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Long-time tails in angular momentum correlations
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~Received 23 February 1995; accepted 4 April 1995!

We compare computer simulation results for the angular velocity autocorrelation function~AVACF!
of a colloidal particle with theoretical predictions. We consider both spherical and nonspheric
particles in two and three dimensions. The theoretical prediction for the long-time decay of t
AVACF in three dimensions is well known, here we also give the two-dimensional result, along wit
a sketch of how it was derived. For spherical particles we find excellent agreement between
simulations results and theoretical predictions in both two and three dimensions. We also find t
the same expressions apply to the nonspherical particleswhenthe particles have had time to undergo
a significant angular displacement. This observation is again in agreement with theory. ©1995
American Institute of Physics.
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I. INTRODUCTION

When Alder and Wainwright1 computed the velocity au
tocorrelation function~VACF! of tagged particles in a har
sphere fluid they found, most surprisingly at the time, t
the long-time decay was not exponential but algebraic.
until then it was believed that at sufficiently long time
tagged particle motion could be regarded as a Markov
process—the particle would forget all about its past hist
and its VACF would decay exponentially. Alder and Wai
wright were able to explain their observation in terms of t
slow decay of the hydrodynamic fields set up by a mov
object. In the intervening years more sophisticated theo
have been developed following in the spirit of the origin
work. Mode coupling2 and kinetic theories3 were developed
to provide a theoretical framework for the description
these ‘‘long-time tails’’ in correlation functions. Slow alge
braic decay was found not to be unique to the VACF b
rather ubiquitous for time correlation functions. There is n
a good measure of agreement between theory, experim
and computer simulation. This is particularly true for t
VACF where there is experimental evidence for long-tim
tails4–7 and computer simulation, performed by van der Ho
and Frenkel8 and by Ladd,9 shows excellent quantitativ
agreement with mode-coupling theory. The long-time al
braic decay of the stress–stress correlation function was
observed recently in a computer simulation and again fo
to be in agreement with mode-coupling theory.10

The correlation function we are interested in here is
angularvelocity autocorrelation function~AVACF!. If a par-
ticle has a rotational degree of freedom then we can de
the AVACF as

c~ t !5^vz~0!vz~ t !&, ~1!

wherevz(t) is the angular velocity of the particle about thez

a!Current address: Cuputational Physics, Faculty of Applied Physics, D
University of Technology, Lorentz Weg 1, 2628CJ Delft, The Netherlan
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axis at timet. Ailawadi and co-workers11,12were the first to
predict the functional long-time form of the AVACF ind
dimensions,

c~ t !;~nt !2~d/211!. ~2!

A precise prediction for the long-time decay of the AVAC
for a spherical particle was derived by Hauge an
Martin-Löf13 and by Chow.14 They found that, for a particle
with moment of inertiaI moving in a fluid with densityr and
kinematic viscosityn, then

c~`!5c~0!
Ip

r
~4pnt !25/2. ~3!

Equation~3! is only valid if the diffusion coefficientD for
the object is negligible compared to the viscosity. If the d
fusion coefficient is not negligible then it enters in essentia
the same way as for the linear VACF,15 so the long-time tail
in the AVACF takes the form

c~`!5c~0!
Ip

r
@4p~n1D !t#25/2. ~4!

An analogous prediction for two dimensions has not, to o
knowledge, been derived. One of our aims in this article is
present a theoretical expression for the AVACF in two d
mensions and compare it with the results of computer sim
lation.

The first attempt to verify theoretical predictions for th
decay of the AVACF was a study performed by Subraman
et al.16 of the rough hard sphere fluid. In view of the larg
statistical error in their numerical data, it required the eye
a believer to see any quantitative evidence for an algebr
decay of the angular velocity autocorrelation function. Sim
lations of an isolated colloidal particle performed by van d
Hoef et al.17 were the first to demonstrate an algebraic for
of the decay in two dimensions, although initially not wit
the expected exponent. More extensive simulations in t
and three dimensions18 gave the expected power law deca
More recently, Ladd9 calculated the AVACF for a single col-
loidal sphere and compared it with the theoretical result o
lft
s.
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1583Lowe, Frenkel, and Masters: Long-time tails in angular momentum correlations
tained by taking the inverse Laplace transform of the f
quency dependent friction coefficient.13 He found agreemen
that was ‘‘essentially perfect over the whole time domain

There remains little to be said about the AVACF of
sphere, the theory has been tested and found to be h
satisfactory. Fornonspherical objects the situation is not s
clear, there are conflicting theoretical predictions. Mast
and Keyes15 and Garisto and Kapral19 argue that Eq.~4! is
valid for nonspherical objects whereas Hocquart and Hinc20

and Cichocki and Felderhof21 suggest that the coefficien
~not the exponent! of the long-time tail depends on the sha
of the object. Preliminary simulations of a rotating no
spherical object suggested that the tail coefficientwasshape
dependent.18 Our second aim is to compute the long-tim
decay of the AVACF for nonspherical objects, to see if
is—or is not—independent of particle shape.

The paper is structured as follows. First we give an o
line of the theory used to derive the result for the tail co
ficient in two dimensions and discuss under what circu
stances the tail coefficient is predicted to be sha
independent. Next we describe the model that we have u
to simulate a colloidal particle and finally we compare t
results of these simulations with theory.

II. OUTLINE OF THE THEORY

The theoretical derivation of the long time behavior
the AVACF for a nonspherical particle in two dimensio
closely follows the three-dimensional approach given in R
15. In order to avoid redeveloping the formalism contain
in Ref. 15 we limit ourselves to a summary of the mo
important points. The derivation assumes that the parti
interact via continuous pair potentials and then one analy
the memory function for the AVACF in terms of bilinea
variables. Unlike the spherical particle case, these bilin
variables involve the orientation of the tagged particle. T
analysis shows, however, that only the angularly isotro
components of these variables contribute to the asymp
long-time behavior. The nonisotropic components decay
ponentially due to reorientation of the particle. Thus, p
vided the rotational mobility is nonzero, one ends up with
result given in Eq.~4! in three dimensions, for a particle o
arbitrary shape, mass, and size. In two dimensions one
tains

c~`!5c~0!
Ip

r
@4p~n1D !t#22, ~5!

a result that is again valid for a tagged particle of any sha
size, or mass. In fact, the only way in which this express
varies between different tagged particles is due to the app
ance of the translational diffusion constant, and very of
this term is small compared to the kinematic viscosity of
fluid.

The simulation results quoted in this article are obtain
from studying a Boltzmann lattice gas, not a continuous s
tem interacting via continuous pair potentials, as assume
the derivation. The analysis presented in Ref. 15 can, h
ever, be readily generalized to deal with such a system an
would be surprising indeed if the final conclusions sho
J. Chem. Phys., Vol. 10Downloaded¬11¬Oct¬2004¬to¬145.18.129.130.¬Redistribution¬subjec
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need to be altered. It should also be noted that the derivat
sketched out above has assumed the existence of a z
frequency shear viscosity and diffusion constant. In a ‘‘rea
two-dimensional fluid this is not the case and Eq.~5! would
have to be modified. In the simulation results quoted he
however, the center of mass of the tagged particle is fixed,
the translation diffusion constant is essentially zero and t
shear viscosity of the Boltzmann lattice gas does indeed
main finite at zero frequency. Thus one would expect Eq.~5!
to be valid withD set to zero.

The reason why this prediction differs from those give
in Refs. 20 and 21 is that we have considered the long-tim
behavior of the AVACF for a particle with a nonzero rota
tional mobility. Had one instead considered a nonrotatin
particle, then the nonisotropic components of the biline
variables would not get rapidly damped out at long times a
they would contribute to the long-time tail coefficient. For a
anisotropic Brownian particle, this is essentially the assum
tion made in Refs. 20 and 21, one does obtain a shape
pendent coefficient. We stress again, though, that this sh
dependence goes away if the particle is permitted to rota

III. DESCRIPTION OF THE MODEL

The system that we have used consists of a single c
loidal particle suspended in a fluid, which is represented by
lattice gas simulated at the Boltzmann level. Extensive c
culations of long-time correlations of the linear VACF o
colloidal particles18 have been reported in which a lattice-ga
cellular automaton model was used to represent the fl
id. The lattice Boltzmann model is a preaveraged versi
of a lattice-gas cellular automaton~LGCA! model of a fluid.
In lattice-gas cellular automaton the state of the fluid at a
~discrete! time is specified by the number of particles at ev
ery lattice site and their velocity. Particles can only move
a limited number of directions~towards neighboring lattice
points! and there can be at most one particle moving on
given ‘‘link.’’ The time evolution of the LGCA consists of
two steps: propagation, during which every particle mov
one time step, along its link to the next lattice site, and co
lision, where at every lattice site particles can change th
velocities by collision~subject to the condition that these
collisions conserve number of particles and momentum a
retain the full symmetry of the lattice!. In the lattice Boltz-
mann method~see, e.g., Ref. 22! the state of the fluid system
is no longer characterized by the number of particles th
move in directionci on lattice siter , but by theprobabilityof
finding such a particle. The single-particle distribution func
tion ni~r ,t! describes the average number of particles at
particular node of the latticer , at a timet, with the discrete
velocity ci . The hydrodynamic fields, mass densityr, mo-
mentum densityj , and the momentum flux densityP are
simply moments of this velocity distribution:

r5(
i
ni , j5(

i
nici , P5(

i
nicici . ~6!

The lattice model used in this work is the four-dimension
~4D! face-centered hypercubic~FCHC! lattice. A two- or
three-dimensional model can then be obtained by project
3, No. 4, 22 July 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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1584 Lowe, Frenkel, and Masters: Long-time tails in angular momentum correlations
in the number of required dimensions. This FCHC model
used because three-dimensional cubic lattices do not ha
high enough symmetry to ensure that the hydrodynam
transport coefficients are isotropic.

The time evolution of the distribution functionsni is
described by the discretized analog of the Boltzma
equation23

ni~r1ci ,t11!5ni~r ,t !1D i~r ,t !, ~7!

whereDi is the change inni due to instantaneous molecula
collisions at the lattice nodes. The postcollision distributi
ni1D i is propagated in the direction of the velocity vecto
ci . A complete description of the collision process is given
Ref. 24. The main effect of the collision operatorDi~r ,t! is to
~partially! relax the shear stress at every lattice site. The r
of stress relaxation, or equivalently, the kinematic viscos
n, can be chosen freely.

Simulating the lattice gas at the Boltzmann level has
number of advantages over the LGCA approach. The lat
Boltzmann model is purely dissipative, i.e., microscop
fluctuations in the fluid are not included~fluctuations can be
incorporated in the lattice Boltzmann model by adding a su
able random noise term to the stress,9 but for the present
work such fluctuations are not essential!. In addition, some
physically unrealistic properties of a lattice gas, such a
velocity dependent equation of state, can be eliminated. T
approach—studying the motion of a single colloidal partic
suspended in a lattice Boltzmann fluid—was used by Lad9

to study the linear and rotational velocity autocorrelatio
functions of a sphere. The model we use differs in two
spects. Firstly we employ a somewhat different method
integrating the equations of motion of the colloidal partic
and second we consider nonspherical objects.

The motion of the colloidal particle is determined by th
force and torque exerted on it by the fluid. These are in tu
a result of the stick boundary conditions applied at the so
fluid interface. For a stationary boundary a simple boun
back rule performed on boundary links enforces the st
boundary condition. Boundary links are links connecting la
tice sites inside and outside the solid object and obviou
these come in pairs. We adopt a convention of labeling
link which goes from inside to outside asib and its partner
2ib. Stick boundary conditions with a moving boundary ca
be performed using the Boltzmann analog24 of a scheme
originally used for lattice gases.25 For a moving boundary the
bounce back rule is still applied but some of the particl
moving in the same direction as the solid object are allow
to ‘‘leak’’ through, thus matching the fluid velocity to the
object velocity at the boundary. For the lattice Boltzma
model the modified bounce-back rule takes the form

n2 ib~rb!5nib~rb!24n0~r!ub–cib ,
~8!

nib~rb!5n2 ib~rb!14n0~r!ub–cib ,

wheren0~r! is the zero velocity distribution andub is the
local boundary velocity. For a colloidal particle with linea
and angular velocities ofu0 andv0, respectively, the local
boundary velocity is just

ub5u0~ t !1v0~ t !`rb , ~9!
J. Chem. Phys., Vol. 10Downloaded¬11¬Oct¬2004¬to¬145.18.129.130.¬Redistribution¬subjec
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whererb is the vector connecting the center of mass of th
object to the midpoint of the boundary link. The forceF and
torqueT exerted by the fluid on the particle are compute
from the change in momentum of the fluid resulting from th
boundary collisions. The force at each individual bounda
link, Fib~rb! is given by

Fib~rb!52@nib~rb!2n2 ib~rb!24n0~r!ub–cib#cib . ~10!

The total force and torque acting on the object are calcula
by summing these link forces, giving

F5(
ib

Fib~rb!, T5(
ib

Fib~rb!`rb . ~11!

Taking the simplest discretized form of the equations of m
tion we have

u085u0~ t11!5u0~ t !1F/m0 ,
~12!

v085v0~ t11!5v0~ t !1T/I 0 ,

wherem0 and I 0 are the mass and moment of inertia of th
particle, respectively, and we have assigned a time step
unity. Equations~9!–~12! now define one possible method
for updating the particle velocities.24 Using this scheme the
boundary collisions match the velocity of the fluid at th
boundary to the old velocity of the particle, rather than th
new velocity. In effect the fluid and boundary velocities ar
never the same. As a resultu0 andv0 must change by only a
small amount over one time step. In practice, this means t
the density of the colloidal particle must be several times th
of the fluid if stability is to be maintained.24An alternative is
to rewrite Eq.~9! in terms of the new object velocities so tha

ub5u081v08`rb , ~13!

then substitute the modified expression forub in Eqs.~10!–
~12!. Solving the resulting equations for thea component of
u08 andv08 we find that

u0a8 5
m0u0a~ t !12( ib@nib~rb!2n2 ib~rb!#ciba

m018n0~r!( ibcibaciba
, ~14!

v0a8 5
I 0v0a12( ib@nib~rb!2n2 ib~rb!#~rb`cib!a

I 018n0~r!( ib~rb`cib!a~rb`cib!a
.

~15!

Using this rule the new fluid velocity at the boundary implie
a force and torque on the object which, when incorporat
into the equations of motion of the object, imply the sam
new velocity for the particle—the rule is self-consistent. Us
ing this method we have found it possible to choose t
density ratio freely.

To simulate a nonspherical particle we adopt the sim
plest conceivable approximation. We keep track of the po
tion of the ‘‘true’’ boundary, in continuous space and, as th
particle moves, we continuously update the list of bounda
links on the basis of which nodes lie within this true bound
ary. Theexactgeometry of the particle, as represented on th
lattice, depends on the orientation—although we alwa
have an approximate representation of the object that we
3, No. 4, 22 July 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



c

d
-

l

o

o

d

-

n

te
n-

rtia
rtia
id
nt
the

di-
his
uid
ely

b-

at

to

he
le.
hat

s it
p-
y
be
s-

e of
tat-
tia

e

u

e
ular
un-

1585Lowe, Frenkel, and Masters: Long-time tails in angular momentum correlations
nominally studying. If the long-time decay is independent o
shape one may expect that these variations in the true geo
etry will be irrelevant anyway.

IV. RESULTS

We calculated the angular velocity autocorrelation fun
tion by applying an impulsive angular velocity,c~0!, to a
colloidal particle in a stationary lattice Boltzmann fluid an
correlating the rotational velocity at later times with the ini
tial velocity. In all cases the viscosityn of the fluid was equal
to 1

6 and the densityr was 24 ~all quantities are given in
lattice units, where the mass of the lattice-gas particles, t
lattice spacing and the time step are all unity!. We performed
the calculation for a spherical~or, in two dimensions, circu-
lar! particle, for a nonspherical object with a small initia
velocity ~so that the total angular displacementu during a
run was negligible!, and for a nonspherical object with a
large initial velocity ~sufficient for the particle to undergo
significant rotation during a run!. In all cases, the maximum
time up to which we calculated the AVACF was equal to th
time taken forany information to cross the periodic box, so
the effects of the periodic boundary conditions are com
pletely eliminated.

In two dimensions the objects we used were a disc
radius 2.5 and a rectangle of width 3 and length 11. Th
moments of inertia were assigned to be 1632 and 8448,
spectively. In both cases this corresponds approximately t
neutrally buoyant particle. For such a ‘‘light’’ particle the
short-time exponential decay of the AVACF is quite rapi
and the algebraic long-time decay is observable at shor
times. In Fig. 1 we plot the AVACF divided by the theoreti
cally predicted long-time decay,c~`!. If the simulation re-
produces the theoretical result we expect this function to a
ymptotically approach unity. Visually, the curve we obtai
for the disk appears to be approaching unity. We can attem
to extrapolate to infinite times by plottingc(t)/c~`! against
1/t and fitting a polynomial to the resulting function~this is

FIG. 1. The angular velocity autocorrelation functionc(t) in two dimen-
sions.c(t) has been normalized by the theoretical long-time resultc~`!
given in the text. The solid line is the result for the disk, the narrow dash
line the result for a rectangle undergoing an angular displacement of 0.
and the broad dashed line the result for a rectangle undergoing an ang
displacement of 130°.
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shown in Fig. 2!. By following this procedure we obtain a
valuec~t→`!/c~`!50.99760.005, so the agreement is qui
satisfactory. It is worth pointing out that the moment of i
ertia we used in calculatingc~`! was the moment of inertia
we assigned to the object. In the past the moment of ine
of the object was taken to be the assigned moment of ine
plus the moment of inertia of an equivalent volume of flu
inside the object.18 The argument was, that the fluid prese
inside the object~which is a necessary consequence of
way the boundary conditions are applied! contributed to an
effective moment of inertia. Probably as a result of the mo
fied rule we have used for updating the particle velocity, t
does not seem to be the case in our work. The internal fl
has no effect and the effective moment of inertia is precis
the moment of inertia we assign.

The two curves plotted in Fig. 1 for the rectangular o
ject correspond to angular displacementsu50.1° and
u5130° over 500 time steps. What is clear from Fig. 1 is th
the AVACF for the slowly rotating objectappearsto be ap-
proaching an asymptote which is not unity. Extrapolating
infinite times we find a valuec~t→`!/c~`!51.3160.01, so
the tail coefficientdoesappear to depend on the shape of t
object if the angular displacement of the object is negligib
For the faster rotating rectangle the first thing to note is t
although it is possible to see wobbles in the AVACF~a result
of the discrete jumps in the representation of the object a
rotates! the dynamics are still plausible. The function is a
proaching an asymptote~so the algebraic form of the deca
is correct! and what is more this asymptote appears to
close to unity. Extrapolating to infinite times we find an a
ymptotic valuec~t→`!/c~`!51.0260.05. Therefore, once
the angular displacement is significant~which in the real
world would of course always be the case eventually! the tail
coefficient in two dimensions is indeedindependentof par-
ticle shape.

In three dimensions the objects we used were a spher
radius 2.5 and a cylinder of diameter 3 and length 11, ro
ing in a plane parallel to its axis. The moments of iner

d
1°,
lar

FIG. 2. Least-squares fits~the lines! to the functionc(t)/c~`! vs 1/t ~the
crosses! for the AVACF in two dimensions. The solid line is the fit for th
disk, the narrow dashed line the fit for a rectangle undergoing an ang
displacement of 0.1°, and the broad dashed line the fit for a rectangle
dergoing an angular displacement of 130°.
, No. 4, 22 July 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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1586 Lowe, Frenkel, and Masters: Long-time tails in angular momentum correlations
were assigned to be 5472 and 25344, respectively, again
responding to roughly neutral buoyancy. The results we
tained for the AVACF, divided by the theoretical result f
the long-time decayc~`! are plotted in Fig. 3. Visually the
curve for the sphere appears to be approaching unity.
lowing the same extrapolation procedure that we adopte
two dimensions we get a valuec~t→`!/c~`!50.99260.01
~the extrapolation is shown in Fig. 4!, so the agreement be
tween theory and simulation is again satisfactory. The res
for the cylinder tell the same story as the results for
rectangle in two dimensions. The slowly rotating cylind
which only undergoes an angular displacement of 0.1°ap-
pears to be approaching an asymptote which is not un
Extrapolating to infinite times we find a valuec~t→`!/c~`!
51.3560.05. However, for the faster rotating cylinde
which undergoes an angular displacement of 44°, the AVA
decays more rapidly at long times. Extrapolating to infin

FIG. 3. The angular velocity autocorrelation functionc(t) in three dimen-
sions.c(t) has been normalized by the theoretical long-time resultc~`!
given in the text. The solid line is the result for the sphere, the nar
dashed line the result for a cylinder undergoing an angular displaceme
0.1°, and the broad dashed line the result for a cylinder undergoin
angular displacement of 44°.

FIG. 4. Least-squares fits~the lines! to the functionc(t)/c~`! vs 1/t ~the
crosses! for the AVACF in three dimensions. The solid line is the fit for t
sphere, the narrow dashed line the fit for a cylinder undergoing an an
displacement of 0.1°, and the broad dashed line the fit for a cylinder u
going an angular displacement of 44°.
J. Chem. Phys., Vol. 1Downloaded¬11¬Oct¬2004¬to¬145.18.129.130.¬Redistribution¬subjec
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times we obtain a valuec~t→`!/c~`!51.0660.08, which
strongly suggests that in three dimensions, just as in tw
dimensions, the asymptotic decay of the AVACF isindepen-
dent of particle shape once the particle has undergone s
nificant rotation.

V. CONCLUSIONS

We outlined the derivation for the long-time decay of the
angular velocity autocorrelation function in two dimensions
This theoretical result was in agreement with the results of
computer simulation in which we studied a rotating colloida
disk. In our simulations we were also able to reproduce th
theoretical result for the decay of the AVACF of a sphere.
modification of the method used to update the particle v
locities enabled us to study a neutrally buoyant partic
which in turn made it easier to see the algebraic long-tim
decay. When we studied the long-time decay of the AVAC
for a rectangle in two dimensions and a cylinder in thre
dimensions we found the same asymptotic decay as for t
disk and cylinder, respectively, but only if the particle under
went significant rotation. If the particle remained essential
fixed then we saw an apparent shape dependent decay. Th
observations are also in agreement with theoretical pred
tions.
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