } so that (tl1) is increasing.

• For l ≥ 1, if tl+1
2 ≤ tl2, we remove (tl+1

1 , tl+1
2 ) from Ωk.

If tl+1
2 ≤ tl2, then [tl+1

1 , tl+1
2 ] ⊂ [tl1, t

l
2], and ∪(t1,t2)∈Ωk [t1, t2]× B(xi, κ̄) is not affected

by the removal of (tl+1
1 , tl+1

2 ) from Ωk.
We repeat this procedure as often as required, starting from l = 1.

• For l ≥ 1, if tl+2
1 ≤ tl2, we remove (tl+1

1 , tl+1
2 ) from Ωk.

If tl+2
1 ≤ tl2, thanks to the preceding step, tl+2

2 > tl+1
2 , and then,

[tl+1
1 , tl+1

2 ] ⊂ [tl1, t
l+2
2 ] = [tl1, t

l
2] ∪ [tl+2

1 , tl+2
2 ].

∪(t1,t2)∈Ωk [t1, t2]×B(xi, κ̄) is thus not affected by the removal of (tl+1
1 , tl+1

2 ).
We repeat this procedure as often as required, starting from l = 1.

Finally, we end up with a finite family of intervals Ω̃k = {(t11, t12), (t21, t
2
2), . . . } such

that tl+2
1 > tl2 for any l ≥ 1. Then, only consecutive intervals [t1, t2], [t′1, t

′
2] can intersect,

and thus: ∑
(t1,t2)∈Ω̃k

|t1 − t2| = | ∪(t1,t2)∈Ω̃k [t1, t2]|+
∑
l

|[tl1 − tl2] ∩ [tl+1
1 − tl+1

2 ]|

≤ 2| ∪(t1,t2)∈Ω̃k [t1, t2]|
≤ 2T + 2,

(Since t2 − t1 ≤ 1, see Lem 2). Moreover, ∪(t1,t2)∈Ω̃k [t1, t2]×B(xi, κ̄) = ∪(t1,t2)∈Ωk [t1, t2]×
B(xi, κ̄).
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Thanks to the modified family Ω̃k constructed above, we can estimate, using (27):∫
∪

(t1,t2)∈Ωk
[t1,t2]

∫
B(xi,κ̄)

f(t, x) dx dt =

∫
∪

(t1,t2)∈Ω̃k
[t1,t2]

∫
B(xi,κ̄)

f(t, x) dx dt

≤
∑

(t1,t2)∈Ω̃k

∫
[t1,t2]

∫
B(xi,κ̄)

f(t, x) dx dt

≤
∑

(t1,t2)∈Ω̃k

C δ̄ |t1 − t2||B(x̄, κ̄)|

≤ C δ̄|B(x̄, κ̄)|
∑

(t1,t2)∈Ω̃k

|t1 − t2|

≤ C δ̄.

where C does not depend on k or δ̄. Since this bound is uniform in k, we get from
(29): ∫

Ti

∫
B(xi,κ̄)

f(t, x) dx dt ≤ C δ̄,

and then, combining this inequality (which holds for any i ∈ {1, . . . , N}) with (26), we
get: ∫ T

0

∫
X

f(t, x)1{(t,x); s[f(t,·)](x)≤−η−κ̄ ‖∂xs[f ]‖L∞(R+×X)}(x) dx dt

=

∫
[0,T ]\N

N∑
i=1

∫
B(xi,κ̄)

f(t, x)1{(t,x); s[f(t,·)](x)≤−η−κ̄ ‖∂xs[f ]‖L∞(R+×X)}(x) dx dt

≤
N∑
i=1

∫
Ti

∫
B(xi,κ̄)

f(t, x) dx dt

≤ C δ̄.

Since this is true for any δ̄ > 0 (we recall also that f ≥ 0),∫ T

0

∫
X

f(t, x)1{(t,x); s[f(t,·)](x)≤−η−κ̄ ‖∂xs[f ]‖L∞(R+×X)}(x) dx dt = 0,

and since this true for any η > 0,∫ T

0

∫
X

f(t, x)1{x∈X;s(t,x)<0} dx dt = 0,

14



and then for a.e. t ≥ 0 (since T > 0 can be choosen arbitrarly large),
∫
X
f(t, x)1{x∈X;s(t,x)<0} =

0. It follows that for a.e. t ≥ 0,

∀x ∈ supp f(t, ·), s[f(t, ·)](x) = 0.

which proves Prop. 3.
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