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Abstract: In this paper, we obtain new nonlinear systems describing the
interaction of long water waves in both two and three spatial dimensions.
These systems are symmetric and conservative. Rigorous convergence results
are provided showing that solutions of the complete free-surface Euler equa-
tions tend to associated solutions of these systems as the amplitude becomes
small and the wavelength large. Using this result as a tool, a rigorous justi-
fication of all the two-dimensional, approximate systems recently put forward
and analysed by Bona, Chen and Saut is obtained. In particular, this remark
applies to the original system derived by Boussinesq. The estimates for the
difference between the Euler variables and the system variables is better than
that obtained in the two-dimensional context by Schneider and Wayne who
approximated with a decoupled pair of Korteweg - de Vries equations. Indeed,
the limitations inherent in approximating by a decoupled system are clarified
in our analysis. Results are obtained both on an unbounded domain with solu-
tions that evanesce at infinity as well as for solutions that are spatially periodic.

1 Introduction

1.1 Generalities

The water wave problem for an ideal liquid consists in describing the motion
of the free surface and the evolution of the velocity field of a layer of perfect,
incompressible, irrotational fluid under the influence of gravity. In this paper,
attention is given to both the two-dimensional case wherein the wave motion
is presumed not to vary appreciably in one of the coordinate directions, say
the y-direction in a standard Cartesian coordinate system, and the fully three-
dimensional setting. However, consideration is restricted to the special case
of a flat bottom. It is well understood that several different regimes may be
obtained for this problem; attention is given here to the so-called long-wave
limit. In this setting, it is presumed that the free surface may be described as
the graph of a function η, say, defined over the bottom. More precisely, the
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motion of the fluid is described by the set of equations

h2
0

λ2
∆φ+ ∂2

zφ = 0 0 ≤ z ≤ 1 + a
h0
η(t,X),

∂tφ+
1

2

(
|∇φ|2 +

λ2

h2
0

|∂zφ|2
)

+
h0

a
η = 0 at z = 1 + a

h0
η(t,X),

∂tη +∇φ · ∇η =
λ2

h0a
∂zφ at z = 1 + a

h0
η(t,X),

∂zφ = 0 at z = 0,

where the operators ∇ and ∆ act on the transverse variable X ∈ Rd, d = 1 or
2. In case d = 1, X = x is the coordinate along the primary direction of propa-
gation whilst if d = 2, then X = (x, y) represents both the horizontal variables.
The independent variable φ is the non-dimensional velocity potential, z = 0 is
the equation of the horizontal and featureless bottom and z = 1 + a

h0
η(t, x, y)

the equation of the free surface; a is a typical amplitude of the waves, h0 the
mean depth of the fluid and λ a typical wavelength.

The preceding equations are mathematically and numerically recalcitrant.
Some results concerning the Cauchy problem wherein the free surface η is
specified for all values of X and the velocity potential φ is specified everywhere
in the resulting flow domain, both at a given instant of time, are available
(see, for example, [11], [17], [19], [21], [22], [16], and the references contained
in these works). In many practically important situations, one relies upon
simplifications of these equations to describe approximately the behavior of
their solutions. Various model equations have been derived by means of formal
asymptotic expansions. Historically, the initial developments in this direction
were associated with works of Lagrange, St. Venant, Green, Airy and Stokes
among others. A very significant step forward was made by Boussinesq [10]
who seems to have been the first to properly understand the long-wave regime
to be described next.

The long-wave regime is characterized by the presumptions of long wave-
length and small amplitude, viz.

ε =
a

h0

� 1,
λ

h0

� 1,

in conjunction with the assumption that the Stokes number

S =
aλ2

h3
0

is of order 1. For the notational simplicity, we take S = 1 throughout our
discussion so that

λ2

h2
0

=
1

ε
.

If we did not adhere to this presumption, the only change is that the equations
would feature the value of S in various of the coefficients. With this notation
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and the presumption that S = 1, the non-dimensional water wave equations
take the form

ε∆φ+ ∂2
zφ = 0 0 ≤ z ≤ 1 + εη, (1.1)

∂tφ+
1

2

(
ε|∇φ|2 + |∂zφ|2

)
+ η = 0 at z = 1 + εη, (1.2)

∂tη + ε∇φ · ∇η =
1

ε
∂zφ at z = 1 + εη, (1.3)

∂zφ = 0 at z = 0. (1.4)

Perhaps the simplest of the asymptotic models that take account of both
nonlinear effects as reflected in the small, but finite amplitude and the disper-
sive effects coming from large, but finite wavelength is the Korteweg – de Vries
equation (KdV—equation henceforth) which is a unidirectional, one space di-
mensional description in terms of the independent variable η, having the form

∂tη + ∂xη + ε

(
1

6
∂3

xη +
3

2
η∂xη

)
= 0. (1.5)

Note that in the present scaling, the independent variable η and its first several
partial derivatives are all of order one. This regime has been analysed by Craig
[11] starting from the Lagrangian form of (1.1)-(1.4). In terms of the variables
introduced above, he showed that there exists a constant T independent of
ε and a solution (φε, ηε) of (1.1)-(1.4) defined at least on the time interval
[0, T/ε] such that ηε is approximated to within order ε in the L∞–norm by an
associated solution to (1.5). It is worth noting that according to the formal
derivation of the KdV model as written in (1.5), one expects solutions to be
good renditions of an associated Euler flow (1.1)-(1.4) on a time scale of order
ε−1 and that neglected effects could make an order one relative contribution on
a time scale of order ε−2. Thus Craig’s result provides theoretical justification
for the use of (1.5), but it has nothing to say about the eventual breakdown of
the model as an approximation to (1.1)-(1.4) (see [7], [8], [2] and [1] for more
complete discussions of these matters).

Schneider and Wayne [19] extended Craig’s result about the KdV–regime
by writing a theory that allowed for more general initial disturbances. They
also wrote theory for wave motion in both directions. Expressed in the present
variables, they showed the solution to (1.1)-(1.4) may be approximated to
within order ε1/4 on a time scale of order ε−1 by the solutions of two uncou-
pled, counter-propagating waves, each of which satisfies a KdV–type equation,
namely 

∂tη1 + ∂xη1 + ε

(
1

6
∂3

xη1 +
3

4
∂x(η

2
1)

)
= 0,

∂tη2 − ∂xη2 − ε

(
1

6
∂3

xη2 +
3

4
∂x(η

2
2)

)
= 0.

(1.6)

While suggestive and interesting as a principle, an error estimate of order ε1/4

is clearly not a practically useful bound. A sharp result of this nature appears
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in the present script in Section 5. Similar theory was obtained for a general
class of hyperbolic systems by Ben Youssef and Colin in [4]. We will have more
to say about this type of approximation presently.

Following the lead of Bona and Smith [9], Bona, Chen and Saut [5] sys-
tematically took advantage of the freedom associated with the choice of the
velocity variable and made full use of the lower order relations (the wave equa-
tion written as a coupled system) in the dispersive terms to put forward a
three-parameter family of Boussinesq-type systems, all of which are formally
equivalent models of solutions to the two-dimensional Euler equations (1.1)–
(1.4) when X = x. Many of this family were eliminated as potential models
when the associated initial-value problems were shown to be ill-posed in [5].
However, there remain significant sub-families that are known to be at least
locally well posed in quite reasonable smoothness classes (see [6]). These sys-
tems are reviewed in a little more detail in the next section for the reader’s
convenience.

In this paper, the class of systems developed by Bona, Chen and Saut is
extended in an interesting and helpful way. The key to the extensions pro-
posed here is a nonlinear change of variables that leaves the formal order of
approximation unchanged, but which results in new systems with very attrac-
tive mathematical properties. In particular, we derive systems in both two and
three spatial dimensions that are symmetric in their nonlinear structure and
their dispersive modelling. An interesting example of the systems we derive
and analyse is

∂tV +∇η + ε

[
1
4
∇(η2) + 3

2

(
∂x(V

2
1 )

∂y(V
2
2 )

)
+ 1

4

(
∂x(V

2
2 )

∂y(V
2
1 )

)
+ 1

2

(
∂y(V1V2)
∂x(V1V2)

)]
+ε (a∆∇η − b∆∂tV ) = 0

∂tη +∇ · V +
ε

2
∇ · (ηV ) + ε (c∆∇ · V − d∆∂tη) = 0,

where V = (V1, V2)
T denotes the horizontal velocity field at height θ and in

our present scaling it is naturally required that 0 ≤ θ ≤ 1. The constants a, b,
c and d appearing in the equation are

a = (
θ2

2
− 1

6
)λ, b = (

θ2

2
− 1

6
)(1− λ), c =

(1− θ2)

2
µ, d =

(1− θ2)

2
(1− µ),

where λ and µ are any two real parameters. If one chooses the parameters so
that a = c and b ≥ 0, d ≥ 0, then this system is symmetric and it is well posed
in W k,∞(0, T/ε;Hs−3k(R3)) for any k and s such that s − 3k > 2. Moreover,
one has the exact conservation law

∂t

∫
R2

V 2 + η2 + ε(b|∇V |2 + d|∇η|2) = 0

(see Proposition 2.4).
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Fully symmetric models turns out to be a powerful mathematical tool.
Indeed, we are able to prove that appropriately smooth solution of the full
equations (1.1)-(1.4) can be approximated by solutions of these symmetric
systems with an error which is at most of order ε2t, uniformly for t ∈ [0, T/ε].
We then show that in two space dimensions, smooth solutions of any of the
Bona-Chen-Saut systems differ from solutions of a symmetric system by at
most a quantity of order ε2t on the same long time scale ε−1. The latter
results give a satisfactory rigorous foundation to the use of any of the well
posed versions of these models to describe two-dimensional surface water waves
in the long-wave or Boussinesq regime.

D. Lannes proved recently [16] that the water-waves equations are well-
posed in finite depth (Wu proved earlier the case of infinite depth [22]). How-
ever, applying this result to the present case of long-waves does not yield
directly that the existence time is large, of order O(1/ε). Thus, our three-
dimensional results are couched in terms of solutions of the Euler equations
that may exist, with the extra assertion that such solutions necessarily do
persist on the relevant long time scale.

Our results apply both to the equations posed with the bottom comprising
the entire space Rd, d = 1 or 2 with function-space restrictions that imply
solutions decay to zero at infinity and to the periodic initial-value problems.
This latter aspect of the theory will be seen to bear upon the prospect of
using a decoupled type of approximation as exemplified by (1.6) in the two
dimensional context.

Returning briefly to the issue of approximation via a decoupled system in
the two dimensional situation, remark first that laboratory experiments and
real world flows arising in geophysical contexts often show nonlinear coupling
effects between counter-propagating waves. This apparent contradiction with
the result of [19] quoted above appears to derive from two sources. First, in
practice, the parameter ε is not so small. (Values of ε on the order of 0.3 find
regular appearance in situations where approximations to the Euler equations
are used to model real waves.) Secondly, the Schneider-Wayne result subsists
upon an assumption of a definite rate of decrease of the relevant wave motion at
infinity. Many wave regimes arising in the laboratory or in field situations are of
a quasi-periodic nature and certainly do not fit the approximation of tending to
zero at infinity at a substantial rate, at least on the spatial and temporal scales
where the models might possibly be useful. Indeed, as will become apparent in
the analysis presented in Section 5, a decoupled approximation such as (1.6)
does not present the same convergence rate to associated solutions of the Euler
equations (1.1)-(1.4) as does the coupled Boussinesq equations presented here
and in [5] in the situation where the initial disturbance has only function class
restrictions and not a definite rate of approach to zero at infinity. In the
periodic case, the decoupled system fails to provide a useful approximation to
the Euler equations, in contrast to the coupled systems developed here and in
[5].

In the next subsection, a more detailed view of the theory developed herein

5



is presented. The plan of the remainder of the paper is as follows. Section 2 is
devoted to the derivation of the symmetric systems to which frequent reference
has just been made. The exact relationship between the symmetric systems
and the full Euler equations is investigated in Section 3, while in Section 4,
it is proven in the two-dimensional case that the exact solutions of the Euler
equations approximately satisfy the class of models S put forward by Bona,
Chen and Saut. A detailed analysis of the decoupled formulation is the subject
of the last section.

1.2 Description of the results

There are three principal types of results in the technical elaboration of our the-
ory, namely, consistency, existence and convergence results. To describe them,
we need to discuss in a preliminary fashion the different systems involved.

The primary system on which everything developed here is based is the Eu-
ler system (1.1)-(1.4). From the Euler system, we obtain the classical Boussi-
nesq system by making the long wave and small amplitude assumptions out-
lined above and then expanding appropriately in the small parameter ε, and
dropping terms that are formally of order higher than linear in ε. Boussinesq’s
original system belongs to the wide class obtained by Bona, Chen and Saut
[5] which is here denoted by S. All these systems have the same nonlinear
structure as the original Boussinesq system; they differ one from the other
only in their modeling of dispersion. As mentioned above, they are all for-
mally equivalent. The second class of systems, denoted S ′, is a new one. It
is obtained from S by nonlinear changes of variables which renders symmet-
ric the nonlinear hyperbolic portion (the non-dispersive part of the system).
Systems of the class S ′ are also formally equivalent to the systems of S, and
hence formally good approximations of the full Euler equations on the long
time scale characterized by ε−1. The final class marked for discussion here
is denoted Σ and is in fact the subclass of S ′ consisting of those systems for
which both the dispersive and the nonlinear part are symmetric. The class Σ
is nonempty. Indeed, the sample system displayed in Section 1.1 is a member.
Systems which belong to Σ are conservative in a sense hinted at in Section 1.1,
and which will be made precise presently.

In what follows, we will prove theorems of existence for systems in Σ and
of convergence of their solutions to those of the full Euler equations, including
bounds on the rate of convergence. We will also prove comparison theorems
between solutions of the systems in Σ and solutions of the other systems under
discussion.

A crucial ingredient in our analysis will be the notion of consistency which
is presented now. Consider the general system

∂tU + A(∂X)U + εB(U)(∂XU) + ε
(
C(∂3

XU) +D(∂2
X∂tU)

)
= 0 (1.7)

where U(t,X) : [0, T/ε] × Rd → Rp, T is a fixed, positive constant, p is an
integer, X = (x, y) if d = 2 and X = x if d = 1, A(∂X) = A1∂x + A2∂y
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with A1 and A2 constant matrices, B(U)(∂XU) = B1(U)∂xU + B2(U)∂yU ,

C(∂3
XU) =

d∑
i,j,k=1

Cijk∂
3
ijkU and D(∂2

X∂tU) =
d∑

i,j=1

Dij∂
2
ij∂tU . To be concrete,

we can presume that B1 and B2 are polynomial in the components of U and
that Cijk and Dij are constant matrices, though this is not necessary for some
of what follows. All the systems in the classes S, S ′ and Σ, can be written in
the form (1.7), so it suffices for the purposes at hand to provide a definition of
consistency within the context of (1.7).

Definition 1.1 Let s ≥ 0, σ ≥ s, ε0 > 0 and T > 0 be given. A family
{U ε}0<ε<ε0

which is bounded independently of ε in W 1,∞(0, T/ε;Hσ(Rd)) is
consistent with the system (1.7) if

∂tU ε + A(∂X)U ε + εB(U ε)(∂XU ε) + ε
(
C(∂3

XU ε) +D(∂2
X∂tU ε)

)
= ε2Rε

where the family {Rε}0<ε<ε0
is bounded in L∞(0, T/ε;Hs(Rd)) for 0 < ε < ε0.

When the values of σ and s are important, we will say the family {U ε}0<ε<ε0

is consistent with regularity σ and s.

One of the technical goals of this paper is to establish rigorous consistency
results for systems of the classes S, S ′ and Σ and to prove related existence
and convergence results. Here is a more detailed account of what is in view.

i. Consistency results. Let {(φε, ηε)} be a family of solutions of the
Euler equations (1.1)-(1.4) for some open interval of ε of the form (0, ε0), say,
where ε0 > 0. Define V ε := ∇ψε with ψε(t,X) := φ(X, 1 + εηε(t,X)). If
{(V ε, ηε)} is bounded in W 1,∞(0, T/ε;Hσ(Rd)) for some σ large enough, it
is established in Theorem 4.2 that {(V ε, ηε)} is consistent with the Boussi-
nesq system. This result is in the general spirit of results of Craig, Schantz,
Sulem and Sulem in [13] and [12]. A direct approach is mounted to prove this
result which avoids use of the singular integral associated to the Dirichlet-to-
Neumann operator for the flow domain.

We also prove that any function consistent with any one of the systems of
class S is, up to a linear change of variables, consistent with any other system
of S. The linear change of variables (taken from [5]) corresponds physically
to taking as a new independent variable the horizontal velocity at a different
height above the bottom (see Proposition 2.1). Similarly, it is shown that

if {(V ε, ηε)} is consistent with a system in S then {(Ṽ ε, η̃ε)} obtained from
{(V ε, ηε)} by the aforementioned nonlinear changes of variables is consistent
with the systems of the class S ′ (which have symmetric nonlinear part, re-
member). A key presumption in the three-dimensional theory at this point
is the irrotationality of the flow expressed as the vanishing of the curl of the
velocity field everywhere in the flow domain (see Proposition 2.2). Moreover,
we prove in Proposition 2.3 that any function consistent with a system in S ′ is
also consistent with all the other members of S ′ (again, up to a linear change
of variables).
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ii. Existence results. For the systems of class S, the local well posed-
ness for the Cauchy problem has been discussed in some detail in [5] and [6].
Necessary and sufficient conditions for the well posedness of the associated
linear problems was given in [5]. It was posited that the systems that are
linearly ill posed are unlikely to be nonlinearly well posed and they were dis-
carded from the discussion in [6]. In the latter reference, local well posedness
was demonstrated for all the systems that were determined to be linearly well
posed save for one highly degenerate case. However, when written in the scal-
ing favoured here, the time of existence for most of these systems using the
theory in [6] is only on the order of ε−1/2. (However, certain of the systems in
S have a global existence theory owing to a special, Hamiltonian structure.)
For the present purposes, it is convenient to have an existence theory on the
time interval [0, T/ε] where T may depend upon the order one initial data, but
is independent of ε, together with ε-independent bounds for the solutions in
W 1,∞(0, T/ε;Hσ(Rd)) for σ large enough. Fortunately, the systems of class Σ,
which play a crucial role in our analysis anyway, are indeed locally well posed
on the longer time scale of order ε−1, as is shown in Proposition 2.4.

iii. Convergence results. The most fundamental of our convergence
results, Theorem 3.1, concerns solutions of the systems within Σ. It states
that corresponding to any family {(V ε, ηε)} of functions consistent with one
of the Σ-systems, there exists a family of exact solutions {(V ε

Σ, η
ε
Σ)} of the

relevant system satisfying

|(V ε, ηε)− (V ε
Σ, η

ε
Σ)|L∞(0,t;Hs(Rd)) = O(ε2t)

for all t ∈ [0, T/ε]. This error estimate is easily established owing to the
symmetry of the systems in the class Σ. From this central result, one deduces
at once that the asymptotic behavior of any family of functions {(V ε, ηε)},
consistent with one of the systems of class S or S ′ can be described in terms
of an exact solution {(V ε

Σ, η
ε
Σ)} to one of the symmetric systems of class Σ (see

our Corollaries 3.1 and 3.2).
The principal convergence result concerns the asymptotics of the full Euler

equations (1.1) − (1.4). It is demonstrated that for any family {(V ε, ηε)} of
solutions of the Euler equations and for any system in the class Σ, there exists
a family {(V ε

Σ, η
ε
Σ)} of solutions to this Σ - system with the following property.

Let {(V ε
app, η

ε
app)} be the family of functions obtained by applying to {(V ε

Σ, η
ε
Σ)}

an approximate inverse of the change of variables that arose in deriving the
class S ′ from the class S, followed by the inverse of the transformation that
came to the fore in deriving elements of the class S from the classical Boussi-
nesq equation. This results in a set of variables that are in principal directly
comparable to the Euler variables. Using the preceding theory, one readily
adduces that

|(V ε, ηε)− (V ε
app, η

ε
app)|L∞(0,t;Hs(Rd)) = O(ε2t)

for all t ∈ [0, T/ε] (see Theorems 3.2 and 3.3).
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Combining these convergence results yields the overall point in view here,
which is that solutions of any of the approximate systems in view yield good
approximations to the full Euler equations on the long time scale ε−1 where
nonlinear and dispersive effects can have an order one relative effect on the
velocity field and the wave profile. In particular, these results leave one free
to choose an approximate system with good mathematical properties for the
modelling task at hand. This freedom can be very helpful when questions of the
design of numerical schemes or the imposition of non-homogeneous boundary
conditions arise. In many cases, the dispersive perturbation of a symmetric
hyperbolic system, the hallmark of the systems in the class Σ, appears to be
very convenient, for example.

A couple of further points are worth emphasis. Note that for the two di-
mensional case, for any initial data (v0, η0) ∈ Hs(R)2 for suitably large s, there
exists a solution to the Euler equations on the relevant time scale. Thus in the
two dimensional case, the asymptotic analysis is complete on the time scale
ε−1. In the three dimensional situation, our theory applies to solutions of the
full Euler equations should they exist. Finally, we point again to Section 5
where we analyse the approximating power of uncoupled systems as in (1.6).
The approximation estimates mentioned above are superior to those that ob-
tain for a pair of uncoupled KdV-equations in the absence of specific decay
presumptions about the solutions. Moreover, the present theory remains valid
in the periodic case, which is not the case for decoupled models.

Acknowledgment. Part of this work was done while T. Colin and D. Lannes
were visiting J. Bona at the University of Illinois at Chicago; they want to
thank UIC for its hospitality. This work was partially supported by the ACI
Jeunes chercheurs du ministère de la Recherche “solutions oscillantes d’EDP”,
the GDR 2103 EAPQ CNRS, by the European network HYKE, funded by
the EC as contract HPRN-CT-2002-00282, and by the United States National
Science Foundation.

2 Formal derivation of symmetric systems.

2.1 The class S of Bona-Chen-Saut systems.

The aim of this section is to recall the derivation of a class of model systems
which, in the two dimensional setting, were put forward recently by Bona,
Chen and Saut in [5] and [6]. We take as our starting point one of the original
versions of the Boussinesq system, namely

∂tV +∇η +
ε

2
∇|V |2 = O(ε2),

∂tη +∇ · V + ε

(
∇ · (ηV ) +

1

3
∆∇ · V

)
= O(ε2),

(2.1)
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as ε → 0, where V connotes the horizontal velocity at the free surface and η
the deviation of the free surface from its rest position as before. Henceforth,
the notation (V0, η0) is reserved for the value of (V, η) at t = 0, which is to say,
the initial data. As above, ε is the small parameter measuring the amplitude
to depth ratio and, on account of the assumption that the Stokes number is
exactly equal to 1, the square of the ratio of the depth to a typical wavelength.
We give below in proposition 2.1 a precise sense of what is meant by the formal
notation O(ε2) on the right-hand side of (2.1).

Elementary potential theory shows that the horizontal velocity of the water
at height θ (recall that in the present scaling, θ = 1 at the free surface and
θ = 0 at the bottom) is approximately given by Vθ, where

Vθ =
(
1− ε

2
(1− θ2)∆

)−1

V, (2.2)

or equivalently

V =
(
1− ε

2
(1− θ2)∆

)
Vθ.

Substituting the relation (2.2) into (2.1) leads to the system

∂tVθ +∇η +
ε

2

(
∇|Vθ|2 − (1− θ2)∆∂tVθ

)
= O(ε2),

∂tη +∇ · Vθ + ε

(
∇ · (ηVθ) + (

θ2

2
− 1

6
)∆∇ · Vθ

)
= O(ε2)

(2.3)

(cf. [5] in the two dimensional case). Note that the initial data for Vθ is(
1− ε

2
(1− θ2)∆

)−1

V0 := Vθ,0.

To introduce the BBM-version of these systems, remark that at the lowest
formal order,

∂tVθ = −∇η +O(ε),

∂tη = −∇ · Vθ +O(ε).

In consequence, the dispersive terms in (2.3) may be rewritten in the form

∆∂tVθ = (1− µ)∆∂tVθ − µ∆∇η +O(ε),
∆∇Vθ = λ∆∇Vθ − (1− λ)∆∂tη +O(ε),

(2.4)

without loss of formal accuracy in terms of powers of ε, where λ and µ are two
arbitrary parameters. Using (2.4) in (2.3) gives the system

∂tVθ +∇η + ε

(
1

2
∇|Vθ|2 − (1− µ)

(1− θ2)

2
∆∂tVθ + µ

(1− θ2)

2
∆∇η

)
= O(ε2),

∂tη +∇ · Vθ + ε

(
∇ · (ηVθ) + (

θ2

2
− 1

6
)λ∆∇ · Vθ − (

θ2

2
− 1

6
)(1− λ)∆∂tη

)
= O(ε2).
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The class S is just all the systems of the form Sθ,λ,µ where 0 ≤ θ ≤ 1 and µ
and λ are arbitary real numbers. These are written in the compact form

Sθ,λ,µ


∂tV +∇η + ε

(
1

2
∇|V |2 + a∆∇η − b∆∂tV

)
= 0,

∂tη +∇ · V + ε (∇ · (ηV ) + c∆∇ · V − d∆∂tη) = 0.

with

a =
(1− θ2)

2
µ, b =

(1− θ2)

2
(1− µ)

c = (
θ2

2
− 1

6
)λ, d = (

θ2

2
− 1

6
)(1− λ)

(2.5)

as in [5] in the two dimensional case.
Our first consistency result (in the sense of Definition 1.1) is provided in

the following proposition.

Proposition 2.1 Let λ and µ be given and suppose θ, θ1 ∈ [0, 1]. Let (V ε, ηε)
be consistent with the system Sθ,λ,µ and let V ε

1 be defined by

V ε
1 =

(
1− ε

2
(1− θ2

1)∆
)−1 (

1− ε

2
(1− θ2)∆

)
V ε.

Then (V ε
1 , η

ε) is consistent with Sθ1,λ,µ. Moreover, for all (λ1, µ1) ∈ R2,
(V ε

1 , η
ε) is consistent with Sθ1,λ1,µ1.

Proof.
This is clear thanks to the relation (2.2).

�

As discussed already, for a long wave model for the water-wave problem
to be useful, it must have a local existence theory for order one initial data
that provides smooth solutions at least on time intervals of the form [0, T/ε].
Moreover, solutions with fixed initial data in the variables in force here must be
bounded with respect to ε in W 1,∞(0, T/ε;Hs(Rd)) for suitably large values
of s. For most of the members of the class S, even those which are locally
well posed, there is no theory of this nature. (There is a sparse subclass of the
systems in S that have a global existence theory and these of course conform to
the time-scale requirements. However, even in these cases, there is no analysis
showing the solutions are bounded independently of small values of ε).

This situation will be rectified by making use of the symmetric systems
which are the subject of the next subsection.
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2.2 The class S ′ of nonlinearly symmetric systems

In the previous section, we recalled how to obtain formally equivalent model
systems from the Boussinesq system by making changes of variables that had
the effect of modifying the dispersive part of the model. In this section, at-
tention is given to the nonlinear part. The formal zero-dispersion limit of the
Boussinesq system (2.1) is the system

∂tV +∇η +
ε

2
∇|V |2 = 0,

∂tη +∇ · V + ε∇ · (ηV ) = 0,

(2.6)

of hyperbolic conservation laws. It is handy to write (2.6) in the form

∂t

(
V
η

)
+ A1(V, η)∂x

(
V
η

)
+ A2(V, η)∂y

(
V
η

)
= 0,

where

A1(V, η) =


εV1 εV2 1

0 0 0

1 + εη 0 εV1


and

A2(V, η) =


0 0 0

εV1 εV2 1

0 1 + εη εV2

 ,

in the three dimensional case. In two space dimensions, this becomes

∂t

(
v
η

)
+ A(v, η)∂x

(
v
η

)
= 0,

where

A(v, η) =

 εv 1

1 + εη εv

 .

Obviously, whatever the space dimension is, these systems of conservation laws
are not symmetric. However, a symmetrizer in the fully three dimensional case
is 

1 + εη 0 εV1

0 1 + εη εV2

εV1 εV2 1

 .

12



Note that in two space dimensions, the symmetrizer specializes to 1 + εη εv

εv 1


but that  1 + εη 0

0 1


can also be used.

Independently of the dimension, these symmetrizers are not compatible
with the dispersion terms. Therefore, they cannot be used for adducing so-
lutions to the Cauchy problem. This disappointing observation leads one to
search for another strategy for obtaining ”equivalent” systems, in the sense
of the preceding subsection, that are symmetric as regards their nonlinear
portion. Consider the nonlinear change of variables

Ṽ = V (1 +
ε

2
η) (2.7)

and compute the equations satisfied by Ṽ and η:

∂tṼ = ∂tV (1 +
ε

2
η) + Ṽ

ε

2
∂tη +O(ε2),

= −[∇η +
ε

2
∇|V |2](1 +

ε

2
η)− ε

2
Ṽ∇ · Ṽ +O(ε2),

= −∇η − ε

(
1

2
∇|Ṽ |2 +

1

4
∇|η|2 +

1

2
Ṽ∇ · Ṽ

)
+O(ε2).

It follows

∂tṼ +∇η + ε

(
1

2
∇|Ṽ |2 +

1

4
∇|η|2 +

1

2
Ṽ∇ · Ṽ

)
= O(ε2). (2.8)

On the other hand:

∂tη = −∇ · V − ε∇ · (ηV ) +O(ε2),

= −∇ · [Ṽ (1− ε

2
η)]− ε∇ · (ηV ) +O(ε2),

= −∇ · Ṽ − ε

(
∇ · (ηṼ )− 1

2
∇(ηṼ )

)
+O(ε2).

Therefore
∂tη +∇ · Ṽ +

ε

2
∇ · (ηṼ ) = O(ε2). (2.9)

The system formed by (2.8) and (2.9) is symmetric in 1−D but not in 2−D.
Indeed, it can be written (omitting the tilde):

∂tV1 + ∂xη + ε

(
V1∂xV1 + V2∂xV2 +

1

2
η∂xη +

1

2
V1(∂xV1 + ∂yV2)

)
= O(ε2),
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∂tV2 + ∂yη + ε

(
V1∂yV1 + V2∂yV2 +

1

2
η∂yη +

1

2
V2(∂xV1 + ∂yV2)

)
= O(ε2),

∂tη + ∂xV1 + ∂yV2 +
ε

2
(∂xηV1 + η∂xV1 + ∂yηV2 + η∂yV2) = O(ε2),

or equivalently:

∂t

 V1

V2

η

 +



3ε

2
V1 εV2 1 +

ε

2
η

ε

2
V2 0 0

1 +
ε

2
η 0

ε

2
V1


∂x

 V1

V2

η



+



0
ε

2
V1 0

εV1
3ε

2
V2 1 +

ε

2
η

0 1 +
ε

2
η

ε

2
V2


∂y

 V1

V2

η

 = O(ε2).

(2.10)

At this step, we use the 0−curl condition. Indeed, when curl Ṽ = O(ε), one

can replace
ε

2
V2∂xV2 by

ε

2
V2∂yV1 in the first equation of (2.10) and

ε

2
V1∂yV1

by
ε

2
V1∂xV2 in the second one. The system becomes:

∂tV1 + ∂xη + ε

(
1

4
∂x(η

2) +
3

2
∂x(V

2
1 ) +

1

4
∂x(V

2
2 ) +

1

2
∂y(V1V2)

)
= O(ε2),

∂tV2 + ∂yη + ε

(
1

4
∂y(η

2) +
1

4
∂y(V

2
1 ) +

3

2
∂y(V

2
2 ) +

1

2
∂x(V1V2)

)
= O(ε2),

∂tη + ∂xV1 + ∂yV2 +
ε

2
(∂x(ηV1) + ∂y(ηV2)) = O(ε2).

(2.11)
We now introduce the new class S ′ of systems S ′θ,λ,µ:

S ′θ,λ,µ



∂tV +∇η + ε

(
1

4
∇η2 +

3

2

(
∂x(V

2
1 )

∂y(V
2
2 )

)

+1
4

(
∂x(V

2
2 )

∂y(V
2
1 )

)
+ 1

2

(
∂y(V1V2)
∂x(V1V2)

)
+ a∆∇η − b∆∂tV

)
= 0,

∂tη +∇ · V + ε

(
1

2
∇(ηV ) + c∆∇ · V − d∆∂tη

)
= 0,

(2.12)
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where a, b, c, d are given by (2.5). The previous computations allow us to write
the folllowing propostion.

Proposition 2.2 If (V ε, ηε) is consistent with Sθ,λ,µ and nearly irrotationnal

in the sense that curl V ε = O(ε), then (Ṽ ε, ηε) defined by Ṽ ε = V ε(1 +
ε

2
ηε)

is consistent with S ′θ,λ,µ.

It is also clear that:

Proposition 2.3 Proposition 2.1 remains true if one takes systems of S ′ in-
stead of S.

2.3 The symmetric class.

We consider the subclass of S ′ for which a = c, b ≥ 0 and d ≥ 0. We denote
this (non-empty!) class by Σ.

Proposition 2.4 Let us fix θ, λ, µ such that system (2.12) is in the class Σ.

For all s >
d

2
+1, for all (V0, η0) ∈ (Hs(Rd))d+1, there exist T0 > 0 independent

of ε and a unique (V, η) ∈ C([0,
T0

ε
]; (Hs(Rd))d+1) solution to (2.12) such that

(V, η)(t = 0) = (V0, η0).
Moreover, there exists C0 > 0 independent of ε such that

|(V, η)|
W k,∞(0,

T0
ε

;Hs−3k)
≤ C0

for all k such that s− 3k > d/2 + 1.
One also has the following conservation law:

∂t

∫
V 2 + η2 + εb|∇V |2 + dε|∇η|2 = 0.

Proof.
It is done using standard energy estimates for hyperbolic symmetric quasilinear
systems. Note that the dispersive part does not interact with these estimates
because of the relationships a = c, b ≥ 0 and d ≥ 0. The conservation of the
energy follows from the following straightforward computation: one multiplies

the system by

(
V
η

)
and integrates. One gets for the nonlinear part:

∫
1

2
η∂xηV1 + 3V 2

1 ∂xV1 +
1

2
V2∂xV2V1 +

1

2
∂yV1V2V1

+
1

2
V1∂yV2V1 +

1

2
η∂yηV2 +

1

2
V1∂yV1V2 + 3V2∂yV2V2

+
1

2
∂xV1V

2
2 +

1

2
V1∂xV2V2 +

1

2
η2∂xV1 +

1

2
∂xηV1η +

1

2
η2∂yV2 +

1

2
∂yηV2η,
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=

∫
η∂xηV1 +

1

2
η2∂xV1 + η∂yηV2 +

1

2
η2∂yV2

+V2∂xV2V1 +
1

2
∂xV1V

2
2 + ∂yV1V2V1 +

1

2
V1∂yV2V1,

=
1

2

∫
∂x(η

2)V1 + η2∂xV1 + ∂y(η
2)V2 + η2∂yV2

+∂x(V
2
2 )V1 + ∂xV1V

2
2 + ∂y(V

2
1 )V2 + V 2

1 ∂yV2 = 0.

This ends the proof of the proposition.

�

3 Error estimates.

3.1 The symmetric systems.

In this section, we prove the fundamental estimates that state that any solution
consistent with the symmetric system is near a solution of that system on time

intervals of size O(
1

ε
). We take θ, λ, µ such that the system S ′θ,λ,µ given by

(2.12) is in Σ, that is has symmetric dispersive and nonlinear parts. Such a
system can be written:

∂tV +∇η + ε

(
1

4
∇η2 +

3

2

(
∂x(V

2
1 )

∂y(V
2
2 )

)

+1
4

(
∂x(V

2
2 )

∂y(V
2
1 )

)
+ 1

2

(
∂y(V1V2)
∂x(V1V2)

)
+ a∆∇η − b∆∂tV

)
= 0,

(3.1)

∂tη +∇ · V + ε

(
1

2
∇(ηV ) + a∆∇ · V − d∆∂tη

)
= 0, (3.2)

with

a =
(1− θ2)

2
µ, b =

(1− θ2)

2
(1− µ), d = (

θ2

2
− 1

6
)(1− λ)

(1− θ2)

2
µ = (

θ2

2
− 1

6
)λ, b ≥ 0, d ≥ 0.

(3.3)
The result reads:

Theorem 3.1 Let us fix λ, µ, θ satisfying (3.3) and s ≥ 0. Let (V ε, ηε) a

family of functions bounded with respect to ε in W 1,∞(0,
T

ε
;Hs+3(Rd)) for some

T > 0. If this family is consistent with (3.1)-(3.2) in the sense of Def. 1.1,

then there exists (V ε
Σ, η

ε
Σ) an exact solution to (3.1)-(3.2) defined on [0,

T

ε
] and

such that

|V ε − V ε
Σ|L∞(0,t;Hs(Rd)) + |ηε − ηε

Σ|L∞(0,t;Hs(Rd)) ≤ Cε2t for all t ∈ [0,
T

ε
].
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Proof.
We write system (3.1)-(3.2) as a dispersive perturbation of an hyperbolic quasi-
linear symmetric system:

L
(
V
η

)
:= ∂t

(
V
η

)
+

(
∇η
∇ · V

)
+ ε

(
A(V, η)∂x

(
V
η

)

+B(V, η)∂y

(
V
η

)
+a

(
∆∇η
∆∇ · V

)
−∆∂t

(
bV
dη

))
= 0.

(3.4)

The assumption of consistency made on (V ε, ηε) means that

L
(
V ε

ηε

)
= ε2

(
rε
1

rε
2

)
,

with (rε
1, r

ε
2) bounded in L∞(0,

T

ε
;Hs(Rd)). Now let (V ε

Σ, η
ε
Σ) be the solution

of (3.4) such that (V ε
Σ, η

ε
Σ)(t = 0) = (V ε, ηε)(t = 0). This solution is defined at

least on [0,
T0

ε
] with T0 > 0 by proposition 2.4. We write the system satisfied

by the difference (V ε−V ε
Σ, η

ε− ηε
Σ) and performing standard energy estimates

on it leads to the error given in theorem 3.1 on [0,
T1

ε
] where T1 = Min(T0, T ).

By usual arguments, one can take T1 = T .

�

3.2 Corollaries.

The first corollary shows that the asymptotic behavior of any family (V ε, ηε)
consistent with a system of S ′ can be described in terms of the solution of one
of the systems of Σ, via a pseudo-differential change of variables.

Corollary 3.1 Let s ≥ 0 and (θ, λ, µ) fixed satisfying (3.3). Assume that
there exist a set of parameters (θ, λ, µ) and a smooth enough family (V ε, ηε)

consistent with the system S ′θ,λ,µ ∈ S ′ and defined on [0,
T

ε
] for some T > 0.

Then the system S ′θ,λ,µ ∈ Σ admits a unique family of solutions (V ε
Σ, η

ε
Σ) defined

on [0,
T

ε
] and with initial conditions (V ε

Σ,0, η
ε
Σ,0) defined as

V ε
Σ,0 =

(
1− ε

2
(1− θ2)∆

)−1 (
1− ε

2
(1− θ2)∆

)
V ε(t = 0), ηε

Σ,0 = ηε(t = 0).

Moreover, one has the error estimate∣∣∣∣V ε −
(
1− ε

2
(1− θ2)∆

)−1 (
1− ε

2
(1− θ2)∆

)
V ε

Σ

∣∣∣∣
L∞(0,t;Hs(Rd))

+ |ηε − ηε
Σ|L∞(0,t;Hs(Rd)) ≤ Cε2t,

for all t ∈ [0, T
ε
].
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Proof.
From Prop. 2.3, it follows that

(Ṽ ε, η̃ε) :=

((
1− ε

2
(1− θ2)∆

)−1 (
1− ε

2
(1− θ2)∆

)
V ε, ηε

)
is consistent with S ′θ,λ,µ ∈ Σ.

From Prop. 2.4 one can deduce the existence of (V ε
Σ, η

ε
Σ) and from Th. 3.1, the

error estimate between (Ṽ ε, η̃ε) and (V ε
Σ, η

ε
Σ). Inverting the pseudo-differential

change of variables then yields the result.

�

The same kind of property holds for systems of the original class S, but
one must also perform a nonlinear change of variables.

Corollary 3.2 Let s ≥ 0 and (θ, λ, µ) fixed satisfying (3.3). Assume that
there exist a set of parameters (θ, λ, µ) and a smooth enough family (V ε, ηε)

consistent with the system Sθ,λ,µ ∈ S and defined on [0,
T

ε
] for some T > 0.

If V ε is nearly irrotationnal in the sense that curl V ε = O(ε), then the system

S ′θ,λ,µ ∈ Σ admits a unique family of solutions (V ε
Σ, η

ε
Σ) defined on [0,

T

ε
] and

with initial conditions (V ε
Σ,0, η

ε
Σ,0) defined as

(V ε
Σ,0, η

ε
Σ,0) =

(
Ṽ ε

0

(
1 +

ε

2
ηε(t = 0)

)
, ηε(t = 0)

)
,

with

Ṽ ε
0 =

(
1− ε

2
(1− θ2)∆

)−1 (
1− ε

2
(1− θ2)∆

)
V ε(t = 0).

Moreover, there exists ε0 > 0 such that for all 0 < ε < ε0,∣∣∣∣V ε −
(
1− ε

2
(1− θ2)∆

)−1 (
1− ε

2
(1− θ2)∆

) (
V ε

Σ(1− ε

2
ηε

Σ)
)∣∣∣∣

L∞(0,t;Hs(Rd))

+ |ηε − ηε
Σ|L∞(0,t;Hs(Rd)) ≤ Cε2t,

for all t ∈ [0, T
ε
].

Proof.
From Prop. 2.1, it follows that (Ṽ ε, η̃ε), as defined in the proof of Cor. 3.1,

is consistent with Sθ,λ,µ ∈ S. From Prop. 2.2, we then deduce that (
˜̃
V ε, ˜̃ηε)

defined as ˜̃
V ε = Ṽ (1 +

ε

2
η̃), ˜̃ηε = η̃,

is consistent with S ′θ,λ,µ ∈ Σ.

From Prop. 2.4 one can deduce the existence of (V ε
Σ, η

ε
Σ) and from Th. 3.1, the

error estimate between (
˜̃
V ε, ˜̃ηε) and (V ε

Σ, η
ε
Σ). Inverting the nonlinear change of

variables (which is possible for ε small enough) and then the pseudo-differential
one then yields the result.
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�

Remark 3.1 The irrotationality condition imposed in Cor. 3.2 is not neces-
sary in 1−D since in that case, the non-linear change of variables symmetrizes
the hyperbolic part of the Boussinesq system without using it (as seen in Section
2.2).

3.3 The main result.

The aim of this section is to state and prove the theorem concerning the
approximation of the solution to the Euler equations. We chose to work here
with a formulation of the Euler equations alternative to (1.1)-(1.4). This new
formulation reads as a system of PDE coupling the height η of the free surface
to V = ∇ψ, where ψ denotes the values of the potential at the free surface,
ψ(t,X) = φ(t,X, 1 + εη). This new formulation, which involves a Dirichlet-
Neumann operator Gε, is derived in Section 4.1. It reads

∂tV − ε∇ (∂tηGε(η)ψ) +∇η +
ε

2
∇

(
|V − ε∇ηGε(η)ψ|2

)
+∇ |Gε(η)ψ|2 = 0,

(3.5)
for X ∈ Rd and t > 0 and

∂tη + ε∇η · (V − ε∇ηGε(η)ψ) =
1

ε
∇(Gε(η)ψ), (3.6)

where V = ∇ψ, ψ(t,X) = ψ(t,X, 1 + εη) and Gε(η)ψ is given by

Gε(η)ψ = ∂zφ(t,X, 1 + εη)

with 
ε∆φ+ ∂2

zφ = 0, X ∈ Rd, 0 < z < 1 + εη,

∂zφ = 0 at z = 0, X ∈ Rd,

φ(X, 1 + εη) = ψ(t,X).

(3.7)

If (V ε, ηε) is a solution to (3.5)-(3.6) with initial data (V ε
0 , η

ε
0), we construct

what we call an approximate solution (V ε
app, η

ε
app) to (3.5)-(3.6) as follows. First,

one considers (Ṽ0

ε
, η̃0

ε) given by

Ṽ0

ε
=

(
1− ε

2
(1− θ2)∆

)−1

V ε
0 , η̃0

ε = ηε
0.

Then take (V ε
Σ,0, η

ε
Σ,0) given by:

(V ε
Σ,0, η

ε
Σ,0) =

(
Ṽ0

ε
(1 +

ε

2
ηε

0), η
ε
0

)
. (3.8)

We now choose the parameters (θ, λ, µ) such that the system S ′θ,λ,µ belongs

to the class Σ (i.e. is completely symmetric); in other words, we choose the
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parameters in such a way that (3.1)-(3.2)-(3.3) are satisfied. Let (V ε
Σ, η

ε
Σ) be

its solution with initial data (V ε
Σ, η

ε
Σ)(t = 0) = (V ε

Σ,0, η
ε
Σ,0) which exists and is

bounded with respect to ε in L∞(0,
T

ε
;Hs) for some T > 0 by Prop. 2.4.

From this family of solutions of the symmetric system S ′θ,λ,µ, we obtain our

approximate solution to the Euler equations by inverting approximately the
nonlinear change of variables, and then the pseudo-differential one, which gives

V ε
app =

(
1− ε

2
(1− θ2)∆

) [
V ε

Σ(1− ε

2
ηε

Σ)
]
,

ηε
app = ηε

Σ.

(3.9)

Theorem 3.2 One dimensional case.
Let s ≥ 0 and (vε

0, η
ε
0) be a bounded family of Hσ(R)2 (σ ≥ s large enough).

There exist T > 0 and ε0 > 0 such that the following holds. There exists a
unique solution (vε, ηε) to the Euler equations (3.5)-(3.6) with initial conditions
(vε

0, η
ε
0) and one has, for all 0 < ε < ε0,∣∣vε − vε

app

∣∣
L∞(0,t;Hs)

+
∣∣ηε − ηε

app

∣∣
L∞(0,t;Hs)

≤ cε2t for all t ∈ [0,
T

ε
],

where (vε
app, η

ε
app) is given by (3.9).

Theorem 3.3 Two dimensional case.
Let s ≥ 0 and (V ε

0 , η
ε
0) be a bounded family of Hσ(R2)2 (σ ≥ s large enough)

such that curl V ε
0 = 0. Let (V ε, ηε) be a family of solutions to the Euler

equations (3.5)-(3.6) with initial conditions (V ε
0 , η

ε
0) and bounded with respect

to ε in W 1,∞(0,
T

ε
;Hσ(R2)). Then, for ε small enough,

∣∣V ε − V ε
app

∣∣
L∞(0,t;Hs)

+
∣∣ηε − ηε

app

∣∣
L∞(0,t;Hs)

≤ cε2t for all t ∈ [0,
T

ε
],

where (V ε
app, η

ε
app) is given by (3.9).

Proof.
In the one-dimensional case, the existence part follows from W. Craig [11] or
G. Schneider-E. Wayne [19].
The key point of the proof is that the solutions to the Euler system are con-
sistent with the Boussinesq system (2.1). This fact is proved in Th. 4.2. Since
this latter system belongs to the class S (it can be written under the form
Sθ,λ,µ with θ = λ = 1), the results of both theorems can be deduced from Cor.
3.2.

�

Comments:
1. This result is a true convergence result with improved error bounds and
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not only a consistency result. The available error estimates for KdV-type de-
coupled systems like in [19] lead only -with the scaling used here- to errors like
O(ε1/4). We improve this result in Section 5 by proving that the error estimate
for KdV -type uncoupled approximations is O(ε), and show that this estimate
is sharp. It is clear that for short times, the approximation given in Ths. 3.2
and 3.3 is more precise. Moreover, both theorems remain valid in the periodic
framework, which is not the case for uncoupled approximations.
2. Among all the systems of the class S and S ′, only those belonging to the
class Σ are well understood in terms of the Cauchy problem on a time in-

terval of size [0, O(
1

ε
)]. This is why we constructed our approximate solution

(V ε
app, η

ε
app) in terms of the solution (V ε

Σ, η
ε
Σ) of such a symmetric system S ′θ,λ,µ.

However, an approximate solution can be constructed from any family of so-
lutions consistent with one of the systems of S, or S ′:
If (V ε

1 , η
ε
1) is consistent with Sθ,λ,µ and coincides with the solution (V ε, ηε) of

the Euler equations at t = 0, define (V ε
app,1, η

ε
app,1) as

V ε
app,1 =

(
1− ε

2
(1− θ2)∆

)
V ε

1 , ηε
app,1 = ηε

1.

From Prop. 2.1, (V ε
app,1, η

ε
app,1) is consistent with the Boussinesq system (2.1).

Therefore, thanks to Cor. 3.2, one can replace (V ε, ηε) by (V ε
app,1, η

ε
app,1) in the

statement of Ths. 3.1-3.2. This result, together with Ths. 3.1-3.2 yields the
following corollary by a triangular inequality.

Corollary 3.3 If (V ε, ηε), defined on [0, T
ε
] for some T > 0, solves the Euler

equations and if curl V ε(t = 0) = 0 then∣∣V ε − V ε
app,1

∣∣
L∞(0,t;Hs)

+
∣∣ηε − ηε

app,1

∣∣
L∞(0,t;Hs)

≤ cε2t for all t ∈ [0,
T

ε
].

Similarly, if (V ε
2 , η

ε
2) is consistent with S ′θ,λ,µ and coincides with the solution

(V ε, ηε) of the Euler equations at t = 0, define (V ε
app,2, η

ε
app,2) as

V ε
app,2 =

(
1− ε

2
(1− θ2)∆

) (
V ε

2

(
1− ε

2
ηε

2

))
, ηε

app,2 = ηε
2.

With the same method as above, one obtains:

Corollary 3.4 If (V ε, ηε), defined on [0, T
ε
] for some T > 0, solves the Euler

equations and if curl V ε(t = 0) = 0 then∣∣V ε − V ε
app,2

∣∣
L∞(0,t;Hs)

+
∣∣ηε − ηε

app,2

∣∣
L∞(0,t;Hs)

≤ cε2t for all t ∈ [0,
T

ε
].

3. It follows from Cor. 3.3-3.4 that all the formal approximate systems of the
class S of Bona et al. and of the new class S ′ are justified rigorously. This
can sometimes be spectacular: the historical Boussinesq system is ill-posed,
but nonetheless, we have a convergence result! More precisely, we can prove
that any family of solutions to the Euler equations existing over times O(1/ε),
is well approximated as ε → 0 by any family of functions consistent with the
Boussinesq system:
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Theorem 3.4 Let (V ε, ηε) and (V ε
Bous, η

ε
Bous) be two bounded family of smooth

enough irrotational functions defined on [0, T
ε
] for some T > 0, and consistent

with the Euler equations and the Boussinesq system (2.1) respectively, then

|V ε − V ε
Bous|L∞(0,t;Hs) + |ηε − ηε

Bous|L∞(0,t;Hs) ≤ cε2t for all t ∈ [0,
T

ε
].

4. Note that the way we use to prove the error estimates is quite unusual.
Indeed, we in fact consider that the solution to the Euler equation (that is
the ”exact solution”) is an approximate solution to the system Σθ,λ,µ that we
consider (that is the approximate system). And we perform the error estimate
on this completely symmetric system which is the center of the analysis.
5. Another approach to improve the error estimates of the uncoupled KdV
approximation for water-waves consists in computing the next order terms in
the BKW expansion. This method, studied by Wayne and Wright [20] for a
model problem (which is the Boussinesq equation) has the advantage of giving
an O(ε2) error term, but cannot be extended to the periodic case.

4 Consistency of the Euler equations with the

Boussinesq system

4.1 Statement of the problem

This aim of this part is to prove the consistency of any solution to the Euler
equations with the asymptotic Boussisnesq system. For convenience, let us
recall Eqs. (1.1)-(1.4), which are the Euler equations in the long-wave, small
amplitude scaling, with Stokes number equal to 1,

ε∆φ+ ∂2
zφ = 0 0 ≤ z ≤ 1 + εη, (4.1)

∂zφ = 0 at z = 0, (4.2)

∂tφ+
1

2

(
ε|∇φ|2 + |∂zφ|2

)
+ η = 0 at z = 1 + εη, (4.3)

∂tη + ε∇φ · ∇η =
1

ε
∂zφ at z = 1 + εη, (4.4)

where ∆ and ∇ denote the usual Laplace and gradient operators in transverse
variable X ∈ Rd, X = (x, y) if d = 2 and X = x if d = 1. By the earlier
works of W. Craig [11] and Schneider-Wayne [19], one knows that for d = 1

there exists a smooth solution to (4.1)-(4.4) defined on [0,
T

ε
] bounded (with

respect to ε) in W k,∞(0,
T

ε
;Hs(R)) for k and s large enough. Following [12],

we take ψε(t,X) := φ(t,X, 1 + εη(t,X)) as new unknown; this quantity is
the velocity potential at the free surface. As usual, see e.g. [17] [12] [13] [21]
[19], we write the equations satisfied by η and ψε. To this end, we need to
use the Dirichlet to Neumann operator which basically expresses the normal
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velocity at the free surface in terms of the value of the potential at the free
surface. Since the normal velocity can be deduced from ∂zφ, we consider in
this paper the operator which maps ψ to ∂zφ|z=1+εη. More precisely, for any
f ∈ (C1 ∩W 1,∞)(Rd) and for any ε such that 0 < 1 − ε|f |∞, we define the
operator Gε(f), which acts on H3/2(Rd) with values in H1/2(Rd) as

Gε(f)g = ∂zu(X, 1 + εf), (4.5)

where u is the solution to

ε∆u+ ∂2
zu = 0 0 ≤ z ≤ 1 + εf, X ∈ Rd (4.6)

∂zu = 0 at z = 0, X ∈ Rd (4.7)

u(X, 1 + εf) = g X ∈ Rd. (4.8)

Before rewriting Eqs. (4.1)-(4.4) using this operator, we need to compute the
derivatives of φ in terms of ψ and η. Simple computations yield

∂tφ|z=1+εη = ∂tψ − ε∂tηGε(η)ψ, (4.9)

∇φ|1+εη = ∇ψ − ε∇ηGε(η)ψ. (4.10)

Thanks to (4.9)-(4.10), we can rewrite (4.1)-(4.4) as

∂tψ − ε∂tηGε(η)ψ + η +
ε

2
|∇ψ − ε∇ηGε(η)ψ|2 +

1

2
|Gε(η)ψ|2 = 0, (4.11)

∂tη + ε∇η · [∇ψ − ε∇ηGε(η)ψ] =
1

ε
Gε(η)ψ, (4.12)

with X ∈ Rd and t ∈ [0, T
ε
].

The next step is to obtain an asymptotic expansion of the operator Gε as
ε→ 0. This is the goal of the next theorem.

Theorem 4.1 For any (f, g) ∈ H2(Rd)2 define G1(f)g = −∆g and G2(f)g =

−1

3
∆2g − f∆g.

For any s ∈ N there exists σ ∈ N, σ ≥ s and ε0 > 0 such that ∀ε > 0, ε < ε0,
if (f, g) ∈ Hσ(Rd)2, one has

|Gε(f)g − εG1(f)g − ε2G2(f)g|Hs(Rd) ≤ ε3C (|f |Hσ , |g|Hσ) ,

where C is a continuous function of its arguments.

Remark 4.1 This theorem could certainly be obtained using the estimates of
the Dirichlet to Neumann operators in the works of Craig [11] and Schneider-
Wayne [19]. However our proof has an interest in itself since it is simpler and
uses directly the elliptic equations. We postpone it to Section 4.3. Note also
that a similar approach is used in [18].
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4.2 Asymptotic expansion of the solutions of the Euler
equations

The aim of this section is to give an asymptotic expansion to the solutions
of (4.11)-(4.12). This is done in the following theorem, which says that any
solution of (4.11)-(4.12) is consistent with the Boussinesq system.

Theorem 4.2 Let s ≥ 0. Let (ψε, ηε) be a solution to Eqs. (4.11)-(4.12).
There exists σ ∈ N such that if (ψε, ηε) is bounded in W 1,∞(0, T

ε
;Hσ(Rd)),

then

∂tV
ε +∇ηε +

ε

2
∇(|V ε|2) = ε2rε

1

∂tη
ε +∇ · V ε + ε

(
∇ · (ηεV ε) +

1

3
∆∇ · V ε

)
= ε2rε

2,

where V ε := ∇ψε, and rε
1, r

ε
2 are bounded in L∞(0, T

ε
;Hs(Rd)).

Remark 4.2 From previous works [11] [19] it is known that when d = 1,
equations (4.11)-(4.12) are well-posed. Therefore the assumption made in Th.
4.2 on the existence and regularity of (ψε, ηε) reduces to a simple assumption of
regularity on the initial conditions (ψ0, η0) ∈ Hσ0(R) taken for (4.11)-(4.12).

Proof.
Let (ψε, ηε) be as in the statement of the theorem. Using Th. 4.1, one has

Gε(η
ε)ψε + ε∆ψε + ε2

(
1

3
∆2ψε + ηε∆ψε

)
= O(ε3), (4.13)

where the O(ε3) error term is taken in L∞(0,
T

ε
;Hs(Rd)) norm.

Plugging (4.13) into (4.11) and keeping only the terms of order O(ε) yields

∂tψ
ε + ηε +

ε

2
|∇ψε|2 = O(ε2), X ∈ Rd, t ∈ [0,

T

ε
]. (4.14)

Plugging (4.13) into (4.12) leads to

∂tη
ε + ε∇ηε · ∇ψε = −∆ψε − ε

(
1

3
∆2ψε + ηε∆ψε

)
+O(ε2), (4.15)

for X ∈ Rd and t ∈ [0, T
ε
].

Introducing V ε = ∇ψε, one gets, taking the gradient of (4.14),

∂tV
ε +∇ηε +

ε

2
∇(|V ε|2) = O(ε2) (4.16)

∂tη
ε +∇ · V ε + ε

(
∇ · (ηεV ε) +

1

3
∆∇ · V ε

)
= O(ε2). (4.17)

Note that the error terms O(ε2) are in L∞(0,
T

ε
;Hs(Rd)) for any chosen s,

provided that σ is large enough.

�
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4.3 Expansion of Gε

This section is devoted to the proof of Th. 4.1. Recall that we are concerned
with the operator Gε defined by (4.5)-(4.8). By a change of variable, we can
work on an horizontal strip: let ũ be defined on S := {X ∈ Rd, z ∈ [0, 1]} by

ũ(X, z) := u(X, z(1 + εf)), (4.18)

where u and f are as in (4.5)-(4.8). It follows immediately that for all X ∈ Rd,

for all z ∈ [0, 1 + εf ], one has u(X, z) = ũ(X,
z

1 + εf
). We now deduce

from (4.5)-(4.8) the equations satisfied by ũ. Eqs. (4.7), (4.8) and (4.5) yield
respectively

∂zũ(X, 0) = 0 X ∈ Rd, (4.19)

ũ(X, 1) = g(X) X ∈ Rd, (4.20)

Gε(f)(g) =
1

1 + εf
∂zũ(X, 1) X ∈ Rd. (4.21)

In order to use (4.6) we must compute ∂2
zu and ∆u in terms of ũ. Introducing

χε :=
1

1 + εf
, one obtains

∂2
zu = χ2

ε∂
2
z ũ,

∆u = ∆ũ+ z∆χε∂zũ+ 2z∇∂zũ · ∇χε + z2|∇χε|2∂2
z ũ,

and Eq. (4.6) therefore reads

ε∆ũ+
(
χ2

ε + εũ2|∇χε|2
)
∂2

z ũ+ 2εz∇χε · ∇∂zũ+ εz∆χε∂zũ = 0. (4.22)

Let us now define

ũ0 := g,

ũ1 := −(z2 − 1)

2
∆g,

ũ2 :=
∆2g

4

(
z4

6
− z2 +

5

6

)
− f∆g(z2 − 1).

(4.23)

In order to prove Th. 4.1, we prove the following proposition,

Proposition 4.1 For any s ∈ N, there exists σ ∈ N and ε0 > 0 such that for
all ε > 0, ε < ε0, and for all (f, g) ∈ Hσ(Rd)2, the solution ũ of (4.19), (4.20)
and (4.22) satisfies

ũ−
(
ũ0 + εũ1 + ε2ũ2

)
= O(ε3) in Hs(S),

where ũ0, ũ1 and ũ2 are given in (4.23).
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Proof.
In order to prove this proposition, we proceed as follows:
i. In a first step, we construct an approximate solution to (4.19), (4.20) and
(4.22), up to order O(ε3).
ii. In a second step, we perform energy estimate on the difference between the
exact and the approximate solutions.
Step 1: Construction of the approximate solution.
The energy estimates we will have to use in Step 2 use the principal part of
(4.22), which reads ε∆ũ +

(
χ2

ε + εz2|∇χε|2
)
∂2

z ũ. Because of the coefficient ε
in front of ∆ũ, the error estimate on X derivatives are one order worse (in
terms of ε) than z-derivatives. This is the reason why we need an approximate
solution to one order further than O(ε2), i.e. to order O(ε3). We therefore
make the following ansatz for the approximate solution,

ũa = ũ0 + εũ1 + ε2ũ2 + ε3ũ3,

and plug it into (4.22) assuming that ∂zũi = 0 at z = 0 for i = 0 . . . 3, that
ũ0 = g at z = 1 and ũi = 0 at z = 1 for i = 1 . . . 3.
At order ε0, we find ∂2

z ũ0 = 0, which with the boundary conditions on ũ0 yields
ũ0 = g.
In order to expand (4.22) into powers of ε at order 3, we need to expand χε

and its derivatives as follows,

χε = 1− εf + ε2f 2 +O(ε3),

|χε|2 = 1− 2εf + 3ε2f 2 +O(ε3),

|∇χε|2 = ε2|∇f |2 +O(ε3),

∆χε = −ε∆f +O(ε2).

Using these expressions and neglecting the terms of order O(ε4) and higher in
(4.22) gives an equation of the form εP1 + ε2P2 + ε3P3 = O(ε4). Choosing ũ1,
ũ2 and ũ3 in order to cancel P1, P2 and P3 yields three equations. The first
one, namely P1 = 0 reads

∆ũ0 + ∂2
z ũ1 = 0; (4.24)

the second one, P2 = 0, gives

∆ũ1 + ∂2
z ũ2 − 2f∂2

z ũ1 = 0, (4.25)

and finally P3 = 0 reads

∆ũ2 + ∂2
z ũ3 − 2f∂2

z ũ2 + 3f 2∂2
z ũ1 − 2z∇f∂z∇ũ1 − z2∆f∂zũ1 = 0. (4.26)

Using the boundary conditions, these equations can be solved; for (4.24), one
gets

ũ1 = −∆g

2
(z2 − 1). (4.27)
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For ũ2, (4.25) gives ∂2
z ũ2 =

∆2ũ0

2
(z2 − 1)− 2f∆ũ0, and hence

ũ2 =
∆2g

4

(
z4

6
− z2 +

5

6

)
− f∆g(z2 − 1). (4.28)

The equation (4.26) gives the value of ũ3, but since it has no interest, we omit
the computation.
Step 2: Error estimates.
We introduce now the difference between the exact and the approximate solu-
tions of (4.22), namely w := ũ− ũa. Then w satisfies

ε∆w +
(
χ2

ε + εz2|∇χε|2
)︸ ︷︷ ︸

:=aε(X,z)

∂2
zw + 2ε z∇χε︸ ︷︷ ︸

:=εbε(X,z)

·∂z∇w + ε z∆χε︸ ︷︷ ︸
:=εcε(X,z)

∂zw = O(ε4),

(4.29)
and ∂zw = 0 at z = 0, w = 0 at z = 1.
Remark that aε, bε and cε are uniformly bounded in W k,∞(S), k being pos-
sibly as large as one wants to, provided that σ is large enough. Moreover, in
W k,∞(S), one has aε = 1 +O(ε).
We first prove the estimate of Prop. 4.1 for s = 1 and s = 2, and then prove
the general result by induction.
First multiply (4.29) by w and integrate on the strip S = {X ∈ Rd, z ∈ [0, 1]}.
This yields

−ε
∫
|∇w|2 −

∫
aε|∂zw|2 −

∫
∂zaε∂zww − 2ε2

∫
bε · ∇w∂zw

−2ε2

∫
∇ · bε∂zww + ε2

∫
cε∂zww =

∫
O(ε4)w, (4.30)

where the boundary conditions on w have been used to cancel out the boundary
terms in the integration by parts performed with respect to the z variable.
Since aε = 1 + O(ε), the second term of the above equation can easily be
controlled, and the third one satisfies∣∣∣∣∫ ∂zaε∂zww

∣∣∣∣ ≤ O(ε)|∂zw| |w|,

where |·| denotes here the L2-norm on S. From Poincaré’s inequality, it follows
that ∣∣∣∣∫ ∂zaε∂zww

∣∣∣∣ ≤ O(ε)|∂zw|2. (4.31)

For the fourth term of the l.h.s. of (4.30), remark that∣∣∣∣2ε2

∫
bε · ∇w∂zw

∣∣∣∣ ≤ O(ε2)|∂zw| |∇w|

≤ O(ε2)
(
|∂zw|2 + |∇w|2

)
. (4.32)
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Similarly, the fifth and sixth terms are controlled by∣∣∣∣2ε2

∫
∇ · bε∂zww + ε2

∫
cε∂zww

∣∣∣∣ ≤ O(ε2)|∂zw|2, (4.33)

where Poincaré’s inequality has been used once again.
Plugging (4.31)-(4.33) into (4.30) gives therefore

ε

∫
|∇w|2 +

∫
|∂zw|2 = O(ε4)

(∫
|w|2

)1/2

,

and hence, by Poincaré’s inequality,

ε

∫
|∇w|2 +

∫
|∂zw|2 = O(ε8).

This last equations yields

|∂zw| = O(ε4), |∇w| = O(ε7/2), (4.34)

which proves the proposition for s = 1.
We now prove it for s = 2. Taking the L2 scalar product of (4.29) with ∆w
yields

ε

∫
|∆w|2 +

∫
aε∂

2
zw∆w + 2ε2

∫
bε · ∂z∇w∆w + ε2

∫
cε∂zw∆w

=

∫
O(ε4)∆w, (4.35)

and taking the L2 scalar product of (4.29) with ∂2
zw gives

ε

∫
∆w∂2

zw +

∫
aε|∂2

zw|2 + 2ε2

∫
bε · ∂z∇w∂2

zw + ε2

∫
cε∂zw∂

2
zw

=

∫
O(ε4)∂2

zw. (4.36)

We first handle the two terms of the above equations that will give us control

of the crossed derivatives, namely

∫
aε∂

2
zw∆w and ε

∫
∆w∂2

zw. First remark

that ∫
∆w∂2

zw = −
∫
∂z∆w∂zw +

[∫
Rd

∆w∂zw

]z=1

z=0

=

∫
|∂z∇w|2, (4.37)

since the boundary terms are zero, thanks to the boundary conditions satisfied
by w.
The other term can be treated as∫

aε∂
2
zw∆w = −

∫
∂zaε∂zw∆w −

∫
aε∂zw∂z∆w +

[∫
Rd

aε∂zw∆w

]z=1

z=0

= −
∫
∂zaε∂zw∆w +

∫
∇aε∂zw∂z∇w +

∫
aε|∂z∇w|2.
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Using the fact that aε = 1 +O(ε) and (4.34), it follows that∫
aε∂

2
zw∆w = O(ε5) (|∆w|+ |∂z∇w|) +

∫
aε|∂z∇w|2. (4.38)

Then, using (4.37) and (4.38) in (4.35) and (4.36) gives

ε

∫
|∆w|2 +

∫
aε|∂2

zw|2 + ε

∫
|∂z∇w|2 +

∫
aε|∂z∇w|2

= O(ε5) (|∆w|+ |∂z∇w|) +O(ε2)|∂z∇w| |∆w|+O(ε2)|∂zw| |∆w|
+ O(ε2)|∂z∇w| |∂2

zw|+O(ε2)|∂zw| |∂2
zw|+O(ε4)

(
|∆w|+ |∂2

zw|
)
.

Multiple use of the identity ab ≤ 1

2
(a2 + b2) and of the fact that aε = 1 +O(ε)

then yields

ε

∫
|∆w|2 +

∫
|∂2

zw|2 +

∫
|∂z∇w|2 = O(ε8),

which implies the proposition for s = 2.
We can now turn to prove the general result of the proposition by induc-
tion. We assume that for any derivative ∂, and for some integer s ≥ 1, both√
ε|∂s∂zw| and |∂s−1∂2

zw| are of size O(ε4).
We apply ∂s on (4.29) and take the L2 scalar product with ∂s∂2

zw, which gives

ε

∫
∆∂sw∂s∂2

zw +

∫
∂s(aε∂

2
zw)∂s∂2

zw + 2ε2

∫
∂s(bε∂z∇w)∂s∂2

zw

+ε2

∫
∂s(cε∂zw)∂s∂2

zw =

∫
O(ε4)∂s∂2

zw.

We now rewrite this equation as follows,

ε

∫
|∇∂s∂zw|2 +

∫ (
[∂s, aε]∂

2
zw

)
∂2

z∂
sw +

∫
aε|∂s∂2

zw|2

+ε2

∫
([∂s, b]∂z∇w) ∂s∂2

zw + 2ε2

∫
bε∂

s∂z∇w∂s∂2
zw

+ε2

∫
([∂s, cε]∂zw) ∂s∂2

zw + ε2

∫
cε∂

s∂zw∂
s∂2

zw =

∫
O(ε4)∂s∂2

zw, (4.39)

where [P,Q] denotes the commutator of the operators P and Q:

[P,Q] = P ◦Q−Q ◦ P.

We can easily control the terms containing commutators,∣∣∣∣∫ (
[∂s, aε]∂

2
zw

)
∂2

z∂
sw

∣∣∣∣ ≤ Cst |∂2
zw|Hs−1(S)|∂2

z∂
sw|,∣∣∣∣ε2

∫
([∂s, bε]∂z∇w) ∂2

z∂
sw

∣∣∣∣ ≤ Cst ε2|∂zw|Hs(S)|∂s∂2
zw|,∣∣∣∣ε2

∫
([∂s, cε]∂zw) ∂2

z∂
sw

∣∣∣∣ ≤ Cst ε2|∂zw|Hs−1(S)|∂s∂2
zw|,
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where we have used |[∂s, aε]w|L2 ≤ Cst |w|Hs−1 . The other terms of (4.39) are
controlled by∣∣∣∣2ε2

∫
bε∂

s∂z∇w∂s∂2
zw

∣∣∣∣ ≤ O(ε2)|∂zw|Hs+1|∂2
zw|Hs ,∣∣∣∣ε2

∫
cε∂

s∂zw∂
s∂2

zw

∣∣∣∣ ≤ O(ε2)|∂zw|Hs |∂2
zw|Hs .

Plugging all these estimates into (4.39), one gets

ε

∫
|∇∂s∂zw|2 +

∫
|∂s∂2

zw|2

. |∂2
zw|Hs−1|∂2

z∂
sw|+ ε2|∂zw|Hs |∂s∂2

zw|+ ε2|∂zw|Hs−1|∂s∂2
zw|

+ ε2|∂zw|Hs+1 |∂2
zw|Hs + ε2|∂zw|Hs |∂2

zw|Hs +

∫
O(ε4)∂s∂2

zw,

where by ., we mean that the r.h.s. should be multiplied by a constant.
Recalling that

√
ε|∂zw|Hs and |∂2

zw|Hs−1 are of size O(ε4), one gets

ε|∂zw|2Hs+1 + |∂2
zw|2Hs = O(ε8),

which completes the induction. The proposition is deduced from the induction
property using Poincaré’s inequality once again.

�

We can now conclude the proof of Th. 4.1. We recall that the operator

Gε(f)(g) is given by (4.21) as Gε(f)(g) =
1

1 + εf
∂zũ(z = 1). Therefore,

we need to compute ∂zũ(z = 1). From Prop. 4.1, we deduce that in Hs(Rd)
norm, one has ∂zũ|z=1 = (∂zũ0+ε∂zũ1+ε2∂zũ2)|z=1+O(ε3). Using the explicit
expressions (4.23) for the ũi, i = 0 . . . 2, we finally get

∂zũ(z = 1) = −ε∆g − ε2

3
∆2g − 2ε2f∆g +O(ε3),

and an easy Taylor expansion of (4.21) therefore yields the Theorem.

5 The uncoupled approximation

Many uncoupled models exist for the water-wave equations in the case of one
dimensionnal surfaces. Schneider and Wayne [19] proved that the uncoupled
KdV-KdV approximation is indeed a good model. Our goal here is to justify
a whole class of uncoupled models (including the KdV-KdV or BBM-BBM
models) obtained formally from the water-wave equations. Moreover, we give
sharp error estimates, sensibly better than those of [19], and also comment on
the validity of the uncoupled models for the periodic case: in particular, we
show that these models are not valid in the periodic setting if one does not
make a zero-mass assumption on the initial data.
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5.1 From the symmetric systems to uncoupled approx-
imations

We construct here approximate solutions to the symmetric systems of the class
Σ, namely,

∂tv + ∂xη + ε

(
1

4
∂xη

2 +
3

4
∂xv

2 + a∂3
xη − b∂2

x∂tv

)
= 0

∂tη + ∂xv + ε

(
1

2
∂x(ηv) + a∂3

xv − d∂2
x∂tη

)
= 0,

(5.40)

where a, b and d are as given by (3.3).
We first diagonalize these systems introducing the unknowns U = v + η

and N = v − η so that (5.40) reads

∂tU + ∂xU+ ε
(

1
8
∂x (3U2 +N2 + 2UN)

+a∂3
xU −

b

2
∂2

x∂t(U +N)− d

2
∂2

x∂t(U −N)
)

= 0

∂tN − ∂xN+ ε
(

1
8
∂x (U2 + 3N2 + 2UN)

−a∂3
xN − b

2
∂2

x∂t(U +N) +
d

2
∂2

x∂t(U −N)
)

= 0.

(5.41)

As usual for long wave BKW expansions, we seek approximate solutions (Ua, Na)
of (5.41) under the form

Ua(t, x) = U0(εt, x− t) + εU1(εt, t, x),
Na(t, x) = N0(εt, x+ t) + εN1(εt, t, x),
(Ua, Na)|t=0 = (U,N)|t=0.

(5.42)

Plugging this ansatz into (5.41) and cancelling the first powers of ε appearing
in the expression thus obtained, one obtains thanks to the usual decoupling
tools ([14], [4]) the following uncoupled equations for U0 and N0,

∂TU0 + a∂3
xU0 −

(b+ d)

2
∂2

x∂tU0 +
3

8
∂xU

2
0 = 0,

∂TN0 − a∂3
xN0 −

(b+ d)

2
∂2

x∂tN0 +
3

8
∂xN

2
0 = 0,

(5.43)

where T stands for εt. The equations determining the correctors U1 and N1

are 
(∂t + ∂x)U1 = −

(
1

8
∂x(N

2
0 + 2U0N0)−

(b− d)

2
∂2

x∂tN0

)
,

(∂t − ∂x)N1 = −
(

1

8
∂x(U

2
0 + 2U0N0)−

(b− d)

2
∂2

x∂tU0

)
.

(5.44)
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5.2 Estimates for the correctors

Equations (5.44) give (U1, N1) in terms of (U0, N0). These equations can be
solved explicitly:

U1(T, t, x) = − 1

16

(
N2

0 (T, x+ t)−N2
0 (T, x− t)

)
−(b− d)

2
(∂x∂tN0(T, x+ t)− ∂x∂tN0(T, x− t))

−1

4
∂xU0(T, x− t)

∫ t

0

N0(T, x− t+ 2s)ds

−1

8
U0(T, x− t) (N0(T, x+ t)−N0(T, x− t)) , (5.45)

and a similar expression holds for N1. For all s ∈ R, the terms which appear at
the r.h.s. of (5.45) are obviously bounded in L∞([0, T0]×Rt;H

s(R)) provided
that (U0, N0) ∈ L∞([0, T0];H

σ(R))2 for some σ big enough, except possibly the
term

W1(T, t, x) := −1

4
∂xU0(T, x− t)

∫ t

0

N0(T, x− t+ 2s)ds. (5.46)

This latter term can be controlled thanks to the following lemma.

Lemma 5.1 Let s ∈ N. Then there exists σ big enough such that:
i. If (U0, N0) ∈ L∞([0, T0];H

σ(R))2 then W1 ∈ L∞loc([0, T0]× Rt;H
s(R)) and

sup
T∈[0,T0]

|W1(T, t, ·)|Hs(R) ≤ Cst
√
t, ∀t ≥ 0;

i’. If moreover N0 satisfies the following decay assumption: there exists α >
1/2 such that

sup
(T,x)∈[0,T0]×R

∣∣(1 + x2)α∂β
xN0(T, x)

∣∣ <∞, β = 0, . . . , s,

then
sup

T∈[0,T0]

|W1(T, t, ·)|Hs(R) ≤ Cst , ∀t ≥ 0;

ii. In the periodic case, i.e. if (U0, N0) ∈ L∞([0, T0];H
σ(T))2 then

W1(T, t, x) = − t

8π
∂xU0(T, x− t)

∫ 2π

0

N0(T, x)dx+O(1) as t→∞.

In particular, W1 is bounded in L∞([0, T0];H
s(T)) when N0(T, ·) has zero mean

value for all T ∈ [0, T0]. Otherwise, it grows secularly linearly in t.

Proof.
Point i. is classical (e.g. [15], [4]). We recall the proof in the case s = 0. From
(5.46), one deduces

|W1(T, t, ·)|L2(R) ≤ 1

4
|∂xU0(T )|L2(R)

∣∣∣∣∫ t

0

N0(T, x− t+ 2s)ds

∣∣∣∣
L∞(R)

≤ Cst
√
t|∂xU0(T )|L2(R)|N0(T )|L2(R),
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which easily yields the desired estimate.
Point i’. is in the spirit of Lemma 5.5 of [19] and Prop. 3.5 of [15], and its
proof is quite obvious in the present case. Finally, ii. is deduced easily from
(5.46) by expanding N0 into Fourier series.

�

5.3 Validity of the uncoupled approximations for the
diagonalized symmetric system

We first consider the error made when approximating the exact solution (U,N)
of (5.41) with initial conditions (U0, N0) by (Ua, Na) as given by (5.42)-(5.44).

Proposition 5.1 Let s ∈ N. Then there exists σ big enough and T0 > 0 such
that:
i. If (U0, N0) ∈ L∞([0, T0];H

σ(R))2 then

|(U,N)− (Ua, Na)|L∞([0,t],Hs(R))2 ≤ Cst ε2t3/2, ∀t ∈ [0,
T0

ε
];

i’. If moreover U0 and N0 satisfy the following decay assumption: there exists
α > 1/2 such that

sup
(T,x)∈[0,T0]×R

∣∣(1 + x2)α
(
∂β

xU0(T, x), ∂
β
xN0(T, x)

)∣∣ <∞, β = 0, . . . , s,

then

|(U,N)− (Ua, Na)|L∞([0,t],Hs(R))2 ≤ Cst ε2t, ∀t ∈ [0,
T0

ε
];

ii. In the periodic case, i.e. if (U0, N0) ∈ L∞([0, T0];H
σ(T))2 then

|(U,N)− (Ua, Na)|L∞([0,t],Hs(R))2 ≤ Cst ε2t2, ∀t ∈ [0,
T0

ε
];

ii’. If moreover the initial conditions U0 and V 0 satisfy
∫ 2π

0
U0 =

∫ 2π

0
N0 = 0

then

|(U,N)− (Ua, Na)|L∞([0,t],Hs(R))2 ≤ Cst ε2t, ∀t ∈ [0,
T0

ε
].

Proof.
The approximate solution (Ua, Na) satisfies (5.41) with an error term of size
O(ε2

√
t), O(ε2), O(ε2t) and O(ε2) in cases i., i’., ii. and ii’. respectively, by

Lemma 5.1. Standard energy estimates on (5.41) therefore yield the results of
the proposition.

�

Remark 5.1 In order to use Lemma 5.1 in case i’. (resp. ii’.), we must know
that U0(T, ·) and N0(T, ·) satisfy the decay condition (resp. zero mean value
condition) for all T ∈ [0, T0] and not only for the initial condion (U0, N0). It
is quite classical that these properties are propagated by the “KdV” equations
(5.43) (see e.g. Prop. 6.3 of [19] for the propagation of the decay condition by
the usual KdV equation).
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Proposition 5.2 In the periodic case, if the initial data U0(x) or N0(x) have
nonzero mean value, there exist T0 ≥ T1 > 0 and C > 0 such that for all

t ∈ [0
T1

ε
], one has

|(U,N)− (U0, N0)|L∞([0,t],Hs(R))2 ≥ Cεt.

Remark 5.2 This means that in the periodic case, without the zero mean
value condition, the KdV approximation is not valid on long time scales.

Proof.
The second term of the approximate solution (Ua, Na) has in this case a linear
growth in time as shown by ii of Lemma 5.1. Therefore U − U0 is bounded
from below by C1εt− C2ε

2t2. The result follows.

�

5.4 Validity of the uncoupled approximation for the Eu-
ler equations

In the previous sections, we derived a class a uncoupled KdV-like equations
(5.43) starting from systems (5.40) of the class Σ. We now derive a set of two
uncoupled KdV equations starting from the original Boussinesq system (2.1),
which reads, in 1D,

∂tv + ∂xη +
ε

2
∂xv

2 = 0,

∂tη + ∂xv + ε

(
∂x(ηv) +

1

3
∂3

xv

)
= 0.

(5.47)

Exactly as in Section 5.1, one can diagonalize this system introducing the
unknowns F = v + η and G = v − η, and look for an approximate solution
(Fa, Ga) of (F,G) of the form

Fa(t, x) = F0(εt, x− t) + εF1(εt, t, x),
Ga(t, x) = G0(εt, x+ t) + εG1(εt, t, x),
(Fa, Ga)|t=0 = (F,G)|t=0.

It turns out that the uncoupled equations F0 and G0 must satisfy are exactly
the same equations (5.43) as for the symmetric case, provided one takes b =
d = 0 and a = 1

6
. Therefore, (f ε, gε) defined as

f ε(t, x) = F0(εt, x− t), gε(t, x) = G0(εt, x+ t),

solve the set of equations
(∂t + ∂x) f

ε + ε

(
3

8
∂xf

ε2 +
1

6
∂3

xf
ε

)
= 0

(∂t − ∂x) g
ε + ε

(
3

8
∂xg

ε2 − 1

6
∂3

xg
ε

)
= 0

(5.48)
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Construction of the KdV approximation for the water-waves equa-
tions. Consider initial data (v0, η0) for the Euler equations (3.5)-(3.6) and
denote by (vε, ηε) the associated family of solutions. The KdV approximation
to (vε, ηε) is constructed as follows: let f0 := v0 + η0 and g0 := v0− η0 and de-
note by (f ε, gε) the family of solution to (5.48) with initial condition (f0, g0).

The KdV approximation (vε
KdV , η

ε
KdV ) is then defined as vε

KdV =
f ε + gε

2
,

ηε
KdV =

f ε − gε

2
. For any k ∈ N and s ∈ R, note that for sufficiently smooth

initial data there exists T0 > 0 such that both (vε, ηε) and (vε
KdV , η

ε
KdV ) are

bounded families in W k,∞
(

[0,
T0

ε
], Hs(R)

)
.

Choice of a reference symmetric system. As said above, if one choses
a = c = 1/6 and b = d = 0 in (5.40) (which can be obtained by taking
λ = µ = 1 and θ2 = 2/3), the asymptotic uncoupled equations (5.43) coincide
with the uncoupled KdV equations satisfied by F0 and G0. It is therefore
natural to consider the symmetric system S ′√

2/3,1,1
which is given by (5.43)

with this choice of parameters. From Th. 3.2 the approximation (vε
app, η

ε
app)

given by (3.8) and (3.9) (with λ = µ = 1 and θ2 = 2/3) satisfies

∣∣(vε, ηε)− (vε
app, η

ε
app)

∣∣
L∞(0,t,Hs(R))2

≤ Cst ε2t, t ∈ [0,
T0

ε
]. (5.49)

Error estimate for the KdV approximation. We can now estimate the
error made when approximating the solution (vε, ηε) of the Euler equations by
the KdV approximation (vε

KdV , η
ε
KdV ) constructed above. One has

(vε, ηε)− (vε
KdV , η

ε
KdV ) = (vε, ηε)− (vε

app, η
ε
app) + (vε

app, η
ε
app)− (vε

KdV , η
ε
KdV )

= O(ε2t) + (vε
app, η

ε
app)− (vε

KdV , η
ε
KdV ),

according to (5.49). Inverting approximatively the nonlinear pseudodifferential
change of variables, one can observe that∣∣(vε

app, η
ε
app)− (vε

KdV , η
ε
KdV )

∣∣
L∞(0,t,Hs(R))2

=
∣∣∣(vε

Σ, η
ε
Σ)− (ṽε

KdV , η̃
ε
KdV )

∣∣∣
L∞(0,t,Hs(R))2

+O(ε2),

with

ṽε
KdV =

(
1− ε

6
∂2

x

)−1

vε
KdV

(
1 +

ε

2
ηε

KdV

)
, η̃ε

KdV = ηε
KdV ,

and where (vε
Σ, η

ε
Σ) denotes the solution to the symmetric system S ′√

2/3,1,1
with

initial conditions (3.8). In accordance with the notations of Section 5.1, write
U = vε

Σ + ηε
Σ and N = vε

Σ − ηε
Σ so that (Ua, Na) as constructed in Section 5.1

gives a good asymptotic description of (U,N).

Now remark that F̃ := ṽε
KdV + η̃ε

KdV and G̃ := ṽε
KdV − η̃ε

KdV solve the uncoupled
KdV equations (5.43) up to a O(ε2) term. It follows that if one replaces

(U0, N0) by (F̃ , G̃) in the ansatz (5.42), the results of Prop. 5.1 are not altered.
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It follows from these points that the error made by the KdV approximation
can be evaluated in L∞(0, t, Hs(R)) norm as

‖(vε, ηε)− (vε
KdV , η

ε
KdV )‖ = O(ε2t) + ‖(U,N)− (Ua, Na)‖.

Our final result is now a simple consequence of Prop. 5.1:

Theorem 5.1 Let s ∈ R. There exists σ large enough such that if (v0, η0) ∈
(Hσ(R))2 there exists T0 > 0 such that:
i.

|(vε, ηε)− (vε
KdV , η

ε
KdV )|L∞([0,t],Hs(R))2 ≤ Cst ε2t3/2, ∀t ∈ [0,

T0

ε
];

i’. If moreover v0 and η0 satisfy the following decay assumption: there exists
α > 1/2 such that

sup
x∈R

∣∣(1 + x2)α
(
∂β

xv0(x), ∂
β
xη0(x)

)∣∣ <∞, β = 0, . . . , s,

then

|(vε, ηε)− (vε
KdV , η

ε
KdV )|L∞([0,t],Hs(R))2 ≤ Cst ε2t, ∀t ∈ [0,

T0

ε
];

ii. In the periodic case, i.e. if (v0, η0) ∈ Hσ(T)2 then

|(vε, ηε)− (vε
KdV , η

ε
KdV )|L∞([0,t],Hs(T))2 ≤ Cst ε2t2, ∀t ∈ [0,

T0

ε
];

ii’. If moreover
∫ 2π

0
v0 =

∫ 2π

0
η0 = 0 then

|(vε, ηε)− (vε
KdV , η

ε
KdV )|L∞([0,t],Hs(T))2 ≤ Cst ε2t, ∀t ∈ [0,

T0

ε
].

iii. In the periodic case, if v0 or η0 have nonzero mean value, there exist

T0 ≥ T1 > 0 and C > 0 such that for all t ∈ [0
T1

ε
], one has

|(vε, ηε)− (vε
KdV , η

ε
KdV )|L∞([0,t],Hs(T))2 ≥ Cεt.

Remark 5.3 i. In [19], it is proved that under the decay assumption of i’, the
KdV approximation furnishes an approximate solution with an error estimate
of size O(ε1/4). The error estimates i’ and even i improve that of [19]. In
case i’, our estimate is sharp (since we have constructed the following term in
the expansion). In the periodic case, our results show that the uncoupled KdV
approximation diverges from the exact solution of the Euler equation unless the
non-realistic zero-mean-value assumption on the initial data is made.
ii. No existence result exists in the periodic framework, so that as for the
3D-case, we assume the existence of a family of solutions (vε, ηε) to the Euler
equations, over times O(1/ε) and with initial condition (v0, η0).
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