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We consider long-wave Marangoni convection in a liquid layer atop a substrate of low thermal conductivity,

heated from below. We demonstrate that the critical perturbations are materialized at the wave number K ∼
√

Bi,

where Bi is the Biot number which characterizes the weak heat flux from the free surface. In addition to the

conventional monotonic mode, a novel oscillatory mode is found. Applying the K ∼
√

Bi scaling, we derive

a new set of amplitude equations. Pattern selection on square and hexagonal lattices shows that supercritical

branching is possible. A large variety of stable patterns is found for both modes of instability. Finite-amplitude

one-dimensional solutions of the set, corresponding to either steady or traveling rolls, are studied numerically;

a complicated sequence of bifurcations is found in the former case. The emergence of an oscillatory mode in

the case of heating from below and stable patterns with finite-amplitude surface deformation are shown in this

system for the first time.
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I. INTRODUCTION

Thermocapillary convection in a layer has been the focus

of keen interest for more than 50 years. In the pioneering work

by Pearson [1] two types of solid substrates were considered:

an ideally thermally conductive one (in which case, the

temperature of a liquid is fixed at the substrate) and a substrate

of a very low conductivity (when a normal component of the

heat flux is fixed at the substrate). The latter case is often

called “insulated for perturbations substrate” in the literature.

The long-wave instability mode is critical in this case for the

zero value of the heat flux at the free surface (equivalently, the

surface Biot number is zero). Later, this analysis was extended

by including the surface deformation [2] and from the analysis

a zero critical Marangoni number emerged (a value that does

not depend on the other parameters of the system). Smith [3]

pointed out that this unlikely result stems from the disregard

of gravity by the authors of Ref. [2], and he obtained the

correct formula for the two-layer system. The summary of

other developments can be found in the survey [4] and in the

monographs [5–7].

An especially important and thoroughly studied question

is the emergence of an oscillatory mode in this system. For

a conductive substrate, Takashima showed that oscillatory

instability is possible only for heating from above (in reality, a

cooling of a substrate instead of its heating) [8]. The paper by

Birikh et al. [9] is devoted to a careful numerical analysis of the

linear stability problem for both types of the thermal boundary

conditions at the substrate; they found only the monotonic

mode for heating from below.

Another important aspect is the nonlinear evolution of

the system. The amplitude equation governing the long-wave

Marangoni convection for a nondeformable free surface was

obtained and studied by Knobloch [10] for infinite values of the

Prandtl number and was soon corrected for finite values of this

number [11]. The analysis of pattern selection for the latter case

and for more general situations (including the second layer and

weak interface deformation) was carried out in Ref. [12].

Many papers were devoted to the long-wave Marangoni

convection in a layer with deformable free surface, see

Refs. [13,14]. For the conductive substrate, a subcritical

bifurcation takes place and film rupture occurs, which was

evidenced within the direct numerical simulations of the

Navier-Stokes equations [15], within the lubrication approx-

imation [16–18], and experimentally [18]. Recent work [19]

demonstrated that a fractal structure of droplets emerges as the

result of evolution.

In the case of the substrate insulated for perturbations, the

case we are dealing with, gravity usually is assumed suffi-

ciently high [12], leading to the “slaved” surface deformation,

which means that most of the nonlinear terms are the same as

in the case when the free surface is nondeformable [10,11].

This restriction works well for a thin layer (with a thickness of

∼0.3 mm and larger for water), but fails for an ultrathin film.

The only paper free of this limitation is by Garcia-Ybarra et al.

[20], where a generalized Kuramoto-Sivashinsky equation for

the film thickness was derived. (However, it must be noted that

the account of the buoyancy effect is incorrect in their paper.)

Interestingly, they showed that the supercritical excitation of

rolls is possible when gravity is weak (i.e., for the Galileo

number smaller than 45). However, since the authors assumed

from the beginning of the analysis that the relative surface

deformation was small (weakly nonlinear regime) the question

whether the stable state with the finite-amplitude deflection of

the free surface is possible remains unsolved. Moreover, they

did not perform a more intricate analysis of three-dimensional

patterns.

To summarize, common to all cited and other published

studies is the following observation: (i) the oscillatory mode

is found only when heating is from above, and (ii) when

heating is from below, the film usually ruptures (i.e., there

is no stable state with a finite deformation of a free surface).

In this paper, we show the emergence of both phenomena for

heating from below, which is certainly very important from

a practical standpoint. Stable deformed states of a surface
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with finite-amplitude deformation can be used, for instance, to

localize dispersed particles, and the oscillatory mode, when it

leads to the development of a traveling wave (see Secs. IV B

and V B) can be used to transport drugs or chemical reagents

across the substrate.

Importantly, the majority of papers devoted to the long-

wave Marangoni convection in a layer atop a substrate of

low thermal conductivity deal with the standard asymptotics

K ∼ Bi1/4, where K is the wave number of a perturbation

and Bi is the Biot number of the free surface. However,

as demonstrated by the authors of Ref. [21], in certain

situations the conventional scaling becomes insufficient and

the critical perturbation is materialized at a smaller wave

number K ∼
√

Bi. To the best of our knowledge the latter

scaling was used only for the thermal convection in binary

mixtures [21,22]. This scaling is central to our analysis,

which details and extends the recent communication [23] by

providing a thorough discussion of the linear stability problem,

a weakly nonlinear analysis in a wider range of parameters, and

studies of the two-dimensional regimes for finite nonlinearity.

The paper is organized as follows. In Sec. II we derive

a set of amplitude equations which govern the coupled

evolution of the layer thickness and the averaged (across

the layer) part of the temperature. In Sec. III the linear

stability analysis is performed; both monotonic and oscillatory

instability modes are demonstrated. Section IV is devoted to

the weakly nonlinear analysis on square and hexagonal lattices.

In Sec. V we study the nonlinear evolution of two-dimensional

regimes; steady and traveling rolls are considered. Conclusions

are drawn in Sec. VI.

II. AMPLITUDE EQUATIONS

A. Problem statement

We consider a three-dimensional thin liquid film of the

unperturbed height H on a planar horizontal substrate heated

from below. The thermal conductivity of the solid is assumed

small in comparison with the one of the liquid so that the

constant vertical temperature gradient −A is prescribed in a

liquid at the contact with the substrate. The Cartesian reference

frame is chosen such that the x and y axes are in the substrate

plane and the z axis is normal to the substrate.

We use H 2/χ, H, χ/H, ρνχH−2, and AH as the units

for the time, the length, the velocity, the pressure, and the

temperature, respectively. (Here χ is the thermal diffusivity, ν

is the kinematic viscosity, and ρ is the density of the liquid.)

This results in the following dimensionless boundary-value

problem:

∇ · v = 0, (1a)

1

Pr
(vt + v · ∇v) = −∇p + ∇2v − Gk, (1b)

Tt + v · ∇T = ∇2T , (1c)

v = 0, Tz = −1 at z = 0,

ht = w − v · ∇h, p = Ca∇ · n + n · σ · n, (2a)

t · σ · n = −Mt · ∇ (T |z=h) ,

n · ∇T = −Bi T at z = h(x,y,t). (2b)

Here v = (u,w) is the fluid velocity (u is velocity in

the substrate plane and w is the vertical component), T

is the temperature, p is the pressure in the liquid, σ is

the viscous stress tensor, h is the dimensionless height of

the film, k is the unit vector directed along the z axis,

n = (k − ∇h)/
√

1 + (∇h)2 is the normal unit vector to the

free surface, t is the tangent vector; a superscript denotes

the corresponding derivative. The problem is characterized by

the following dimensionless parameters:

Ca =
σ0H

ρνχ
, M = −

σT AH 2

ρνχ
, G =

g0H
3

νχ
,

Bi =
qH

κ
, Pr =

ν

χ
,

which are the capillary number, the Marangoni number, the

Galileo number, the Biot number, and the Prandtl number,

respectively. Here σ0 is the surface tension, σT ≡ dσ0/dT , q is

the heat transfer coefficient, and κ is the thermal conductivity.

Equations (1) and (2) have an obvious base solution, which

corresponds to the conductive state

h(0) = 1, T (0) = −z +
1 + Bi

Bi
, p(0) = G(1 − z). (3)

Below we study the stability of this solution with respect to

long-wave perturbations and the evolution of the large-scale

perturbations to the conductive state. It is worth noting that

formally T (0) diverges at Bi = 0. This fact has an obvious

physical explanation: Writing the heat losses in Eq. (2b) in the

form −BiT means that the temperature of the gas far from the

film is a reference value. In view of the smallness of the heat

flux from the free surface, the film temperature has to be rather

high, thus resulting in the O(Bi−1) term.

B. Lubrication approximation

To study the evolution of large-scale flows, we rescale

the coordinates, the time, and the velocity according to the

relations

X = ǫx, Y = ǫy,Z = z, τ=ǫ2t, u = ǫU, w = ǫ2W,

(4)

where ǫ ≪ 1 can be thought of as the ratio of H to a typical

horizontal lengthscale.

Then we expand all the fields in a power series with respect

to ǫ2

U = U0 + ǫ2U + · · · , W = W0 + ǫ2W1 + · · · ,
p = p0 + ǫ2p1 + · · · , (5)

T = −z + Bi−1 + T0 + ǫ2T1 + · · · .

We do not write an expansion for h for the sake of brevity.

Indeed, on one hand we are interested in regimes with the

finite-amplitude surface deformation; the slow variation of h,

ensured by Eq. (4), is sufficient to provide a small-amplitude

motion [13,14]. On the other hand, small corrections to the

leading order for h are unimportant for further analysis.

The perturbations of the temperature and pressure are

not required to be small as well; however, the perturbation

gradients must be small. Also, we note that we do not drop

out the equilibrium fields, Eq. (3), from T and p; indeed,
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comparing Eqs. (3) and (5), it becomes obvious that the base

conductive state corresponds to T0 = 1, p0 = p(0).

Finally, we assume large values of Ca and a small Biot

number

Ca = ǫ−2C, Bi = ǫ2β. (6)

As noted in Sec. I, the scaling for the Biot number differs from

the conventional Bi = O(ǫ4) [13,20]. In fact, this means that

we deal with the smaller values of the wave number than those

implied by the usual scaling.1

Both scalings, Eq. (6), are important for our analysis, as

will be made clear in Sec. III. The capillary number is often

assumed large for the ideally thermally conductive substrate

[13,18], but in the case under consideration (the substrate of

a low conductivity) Ca = O(1) is usually set [20,21]. We do

not make this assumption. Moreover, very often the Galileo

number is taken as large [12], the assumption that is justified

for thin layers, H > 0.3 mm for water, but fails for ultrathin

films. We do not impose restrictions on the magnitude of the

Galileo number.

Substituting Eqs. (4)–(6) into Eqs. (1) and (2) we obtain in

the zero order

W0Z = −∇ · U0, p0Z = −G, (7a)

U0ZZ = ∇p0, T0ZZ = 0, (7b)

U0 = W0 = T0Z = 0 at Z = 0, (7c)

p0 = −C∇2h, hτ = −U0 · ∇h + W0,

T0Z = 0, U0Z = −M∇(T0 − h) at Z = h. (7d)

Hereafter ∇ ≡ (∂X,∂Y ,0) is a two-dimensional projection

of the gradient operator onto the X-Y plane.

The solution to this boundary value problem is

p0 = �(X,Y,τ ) − GZ, T0 = θ (X,Y,τ ), (8a)

U0 = 1
2
Z(Z − 2h)∇� − MZ∇f, (8b)

W0 =
Z2

2
∇ ·

[

1

3
(3h − Z)∇� + M∇f

]

, (8c)

where � = Gh − C∇2h and f = θ − h has a meaning of

perturbation of the free surface temperature (in other words,

−f is the surface tension perturbation). The evolution of the

layer thickness is governed by the well-known condition hτ =
−∇ ·

∫ h

0
U0dZ, which provides the first amplitude equation

hτ = ∇ ·
(

h3

3
∇� +

Mh2

2
∇f

)

= ∇ · j. (9)

The vector −j has a meaning of the longitudinal flux of a liquid

averaged across the layer. This flux vanishes in the simplest

situation [i.e., for the steady one-dimensional (1D) case], but in

general it is nonzero (for instance, for time-periodic regimes).

1To find critical perturbations one has to consider all possible values

of the wave number. Usually, K ∼
√

Bi results in trivial results and

conventional scaling is enough to determine the global minimum of

the neutral stability curve. However, there are few examples where

the intermediate asymptotics, materialized by Eq. (6), is needed (see,

for instance, Ref. [21]).

To obtain the second amplitude equation we proceed to

the first order of the expansion, where we need only the heat

transfer equation

T1ZZ = θτ − ∇2θ + U0 · ∇θ − W0, (10a)

T1Z = 0 at Z = 0, (10b)

T1Z = ∇θ · ∇h − 1
2

(∇h)2 − βf at Z = h. (10c)

The solvability condition of this problem is obtained by the

integration of Eq. (10a), while accounting for the boundary

conditions. This results in

hθτ = ∇ · (h∇θ ) −
1

2
(∇h)2 − βf + j · ∇f

+∇ ·
(

h4

8
∇� +

Mh3

6
∇f

)

. (11)

Accounting for Eq. (9) one can rewrite Eq. (11) as follows:

h

(

f +
5h

8

)

τ

= ∇ · (h∇θ ) −
1

2
(∇h)2 + j · ∇

(

f +
3

8
h

)

−βf −
M

48
∇ · (h3

∇f ), (12)

which is sometimes convenient.

Equations (9) and (11) form a closed set of amplitude

equations, which governs the nonlinear dynamics of long-wave

perturbations. These equations include the following effects: in

the right-hand side of Eq. (9), damping of the surface deflection

due to gravity and surface tension, and influence of the

thermocapillary flow on the layer thickness; in the right-hand

side of Eq. (11), heat conductivity in the longitudinal directions

(the first term), heat losses from the free surface [the second

and third terms, where the second term describes the effect

originating from the increase of the surface area (at constant

volume)], and advective heat transfer by the flow (the fourth

and fifth terms).

The base state, corresponding to motionless fluid [see

Eq. (8)] with a constant heat flux maintained through the layer,

is given by h = θ = 1.

To the best of our knowledge this set of amplitude equations

is new. Most papers deal with the limiting case β = 0, which,

in particular, corresponds to the conventional asymptotics K ∼
Bi1/4. [To develop correctly the conventional asymptotics one

has to add the β2ǫ
4 term in Eq. (6) and take the O(ǫ4) terms

into account.] Among the other works, this limiting case was

studied in Ref. [20] within the 1D problem and under the

assumption of small perturbations of h and θ . Thus at β = 0

we expect that the results of Ref. [20] must be reproduced, see

Secs. III B and IV A.

It is noteworthy that the set of Eqs. (9) and (11) is

reminiscent of the sets of nonlinear amplitude equations

derived by the author of Refs. [24,25]. The first paper dealt

with the Marangoni convection in a layer of a binary liquid

for a finite Biot number; the Galileo and Lewis numbers were

assumed small, which resulted in the finite contribution of

the surface tension in the long-wave dynamics. The second

paper described the buoyancy convection in a two-layer system

with a deformable interface under assumption of large Ca.

The oscillatory mode for this system was found in Ref. [26];
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(a) (b) (c)

FIG. 1. (Color online) Marginal sta-

bility curves M∗(k). The solid lines cor-

respond to the monotonic mode, Mm(k),

the dashed ones to the oscillatory mode

Mo(k); β = 10, 40, 80 for lines 1, 2, and

3, respectively. (a) G = 1, (b) G = 10,

(c) G = 20.

the surface-tension-driven convection was accounted for in

Ref. [27].

III. LINEAR STABILITY ANALYSIS

A. Dispersion relation

Substituting the perturbed fields h = 1 + ξ and θ = 1 +
� into Eqs. (9) and (11) and linearizing the equations for

perturbations about the equilibrium, one arrives at

ξτ = ∇2

[

1

3
(Gξ − C∇2ξ ) +

M

2
(� − ξ )

]

, (13a)

�τ = ∇2

[

� +
1

8
(Gξ − C∇2ξ ) +

M

6
(� − ξ )

]

−β (� − ξ ) . (13b)

Representing the perturbation fields proportional to

exp (λτ + ikX) gives the quadratic equation for the growth

rate

λ2 + λ

[

β + k2

(

1 +
G̃ − M

3

)]

+
k2

3
(β + k2)G̃ −

Mk4

2

(

1 +
G̃

72

)

= 0, (14)

where G̃ ≡ G + Ck2. Equation (14) possesses both real

(monotonic instability) and complex (oscillatory instability)

solutions.

The instability modes governed by Eq. (14) have not been

studied yet. As we noted above, the case β = 0 is often

considered [1,6,20]. The only paper dealing with the case of

finite β is the work of the authors of Ref. [21] (see Sec. IV

there), where a binary liquid layer is considered for C = 0 (or

equivalently, finite Ca). The matching in the common limiting

case C = 0 in Eq. (14) and χ = 0 (the absence of the Soret

effect) in Eq. (B15) of the cited paper indeed takes place.

B. Monotonic mode

For the monotonic mode λ = 0 at the stability border, thus

the neutral stability curve is given by

Mm =
48(β + k2)G̃

k2(72 + G̃)
. (15)

These neutral curves have a minimum at the finite values of k

only if

βC < 72, (16)

otherwise the minimum value M (sw)
c = 48 is achieved in the

limit k → ∞ (i.e., the shortwave mode is critical). Holding

inequality (16) true, we obtain Mm < 48. Recall that M (sw)
c =

48 represents the critical value found by Pearson [1] for a

nondeformable surface.

For C = 0 (Ca is finite) the critical Marangoni number

reduces to the conventional value Mm = 48G/(G + 72) found

in Ref. [20]. Again, this minimum is approached for k → ∞
at any finite β. The same result is valid for β = 0 as well, but

the critical wave number is zero in this case. (Recall that this

limiting case corresponds to the conventional scaling.)

Since we are not interested in the limiting case C = 0 any

further, we set C = 1 hereafter, which is equivalent to choosing

ǫ2 = 1/Ca in Eqs. (4) through (6). This, in particular, means

that β = BiCa below.

The typical marginal stability curves for the monotonic

mode are presented in Fig. 1.

The critical wave number materializing the minimum of the

marginal stability curve, Eq. (15), is

(

k(m)
c

)2 =
βG +

√
72βG(G + 72 − β)

72 − β
. (17)

The corresponding value of the critical Marangoni number is

M (m)
c = Mm(k(m)

c ). Note, that at β → 0, the critical wave num-

ber is proportional to β1/4, thus guaranteeing the matching with

the conventional asymptotics. (See the detailed comparison in

Sec. III D.)

The results of the minimization of the marginal stability

curve with respect to k are shown in Fig. 2. It is clear that the

growth of β leads to the layer stabilization (M (m)
c increases)

due to either heat losses from the free surface or damping of

(a) (b)

FIG. 2. (Color online) (a) Variation of the critical Marangoni

number and (b) the critical wave number kc with β. Solid lines

correspond to the monotonic mode; dashed ones to the oscillatory

mode. Dashed-dotted line in panel (a) displays the shortwave

monotonic mode at β > 72, M (sw)
c = 48. Lines 1, 2, and 3 correspond

to G = 1, G = 10, and G = 20, respectively.
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the surface deflection by surface tension. The critical wave

number k(m)
c grows with the increase in β, tending to infinity

at β = 72, when the shortwave mode sets in with M (sw)
c = 48.

In fact, the computation for a finite unscaled wave number

K = ǫk, which is not presented here, shows that the critical

Marangoni number for the shortwave mode at β > 72 slightly

exceeds 48 and depends on G and each of Bi and Ca separately,

rather than on β only. (Of course, with the growth of Bi the

difference M (sw)
c − 48 increases.) Thus, M (sw)

c = 48 gives a

reasonable stability threshold for the shortwave mode at small

enough values of the Biot number and β > 72.

C. Oscillatory mode

For the oscillatory mode the marginal stability curve is

determined by the expression

Mo = 3 +
3β

k2
+ G + k2. (18)

The imaginary part of the growth rate for neutral perturbations

is

λi =
k2

12

√

(72 + G + k2) (Mm − Mo). (19)

(Hereafter we use subscripts r and i to denote the real and

imaginary parts of a complex value, respectively.) It is clear

that the oscillatory mode is present only at Mo(k) < Mm(k)

(see Fig. 1). Examples of the marginal stability curves for this

mode are shown in Fig. 1.

Minimizing the Marangoni number with respect to k we

obtain

M (o)
c = 3 + G + 2

√

3β, k(o)
c = (3β)1/4. (20)

The variation of both the critical Marangoni number and

the critical wave number for the oscillatory mode with β

is presented in Fig. 2. At G < G∗ = 17.16, the oscillatory

mode becomes critical at certain β = β1(G), see the dashed

lines 1 and 2 branching from the corresponding solid lines

in Fig. 2(a). The critical wave number is discontinuous at

β = β1, as demonstrated in Fig. 2(b), and k(o)
c becomes the

critical wave number instead of k(m)
c . Since the former function

does not depend on G, each solid curve collapses to the single

dashed line in Fig. 2(b) at β = β1. With the further increase

in β a monotonic mode again becomes critical at β = β2(G).

This monotonic mode can be either long wave at β2 < 72, or

shortwave at β2 > 72. In the latter case β2(G) is determined by

the condition G = 45 − 2
√

3β2. The parameter range where

the novel oscillatory mode is critical is shown in Fig. 3.

D. Comparison with the previous studies

Keeping in mind the possible future attempts at the

verification of our findings in the experiments and numerical

simulations, below we state the expressions for the neutral

stability curves in terms of the unscaled wave number K = ǫk,

Biot number Bi and capillary number Ca. For the monotonic

mode, the stability threshold is given by

Mm = 48
(Bi + K2)(G + CaK2)

K2(72 + G + CaK2)
, (21)

FIG. 3. The domain of oscillatory instability. The dashed vertical

line marks the boundary of the long-wave monotonic instability,

Eq. (16).

whereas for the oscillatory mode the stability threshold is

Mo = 3 +
3Bi

K2
+ G + CaK2. (22)

(Recall that Bi and K are small, whereas Ca is large.)

As we have noted in Sec. III B, Eq. (21) reproduces

two known asymptotics Mm = 48 for a nondeformable sur-

face (G + CaK2 ≫ 72) at large K or Bi = 0 [1], Mm =
48G/(72 + G) at Bi = 0 (Kc = 0 for the critical perturbation)

[20]. Equation (22) has no known limits because the oscillatory

convection for the heating from below is reported in this paper

for the first time.

Another important issue behind Eqs. (21) and (22) is the

explanation of the scalings given by Eq. (6). These scalings

provide that (i) the heat diffusivity and heat flux from the free

surface are comparable [the term Bi + K2 in Eq. (21) and

the term 3 + 3BiK−2 in Eq. (22)] and (ii) contributions of the

gravity and surface tension are of the same order of magnitude

(the term G + CaK2 in both equations).

For the monotonic mode one can demonstrate the connec-

tion between the case extensively studied earlier, Bi ≪ K2,

and the current analysis in terms of the above-mentioned

competitions of the damping effects. Indeed, at Bi = 0 the

neutral stability curve is given by

Mm = 48
G + CaK2

72 + G + CaK2
(23)

with the zero critical wave number, which diminishes the

stabilizing effect of the surface tension. At small K , the neutral

stability curve Eq. (23) is as follows:

Mm ≈
48

72 + G

(

G +
72

72 + G
CaK2

)

.

It is evident that the heat loss at the free surface is most

important for the long-wave perturbations with K = 0, when

the contribution of thermal diffusivity is vanishingly small, Bi

versus K2 in the numerator of Eq. (21). Hence, for small Bi

the wavelength of critical perturbations is determined by the

balance of two stabilizing effects, the surface tension CaK2

(most pronounced for larger K) and heat losses from the

free surface BiK−2 (most efficient for small K). This balance

provides

K4
c ∼

Bi

Ca
, (24)
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which agrees with Eq. (17) at small β or its unscaled analog

K2
c =

√

BiG(G + 72)

72Ca
. (25)

For finite Ca Eq. (25) provides the conventional asymptotics

Kc ∼ Bi1/4. However, the increase in Ca leads to a strong

stabilization of the convection owing to the surface tension

and hence it makes the wavelength of critical perturbations

smaller, ensuring the scalings given by Eqs. (4) and (6).

A similar simple qualitative explanation of the oscillatory

mode emergence is not possible because all physical effects

(the surface tension, heat losses, diffusion and advection of

heat, etc.) are important for this mode. Hence there are no

simple particular cases to be analyzed. However, Eq. (22) and

Fig. 3 explain why the oscillatory mode has not been found

earlier. As we had emphasized above, all previous studies deal

with one of the following three cases: (i) the nondeformable

surface G ≫ 1, (ii) the case of extremely small heat losses

K2 ≫ Bi, (iii) the case of the weak surface tension effect Ca =
O(1). Case (i) is of no interest since no oscillatory instability

occurs at large G, see Fig. 3. In case (ii), Mo > Mm irrespective

of K , Ca, and G (i.e., the oscillatory mode does not exist). In

case (iii), one obtains that the critical wave number for the

oscillatory mode tends to infinity, thus leaving the domain of

validity of the long-wave approximation. In other words, both

cases (ii) and (iii) correspond to small β = BiCa, whereas

this product must be finite for the emergence of this novel

oscillatory mode (see Fig. 3). Therefore only a delicate balance

of the surface tension and heat losses Bi ∼ Ca−1 ∼ K2 is able

to capture the oscillatory perturbations.

Finalizing this section, we provide the estimate for a

water layer of a thickness of 0.05 mm. This results in

G ≈ 10, Ca ≈ 5 · 104; assuming q = 10 W/m2K one obtains

Bi ≈ 10−3. The characteristic wavelength of the convective

structure is provided by H/
√

Bi ≈ 2 mm, whereas the period

of oscillation can be estimated as H 2/νBi ≈ 3 s. The critical

Marangoni number is attained at the temperature difference

0.5 K. Therefore for such a layer the novel oscillatory mode

can be found. Dealing with more viscous liquid one can

increase the thickness of the layer.

IV. WEAKLY NONLINEAR ANALYSIS

Here we study the nonlinear dynamics of perturbations

assuming small supercriticality M ≈ M∗(k). We do not specify

the chosen wave number, but in the computations k = k(m,o)
c

(and thus M∗ = M (m,o)
c ) is set for the corresponding mode.

A. Monotonic mode

We present h, θ , M , and the time derivative as a power

series in small δ, where δ is a measure of the supercriticality

h = 1 + δξ1 + · · · , θ = 1 + δ�1 + · · · , (26a)

M = Mm + δM1 + · · · , ∂τ = δ∂τ1
+ δ2∂τ2

+ · · · . (26b)

In the expansion of the time derivative, we have taken

into account that for the monotonic mode the evolution is

determined only by the nonlinear terms, quadratic (τ1) or

cubic (τ2).

Substituting this ansatz into Eqs. (9) and (11), and collecting

the terms of equal powers in δ, we obtain in the first order the

linear stability problem, Eq. (13).

Its solution can be presented as

ξ1 =
n

∑

j=1

Aj (τ1,τ2) exp(ikj · R) + c.c., (27a)

�1 = α

n
∑

j=1

Aj (τ1,τ2) exp(ikj · R) + c.c., (27b)

where c.c. denotes complex conjugate terms, α = 1 − 2(G +
k2)/3Mm and |kj | = k. Below we carry out the calculations

for two particular cases.

(i) Square lattice (n = 2):

k1 = k(1,0), k2 = k(0,1).

(ii) Hexagonal lattice (n = 3):

k1 = k(1,0), k2 = 1
2
k(−1,

√
3), k3 = − 1

2
k(1,

√
3). (28)

For the square lattice, in the second order we obtain the

usual result ∂τ1
= M1 = 0 [28]; the elimination of the secular

terms in the third order leads to

Ȧ1 = (γM2 − K0|A1|2 − K1|A2|2)A1, (29)

Ȧ2 = (γM2 − K0|A2|2 − K1|A1|2)A2, (30)

where the dot denotes the derivative with respect to τ2, γ =
dλ/dM > 0, the self-interaction (K0) and cross-interaction

(K1) coefficients are real. It is known [28] that two types of

the steady solutions are possible.

Rolls A1 =
√

γM2/K0, A2 = 0 branch supercritically at

K0 > 0. (31)

Squares A1 = A2 =
√

γM2/(K0 + K1) emerge through

the direct bifurcation at

K0 + K1 > 0. (32)

Of course, if any of the conditions, Eqs. (31) or (32), are

violated then both the rolls and squares become unstable near

the stability threshold.

Pattern selection on the square lattice is governed by the

difference of the self-interaction and the cross-interaction

coefficients. Rolls are selected when the condition

K1 > K0 (33)

is met. In the opposite case squares are stable on the square

lattice.

Coefficients K0 and K1 are very cumbersome and therefore

they are not given here. The domains of stability for rolls

and squares are presented in Fig. 4. One can readily see that

supercritical branching occurs only in two domains of the

parameters. These domains are situated either at rather small

values of β, Fig. 4(b), or at sufficiently small G, Fig. 4(c). In

the first case rolls are selected except for a very small region

shown in the inset. Conversely, in the second case squares

are selected anywhere, excluding a small area, where rolls

are stable. For β = 0 the domain of supercritical bifurcation

for the rolls shown in Fig. 4(a) is limited by condition
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FIG. 4. (Color online) (a) The domains of stability (crosshatched)

of patterns on the square lattice. Panels (b) and (c) show zoomed-in

domains of stability for the rolls (marked with an “R”) and squares

(“Sq”). Solid (dashed) lines are the boundaries between regions

of supercritical and subcritical branching for rolls (squares). The

domains of subcriticality are marked by “sub. R” (“sub. Sq”). Dotted

lines corresponding to K0 = K1, see Eq. (33), separate the domains

of stable rolls and squares.

G < 45 in accordance with the result obtained by the authors

of Ref. [20].

For the hexagonal lattice, resonant quadratic interaction

results in the following system of the amplitude equations in

the second order:

∂τ1
A1 = γM1A1 − NA∗

2A
∗
3, (34)

and the similar pair of equations, produced from Eq. (34) by the

cyclic permutation of the subscripts. These equations describe

the subcritical excitation of the hexagonal patterns through a

transcritical bifurcation. The coefficient N is not of a fixed

sign and it vanishes under the condition

(G + k2)(3β + 2k2) + 36(β − k2) = 0, or β = β∗(G).

(35)

The locus of points determined by Eq. (35) is shown in Fig. 5.

In the vicinity of this line, assuming N ≈ δN1, we should

set ∂τ1
= M1 = 0 and further (cubic) nonlinear terms are

needed. Proceeding to the third order of expansion, we derive

the set of equations

Ȧ1 = γM2A1 − N1A
∗
2A

∗
3 −

[

K0A
2
1 + K2

(

A2
2 + A2

3

)]

A1,

(36)

and a similar pair of equations for A2,3. Here again the dot

denotes the derivative with respect to τ2. Three among the

variety of patterns are important for further analysis. They are

rolls with A1 =
√

γM2/K0, A2 = A3 = 0 and two types of

hexagons with A1 = A2 = A3 ≡ A: H+ for A > 0 and H− in

the opposite case. In the first case the flow is upward in the

center of the convective cell, whereas in the second case it is

downward.

FIG. 5. (Color online) Pattern selection for the monotonic mode

on a hexagonal lattice. Dashed-dotted line presents the locus of points

β = β∗(G), Eq. (35), where the quadratic term in Eq. (34) vanishes.

Up (down) hexagons H+ (H−) emerge above (below) the line.

Equation (36) is appropriate in the vicinity of this curve. Below the

solid line K0 > 0 [this line coincides with the solid line in Fig. 4(a)].

The circle (G = G1 ≈ 8.20) and diamond (G = G2 = 10) separate

domains of stability within Eq. (36): at G < G1 no stable regimes

exist near the stability threshold; at G1 < G < G2 stable Hexagons

emerge when the condition given by Eq. (38) is satisfied; at G > G2

Hexagons are stable at M2 given by Eq. (38), whereas rolls are stable

when Eq. (39) is satisfied.

An analysis of this set of amplitude equations was carried

out in Refs. [29,30]. There it was shown that the parameter

ã ≡
K2

K0 − K2

(37)

is determinative. (Hereafter we take into account the inequality

K2 > K0, which holds true in the entire range of parameters.)

The typical bifurcation diagrams when ã is varied are given,

for instance, in Fig. 9 of Ref. [30]. At ã > −1/2 (G < G1,

where G1 is shown by the circle in Fig. 5) there is no stable

solutions, and the subcritical bifurcation takes place for rolls

and one branch of hexagons. If −1 < ã < −1/2 (G1 < G <

G2, where G2 is shown by the diamond in Fig. 5), the rolls are

still subcritical and unstable; stable hexagons (H+ above the

dashed-dotted line in Fig. 5 or H− below the line) occur only

within the finite interval of M2

−
N2

1

4 (K0 + 2K2)
< γM2 <

N2
1 (2K0 + K2)

(K2 − K0)2
. (38)

Finally, at ã < −1 (G > G2), one of the hexagons is stable

within the interval defined by Eq. (38) and the rolls are stable

when

γM2 >
N2

1 K0

(K2 − K0)2
. (39)

Concluding this section, we briefly discuss the competition

of patterns belonging to the square and hexagonal lattices.

First, it is clear that at finite values of N , hexagons emerge

subcritically and no stable small-amplitude patterns can be

found near the stability threshold. Therefore, patterns stable on

the both lattices can be found only near the curve β = β∗(G),

shown in Fig. 5. However, this line intersects only the domain

of stability for rolls, but not for squares. Therefore, squares
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are always unstable and the selected patterns are either rolls or

hexagons2.

It is noteworthy that the pattern selection for the monotonic

mode differs considerably from the results found for a

nondeformable (or a slightly deformable) free surface (β =
0,G → ∞) [12]. In the cited paper the following results

were found. First, no stable rolls exist on a square lattice,

only squares are selected. Second, the boundary separating

the up and down hexagons depends on the Prandtl number

only. Third, the competition between patterns on square and

hexagonal lattices results in the emergence of squares at

large M2.

Another paper appropriate for a comparison is Ref. [31],

where both buoyancy and thermocapillary convection in a

layer with an upper nondeformable surface was studied for

finite values of the Biot number. In this case the stability of

rolls against the formation of squares (the mode termed as

“cross-roll instability” there) is found as well. (In fact, the

rolls are mentioned to be unstable within the pure Marangoni

problem, but this instability is the “phase” one; either the

Ekhaus or zigzag mode, which do not belong to the lattices

under consideration.) Thus in some sense our problem (finite

β or K ∼
√

Bi) has more in common with the problem for

finite Bi than with the problem for K ∼ Bi1/4.

B. Oscillatory mode

For the oscillatory mode we repeat the procedure described

in Sec. IV A. We supplement Eq. (26a) with

∂τ = ∂τ0
+ δ2∂τ2

+ · · · , M = Mo + δ2M2 + · · · , (40)

separating the fast oscillation in τ0 and the slow nonlinear

evolution of the amplitude in τ2. The first-order solution is

represented in the form

ξ1 =
n

∑

j=1

Aj (τ2) exp(ikj · R − iωτ0) + c.c., (41a)

�1 = αo

n
∑

j=1

Aj (τ2) exp(ikj · R − iωτ0) + c.c., (41b)

where ω = −λi and αo = 1 − 2(G + k2)/3Mo + 2iω/Mok
2

according to the linear stability theory. Calculating the expan-

sion to the third order in δ, we arrive at conventional amplitude

equations. We again deal with two types of lattices: the square

and hexagonal ones.

For the square lattice, we represent ξ1 as follows:

ξ1 = (A1e
ikX + A2e

−ikX

+B1e
ikY + B2e

−ikY )e−iωτ0 + c.c. (42)

2Of course, squares can be found in a confined cavity, square in

the horizontal plane, 0 < X,Y < π/k with adiabatic vertical walls,

see the remark concerning the relation between periodic regimes and

steady states in a confined geometry in Sec. V.

(a) (b)

FIG. 6. (Color online) Selection of oscillatory patterns on a

square lattice. (a) Domains of stability for TR (below the dashed line)

and AR (to the left of the dotted line) are marked by “TR” and “AR,”

respectively. Above the dashed line TR bifurcate subcritically. (b)

Zoomed in fragment of panel (a). AR are stable against perturbations

belonging to a hexagonal lattice only below the dashed-dotted line.

The set of amplitude equations, which governs the dynam-

ics of the amplitudes A1,2 and B1,2, reads

Ȧ1 = (γM2 − K0|A1|2 − K1|A2|2)A1

−K2(|B1|2 + |B2|2)A1 − K4A
∗
2B1B2, (43a)

Ȧ2 = big(γM2 − K0|A2|2 − K1|A1|2)A2

−K2(|B1|2 + |B2|2)A2 − K4A
∗
1B1B2, (43b)

and a similar pair of equations that obtained from Eqs. (43)

by replacing Aj with Bj (j = 1,2) and vice versa. Hereafter

the asterisk denotes the complex-conjugate term. The Landau

coefficients Kl (l = 0,1,2,4) as well as the growth rate γM2

are now complex-valued.

Equations (43) were studied in detail by the authors of

Ref. [32]. They found six types of solutions.

(i) Traveling rolls (TR), A1 �= 0, A2 = B1 = B2 = 0.

(ii) Standing rolls (SR), A1 = A2 �= 0, B1 = B2 = 0.

(iii) Traveling squares (TS), A1 = B1 �= 0, A2 = B2 = 0.

(iv) Standing squares (SS), A1 = A2 = B1 = B2.

(v) Alternating rolls (AR), A1 = A2 = iB1 = iB2.

(vi) Standing cross-rolls (SCR), A1 = A2, B1 = B2,

|A1| �= |B1|.
Using the results of the authors of Ref. [32], we have found

that TR can branch either supercritically (K0r > 0) or sub-

critically (K0r < 0), whereas other patterns emerge through

the direct Hopf bifurcation. The domains of supercritical and

subcritical excitations for TR are demonstrated in Fig. 6(a).

A stability analysis for the patterns on the square lattice

shows that TR are selected if they emerge through the direct

Hopf bifurcation [see Fig. 6(a)]. In the opposite case the

amplitude of TR grows to infinity and the system leaves

the domain of validity of Eqs. (43). Alternating rolls are

stable within the small area marked by “AR”; here depending

on the initial condition the system either approaches AR or

demonstrates the infinite growth of one of the amplitudes.

For the hexagonal lattice, it is convenient to rewrite

Eqs. (41) in the form

ξ1 = (A1e
ikX + A2e

−ikX + B1e
ik2·R + B2e

−ik2·R

+C1e
ik3·R + C2e

−ik3·R)e−iωτ0 + c.c., (44)

where kj given by Eq. (28) are the base wave vectors for the

lattice.
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The complex amplitudes Aj , Bj , and Cj are governed by

the set of equations comprised of

Ȧ1 = (γM2 − K0|A1|2 − K1|A2|2 − K̃2S1 − K3S2)A1

−K̃4A
∗
2(B1B2 + C1C2), (45a)

Ȧ2 = (γM2 − K0|A2|2 − K1|A1|2 − K̃2S2 − K3S1)A1

−K̃4A
∗
1(B1B2 + C1C2), (45b)

plus the two similar pairs of equations, obtained from Eq. (45)

by the cyclic permutation of Aj , Bj , and Cj . Here Sj =
|Bj |2 + |Cj |2(j = 1,2),

An analysis of the Hopf bifurcation with the hexagonal

symmetry was performed in Ref. [33], where 11 limit cycles

were found. Six of them coincide with the above-mentioned

solutions (i) through (v), but on a rhombic (in the Fourier space)

lattice. They are TR, SR, traveling rectangles 1 and 2 (TRa1

and TRa2), standing rectangles (SRa), and alternating rolls

on a rhombic lattice (AR-R). Obviously, two different types

of TRa are possible, which are based, for example, on wave

vectors k1 and k2 (TRa1) and k1 and −k2 (TRa2). Hereafter

we adopt the classification of the patterns suggested by the

authors of Ref. [34] with the only exception for AR-R (which

is referred to as wavy rolls 1 in the cited paper).

The rest of the patterns are the following hexagonal ones:

(vii) Oscillating triangles (OT), A1 = B1 = C1 �= 0, A2 =
B2 = C2 = 0.

(viii) Standing hexagons (SH), A1 = A2 = B1 = B2 = C1 =
C2.

(ix) Standing regular triangles (SRT), A1 = −A2 = B1 =
−B2 = C1 = −C2.

(x) Twisted rectangles (TwR), A1 = A2 = ei2π/3B1 =
ei2π/3B2 = e−i2π/3C1 = e−i2π/3C2.

(xi) Wavy rolls 2 (WR2) A1 = −A2 = ei2π/3B1 =
−ei2π/3B2 = e−i2π/3C1 = −e−i2π/3C2.

Of course, there also exist SCR on a rhombic lattice that

were missed by the authors of Ref. [33], but this pattern is

always unstable [32]. It also should be noted that stability

properties within each pair, {SH and SRT} and {TwR and

WR2} cannot be distinguished in the framework of Eqs. (45)

owing to their degeneracy; quintic nonlinearities are needed

for that purpose.

The results on pattern selection, obtained using Ref. [33]

(a misprint in the stability condition for TwR and WR2 in

Ref. [33] is corrected in Ref. [34]), are presented in Fig. 7. The

dashed line corresponding to K0r = 0 is obviously the same

as in Fig. 6; below this line TR are supercritical. However,

for a hexagonal lattice there appears a competition between

TR and TRa2. The latter pattern is stable in the domain

marked with “TRa2.” The entire domain of supercritical

bifurcation becomes smaller because TRa2 can bifurcate either

supercritically or subcritically. Moreover, as it is clear from

Fig. 7(b), inverse Hopf bifurcation takes place for SRa and SH

and SRT in a small domain.

We also studied competition between the oscillatory

patterns on square and hexagonal lattices. This analysis

demonstrates that stability domains for TR and TRa2 remain

as they are shown in Fig. 7, whereas the stability domain

for AR, Fig. 6(b), almost disappears. We assume that AR

are unstable with respect to “external” perturbations of the

(a) (b)

FIG. 7. (Color online) Selection of oscillatory patterns on a

hexagonal lattice. (a) Domains of stability for TR (below the dashed

line and to the right of the dotted line) and TRa2 (between the dotted

and the solid line) are marked by “TR” and “TRa2,” respectively.

Above the dashed line TR bifurcates subcritically, to the left of the

solid line TRa2 is subcritical. (b) Fragment of panel (a): domains of

subcritical excitation for SRa and SH & SRT are situated below the

dashed-double-dotted and dashed-dotted lines, respectively.

critical wave number, which do not belong to any lattice

[i.e., perturbations with k = k(cos φ, sin φ) at arbitrary φ].

However, this hypothesis has not been checked.

The results for the oscillatory mode are in qualitative

agreement with the nonlinear behavior found in Refs. [24,25]

for similar sets of the amplitude equations. Indeed, in the

cited papers stable oscillatory states with the deformed surface

were found within the weakly nonlinear approach [24] and in

numerical simulations [25].

V. FINITE-AMPLITUDE TWO-DIMENSIONAL REGIMES

A. Steady rolls

As was demonstrated in Sec. IV, rolls are unstable in the

laterally infinite layer with respect to hexagon emergence. (The

only exception is the vicinity of a dashed-dotted line in Fig. 5.)

However, an analysis of 1D solutions of Eqs. (9) and (11) is

of interest, for example, in the context of the layer of finite

length in the y direction. In terms of the rescaled coordinate

Y this means that the corresponding longitudinal size is small

and thus the solution does not depend on Y .

Periodic boundary conditions are applied along the X

axis. For a steady state, such boundary conditions also

describe solutions in a confined layer with adiabatic vertical

boundaries at X = 0 and X = nL, where L = π/k and n is any

natural number. Indeed, conditions hX = θX = 0 at the vertical

boundaries correspond to impermeable boundaries according

to Eq. (8)3. Hereafter we discuss both situations together,

unless the opposite is stated. It is noteworthy that by providing

the same steady-state solutions, these two situations are

completely different in the context of the stability properties

of these solutions, as discussed below.

We perform two types of calculations. The first one is

a direct numerical solution of partial differential equations,

Eqs. (9) and (11), for the 1D case. The method allows

3To satisfy the no-slip conditions one has to introduce “boundary

layers” (of a thickness comparable to H ) near the vertical walls,

where the lubrication approximation is not valid.
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(a) (b) (c)

FIG. 8. (Color online) (a) Film pro-

file, (b) variation of θs , and (c) fs =
θs − hs with X for rolls at β = 4, G = 1,

and k = 1.5. Dotted, solid, and dashed

lines correspond to M = 6,7, and 8,

respectively. The mean parts of θs and

fs , θ̂0 and f̂0, are eliminated.

us to trace the nonlinear dynamics and, in particular, the

relaxation processes. Of course, a stable solution of a fixed

period is attained by means of this method unless some

artificial symmetry of initial conditions is imposed. A faster

method deals with the steady-state solution h = hs(X) and

θ = θs(X), which solves the boundary-value problem for

ordinary differential equations. Expanding hs and θs in the

Fourier series

(hs,θs) =
∞

∑

n=−∞
(ĥn,θ̂n)eiknX; ĥ0 = 1, (46)

we obtain a set of nonlinear algebraic equations for the Fourier

amplitudes. To ensure real values of h, one has to set ĥn = ĥ∗
−n

and θ̂n = θ̂∗
−n. Moreover, due to the problem symmetry we can

choose real-valued coefficients ĥn and θ̂n. In the numerical

calculations the series were truncated at |n| = Nm, where Nm

was chosen to guarantee the convergence of results. Depending

on M and a regime under consideration, 20 < Nm < 100 is

sufficient to that end.

The typical results of calculations are presented in Figs. 8

and 9. In particular, these figures serve to describe why the

finite-amplitude solution can be stable in contrast to the case

of the substrate of ideal thermal conductivity [18]. In Ref. [18],

the local decrease in the film thickness leads to the increase

in the surface temperature and hence the decrease in the surface

tension. This, in turn, increases the convective mass flux along

the surface and therefore increases the initial surface distortion.

There is no mechanism to saturate this process. In contrast,

there is such a mechanism in the case of a substrate of low

thermal conductivity. Here a local decrease in the film height

does not change the heat flux from the surface considerably,

whereas the heat diffusivity decreases, see the first term at

the right-hand side of Eq. (11). Therefore θs also decreases in

such a way to produce the local temperature of the free surface

fs = θs − hs [or the surface tension −fs , see Eq. (9)] almost

constant near the hollow [cf. Figs. 8(a) and 8(c)]. This leads to

a displacement of the flow from this region, which is clearly

seen in Fig. 9. Moreover, increasing the Marangoni number

(a) (b)

FIG. 9. Streamlines of the convective flow for rolls at β = 4, G =
1, and k = 1.5; (a) M = 6 and (b) M = 7. The step between isolines

is 0.02 in panel (a) and 0.1 in panel (b).

results in a surface hump (and thus a local maximum of the

surface tension) at X = L and the emergence of two vortices

with the opposite circulation. (The intensity of these flows is

too low to be shown in Fig. 9, but the three almost vertical

streamlines in the central part of this figure correspond to the

boundaries of the vortices.)

The above-mentioned transformation of the minimum of

hs(X) at X = L to a local maximum [see the solid line in

Fig. 8(a)] results in the splitting of the lower line in Fig. 10(a)

into a pair of lines. With a further increase in M the surface

deviation at X = L grows and approaches the global maximum

at M = M1/2(k), hence at this value of the Marangoni number

the inverse period-doubling bifurcation takes place. Indeed,

passing through M1/2 from the side of the larger M , one can

see that the spatial period of the solution doubles L → 2L.

(The subscript 1/2 indicates that the period of the solution

becomes two times smaller when M increases.)

For the parameters used in Figs. 8 and 10, M1/2(k) ≈ 8.025

[see Fig. 10(a)]. The solution of a wave number 2k is not

shown in Fig. 8 since it is obviously unstable with respect

to periodic perturbations. Moreover, the 2L-periodic solution

is also unstable at M close to (but less than) M1/2. Indeed,

on one hand, the L-periodic solution at M > M1/2 and the

2L-periodic one at M < M1/2 both have (locally) an equal

number of unstable eigenvalues. On the other hand, the former

solution has at least one unstable eigenvalue since it bifurcates

from the base state subcritically.

To confirm this conjecture, one has to explore the stability

properties of steady rolls. To that end we substitute the

(a) (b)

FIG. 10. (Color online) Amplitude curves for the steady rolls

at β = 4, G = 1, and k = 1.5. (a) Variation of the maximum and

minimum film thicknesses and h(X = L) with M . Horizontal dashed

line shows the thickness of the unperturbed layer, vertical line is the

stability boundary M = MTR; solutions at larger M are unstable; (b)

Fragment of panel (a) in the vicinity of M = MTR. Left axis is the

minimum thickness of the film (solid line is the steady rolls, dotted

line the TR); right axis is the frequency of the TR (dashed-dotted

line).
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(a) (b)

FIG. 11. (Color online) Variation of the (a) first and (b) second

Fourier coefficients with the Marangoni number at β = 4, G = 1; k =
1.795 (dashed-dotted line) and k = 1.8 (solid line). Vertical dotted

lines mark the saddle-node bifurcation at M = Mt (k).

perturbed fields h = hs + ξ and θ = θs + ϑ into Eqs. (9) and

(11) and linearize them with respect to the perturbations

�ξ = J ′, (47)

�hs

(

F +
5

8
ξ

)

= (hsϑ
′ + ξθ ′

s)
′ − h′

sξ
′ + J

(

f ′
s +

3

8
h′

s

)

−βF −
M

48

(

h3
sF

′ + 3h2
sf

′
s ξ

)′
, (48)

J =
h3

s

3
(Gξ − ξ ′′)′ +

Mhs

2
(hsF

′ + 2f ′
s ξ ).

Here F = ϑ − ξ , � is the growth rate, and the prime denotes

the X derivative.

Assuming 2L-periodic perturbations, we apply the Fourier

transformation, reducing Eqs. (47) and (48) to a generalized

algebraic eigenvalue problem

Aψ = �Bψ, (49)

where ψ comprises Fourier harmonics ξ̂n and ϑ̂n, A and B are

matrices of order (4Nm + 1) × (4Nm + 1). (Note that ξ̂0 = 0).

This eigenvalue problem was solved numerically.

In fact, the linear stability problems for the infinite and

confined layers are different. In the former case, the spectrum

of wave numbers is continuous and a more general analysis

should be performed on the basis of the Floquet-Bloch

theory, which lies beyond the scope of the present paper.

For the confined layer, the spectrum of wave numbers is

discrete. Moreover, some types of periodic perturbations do

not obey the impermeability condition at X = 0,nL and thus

they are prohibited for the confined layer. Therefore, the

stability regions presented below are overestimated (only a

structural stability is guarantied) for the periodic solutions and

underestimated for the confined geometry.

The conjecture concerning the instability of steady rolls

near M = M1/2 is confirmed numerically; at M > MTR(k),

indicated in Fig. 10(a) by the vertical dashed line, steady rolls

become unstable. At this point TR of vanishing frequency

branch subcritically from steady rolls, as shown in Fig. 10(b).

Of course, there exist two counter-propagating TRs, which do

not possess the reflection symmetry h(X) = h(2L − X); this

transformation switches from one to another TR in the pair.

This symmetry breakdown can be described by means of an ap-

propriate order parameter (e.g.,
∫ L

0
[ξ (X) − ξ (2L − X)] dX),

which varies with M qualitatively similar to the waves’

frequency ω, see Fig. 10(b). Such a bifurcation was found

and studied in detail by the authors of Refs. [35–37].

At larger values of the wave number, as demonstrated in

Fig. 11, a two-sided bifurcation takes place: With the increase

in k, a double bifurcation point emerges (two branches of

solution intersect), and then is destroyed, giving birth to

a pair of saddle-node (tangent) bifurcations [38]. The first

saddle-node bifurcation for k > 1.797 occurs at M = Mt (k),

see Fig. 11 (the subscript “t” stands for “tangent”); it is clear

that the hysteretic transition takes place as M exceeds Mt . It is

worth noting that the steady states shown in Fig. 11 have at least

four unstable eigenvalues, therefore the “bubble-like” branch

of a solution is always unstable. This is the reason why we do

not discuss other branches of the Ssteady rolls any further.

The summary of calculations for β = 4,G = 1 is presented

in Fig. 12(a). Note that both the dashed-dotted and double-

dotted lines intersect the marginal stability curve at the point

k∗ determined by the condition

Mm(k∗) = Mm(2k∗).

This coincidence is expected for M1/2(k) since both the

branching small-amplitude solution with given k < k∗ and

the base state are unstable with respect to perturbations

with 2k. Indeed, at k ≈ k∗ one obtains M1/2(k) ≈ Mm(k∗) +
2M ′

m(2k∗)(k − k∗), where the prime denotes the kth derivative

of Mm(k) [i.e., M1/2(k) locally coincides with the oblate neutral

stability curve Mm(k/2) at k ≈ 2k∗]. The result for MTR is less

evident, but it also can be confirmed by an analytical solution,

which provides MTR ≈ Mm(k∗) + [(V1 − V2)/(γ1 − γ2)](k −
k∗), where V1,2 = ∂λ/∂k and γ1,2 = ∂λ/∂M at M = Mm(k∗)

and k equals either k∗ or 2k∗.

Another important feature is the transition from direct to

inverse pitchfork bifurcation at k = 1.622, which means that

K0, which enters into Eq. (29), vanishes. At larger values of

the wave number bistability takes place: both the base state

and the upper branch of the steady rolls can be approached by

the appropriate choice of the initial conditions.

(a) (b)

FIG. 12. (Color online) Domains of

stability for steady rolls at G = 1; (a)

β = 4 and (b) β = 2. Dashed lines are

the neutral stability curves, Eq. (15);

solid lines show domains of subcritical-

ity; bistability takes place between these

two lines. Dashed-dotted lines demon-

strate the locus of MTR(k), the dotted line

of Mt (k), and the double-dotted line of

M1/2(k). Domains of stability are marked

with “S.”
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(a) (b)

(c) (d)

FIG. 13. (Color online) Evolution of the layer thickness; β =
4,G = 1,k = 1.5,M = 7.15. (a) Evolution of the maximum and

minimum thicknesses of the film in time. (b) A zoomed in fragment

of panel (a) is depicted. (c) Shape of the film at τ = 26,26.2,26.4:

dashed, dotted, and solid lines, respectively. (d) Shape of the film at

τ = 26.6,26.8,27: dashed, dotted, and solid lines, respectively.

Note that at k > k1 ≈ 2.025, steady rolls remain stable up to

M = Mt (k), and the dashed-dotted line continues on the lower

(structurally unstable) branch of the bubble-like region. Thus,

the later solution and even the upper branch remain unstable

and they are not shown in Fig. 12(a).

In Fig. 12(b) we demonstrate the similar stability map for

β = 2, when according to Fig. 4 subcritical bifurcation takes

place for the regime with k = k(m)
c . Nevertheless, the growth of

disturbances does not lead to a rupture, and there exist stable

1D patterns with the deformed interface.

Our direct numerical computations show that above the

stability threshold M = MTR(k) either 2k rolls emerge or irreg-

ular oscillation of a strong film deformation occurs. Moreover,

the irregular regime can be excited even at M < MTR(k) by

appropriate initial distortion of the film. An example of this

situation is demonstrated in Fig. 13. It is clear that the evolution

of the film thickness is complicated; at a part of the period the

solution resembles TR, see Fig. 13(d).

B. Traveling rolls

Another regime, which can be readily studied within the

1D problem, is nonlinear traveling rolls (TR). For this solution

the film thickness can be represented as follows:

(ho,θo) =
∞

∑

n=−∞
(ĥn,θ̂n)eiknη; ĥ0 = 1, (50)

FIG. 15. (Color online) Stability region for TR (marked with “S”)

for β = 40, G = 5. Dashed line is the marginal stability curve Mo(k);

solid line shows MSR(k). Above this line TR are unstable with respect

to perturbations of the same period.

with η = X − V τ , where V = ωk is yet unknown phase

velocity of the wave. Of course, for TR there is no reflection

symmetry (inversion of the coordinate X obviously changes

the sign of V as well). Thus the coefficients ĥn are now

complex; the only restriction imposed on ĥn is ĥn = ĥ∗
−n,

which ensures that h is real.

The results of calculations for TR are presented in Figs. 14

and 15. It is clear from the former figure that both the

deflection of the free surface and the temperature perturbation

considerably grow with the increase in M , whereas the profile

of fo = θo − ho steepens quickly. This growth of the derivative

seems to be an origin of the instability of TR. Although the

branch of the solution corresponding to TR can be obtained at

large enough values of M , TR become unstable at M = MSR,

which is close to the marginal stability curve, see Fig. 15.

Above this stability threshold we have found nontrivial

dynamics when the system rambles between two unstable limit

cycles, TR and standing roll (SR), being alternatively attracted

to and then repelled from each of them, see Fig. 16. Of course,

such dynamics is impossible within the simplest amplitude

equation, Eq. (43). Indeed, it is evident from Fig. 16 that

the instability of TR is caused by the perturbation with the

derivative close to discontinuity [see solid line in Fig. 16(c)].

Such a mode is obviously lost when a reduction to the central

manifold is performed and therefore only several lower Fourier

harmonics are accounted for.

The formation of a pattern close to SR, in turn, takes place

only within a very short time period, marked by the vertical

dashed lines in Fig. 16(b); the corresponding snapshots of the

film surface are presented in Fig. 16(d). Moreover, as is clear

from this panel, the solution is not a perfect SR since the

slow drift of the structure along the X axis still exists. This

property has a simple explanation. Since MSR(k) is rather close

to Mo(k), the instability of SR and the transition to TR can

be approximately described by Eq. (43). The corresponding

(a) (b) (c)

FIG. 14. (Color online) (a) The film

thickness ho(η), (b) the main part of

the temperature θo(η), and (c) fo = θo −
ho for TR at β = 40, G = 5, k = 3.3.

Dashed (solid) lines correspond to M =
30 (M = 30.4). The mean parts of the

temperature (θ̂0) and the surface tension

(f̂0) have been dropped.
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(a) (b)

(c) (d)

FIG. 16. (Color online) Evolution of the layer thickness above

the stability threshold for TR; β = 40,G = 5,M = 30.11,k = 3.3.

(a) Evolution of the maximum and minimum thicknesses of the

film in time; panel (b) depicts a zoomed-in fragment of panel (a).

(c) Formation of TR and the initial stage of its instability; shape

of the film at τ = 12.5,13,13.7, the dashed, dotted, and solid lines,

respectively. (d) Formation and instability of the state close to SR;

shape of the film at τ = 13.85,13.86,13.87, the dashed, dotted, and

solid lines, respectively. [This time interval is marked by vertical

dashed lines in panel (b).]

growth rate is large enough; it is proportional to M − Mo(k),

in contrast to the growth rate for the TR, which is proportional

to M − MSR. Of course, the smallness of the latter growth

rate ensures that the heteroclinic cycle TR → SR → TR is

attracting (at least at M close to MSR) according to the criterion

formulated in Ref. [39].

VI. CONCLUSION AND DISCUSSION

In this paper we consider the classical problem: a

Marangoni convection in a layer heated from below with a

deformable free surface. Using unusual scaling, K = O(
√

Bi),

and the more frequently used condition Ca ≫ 1 such that

the product β = BiCa remains finite, we derive a novel set

of amplitude equations, Eqs. (9) and (11), which describe a

coupled evolution of the film height and the primary (averaged

across the layer) part of the temperature.

This set of equations is reminiscent of the amplitude

equations derived by the authors of Refs. [24,25], but here

such equations are derived for a simpler physical system. As

far as the comparison, first, the amplitude functions in all

three works are qualitatively similar: the layer thickness h and

the primary part of the temperature (or the concentration in

Ref. [24]). Second, the capillary number is effectively large,

which involves the regularizing term with higher (fourth)

spatial derivatives.

Having h as one of the amplitude functions distinguishes

these problems from other systems where a long-wave oscil-

latory mode exists (e.g., a convection in a binary mixture [40,

41]). Indeed, the amplitude equations governing the nonlinear

dynamics should include h, whereas for the convection in a

binary mixture the contributions are only from the nonlinear

combinations of the gradients of the amplitude functions (the

leading parts of the temperature and concentration).

Another important distinction manifests itself even within

the linear stability problem. In Refs. [26,27,40,41] all the linear

terms bear either second space or first temporal derivatives and

thus the dispersion relation is quadratic in the wave number. In

contrast, the above-mentioned surface-tension term (the fourth

space derivative) results in a more complicated dispersion

relation, see Refs. [24,25] and Eq. (19) in the present paper.

(In our case there also exists the derivatives-free term, which

describes the heat loss from the free surface.)

Linear stability analysis within this set demonstrates the

emergence of the monotonic and oscillatory modes; the

corresponding expressions for the neutral stability curves are

given by Eqs. (21) and (22). The oscillatory mode was not

found in prior studies of Marangoni convection when heating

is from below.

Weakly nonlinear analysis carried out within the set of

the amplitude equations shows that supercritical excitation is

possible for both steady and oscillatory convection. Depending

on the problem parameters, either hexagons or rolls can be

selected in the steady case, whereas among the oscillatory

patterns either traveling rolls or traveling rectangles are

stable. Stable states with a deformed free surface is a very

rare occurrence, which was earlier found by the authors

of Refs. [24,25] or for weak surface deformations [12,20].

Another remarkable feature is the stability of rolls against

squares, which was earlier found only for finite values of the

Biot number [31].

Finally, we perform numerical calculations of regular

steady and traveling rolls in the simplest one-dimensional

(1 + 1) case: the space-periodic solutions and their stability are

studied. (We deal only with the structural stability, i.e., stability

with respect to perturbations of the same spatial period.) A

complicated sequence of bifurcations is found for periodic

steady solutions. Traveling rolls are structurally stable only

within a thin band near the marginal stability curve, see Fig. 15.
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