Long-time tails in angular momentum correlations
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We compare computer simulation results for the angular velocity autocorrelation futdacF)

of a colloidal particle with theoretical predictions. We consider both spherical and nonspherical
particles in two and three dimensions. The theoretical prediction for the long-time decay of the
AVACEF in three dimensions is well known, here we also give the two-dimensional result, along with
a sketch of how it was derived. For spherical particles we find excellent agreement between the
simulations results and theoretical predictions in both two and three dimensions. We also find that
the same expressions apply to the nonspherical partidiesthe particles have had time to undergo

a significant angular displacement. This observation is again in agreement with thedi§9%
American Institute of Physics.

I. INTRODUCTION axis at timet. Ailawadi and co-workerg*?were the first to
predict the functional long-time form of the AVACF id
When Alder and Wainwrightcomputed the velocity au- dimensions,
tocorrelation function\VACF) of tagged patrticles in a hard @2+
sphere fluid they found, most surprisingly at the time, that P(t)~(vt) : @

the long-time decay was not exponential but algebraic. Upy precise prediction for the long-time decay of the AVACF
until then it was believed that at sufficiently long times, ¢5; 5 spherical particle was derived by Hauge and
tagged particle motion could be regarded as a Markoviafartin-Lof*® and by Chow!* They found that, for a particle

process—the particle would forget all about its past histor%yith moment of inertid moving in a fluid with density and
and its VACF would decay exponentially. Alder and Wain- iinematic viscosityy, then

wright were able to explain their observation in terms of the
slow decay of the hydrodynamic fields set up by a moving _ | 5
object. In the intervening years more sophisticated theories (=) =4(0) ? (4mvt) ' 3

have been developed following in the spirit of the original ) ) o o -
work. Mode coupling and kinetic theoriswere developed Equation(3) is only valid if the diffusion coefficienD for

to provide a theoretical framework for the description of the object is negligible compared to the viscosity. If the dif-

these “long-time tails” in correlation functions. Slow alge- fusion coefficient is not negllglble then it enters in gssent!ally

braic decay was found not to be unique to the VACF butthe same way as for the linear VAGFso the long-time tail

rather ubiquitous for time correlation functions. There is nowi" the AVACF takes the form

a good measure of agreement between theory, experiment, |7

and computer simulation. This is particularly true for the ()= y(0) — [47(v+D)t] >2 (4

VACF where there is experimental evidence for long-time P

tails*~" and computer simulation, performed by van der Hoefan analogous prediction for two dimensions has not, to our

and Frenkét and by Ladd, shows excellent quantitative knowledge, been derived. One of our aims in this article is to

agreement with mode-coupling theory. The long-time algepresent a theoretical expression for the AVACF in two di-

braic decay of the stress—stress correlation function was als@ensions and compare it with the results of computer simu-

observed recently in a computer simulation and again founggtion.

to be in agreement with mode-coupling thedty. The first attempt to verify theoretical predictions for the
The correlation function we are interested in here is thejecay of the AVACF was a study performed by Subramanian

angular velocity autocorrelation functiofAVACF). If a par- et al!® of the rough hard sphere fluid. In view of the large

ticle has a rotational degree of freedom then we can defingtatistical error in their numerical data, it required the eye of

the AVACF as a believer to see any quantitative evidence for an algebraic
decay of the angular velocity autocorrelation function. Simu-
W) =(w,(0) 1)), 1) lations of an isolated colloidal particle performed by van der

Hoef et all” were the first to demonstrate an algebraic form

of the decay in two dimensions, although initially not with
wherew,(t) is the angular velocity of the particle about the the expected exponent. More extensive simulations in two
and three dimensioffgave the expected power law decay.

aCurrent address: Cuputational Physics, Faculty of Applied Physics, DeIfMF’re recently, Lad%calcmateq th.e AVACF for a single col-
University of Technology, Lorentz Weg 1, 2628CJ Delft, The Netherlands.loidal sphere and compared it with the theoretical result ob-
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tained by taking the inverse Laplace transform of the fre-need to be altered. It should also be noted that the derivation
quency dependent friction coefficielitHe found agreement sketched out above has assumed the existence of a zero-
that was “essentially perfect over the whole time domain.” frequency shear viscosity and diffusion constant. In a “real”
There remains little to be said about the AVACF of atwo-dimensional fluid this is not the case and E%). would
sphere, the theory has been tested and found to be highhave to be modified. In the simulation results quoted here,
satisfactory. Fononspherical objects the situation is not so however, the center of mass of the tagged patrticle is fixed, so
clear, there are conflicting theoretical predictions. Mastershe translation diffusion constant is essentially zero and the
and Keye® and Garisto and Kaprdl argue that Eq(4) is  shear viscosity of the Boltzmann lattice gas does indeed re-
valid for nonspherical objects whereas Hocquart and Hfhch main finite at zero frequency. Thus one would expect(5j.
and Cichocki and Felderhdt suggest that the coefficient to be valid withD set to zero.
(not the exponentof the long-time tail depends on the shape = The reason why this prediction differs from those given
of the object. Preliminary simulations of a rotating non-in Refs. 20 and 21 is that we have considered the long-time
spherical object suggested that the tail coefficiwasshape behavior of the AVACF for a particle with a nonzero rota-
dependent® Our second aim is to compute the long-time tional mobility. Had one instead considered a nonrotating
decay of the AVACF for nonspherical objects, to see if it particle, then the nonisotropic components of the bilinear
is—or is not—independent of particle shape. variables would not get rapidly damped out at long times and
The paper is structured as follows. First we give an outthey would contribute to the long-time tail coefficient. For an
line of the theory used to derive the result for the tail coef-anisotropic Brownian particle, this is essentially the assump-
ficient in two dimensions and discuss under what circum+iion made in Refs. 20 and 21, one does obtain a shape de-
stances the tail coefficient is predicted to be shapeendent coefficient. We stress again, though, that this shape
independent. Next we describe the model that we have useatkpendence goes away if the particle is permitted to rotate.
to simulate a colloidal particle and finally we compare the

results of these simulations with theory.
Ill. DESCRIPTION OF THE MODEL

The system that we have used consists of a single col-
loidal particle suspended in a fluid, which is represented by a

The theoretical derivation of the long time behavior of lattice gas simulated at the Boltzmann level. Extensive cal-
the AVACF for a nonspherical particle in two dimensions culations of long-time correlations of the linear VACF of
closely follows the three-dimensional approach given in Refcolloidal particles® have been reported in which a lattice-gas
15. In order to avoid redeveloping the formalism containedcellular automaton model was used to represent the flu-
in Ref. 15 we limit ourselves to a summary of the mostid. The lattice Boltzmann model is a preaveraged version
important points. The derivation assumes that the particlesf a lattice-gas cellular automat¢hGCA) model of a fluid.
interact via continuous pair potentials and then one analysds lattice-gas cellular automaton the state of the fluid at any
the memory function for the AVACF in terms of bilinear (discreté time is specified by the number of particles at ev-
variables. Unlike the spherical particle case, these bilineagry lattice site and their velocity. Particles can only move in
variables involve the orientation of the tagged particle. Thea limited number of directiongtowards neighboring lattice
analysis shows, however, that only the angularly isotropigoints and there can be at most one particle moving on a
components of these variables contribute to the asymptotigiven “link.” The time evolution of the LGCA consists of
long-time behavior. The nonisotropic components decay extwo steps: propagation, during which every particle moves
ponentially due to reorientation of the particle. Thus, pro-one time step, along its link to the next lattice site, and col-
vided the rotational mobility is nonzero, one ends up with thdision, where at every lattice site particles can change their
result given in Eq(4) in three dimensions, for a particle of velocities by collision(subject to the condition that these
arbitrary shape, mass, and size. In two dimensions one olgollisions conserve number of particles and momentum and

Il. OUTLINE OF THE THEORY

tains retain the full symmetry of the lattigeln the lattice Boltz-
mann methodsee, e.g., Ref. 32he state of the fluid system
Ky . ’ -
()= (0) — [4m(v+D)t] 2, (5) is no longer characterized by the number of particles that
p move in directiorc; on lattice siter, but by theprobability of

a result that is again valid for a tagged particle of any shapdinding such a particle. The single-particle distribution func-
size, or mass. In fact, the only way in which this expressiorfion n;(r,t) describes the average number of particles at a
varies between different tagged particles is due to the appeatparticular node of the lattice, at a timet, with the discrete
ance of the translational diffusion constant, and very oftervelocity ¢;. The hydrodynamic fields, mass density mo-
this term is small compared to the kinematic viscosity of thementum densityj, and the momentum flux densitl are

fluid. simply moments of this velocity distribution:
The simulation results quoted in this article are obtained
from studying a Boltzmann lattice gas, not a continuous sys- p=2 n;, j=2 n;c , l'[=2 n;Gc; . (6)
I I I

tem interacting via continuous pair potentials, as assumed in

the derivation. The analysis presented in Ref. 15 can, how¥he lattice model used in this work is the four-dimensional
ever, be readily generalized to deal with such a system and {#D) face-centered hypercubidCHC) lattice. A two- or
would be surprising indeed if the final conclusions shouldthree-dimensional model can then be obtained by projection
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in the number of required dimensions. This FCHC model iswherer, is the vector connecting the center of mass of the
used because three-dimensional cubic lattices do not haveabject to the midpoint of the boundary link. The foreeand
high enough symmetry to ensure that the hydrodynamitorqueT exerted by the fluid on the particle are computed
transport coefficients are isotropic. from the change in momentum of the fluid resulting from the

The time evolution of the distribution functiong is  boundary collisions. The force at each individual boundary
described by the discretized analog of the Boltzmandink, F;,(ry) is given by

equatio®
Fin(rp)=2[Nip(rp) —n_ip(rp) —4ne(p)Uy-CipI1Cip . (10)

) ) ) The total force and torque acting on the object are calculated
whereA; is the change im; due to instantaneous molecular by summing these link forces, giving

collisions at the lattice nodes. The postcollision distribution
n;+A; is propagated in the direction of the velocity vector
¢ . A complete description of the collision process is givenin ~ F~ % Fip(rp), T= % Fin(rp)/\r'p . 1
Ref. 24. The main effect of the collision operatifr,t) is to
(partially) relax the shear stress at every lattice site. The ratdaking the simplest discretized form of the equations of mo-
of stress relaxation, or equivalently, the kinematic viscositytion we have
v, can be chosen freely.

Simulating the lattice gas at the Boltzmann level has a  UYo=Uo(t+1)=Ug(t) +F/mg,
number of advantages over the LGCA approach. The lattice
Boltzmann model is purely dissipative, i.e., microscopic
fluctuations in the fluid are not includd€fluctuations can be
incorporated in the lattice Boltzmann model by adding a suit

able random noise term to the stréslgut for the present niry Equations(9)—(12) now define one possible method
work such fluctuations are not essentidh addition, some ¢, \;hqating the particle velocitiéd.Using this scheme the

physi_cally unrealistic properties of a lattice 95_‘5'_SUCh aS $oundary collisions match the velocity of the fluid at the
velocity dependent equation of state, can be eliminated. Th'Boundary to the old velocity of the particle, rather than the

approach—studying the motion of a single colloidal particlepe,, yejocity. In effect the fluid and boundary velocities are
suspended in a lattice Boltzmann fluid—was used by Eaddnever the same. As a resul§ and w, must change by only a

to stgdy the linear and rotational velocity .autocprrelationsma“ amount over one time step. In practice, this means that
functions of a sphere. The model we use differs in two reyq gensity of the colloidal particle must be several times that
spects. Firstly we employ a somewhat different method Ofyt e fiuid if stability is to be maintaine®.An alternative is

integrating the equations of motion of the colloidal particle y ra\rite Eq.(9) in terms of the new object velocities so that
and second we consider nonspherical objects.

The motion of the colloidal particle is determined by the  u,=ug+ wg/\ry, (13
force and torque exerted on it by the fluid. These are in turn
a result of the stick boundary conditions applied at the solidthen substitute the modified expression tgrin Eqs. (10)—
fluid interface. For a stationary boundary a simple bounce{12). Solving the resulting equations for thecomponent of
back rule performed on boundary links enforces the sticklo andwg we find that
boundary condition. Boundary links are links connecting lat-

n(r+c,t+1)=n;(r,t)+A;(r,t), (7)

(12)
0= wo(t+1)=wu(t) +T/ly,

wherem, and|, are the mass and moment of inertia of the
‘particle, respectively, and we have assigned a time step of

tice sites inside and outside the solid object and obviously ! :mOan(t)+Zzib[nib(rb)_n—ib(rb)]ciba, (14
these come in pairs. We adopt a convention of labeling the “ Mo+ 8No(p) ZibCibaCiba

link which goes from inside to outside &s and its partner

—ib. Stick boundary conditions with a moving boundary can ) :|0w0a+22ib[nib(rb)_ N_in(rp)1(ro/\Civ)

be performed using the Boltzmann andfbgf a scheme “ lo+8Nno(p)Zin(rp/\Cip) o/ \Cib) o
originally used for lattice gasés For a moving boundary the (15

bounce back rule is still applied but some of the particlesgjng this rule the new fluid velocity at the boundary implies
moving in the same direction as the solid object are allowed, t5rce and torque on the object which, when incorporated

to “leak” through, thus matching the fluid velocity to the jh4 the equations of motion of the object, imply the same
object velocity at the boundary. For the lattice Boltzmannye,y velocity for the particle—the rule is self-consistent. Us-

model the modified bounce-back rule takes the form ing this method we have found it possible to choose the

N_ip(Fp) =Nip(ry) —4ng(p)Up-Cip » density r.atio freely. . _ .
®) To simulate a nonspherical particle we adopt the sim-
Nib(Mp) =N_jp(ry) +4Nng(p)Up-Cip plest conceivable approximation. We keep track of the posi-

tion of the “true” boundary, in continuous space and, as the
particle moves, we continuously update the list of boundary
links on the basis of which nodes lie within this true bound-
ary. Theexactgeometry of the particle, as represented on the
lattice, depends on the orientation—although we always
Up=Ug(1t) + wg(t)/\ry, (9) have an approximate representation of the object that we are

where ng(p) is the zero velocity distribution and, is the
local boundary velocity. For a colloidal particle with linear
and angular velocities dfi; and wy, respectively, the local
boundary velocity is just
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FIG. 1. The angular velocity autocorrelation functigft) in two dimen- FIG. 2. Least-squares fifghe lineg to the functiony(t)/¥() vs 1 (the
sions. Y(t) has been normalized by the theoretical long-time regk) crossep for the AVACF in two dimensions. The solid line is the fit for the
given in the text. The solid line is the result for the disk, the narrow dashedlisk, the narrow dashed line the fit for a rectangle undergoing an angular
line the result for a rectangle undergoing an angular displacement of 0.14isplacement of 0.1°, and the broad dashed line the fit for a rectangle un-
and the broad dashed line the result for a rectangle undergoing an anguldergoing an angular displacement of 130°.

displacement of 130°.

nominally studying. If the long-time decay is independent ofshown in Fig. 2. By following this procedure we obtain a
shape one may expect that these variations in the true geordalue ¥(t—o)/¢{(>)=0.997+0.005, so the agreement is quite
etry will be irrelevant anyway. satisfactory. It is worth pointing out that the moment of in-
ertia we used in calculating(>) was the moment of inertia
we assigned to the object. In the past the moment of inertia
of the object was taken to be the assigned moment of inertia
We calculated the angular velocity autocorrelation func-plus the moment of inertia of an equivalent volume of fluid
tion by applying an impulsive angular velocity{0), to a inside the object® The argument was, that the fluid present
colloidal particle in a stationary lattice Boltzmann fluid and inside the objec{which is a necessary consequence of the
correlating the rotational velocity at later times with the ini- way the boundary conditions are appliegbntributed to an
tial velocity. In all cases the viscosityof the fluid was equal effective moment of inertia. Probably as a result of the modi-
to £ and the densityp was 24 (all quantities are given in fied rule we have used for updating the particle velocity, this
lattice units, where the mass of the lattice-gas particles, thdoes not seem to be the case in our work. The internal fluid
lattice spacing and the time step are all upitife performed has no effect and the effective moment of inertia is precisely
the calculation for a sphericébr, in two dimensions, circu- the moment of inertia we assign.
lar) particle, for a nonspherical object with a small initial The two curves plotted in Fig. 1 for the rectangular ob-
velocity (so that the total angular displacemehturing a  ject correspond to angular displacemenfs=0.1° and
run was negligible and for a nonspherical object with a #=130° over 500 time steps. What is clear from Fig. 1 is that
large initial velocity (sufficient for the particle to undergo the AVACF for the slowly rotating objecappearsto be ap-
significant rotation during a rynin all cases, the maximum proaching an asymptote which is not unity. Extrapolating to
time up to which we calculated the AVACF was equal to theinfinite times we find a valuei{(t—o)/¢{()=1.31+0.01, so
time taken forany information to cross the periodic box, so the tail coefficientdoesappear to depend on the shape of the
the effects of the periodic boundary conditions are com-objectif the angular displacement of the object is negligible.
pletely eliminated. For the faster rotating rectangle the first thing to note is that
In two dimensions the objects we used were a disc oflthough it is possible to see wobbles in the AVAGFesult
radius 2.5 and a rectangle of width 3 and length 11. Theof the discrete jumps in the representation of the object as it
moments of inertia were assigned to be 1632 and 8448, reetates the dynamics are still plausible. The function is ap-
spectively. In both cases this corresponds approximately to proaching an asymptoteo the algebraic form of the decay
neutrally buoyant particle. For such a “light” particle the is correc} and what is more this asymptote appears to be
short-time exponential decay of the AVACF is quite rapid close to unity. Extrapolating to infinite times we find an as-
and the algebraic long-time decay is observable at shortgrmptotic value y{(t—)/¢{=)=1.02+0.05. Therefore, once
times. In Fig. 1 we plot the AVACF divided by the theoreti- the angular displacement is significafwhich in the real
cally predicted long-time decayj(«). If the simulation re- world would of course always be the case eventydh tail
produces the theoretical result we expect this function to assoefficient in two dimensions is indeeddependendf par-
ymptotically approach unity. Visually, the curve we obtain ticle shape.
for the disk appears to be approaching unity. We can attempt In three dimensions the objects we used were a sphere of
to extrapolate to infinite times by plotting(t)/¢{() against radius 2.5 and a cylinder of diameter 3 and length 11, rotat-
1/t and fitting a polynomial to the resulting functigthis is  ing in a plane parallel to its axis. The moments of inertia

IV. RESULTS
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times we obtain a valugf{t—=)/y{(»)=1.06+0.08, which

14 1 strongly suggests that in three dimensions, just as in two
Ll dimensions, the asymptotic decay of the AVACHridepen-
dent of particle shape once the particle has undergone sig-
ot S nificant rotation.
i}o.s - ) /,,/f;’/////”/( ]
" 05| p ] V. CONCLUSIONS
04 | /,// 1 We outlined the derivation for the long-time decay of the
// - i’;ﬁ’fﬁere:oAI deg. angular velocity autocorrelation function in two dimensions.
20 // T Clderostidee This theoretical result was in agreement with the results of a
computer simulation in which we studied a rotating colloidal

0.0 L 1 L L s L L
0.0 20.0 40.0 60.0 80.0 100.0 1200 140.0 160.0

: disk. In our simulations we were also able to reproduce the
theoretical result for the decay of the AVACF of a sphere. A
FIG. 3. The angular velocity autocorrelation functigtt) in three dimen- ~ Modification of the method used to update the particle ve-
sions. (t) has been normalized by the theoretical long-time reg(#)  |ocities enabled us to study a neutrally buoyant particle
given in _the text. The solid Iir_1e is the resu_lt for the spherg, the narrow\yhich in turn made it easier to see the algebraic Iong-time
dashed line the result for a cylinder undergoing an angular displacement of, . .
0.1°, and the broad dashed line the result for a cylinder undergoing arqecay' When we studied the Iong-tlme decay of the AVACF
angular displacement of 44°. for a rectangle in two dimensions and a cylinder in three
dimensions we found the same asymptotic decay as for the
disk and cylinder, respectively, but only if the particle under-
were assigned to be 5472 and 25344, respectively, again covent significant rotation. If the particle remained essentially
responding to roughly neutral buoyancy. The results we obfixed then we saw an apparent shape dependent decay. These
tained for the AVACF, divided by the theoretical result for observations are also in agreement with theoretical predic-
the long-time decay)(x) are plotted in Fig. 3. Visually the tions.
curve for the sphere appears to be approaching unity. Fol-
lowing the same extrapolation procedure that we adopted in
two dimensions we get a valug(t—«)/y{<)=0.992+0.01 ACKNOWLEDGMENTS
(the extrapolation is shown in Fig,)4so the agreement be-
tween theory and simulation is again satisfactory. The result
for the cylinder tell the same story as the results for th
rectangle in two dimensions. The slowly rotating cylinder
which only undergoes an angular displacement of @3~
pearsto be approaching an asymptote which is not unity.
Extrapolating to infinite times we find a valu@t—oo)/y(x)
=1.35+0.05. However, for the faster rotating cylinder,
which undergoes an angular displacement of 44°, the AVAC
decays more rapidly at long times. Extrapolating to infinite
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