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Abstract: The aim of this paper is to study oscillatory solutions of nonlinear hyperbolic
systems in the framework developped during the last decade by Joly, Métivier and Rauch.
Here we mainly focus on rectification effects, that is the interaction of oscillations with a mean
field created by the nonlinearity. A real interaction can occur only under some geometric con-
ditions described in [JMR1] and [L1] that are generally not satisfied by the physical models
except in the 1-D case. We introduce here a new type of Ansatz that allows us to obtain
rectification effects under weaker asumptions. We obtain a new class of profile equations and
construct solutions for a subclass. Finally, the stability of the asymptotic expansion is proved
in the context of Maxwell-Bloch type systems.
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1 Introduction

1.1 Motivations

In the study of solutions to nonlinear hyperbolic systems, many nonlinear ef-
fects can be observed. In optics, they are linked to a nonlinear response of the
medium and therefore to the intensity of the incoming light. The more intense
it is, the sooner these nonlinear effects will occur.
This physical phenomenon encountered in optics occurs in all nonlinear hyper-
bolic systems: the scale of the appearence of the nonlinear effects is in inverse
proportion to the size of the solution. For instance, for a semilinear hyperbolic
problem

Lε(∂x)uε := ∂tuε +
d∑

j=0

Aj∂juε +
L0

ε
uε = f(uε,uε)
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nonlinear effects occur at times O(1) if uε is of size O(1) and at times O(1/ε)
if its size is O(ε).

We investigate here phenomena which occur for diffractive times O(1/ε) and
we are interested in one particular nonlinear effect called rectification, which
means the creation of a mean field thanks to the asymptotical nonlinear in-
teraction of oscillating modes. It is a nonlinear interaction between the zero
frequency (long waves) and non-zero frequencies (short waves).
In the first studies of rectification for times O(1/ε) (in [JMR1] for the non-
dispersive case and in [L1] for the dispersive case), it has been shown that it
can occur only if the tangent cone C0 to the characteristic variety C at (0, 0)
contains an hyperplane tangent to C. Such a condition is quite strong and seems
to exclude all physical examples, unless we are in space dimension 1, since C0

is then an union of straight lines. But even in this case, the nonlinear coupling
that should appear between the mean field and the oscillating modes remains
equal to 0, as computations show (see [L1]). Such a phenomenon belongs to the
transparency phenomena first mentioned by P. Donnat (cf. [D]) and extensively
studied in [JMR2].
As said above, nonlinear effects are linked to the amplitude of the solutions we
study. Since rectification does not occur at times O(1/ε) when dealing with
’normal’ solutions of size O(ε) to transparent problems, it is therefore natural
to seek ’abnormal’ solutions of size O(1). We have said above that in this case
nonlinear effects should occur at times O(1), but because of transparency they
occur only at a diffractive scale. It has been proved in this case (see [C]) that the
approximate solution given by geometric optics must satisfy a Davey-Stewartson
type system which couples the leading oscillating term of the ansatz with the
leading non-oscillating term.
There is therefore a non-linear interaction between the oscillating and mean
modes, but this Davey-Stewartson type interaction is due to the algebraic struc-
ture of the system, and not to asymptotical effects coming from the long-time
interaction of different modes travelling at the same velocity. Hence, the non-
linear interaction in Davey-Stewartson systems cannot be called rectification.
In fact, the study made in [C] remains valid while rectification does not occur. It
has been proved indeed that the classical rectification condition (i.e. C0 contains
an hyperplane tangent to C) is a singular case for the Davey-Stewartson system
of [C]. It is not surprising since in this case, the system is ’more non-linear’
– since we then have to add the rectification effects to the Davey-Stewartson
non-linear effects – and the solutions are therefore more likely to explode.
There is also another singular case for this Davey-Stewartson system, which oc-
curs when there exists a tangent plane to C also tangent to C0. This condition is
close but weaker than the rectification condition. Here again, one can think that
the Davey-Stewartson system becomes singular because of rectification effects.

Here lies the motivation of this paper: we want to observe rectification
effects, but we are confronted to two opposite situations where its study is not
possible. On the one hand (see [JMR1] and [L1]), the amplitude O(ε) of the
solutions is too small and, because of transparency effects, rectification effects
do not occur for observation times O(1/ε). On the other hand (in [C]), the
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amplitude O(1) of the solutions is too big and when rectification effects occur,
solutions explode. It is therefore natural to consider solutions at an intermediate
scale O(

√
ε) and to investigate the two cases which are singular in [C]:

i There is in C0 a tangent hyperplane to C. As said above, the only physically
interesting case is when the space dimension is 1. We then seek approximate
solution uε of the form

uε(t, y) =
√
εUε(εt, t, y,

τ t+ ηy

ε
),

where Uε(T, t, y, θ) is periodic in θ. The scale εt is the diffractive scale while
(t, y) is the scale of geometric optics and τt+ηy

ε the fast oscillating scale.
ii If C has a tangent plane P also tangent to C0. The one dimensional case

is the same as above, so that we consider only space dimension d ≥ 2. The
situation is here a bit different since if we seek approximate solutions uε as
above, we know thanks to [JMR1] and [L1] that there is no rectification effect
(since the rectification condition is not fulfilled). Denoting y = (y1, . . . , yd) and
assuming that P is tangent to C0 along the first coordinate, a first idea is to
consider approximate solutions of the form

uε(t, y) =
√
εUε(εt, t, y1,

τ t+ ηy

ε
),

which brings us back to case i). This is not satisfactory since we loose the
dependance on yII := (y2, . . . , yd) and hence we can only study the rectification
effects which occur along the first coordinate. Our problem is then quite similar
to what happens when choosing the amplitude. We are indeed confronted to two
opposite situations. On the one hand, rectification does not occur fast enough
to be described with a dependance on yII of the same scale as the dependance
on y1. On the other hand, taking a dependance on yII slower or of the same
scale as the diffractive scale, we miss part of it. Thus, we introduce a new scale
and seek uε under the form

uε(t, y) =
√
εUε(εt,

√
εyII , t, y1,

τ t+ ηy

ε
).

Throughout this paper, we investigate case ii). The associated condition is
called the long wave/short wave resonant condition. It is easy to see that the
situation described in case i) can easily be deduced from it.
We show that multi-dimensionnal non-trivial rectification occurs in this case.
Since the long wave/short wave resonance condition is likely to occur for physical
systems, we suspect that this study gives a good framework to observe exper-
imentally rectification effects. In [L2], we follow formally the theory exposed
here to study rectification effects for water waves, but, unfortunately, we cannot
apply directly the result of this paper to the Euler equations with free surface.
Note that the system found in [L2] is also derived in the book by C. and P.-L.
Sulem [Su].
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1.2 Setting up the problem

We consider here a general class of hyperbolic quadratic systems. More precisely,
we seek approximate solutions of size

√
ε to

Lε(∂x)uε := ∂tuε +
d∑

j=0

Aj∂juε +
L0

ε
uε = f(uε,uε), (1)

where the Aj are N ×N symmetric real matrices, while L0 is skew-symmetric.
We assume that the mapping (u, v) ∈ C2N 7→ f(u, v) ∈ CN is bilinear. Through-
out this paper, t ∈ R+ denotes the time variable and y := (y1, . . . yd) ∈ Rd the
space variables; we also write x := (t, y) ∈ R1+d.

For (τ, η) ∈ R1+d, we introduce

L(τ, η) = τI +
d∑

j=1

Ajηj +
L0

i
,

as well as

AII(η) :=
d∑

j=2

Ajηj .

The set of all β := (τ, η) ∈ R1+d such that det(L(β)) = 0 is the characteristic
variety of L and is denoted by CL. If β is a smooth point of CL, we denote by
η 7→ τ(η) a local parametrization of CL in a neighborhood of β.
For β = (τ, η) ∈ CL, we finally denote by π(β) the orthogonal projector on
ker(τI +A(η) + L0/i), and by L(β)−1 the partial inverse of L(β).
We also need to consider the characteristic variety C0 of the operator π(0)Lεπ(0),
which is the tangent cone to CL at (0, 0) (see [L1]).

As said above we look for approximate solutions to (1) whose size is O(
√
ε),

that is, intermediate between the normal size O(ε) and the large size O(1) used
when deriving the Davey-Stewartson systems (see [C]). The leading oscillating
term oscillates with a phase β · x/ε, where β satisfies the following assumption.

Assumption 1 β is a smooth point of CL and 2β is not on CL.

The short-wave long-wave resonance condition we have mentioned above,
and which corresponds to the singular case for the Davey-Stewartson system we
are dealing with, states as follows:

Assumption 2 (Long-wave short-wave resonance) We say that we have a
long-wave short-wave resonance if the tangent space P to CL at β is the tangent
space to C0 at (0, 0).

Under this assumption, the intersection of P and C0 is a straight line pass-
ing through the origin. We denote by β0 the point of this line with vertical
coordinate equal to 1: β0 := (1, η0) = (1, η0

1 , . . . , η
0
d).
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When CL is of revolution, then η, η0 and ∇τ(η) are necessarily colinear. In
the general case, this is no longer true, but we have the following proposition.

Proposition 1 If ∇τ(η) ·η0 6= 0, then we can be brought back to the case where
∇τ(η) and the contact direction η0 are colinear.

Proof.
The proof of this proposition is postponed to the last section of this paper.

2

In order to be in this framework, we make the following assumption, satisfied
by all the physical examples we have encountered.

Assumption 3 One has ∇τ(η) · η0 6= 0.

Convention. Under the above assumtion, we can from now on assume that
η0 = (η0

1 , 0, . . . , 0) and τ ′(η) = (∂1τ(η), 0, . . . , 0).

1.3 The ansatz

In diffractive optics (see [D], [JMR1], [L1], [C]), ansatz with three scales are
used and the approximate solutions are therefore of the form

uε(x) = εpU(ε, εt, x,
β · x
ε

),

where the profile U(ε, T, x, θ) is periodic in θ.
The scale O(1/ε) is the fast scale associated to the oscillations, and the inter-
mediate scale O(1) is the scale of geometric optics, that is, the scale for which
propagation of oscillations along rays furnishes a good approximation. The last
scale O(ε) is the slow scale we have to introduce in order to take into account
the diffractive modifications one has to make to the non space-time dispersive
propagation along rays.

As said in the introduction, we introduce here a fourth scale O(
√
ε) in order

to take into account the rectification effects in the transverse directions. Still
supposing that η0 and−τ ′(η) are along the first coordinate, we seek approximate
solutions of the form

uε(x) =
√
εU(ε, εt,

√
εyII , t, y1,

β · x
ε

), (2)

where y1 is thus the direction of η0 and τ ′(η), and yII := (y2, . . . , yd).
The profile U(ε, T, Y, t, y1, θ) is chosen of the form

U(ε, T, Y, t, y1, θ) := (3)(
U1 +

√
εU2 + εU3 + ε3/2U4 + ε2U5

)
(ε, T, Y, t, y1, θ),

where the Ui are smooth functions of their arguments, and periodic in θ.
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Since the above expansion is used for times O(1/ε), we have to control the
growth of the profiles in t. In order for the correctors Ui, i = 2 . . . 5, to remain
smaller than the leading term U1 for such times, we must have U2 = o(

√
t),

U3 = o(t), U4 = o(t3/2) and U5 = o(t2). We impose the following stronger
conditions:
- The first corrector U2 remains bounded,

∃C > 0, sup
t∈R+

‖U2(·, ·, t, ·, ·)‖L∞([0,T ]×Rd
Y,y1

×T) ≤ C, (4)

- The other correctors Ui, i = 3, 4, 5 satisfy the sublinear growth condition
introduced in [JMR1],

lim
t→∞

1
t
‖Ui(·, ·, t, ·, ·)‖L∞([0,T ]×Rd

Y,y1
×T) = 0, i = 3, 4, 5. (5)

1.4 Outline of the results

In Section 2 we derive the profile equations using the techniques of geometrical
optics. However, the size of the solution considered here is too big to allow a
standard derivation, and we have to make a transparency assumption. To our
knowledge (see [JMR2], [L1]), this assumption is satisfied by all the physical
systems of the form (1). The profile equations found in this case are given in
Theor. 1. In particular, one can notice that the evolution equations of the
oscillating and mean modes are coupled.

In Section 3, we assume the existence of a solution to the profile equations
and prove a few properties of the approximate solutions associated to these
profiles. In Prp. 7 we show that the residual one obtains when plugging these
approximate solutions into (1) is small.

Section 4 is devoted to the study of a particular subclass of systems (1), the
Maxwell-Bloch systems. This class of problems has been extensively studied in
[JMR2]. Under a strong transparency assumption, we prove that the nonlinearity
appearing in the evolution equation of the mean mode vanishes. In this case,
the existence of a solution to the profile equations is proved. Moreover, we prove
in Theor. 2 that the associated approximate solutions are stable, i.e. remain
close to an exact solution of (1).

The one dimensionnal case is another framework in which we can prove the
existence of a solution to the profile equations, as we show in Section 5.

Finally, we prove in Section 6 an existence theorem for the profile equations
in two dimensions, without doing the strong transparency assumption. Though
the system we consider in this version is simplified with regard to the profile
equations given in Theor. 1, it is of particular interest since this is the system
obtained by C. and P.-L. Sulem ([Su]) when studying the long-wave short-wave
resonance for water waves.
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2 Derivation of the equations

2.1 Equations for the profiles

As usual in geometric optics, we expand Lεuε − f(uε, uε) (where uε is the
approximate solution given by Eqs. (2) and (3) ) in powers of ε. One finds

Lεuε − f(uε, uε) =(
ε−1/2 iL(βDθ)U1

+ ε0 iL(βDθ)U2

+ ε1/2 iL(βDθ)U3 +
(
∂t +A1∂y1

)
U1

+ ε1 iL(βDθ)U4 +
(
∂t +A1∂y1

)
U2 +AII(∂Y )U1

−f(U1,U1)
+ ε3/2 iL(βDθ)U5 +

(
∂t +A1∂y1

)
U3 +AII(∂Y )U2

+∂TU1 − 2f(U1,U2)
+ ε2

(
∂t +A1∂y1

)
U4 +AII(∂Y )U3

+∂TU2 − f(U2,U2)− 2f(U1,U3)

+ ε5/2 Rε
)∣∣∣

T=εt, Y =
√

εyII , θ=
β·x

ε

, (6)

where we recall that AII(∂Y ) :=
∑d

j=2Aj(∂Yj
), and where Dθ := ∂θ/i.

We want to chose the profiles Ui in order to cancel the first terms in the
above expansion. This yields the following profile equations:

iL(βDθ)U1 = 0, (7)

iL(βDθ)U2 = 0, (8)

iL(βDθ)U3 +
(
∂t +A1∂y1

)
U1 = 0, (9)

iL(βDθ)U4 +
(
∂t +A1∂y1

)
U2 +AII(∂Y )U1 − f(U1,U1) = 0, (10)

iL(βDθ)U5 +
(
∂t +A1∂y1

)
U3 +AII(∂Y )U2 + ∂TU1 − 2f(U1,U2) = 0, (11)

and (
∂t +A1∂y1

)
U4 +AII(∂Y )U3 + ∂TU2

−f(U2,U2)− 2f(U1,U3) = 0. (12)

2.2 Algebraic analysis of Eqs. (7)-(12)

For the principal term of our ansatz, we choose

U1(T, Y, t, y1, θ) := U11(T, Y, t, y1)eiθ + c.c.,

which means that we exclude non-oscillating terms from the principal term.
This is realistic since the non-oscillating terms, which are created by rectification
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effects, cannot reach the same amplitude as the main oscillating terms.
In order to deduce conditions on U11 from Eqs (7)-(12), and throughout this
section, we need the following algebraic lemma.

Lemma 1 Let a and b in CN , and β ∈ R1+d. The following two assertions
are then equivalent
i) L(β)a = b,
ii) π(β)b = 0 and

(
I − π(β)

)
a = L(β)−1b.

Thanks to this lemma, Eq. (7) is then equivalent to the polarization condi-
tion

π(β)U11 = U11. (13)

Contrary to what has been done for U1, we allow non-oscillating terms for
the first corrector U2. We take therefore

U2(T, Y, t, y1, θ) := U20(T, Y, t, y1) + U21(T, Y, t, y1)eiθ + c.c.

We first decompose Eq. (8) into its Fourier modes and then apply Lemma 1 to
find that Eq. (8) is equivalent to

π(β)U21 = U21 (14)

and
π(0)U20 = U20. (15)

Pursuing our analysis, we now want to find necessary conditions from Eq.
(9). We search an U3 of the form

U3(T, Y, t, y1, θ) := U30(T, Y, t, y1) + U31(T, Y, t, y1)eiθ + c.c.,

so that the non-oscillating Fourier coefficient of Eq. (9) reads

L(0)U30 = 0.

Thanks to Lemma 1, this is equivalent to

π(0)U30 = U30. (16)

The first mode of the Fourier expansion of Eq. (9) reads

iL(β)U31 +
(
∂t +A1∂y1

)
U11 = 0.

Using Lemma 1 and Eq. 13, this is equivalent to the following two equations:

π(β)
(
∂t +A1∂y1

)
π(β)U11 = 0, (17)
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and (
I − π(β)

)
U31 = iL(β)−1

(
∂t +A1∂y1

)
π(β)U11,

that is, since L(β)−1π(β) = 0,(
I − π(β)

)
U31 = iL(β)−1A1∂y1π(β)U11. (18)

Since Eq. (10) is nonlinear quadratic, we have to look for an U4 with the
second harmonic

U4(T, Y, t, y1, θ) := U40(T, Y, t, y1) + U41(T, Y, t, y1)eiθ + c.c.
+ U42(T, Y, t, y1)e2iθ + c.c.

With the same method as above and using Eq. (15), we obtain the following
equivalent equations to Eq. (10):

π(0)
(
∂t +A1∂y1

)
π(0)U20 = 2<

(
π(0)f(π(β)U11, π(β)U11)

)
(19)

and(
I−π(0)

)
U40 = iL(0)−1A1∂y1π(0)U20−2i<

(
L(0)−1f(π(β)U11, π(β)U11)

)
, (20)

as far as the non-oscillating mode is concerned, and

π(β)
(
∂t +A1∂y1

)
π(β)U21 + π(β)AII(∂Y )π(β)U11 = 0 (21)

and (
I − π(β)

)
U41 = iL(β)−1A1∂y1π(β)U21 + iL(β)−1AII(∂Y )U11, (22)

for the first oscillating mode, and finally

U42 = −iL(2β)−1f(U11,U11) (23)

for the second harmonic, since L(2β) is invertible thanks to Assumption 1.

Since Eq. (11) is also nonlinear quadratic, we look for an U5 of the same
kind as U4,

U5(T, Y, t, y1, θ) := U50(T, Y, t, y1) + U51(T, Y, t, y1)eiθ + c.c.
+ U52(T, Y, t, y1)e2iθ + c.c.

and we obtain the following equivalent conditions

π(0)
(
∂t +A1∂y1

)
π(0)U30 + π(0)AII(∂Y )π(0)U20

= 4<
(
π(0)f(π(β)U11, π(β)U21)

)
, (24)
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and (
I − π(0)

)
U50 = iL(0)−1A1∂y1π(0)U30

+ iL(0)−1AII(∂Y

)
U20 − 4iL(0)−1<

(
f(U11,U21)

)
(25)

as far as the non-oscillating mode is concerned, and

π(β)A1∂y1π(β)U31 + π(β)AII(∂Y )π(β)U21 + ∂Tπ(β)U11

= 2π(β)f(U11,U20), (26)

and (
I − π(β)

)
U51 = iL(β)−1

(
∂t +A1∂y1

)
U31 + iL(β)−1AII(∂Y

)
U21

− 2iL(β)−1f(U11,U20) (27)

for the first order term of the Fourier expansion. The second harmonic U52 is
obtained in the same way as U42,

U52 = −2iL(2β)−1f(U11,U21). (28)

Equation (26) involves U31 which can be splitted under the form U31 = π(β)U31+(
I − π(β)

)
U31. Plugging this decomposition into Eq. (26), and using the ex-

pression of
(
I − π(β)

)
U31 given by Eq. (18) yields

∂Tπ(β)U11 + iπ(β)A1∂y1L(β)−1A1∂y1π(β)U11

+ π(β)
(
∂t +A1∂y1

)
π(β)U31 + π(β)AII(∂Y )π(β)U21

= 2π(β)f(π(β)U11, π(0)U20). (29)

We finally consider Eq. (12). In fact, we do not solve it entirely, but only
its projection onto the range of π(0). The equation thus obtained reads, thanks
to Eqs. (15)-(16),

π(0)
(
∂t +A1∂y1

)
U40 + π(0)AII(∂Y )π(0)U30 + π(0)∂Tπ(0)U20

= π(0)
(
f
(
π(0)U20, π(0)U20

)
+ 2f

(
π(β)U21, π(β)U21

))
+ 4<

(
π(0)f(π(β)U11,U31)

)
. (30)

2.3 The transparency condition

Without any additional information, the equations found in the above section
cannot be solved. We recall indeed that the scaling of our solutions is bigger
than the normal scaling so that the nonlinear effects should occur too soon to
allow a long time study. As said in the introduction, these nonlinear effects do
not occur in many cases, provided that the following transparency condition is
fulfilled.
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Assumption 4 (Transparency) For any a,b ∈ CN , one has

π(0)f
(
π(β)a, π(β)b

)
= 0.

Under this assumption, Eq. (19) becomes linear

π(0)
(
∂t +A1∂y1

)
π(0)U20 = 0, (31)

and so does also Eq. (24) which reads

π(0)
(
∂t +A1∂y1

)
π(0)U30 + π(0)AII(∂Y )π(0)U20 = 0. (32)

We finally consider Eq. (30). Under the transparency assumption, it reads

∂Tπ(0)U20 + π(0)
(
∂t +A1∂y1

)
U40 + π(0)AII(∂Y )π(0)U30

= π(0)f
(
π(0)U20, π(0)U20

)
+ 4<

(
π(0)f(π(β)U11,

(
I − π(β)

)
U31)

)
We can now use the expression of

(
I − π(β)

)
U31 given by Eq. (18), decompose

U40 under the form U40 = π(0)U40 +
(
I − π(0)

)
U40 and use the expression of(

I − π(0)
)
U40 given by Eq. (20) to find

∂Tπ(0)U20 + iπ(0)A1∂y1L(0)−1A1∂y1π(0)U20

+ π(0)
(
∂t +A1∂y1

)
π(0)U40 + π(0)AII(∂Y )π(0)U30

= π(0)f
(
π(0)U20, π(0)U20

)
+ 4<

(
π(0)f

(
π(β)U11, iL(β)−1A1∂y1π(β)U11

))
+ 2iπ(0)A1∂y1L(0)−1<

(
f
(
π(β)U11, π(β)U11

))
(33)

2.4 Transport at the group velocity

In this section, we review some of the profiles which are transported at the group
velocity, since these profiles will play the essential part in the asymptotic study.
The first proposition we give is a simple consequence of the classical property
of transport along rays.

Proposition 2 When β is a smooth point of CL and under Assumption 1, one
has

π(β)
(
∂t +A1∂y1

)
π(β) =

(
∂t − ∂1τ(η)∂y1

)
π(β),

and
π(β)AII(∂Y )π(β) = 0.

Proof.
It is known that for all j, one has π(β)Ajπ(β) = −∂jτ(η)π(β). Since in the
present case we have ∂jτ(η) = 0 when j ≥ 2, the results of the proposition
follow.
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2

Using this proposition, together with Eqs. (17) and (21), yield(
∂t − ∂1τ(η)∂y1

)
π(β)U11 = 0,

and (
∂t − ∂1τ(η)∂y1

)
π(β)U21 = 0, (34)

so that both π(β)U11 and π(β)U21 are transported at the group velocity, since
we recall that the group velocity reads −τ ′(η) = (∂1τ(η), 0, . . . , 0) in our coor-
dinates.

We finally prove that a component of π(0)U20 also travels at the group
velocity. We recall that, thanks to Eq. (31), one has

π(0)
(
∂t +A1∂y1

)
π(0)U20 = 0,

Since π(0)
(
∂t + A1∂y1

)
π(0) is an hyperbolic symmetric operator of dimension

one, we can decompose it under the form

π(0)
(
∂t +A1∂y1

)
π(0) =

p∑
j=1

(
∂t + vj∂y1

)
πj(0), (35)

where the vj are the distinct eigenvalues of π(0)A1π(0) and πj(0) the associated
orthogonal projector defined on the range of π(0).
Each component πj(0)U20 of π(0)U20 is therefore transported at the velocity vj ,
with respect to the variables t and y1. The following lemma says that one of
these components is tranported at the group velocity.

Lemma 2 The group velocity −∂1τ(η) is an eigenvalue of π(0)A1π(0).

Proof.
The vector (1,−τ ′(η)) is by definition normal to the tangent plane P to CL at
β. We recall that β0 = (1, η0) is on the contact line between P and C0; thanks
to Assumption 2, we thus know that (1,−τ ′(η)) is also normal to C0 at β0.
Denoting by τ0(η) a local parametrization of C0 in a neighborhood of β0, we
have therefore τ0 ′(η0) = τ ′(η) and τ0(η0) = 1. But since C0 is conic, τ0 is
homogenous of degree 1, and Euler’s formula yields τ0(η0) = τ0 ′(η0) · η0. It
follows that 1 = τ ′(η) · η0.
Since in our coordinates we have η0 = (η0

1 , 0, . . . , 0), this last equality reads
1 = ∂1τ(η)η0

1 , and β0 thus reads β0 = (∂1τ(η)η0
1 , η

0
1 , 0, . . . , 0). We have therefore

L(β0) = η0
1(∂1τ(η) +A1).

Since β0 ∈ C0, the endomorphism π(0)L(β0)π(0) is not invertible on the range
of π(0), and hence, neither is π(0)

(
∂1τ(η) + A1)π(0), thanks to the expression

just found for L(β0). This means that −∂1τ(η) is an eigenvalue of π(0)A1π(0),
and the lemma is thus proved.

12
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Convention. In other words, the lemma says that there exists j such that
vj = −∂1τ(η). Up to a change of indices, we suppose from now on that v1 =
−∂1τ(η), so that π1(0)U20 travels at the group velocity.

2.5 Averaging

We now use the average projectors introduced in [L1] to obtain new equations
which describe the asymptotic behaviour of the solution for long times. We first
recall the definition of the average projector in the case we are interested in.

Definition 1 (Average projector) Let T (∂x) := ∂x + v∂y1 be a transport
operator. The average projector associated to T is the operator GT defined on
smooth functions on R2

t,y1
as

GTw(t, y1) = lim
h→∞

1
h

∫ h

0

w(t+ s, y1 + vs)ds,

when this limit exists.
If v = −∂1τ(η) and if the function GTw exists, it will be denoted by < w >.

The following proposition gives the properties of GT that we need in this
paper.

Proposition 3 i) Let T (∂x) = ∂t + v∂y1 .
- If w is a smooth function of (t, y1) ∈ R2 such that T (∂x)w = 0, then we have

GTw = w;

- If w has a sublinear growth, i.e. if limt→∞
1
t ‖w(t, ·)‖∞ = 0, then

GT

(
T (∂x)w

)
= 0.

ii) Let v1 6= v2, T1(∂x) := ∂t + v1∂y1 and T2(∂x) := ∂t + v2∂y1 .
If w is such that T1(∂x)w = 0, then

GT2w = 0.

iii) Let T1(∂x) := ∂t + v1∂y1 , T2(∂x) := ∂t + v2∂y1 and T (∂x) := ∂t + v∂y1 , and
suppose that T1(∂x)w1 = T2(∂x)w2 = 0. Then

GT f(w1, w2) = 0,

unless v = v1 = v2, in which case

GT f(w1, w2) = f(w1, w2).

iv) If w has a sublinear growth and < w > is well defined and v 6= −∂1τ(η),
then one has

<
(
∂t + v∂y1

)
w >= (∂1τ(η) + v)∂y1 < w > .

13



Proof.
We only prove iv) since all the other assertions of the proposition can be found
in [L1].
One has

1
h

∫ h

0

[(∂t + v∂y1)w](t+ s, y − ∂1τ(η)s)ds

=
1
h

∫ h

0

∂s

(
w(t+ s, y − ∂1τ(η)s)

)
+[(v + ∂1τ(η))∂y1w](t+ s, y − ∂1τ(η)s)ds

=
1
h

[w(t+ h, y − ∂1τ(η)h)− w(t, y)]

+
1
h

∫ h

0

(v + ∂1τ(η))∂y1w(t+ s, y − ∂1τ(η)s)ds

=
1
h

[w(t+ h, y − ∂1τ(η)h)− w(t, y)]

+(v + ∂1τ(η))∂y1

1
h

∫ h

0

w(t+ s, y − ∂1τ(η)s)ds.

Since w has a sublinear growth, the first of these two terms tends to 0 when
h → ∞. The second of these terms tends toward (∂1τ(η) + v)∂y1 < w > since
< w > is well defined. The assertion of the proposition is thus proved.

2

We first use these results to solve Eq. (32), which reads

π(0)
(
∂t +A1∂y1

)
π(0)U30 + π(0)AII(∂Y )π(0)U20 = 0.

There is not uniqueness of the solution to this equation; the following lemma
gives the most natural.

Lemma 3 As solution to Eq. (32), one can take

π(0)U20 = π1(0)U20,

and

π(0)U30 =< π(0)U30 >= −
p∑

j=2

1
∂1τ(η) + vj

∂−1
y1
πj(0)AII(∂Y )π1(0)U20

(where the vj, j ≥ 2, are the eigenvalues of π(0)A1π(0) distinct from −∂1τ(η)).

Proof.
Using decomposition (35), Eq. (32) writes

p∑
j=1

(
∂t + vj∂y1

)
πj(0)U30 + π(0)AII(∂Y )π(0)U20 = 0,

14



with v1 = −∂1τ(η) and vj 6= v1 for j ≥ 2. We also recall that π(0)U20 =∑p
j=1 π

j(0)U20 with
(
∂t + vj∂y1

)
πj(0)U20 = 0 for all j, so that

p∑
j=1

(
∂t + vj∂y1

)
πj(0)U30 + π(0)AII(∂Y )

p∑
j=1

πj(0)U20 = 0.

Multiplying this equation on the left by πj(0), with 1 ≤ j ≤ p yields

(
∂t + vj∂y1

)
πj(0)U30 + πj(0)AII(∂Y )

p∑
k=1

πk(0)U20 = 0.

Let us introduce the operator Tj(∂x) := ∂t + vj∂y1 . Since we impose that U30

has a sublinear growth, we can apply the average projector GTj to the above
equation, and use Prop. 3 to find

πj(0)AII(∂Y )πj(0)U20 = 0. (36)

When j ≥ 2, the operator πj(0)AII(∂Y )πj(0) is in general not equal to 0, so
that we take πj(0)U20 = 0 as solution to Eq. (36)j .

When j = 1, things are different since π1(0)AII(∂Y )π1(0) = 0, as we now
prove. This is done in two steps:
i) One has kerπ(0)(∂1τ(η)I+A1)π(0) = kerπ(0)(I+A1η

0
1)π(0). Indeed, one has

kerπ(0)(∂1τ(η)I+A1)π(0) = kerπ(0)(∂1τ(η)η0
1I+A1η

0
1)π(0), and 1 = ∂1τ(η)η0

1 ,
as we have seen in the proof of Lemma 2.
ii) As in the proof of Lemma 2, denote by τ0(η) a local parametrization of C0

in a neighborhood of β0. Denote also by π0(η) the orthogonal projector on
kerπ(0)L(τ0(η), η)π(0). Thanks to i), we know that π0(η0) = π1(0). We thus
have

π1(0)Ajπ
1(0) = −∂jτ

0(η0),

and since τ0 ′(η0) = τ ′(η) = (∂1τ(η), 0, . . . , 0), we have π1(0)Ajπ
1(0) = 0 for all

j ≥ 2, and therefore
π1(0)AII(∂Y )π1(0) = 0,

as wanted.
Therefore, Eq. (36)1 does not impose any condition, so that the choice of

π(0)U20 = π1(0)U20 is free
Before giving an expression for π(0)U30, first remark that if U20 is regular
enough, πj(0)U30, for j ≥ 2, is a sum of regular functions which travel at
velocity v1 or vj , so that < πj(0)U30 > exists. Thanks to Prop. 3, applying GT1

on Eq. (36)j yields

(∂1τ(η) + vj)∂y1 < πj(0)U30 >= −πj(0)AII(∂Y )π1(0)U20.

It is then easy to see that the function given in the Lemma solves indeed Eq.
(32).

2
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Remark. As one can see in the above proof, the solution given by the lemma
is not the only possible one, but it is the simplest and most natural.

We now use the average projector to obtain two new equations equivalent
to Eq. (29). We recall that π(β)U11, π(β)U21 and π1(0)U20 are transported at
the group velocity, and are therefore left invariant by the action of < >. Using
also Prop. 2 and the fact that U31 has a sublinear growth, one then finds, after
applying < > to Eq. (29), that this equation is equivalent to the couple of
equations

∂Tπ(β)U11 + iπ(β)A1∂y1L(β)−1A1∂y1π(β)U11 (37)

= 2π(β)f(π(β)U11, π
1(0)U20)

and

π(β)
(
∂t +A1∂y1

)
π(β)U31 = 2π(β)f

(
π(β)U11,

p∑
j=2

πj(0)U20

)
.

Since one has π(0)U20 = π1(0)U20 from Lemma 3, this last equation reads

π(β)
(
∂t +A1∂y1

)
π(β)U31 = 0, (38)

which is equivalent to saying that π(β)U31 is transported at the group velocity,
thanks to Prop. 2.

In the evolution equation for U11 given by Eq. (37), the corrector U20 also
appear, and we therefore need an other profile equation in order to determinate
U11 and U20. This second equation will be derived from Eq. (33). In fact, we
will not solve Eq. (33), but only its spectral component on the range of π1(0). It
is obtained by multiplying Eq. (33) on the left by π1(0). Using Decomposition
(35) and Lemma 3, this reads

∂Tπ
1(0)U20 + iπ1(0)A1∂y1L(0)−1A1∂y1π

1(0)U20

+
(
∂t − ∂1τ(η)∂y1

)
π1(0)U40 + π1(0)AII(∂Y )π(0)U30

= π1(0)f
(
π1(0)U20, π

1(0)U20

)
+ 4<

(
π1(0)f

(
π(β)U11, iL(β)−1A1∂y1π(β)U11

))
+ 2iπ1(0)A1∂y1L(0)−1f

(
π(β)U11, π(β)U11

)
Since U20, U30 and U11 travel at the group velocity, and since we impose that

U40 has a sublinear growth, we can see by applying the average projector G to
this equation, that it is equivalent to

∂Tπ
1(0)U20 + iπ1(0)A1∂y1L(0)−1A1∂y1π

1(0)U20

− π1(0)AII(∂Y )
p∑

j=2

1
∂1τ(η) + vj

∂−1
y1
πj(0)AII(∂Y )π1(0)U20
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= π1(0)f
(
π1(0)U20, π

1(0)U20

)
+ 4<

(
π1(0)f

(
π(β)U11, iL(β)−1A1∂y1π(β)U11

))
+ 2iπ1(0)A1∂y1L(0)−1f

(
π(β)U11, π(β)U11

)
(39)

and (
∂t − ∂1τ(η)∂y1

)
π1(0)U40 = 0.

Equation (39) is the coupled equation on U11 and U20 we were looking for.

2.6 The evolution system for π(β)U11 and π1(0)U20

We simplify here Eqs. (37) and (39), which will yield a system on π(β)U11 and
π1(0)U20 easier to handle. We first need the following proposition.

Proposition 4 i) One has

π(β)A1∂y1L(β)−1A1∂y1π(β) =
1
2
∂2
1τ(η)π(β)∂2

y1
,

and
π1(0)A1∂y1L(0)−1A1∂y1π

1(0) = 0.

ii) For any a,b ∈ RN , we have

π1(0)f(π1(0)a, π1(0)b) = 0.

iii) The first quadratic term in U11 in Eq. (39) is a derivative:

4<
(
π1(0)f

(
π(β)U11, iL(β)−1A1∂y1π(β)U11

))
= −2i∂y1π

1(0)f
(
∂1π(β)U11, π(β)U11

)
.

Proof.
i) The first assertion of this point is very classical and can for instance be found
in [DJMR]. We now prove the second assertion.
For any β1 := (τ, η1) ∈ R2, introduce LI(τ, η1) := τI + A1η1 + L0/i. The
associated characteristic variety CI is parametrized by (τ j

I (η1))j=1...r where, up
to a change of indices, τ1

I , . . . , τ
s
I denotes the τ j

I such that τ j
I (0) = 0.

Since we are in dimension 1, the τ j
I are analytic functions (cf. [K]), and are odd

when j ≤ s (because A1 and L0 are real). We also denote by πj
I(η1) the projector

on kerLI(τ
j
I (η1), η1) when β1 is smooth. These functions can be analytically

extended to R (cf. [K]).
a) We prove here that πj

I(0) = πj(0), for 1 ≤ j ≤ s (where πj
I(0) denotes the

analytic extension of πj
I(η1) to 0).

We know that the characteristic variety C0
I defined as {(τ, η1),det

(
π(0)(τI +

A1η1+L0/i)π(0)
)

= 0} is the tangent cone to CI at (0, 0) (see [L1]); as we are in
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space dimension 1, it is an union of straight lines. But, thanks to decomposition
(35), we can write

π(0)A1π(0) =
p∑

j=1

vjπ
j(0),

so that
C0

I = {τ + vjη1 = 0, j = 1 . . . p}. (40)

On the other hand, since CI is the union of the analytic curves τ j
I , the tangent

cone C0
I is given by

C0
I = {τ − τ j

I
′(0)η1 = 0, j = 1 . . . s}. (41)

Thanks to Eqs. (40),(41), we know that p = s, and that, up to a change of
indices, vj = −τ j

I
′(0).

We also have
πj

I(η1)
(
τ j
I (η1) +A1η1 +

1
i
L0

)
= 0, ∀η1.

Differentiating this equality yields

πI
′(η1)

(
τ j
I (η1) +A1η1 +

1
i
L0

)
+ πj

I(η1)
(
τ j
I
′(η1) +A1

)
= 0. (42)

Taking the limit of this equality when η1 → 0 and multiplying on the right by
πj

I(0) yields
πj

I(0)A1π
j
I(0) = −τ j

I
′(0)πj

I(0).

Since −τ j
I
′(0) = vj , this means that πj

I(0) is the eigenprojector associated to
the eigenvalue vj of πj

I(0)A1π
j
I(0), and therefore πj

I(0) = πj(0).
b) We know introduce

φ(η1) =

(
π1

I (η1) + . . .+ πp
I (η1)

)
A1

(
π1

I (η1) + . . .+ πp
I (η1)

)
− π(0)A1π(0)

η1
,

and prove that

lim
η1→0

φ(η1) = −
p∑

j=1

τ j
I
′(0)πj

I
′(0) +

∑
j,k,k 6=j

(
τk
I
′(0)− τ j

I
′(0)

)
πj

I
′(0)πk

I (0). (43)

We know that πj
I(η1)A1π

j
I(η1) = −τ j

I
′(η1)π

j
I(η1), and, as we have seen in a),

that π(0)A1π(0) = −
∑p

j=1 τ
j
I
′(0)πj

I(0). We therefore have

φ(η1) =
p∑

j=1

τ j
I
′(0)− τ j

I
′(η1)

η1
πj

I(η1) +
p∑

j=1

τ j
I
′(0)

πj
I(0)− πj

I(η1)
η1

+
∑
i 6=j

πj
I(η1)A1π

k
I (η1)

η1

:= A+B + C.
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One then has:
- A →

∑
j τ

j
I
′′(0)πj

I(0) when η1 → 0, and therefore, A → 0, since the τ j
I are

odd for j ≤ p;
- B → −

∑
j τI

′(0)πj
I
′(0) when η1 → 0;

- C →
∑

j 6=k

(
τk
I
′(0)− τ j

I
′(0)

)
πj

I
′(0)πk

I (0) when η1 → 0. In order to prove this
result, we first multiply Eq. (42) on the right by πk

I (η1), for k 6= j.

πI
′(η1)

(
τ j
I (η1) +A1η1 +

1
i
L0

)
πk

I (η1) + πj
I(η1)A1π

k
I (η1) = 0,

and thus, (
τ j
I (η1)− τk

I (η1)
)
πj

I
′(η1)πk

I (η1) + πj
I(η1)A1π

k
I (η1) = 0.

We have therefore∑
i 6=j

πj
I(η1)A1π

k
I (η1) =

∑
i 6=j

(
τk
I (η1)− τ j

I (η1)
)
πj

I
′(η1)πk

I (η1).

We just have to divide this equality by η1 and take the limit when η1 → 0 to
obtain the desired result.

Since φ(η1) = A+B + C, equality (43) is proved.
c) Let us introduce Π(η1) :=

(
π1

I (η1) + . . .+ πp
I (η1)

)
. One has Π(0) = π(0) and

Π is an analytic function of η1; we prove here the following equality

L(0)−1A1π(0) +
(
I − π(0)

)
Π′(0) = 0. (44)

In order to prove this relation, first notice that

p∏
j=1

(
τ j
I (η1) +A1η1 +

1
i
L0

)
Π(η1) = 0.

Differentiating this equality with respect to η1 yields

p∑
k=1

∏
j<k

(
τ j
I (η1) +A1η1 +

1
i
L0

)(
τk
I
′(η1) +A1

) ∏
j>k

(
τ j
I (η1) +A1η1 +

1
i
L0

)
Π(η1)

+
p∏

j=1

(
τ j
I (η1) +A1η1 +

1
i
L0

)
Π′(η1) = 0.

Taking the limit of this expression when η1 → 0 yields

p∑
k=1

∏
j<k

1
i
L0

(
τk
I
′(0) +A1

) ∏
j>k

1
L0

Π(0) +
p∏

j=1

1
i
L0 Π′(0) = 0,

that is (L0

i

)s−1
A1Π(0) +

(L0

i

)sΠ′(0) = 0.
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Multiplying this equality on the left by
(
L(0)−1

)s then yields equality (44).
d) We prove here that

lim
η1→0

φ(η1) = −2π(0)A1L(0)−1A1π(0)

− Π′(0)
∑

j

τ j
I
′(0)πj

I(0)−
∑

j

τ j
I
′(0)πj

I(0)Π′(0). (45)

Indeed, one has

φ(η1) =

(
Π(η1)− π(0)

)
A1Π(η1) + π(0)A1

(
Π(η1)− π(0)

)
η1

,

and therefore
lim

η1→0
φ(η1) = Π′(0)A1Π(0) + Π′(0)A1Π(0).

But thanks to c), it is easy to see that

Π′(0)A1Π(0) = Π′(0)
(
I −Π(0)

)
A1Π(0) + Π′(0)Π(0)A1Π(0)

= −Π(0)A1L(0)−1A1Π(0)−Π′(0)
∑

j

τ j
I
′(0)πj

I(0).

We just have to transpose this equality to find Π(0)A1Π′(0), and (45) is thus
proved.
e) Thanks to Eqs. (43), (45), we find an expression for π(0)A1L(0)−1A1π(0). It
is then easy to see that if we multiply this expression on both side by π1(0), we
find 0, so that the second assertion of the point i) of the proposition is proved.

ii) Thanks to what we have seen in the proof of i), we can write

π1(0)f(π1(0)a, π1(0)b) = lim
η1→0

π1
I (0)f(π1

I (η1)a, π1
I (η1)b)

and since π1
I (η1) = π(β1), with β1 := (τ1

I (η1), η1, 0, . . . , 0) ∈ R1+d, the right-
hand side of the above equation is equal to zero thanks to the Transparency
Condition 4, and the result follows.

iii) The proof of this point can be found in [C].

2

We have thus proved the following theorem.

Theorem 1 Suppose that uε given by

uε(x) =
√
εU(ε, εt,

√
εyII , t, y1,

β · x
ε

),

with
U := U1 +

√
εU2 + εU3 + ε3/2U4 + ε2U5
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is the approximate solution to Eq. (1) given by geometric optics.
If U1 = U11e

iθ + c.c. and U2 = U20 + U21e
iθ + c.c. then one has

π(β)U11 = U11, U21 = 0 and π(0)U20 = U20.

Moreover, π(β)U11 and π1(0)U20 =< π(0)U20 > are transported at the group
velocity −∂1τ(η), that is(

∂t − ∂1τ(η)∂y1

)
π(β)U11 =

(
∂t − ∂1τ(η)∂y1

)
π1(0)U20 = 0,

and must also satisfy

∂Tπ(β)U11 +
i

2
∂2
1τ(η)∂

2
y1
π(β)U11 = 2π(β)f(π(β)U11, π

1(0)U20), (46)

and

∂Tπ
1(0)U20 − π1(0)AII(∂Y )

p∑
j=2

1
∂1τ(η) + vj

∂−1
y1
πj(0)AII(∂Y )π1(0)U20

= −2i∂y1π
1(0)f

(
∂1π(β)U11, π(β)U11

)
+ 2iπ1(0)A1∂y1L(0)−1f

(
π(β)U11, π(β)U11

)
. (47)

3 The approximate solution uε and its proper-
ties

3.1 The leading terms of the ansatz

We want to know the leading term U1 of Ansatz (3). We have seen that U11 =
U11e

iθ + c.c., and that U11(T, Y, t, y1) satisfies the polarisation condition U11 =
π(β)U11, together with the transport equation(

∂t − ∂1τ(η)∂y1

)
U11 = 0,

so that U11(T, Y, t, y1) may be written under the form U11(T, Y, ζ), where ζ :=
y1 + t∂1τ(η).
The second term of the ansatz writes U2 = U20 + U21e

iθ + c.c., and its non-
oscillating mode U20 satisfies the polarisation condition U20 = π1(0)U20 together
with the same transport equation as U11, so that we can also write U20(T, Y, t, y1)
under the form U20(T, Y, ζ).

We have seen that the slow evolution of U11 and U20 are coupled by Eqs.
(46) and (47). Such a system present many difficulties. In this paper, we will
assume that it admits sufficiently regular solutions and pursue the analysis.

Assumption 5 Let U0
11 = π(β)U0

11 and U0
20 = π1(0)U0

20 be in H∞(Rd
Y,ζ). There

exists a T > 0, an integer s sufficiently large, and a unique couple of profiles
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U11,U20 ∈ C
(
[0, T ];Hs(Rd

Y,ζ)
)

satisfying

(S)



∂Tπ(β)U11 +
i

2
∂2
1τ(η)∂

2
ζπ(β)U11 = 2π(β)f(π(β)U11, π

1(0)U20),

∂Tπ
1(0)U20 − π1(0)AII(∂Y )

p∑
j=2

1
∂1τ(η) + vj

∂−1
ζ πj(0)AII(∂Y )π1(0)U20

= −2i∂ζπ
1(0)f

(
∂1π(β)U11, π(β)U11

)
+2iπ1(0)A1L(0)−1∂ζf

(
π(β)U11, π(β)U11

)
,

together with the polarization conditions

U11 = π(β)U11, and U20 = π1(0)U20,

and the initial conditions

U11

∣∣
T=0

= U0
11, and U20

∣∣
T=0

= U0
20.

Remark. In Section 4 we prove that this assumption can be proved for Maxwell-
Bloch systems satisfying a strong transparency condition. We also prove that
this assumption is satisfied in the one dimensionnal case in Section 5. Finally,
we give in Section 6 an existence theorem for a simplified system arising also in
the study of water-waves.

Under this assumption, the profiles U11 and U20 may be determined, and the
other terms follow, as we now see.

3.2 Corrector terms of the ansatz

In this section, we suppose that U11 and U20 are known, and we construct the
missing terms of Ansatz (3) in accordance with the equations found in Section
2.

The leading term U1 is already known since U1 = U11e
iθ + c.c., but we still

have to find U21 to determine the first corrector U2. The only conditions found
so far on U21 are the polarisation condition (14) and the transport equation
(34). We can therefore take U21 = 0.

The second corrector U3 writes U3 = U30 +U31e
iθ + c.c.. The non-oscillating

component satisfies the polarization condition (16), i.e. U30 = π(0)U30, and is
therefore given by Lemma 3.
The component π(β)U31 of the oscillating mode must only satisfy the transport
equation (38) and can therefore be taken equal to 0. The component (I −
π(β))U11 is given in terms of U11 by Eq. (18).

For the corrector U4 = U40 +U41e
iθ +c.c.+U42e

2iθ +c.c., we obtain similarly
(I−π(0))U40 thanks to Eq. (20), and we can take π(0)U40 = 0. The component
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(I − π(β))U41 of the first oscillating mode is given by Eq. (22) and we can take
π(β)U41 = 0. The second harmonic is found using Eq. (23).

Finally, for the last corrector U5 = U50 + U51e
iθ + c.c. + U52e

iθ + c.c., we
obtain (I − π(0))U50 thanks to Eq. (25) and we can take π(0)U50 = 0. The
component (I − π(β))U51 is given by Eq. (27) while π(β)U51 can also be taken
equal to 0. The second harmonic is given by Eq. (28), and is therefore equal to
zero, since U21 = 0.

All the components of the ansatz (3),

U(ε, T, Y, t, y1, θ) :=(
U1 +

√
εU2 + εU3 + ε3/2U4 + ε2U5

)
(ε, T, Y, t, y1, θ)

are therefore known, once Assumption 5 is made. The dependance on t and y1
of all these profiles is indeed a dependance on ζ = y1 + ∂1τ(η)t since they are
all transported at the group velocity. We now give explicitly the expression of
the ansatz we have found

U(ε, T, Y, ζ, θ) = π(β)U11(T, Y, ζ)eiθ + c.c.

+
√
ε π1(0)U20(T, Y, ζ)

+ε
p∑

j=2

−1
∂1τ(η) + vj

∂−1
ζ πj(0)AII(∂Y )π1(0)U20

+iL(β)−1A1∂ζπ(β)U11e
iθ + c.c.

+ε3/2 iL(0)−1A1∂ζπ
1(0)U20 − 2iL(0)−1f(π(β)U11, π(β)U11)

+iL(β)−1AII(∂Y )π(β)U11e
iθ + c.c.

−iL(2β)−1f(U11,U11)e2iθ + c.c.

+ε2 −iL(0)−1A1

p∑
j=2

1
∂1τ(η) + vj

πj(0)AII(∂Y )π1(0)U20

−
(
L(β)−1

(
∂1τ(η) +A1

)
L(β)−1A1∂

2
ζπ(β)U11

−2iL(β)−1f(U11,U20)
)
eiθ + c.c.

3.3 Properties of the ansatz (3)

Now that we have found the ansatz we were looking for, we give a few properties.
The first one concerns regularity.

Proposition 5 If U11 and U20 are in C
(
[0, T ];Hs(Rd

Y,ζ)
)

as asserted in As-
sumption 5, then all the Fourier coefficients Uij, i = 1 . . . 5 and j = 0 . . . 2, are
in C

(
[0, T ];Hs−2(Rd

Y,ζ)
)
.
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Proof.
Thanks to the expression of U given above, the only difficulty is to prove that

π(0)U30 = −
p∑

j=2

1
∂1τ(η) + vj

∂−1
ζ πj(0)AII(∂Y )π1(0)U20

is in C
(
[0, T ];Hs−2(Rd

Y,ζ)
)
.

The crucial point is that the nonlinearity of the second equation of (S) is a
derivative with respect to ζ. If π1(0)U20 and π(β)U11 solve (S), then W :=
∂−1

ζ π1(0)U20 solves

∂TW − π1(0)AII(∂Y )
p∑

j=2

1
∂1τ(η) + vj

∂−1
ζ πj(0)AII(∂Y )W

= 2iπ1(0)f
(
∂1π(β)U11, π(β)U11

)
+ 2iπ1(0)A1L(0)−1<

(
f
(
π(β)U11, π(β)U11

))
.

Since the second member of this equation is in C
(
[0, T ];Hs(Rd

Y,ζ)
)
, (if s is large

enough), then W is also in this space. Since π(0)U30 writes

π(0)U30 = −
p∑

j=2

1
∂1τ(η) + vj

πj(0)AII(∂Y )W,

it is therefore in C
(
[0, T ];Hs−1(Rd

Y,ζ)
)
.

2

We now prove that the corrector term
√
εU2 + . . . + ε2U5 remains smaller

than the leading term U1 for times O(1/ε). In order to do this, we show that the
boundedness condition (4) and the sublinear growth conditions (5) are satisfied.

Proposition 6 The profile U2 satisfies the boundedness condition (4)

∃C > 0, sup
t∈R+

‖U2(·, ·, t, ·, ·)‖L∞([0,T ]×Rd
Y,y1

×T) ≤ C,

The other correctors Ui, i = 3, 4, 5 also satisfy this boundedness condition so
that the sublinear growth condition (5) is a fortiori satisfied.

Proof.
We recall that U2 = π1(0)U20, so that the fact that U2 satisfies the boundedness
condition (4) is a mere consequence of Assumption 5 if s is large enough.
Thanks to the expressions already given, it is also easy to see that the other
correctors Ui, i = 3, 4, 5 are also bounded.

2
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Remark. 1. As seen in the above proposition, all the profiles are bounded,
so that the sublinear growth condition may seem too strong. But it was not
a priori obvious that it would be the case. What happens here is that all the
profiles considered travel at the velocity −∂1τ(η), while sublinear growth occurs
when other velocities are present. To be more precise if w1 and w2 are two
functions such that(

∂t − ∂1τ(η)∂y1

)
w1 = w2, and < w2 >= 0,

then w1 has a sublinear growth. In [L1], we can find a second member w2 which
travels at a different velocity than −∂1τ(η). One then has < w2 >= 0 but
w2 6= 0, and w1 has therefore a sublinear growth but is not bounded. In this
paper, the second member w2 is always equal to 0 so that w1 is bounded.
2. The fact that all the profiles are bounded suggest an improvement of the
precision of our approximation, as we see in the next sections.

3.4 Estimate for the residual

In this section, we prove that the approximate solution defined thanks to the
ansatz we have found is almost a solution of Problem 1, since it provides a small
residual. We first give a regularity result for the residual.

Lemma 4 To the approximate solution uε =
√
εU(ε, εt,

√
εyII , t, y1,

β·x
ε ) corre-

sponds the residual
Lε(∂x)uε − f(uε, uε) = kε(x)

which may be written under the form

kε(x) = K(ε, εt,
√
εyII , y1 + ∂1τ(η)t,

β · x
ε

),

with

K(ε, T, Y, ζ, θ) =
4∑

j=−4

Kj(ε, T, Y, ζ)eijθ,

and the Kj are in C
(
[0, T ];Hs−4(Rd

Y,ζ

)
if U11 and U20 are in Hs as asserted by

Assumption 5.

Proof.
The proof of this lemma is straightforward, once we have proved that the deriva-
tives ∂TU1, ∂TU2, ∂TU3, ∂TU4 and ∂TU5 which appear in the residual are in
C

(
[0, T ];Hs−4(Rd

Y,ζ

)
.

This is clear for ∂TU1 thanks to the first equation of (S).
We have already seen in the proof of Prop. 5 that W = ∂−1

ζ π1(0)U20 is in
C

(
[0, T ];Hs(Rd

Y,ζ

)
. Thanks to the second equation of (S), ∂TU2 is thus in

C
(
[0, T ];Hs−2(Rd

Y,ζ

)
.

Differentiating the second equation of (S) with respect to T and using the
same method as in the proof of Prop. 5 then yields that ∂T∂

−1
ζ U20 is in
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C
(
[0, T ];Hs−2(Rd

Y,ζ

)
. Thanks to the expression given by Lemma 3, we can

then conclude that ∂TU3 is in C
(
[0, T ];Hs−3(Rd

Y,ζ

)
.

The proof that ∂TU4 and ∂TU5 are in C
(
[0, T ];Hs−4(Rd

Y,ζ

)
is left to the reader.

2

Knowing in which spaces things are living, we can give estimates on the
residual.

Proposition 7 i) The Fourier coefficients of the profile K of the residual satisfy

‖Kj‖L∞([0,T ],Hs−4(Rd
Y,ζ)) = O(ε2), for j = −4 . . . 4.

ii) We have a better estimate for the component π1(0)K0 of the non-oscillating
mode

‖π1(0)K0‖L∞([0,T ],Hs−4(Rd
Y,ζ)) = O(ε5/2).

Proof.
This proposition is a direct consequence of the method we have used to find our
approximate solution, since we have cancelled the terms of expansion (6) up to
the power ε3/2. We also have cancelled the componant polarized along π1(0) of
the term in ε2, which yields the improvement stated in ii).

2

Remark. i If the profiles U3, U4 and U5 had a sublinear growth instead of
being bounded, then we would have Kj = o(ε) and π1(0)K0 = o(ε3/2) instead
of O(ε2) and O(ε5/2) respectively.
ii Point ii) of the above proposition is of crucial importance in the proof of the
stability result of the next section.

4 The case of Maxwell-Bloch systems

In the previous section, we have proved that our approximate solution uε is
almost a solution of Problem (1). But the most important thing is to prove
that uε remains close to the exact solution uε. Such a stability property is very
difficult to prove because of resonances (see [JMR2]). The general case remains
at the moment out of reach, and, as done in [C], we will limit ourselves to a
smaller class of problems than those of type (1). Under a strong transparency
assumption we also prove that the nonlinearity in System (S) vanishes, so that
Assumption 5 can be proved in this case.

4.1 General Maxwell-Bloch systems

We now look for solutions of size O(
√
ε) to systems of the form

∂tuε +
∑d1

j=1Aj∂yju
ε + L0

ε uε = f(uε,vε)

∂tvε +
∑d2

j=1Bj∂yjv
ε + M0

ε vε = g(uε,uε),
(48)
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where Aj and Bj denote symmetric real-valued matrices, while L0 and M0 are
skew-symmetric.
The mappings f and g are bilinear mappings and g is symmetric.

For (τ, η) ∈ R1+d, we recall that

L(τ, η) = τI +
d1∑

j=1

Ajηj +
L0

i
,

as well as

AII(η) :=
d1∑

j=2

Ajηj .

We similarly define

M(τ, η) = τI +
d2∑

j=1

Bjηj +
M0

i
,

as well as

BII(η) :=
d2∑

j=2

Bjηj .

The set of all β := (τ, η) ∈ R1+d such that det(L(β)) = 0 is the characteristic
variety of L and is denoted by CL. Similarly, CM denotes the charateristic
variety of M . For any η ∈ Rd, we denote by (−τ l

L(η))l=1...p1 the eigenvalues
of A(η) + L0/i and by (−τ l

M (η))l=1...p2 those of B(η) + M0/i, thus providing
a parametrization of CL and CM . Up to a renumbering, we can suppose that
β = τ1

L(η).
We also denote by πL(β) and πM (β) the orthogonal projectors on ker(τI+A(η)+
L0/i) and ker(τI + B(η) + M0/i) respectively, and by L(β)−1 and M(β)−1

the partial inverses of L(β) and M(β). Similarly, πL(0) and πM (0) are the
orthogonal projectors on the kernel of L(0) and M(0), and L(0)−1 and M(0)−1

their partial inverse.
We finally denote by C0

L and C0
M the characteristic varieties of the operators

πL(0)Lε(∂x)πL(0) and πM (0)Mε(∂x)πM (0) respectively. Thanks to Lemma 2,
we know that πM (0)B1πM (0) admits −∂1τ

1
L(η) as an eigenvalue. The associated

eigenprojector is denoted by π1
M (0), while the projectors associated to the other

eigenvalues vj are denoted πj
M (0), j ≥ 2.

Assumption 1 on the choice of β and Assumption 2 on the long-wave short-
wave resonance are replaced in this new framework by

Assumption 6 i) β is a smooth point of CL and 2β /∈ CL; neither β nor 2β
are in CM .
ii) The plane P tangent to CL at β is tangent to C0

M at (0, 0).
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As systems as (48) are a subclass of systems like (1), all the results proved
above remain valid. In particular, we can construct approximate solutions
(uε, vε) to (48) under the form

uε(x) = Uε
a(εt,

√
εyII , y1 + ∂1τ(η)t,

β · x
ε

),

vε(x) = Vε
a(εt,

√
εyII , y1 + ∂1τ(η),

β · x
ε

),

and where the profiles Uε
a and Vε

a are given by the formula

Uε
a(T, Y, ζ, θ) =

√
ε (πL(β)U11e

iθ + c.c.)

+ε3/2 (iL(β)−1A1∂ζπL(β)U11e
iθ + c.c.)

+ε2 (iL(β)−1AII(∂Y )πL(β)U11e
iθ + c.c.)

+ε5/2 (−
(
L(β)−1(∂1τ

L(η) +A1)L(β)−1A1∂
2
ζπL(β)U11

+2iL(β)−1f(U11,V20)
)
eiθ + c.c.)

and

Vε
a(T, Y, ζ, θ) = ε π1

M (0)V20

−ε3/2

p∑
j=2

1
∂1τL(η) + vj

∂−1
ζ πj

M (0)BII(∂Y )π1
M (0)V20

+ε2 iM(0)−1B1∂ζπ
1
M (0)V20 − 2iM(0)−1g(π(β)U11, π(β)U11)

−iM(2β)−1g(U11,U11)e2iθ + c.c.

−ε5/2 iM(0)−1B1

p∑
j=2

1
∂1τL(η) + vj

πj
M (0)BII(∂Y )π1

M (0)V20.

Remark. One can notice that Uε
a = O(

√
ε) while Vε

a = O(ε) so that u′ε and
v′ε defined as uε =

√
εu′ε and vε = εv′ε are of size O(1). Instead of looking for

solutions of size (O(
√
ε), O(ε)) to (48), we could therefore look for solutions u′ε

and v′ε of size O(1) to
∂tu′

ε +
d1∑

j=1

Aj∂yju
′ε +

L0

ε
u′ε = εf(u′ε,v′ε)

∂tv′
ε +

d2∑
j=1

Bj∂yjv
′ε +

M0

ε
v′ε = g(u′ε,u′ε).

(49)

Such a system belongs to the general class of Maxwell-Bloch systems introduced
and studied in [JMR2].
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4.2 A stability result

The Transparency Condition 4 is not strong enough to allow the proof of a
stability result; that is why we introduce a strong transparency condition, as in
[JMR2] and [C]. This strong transparency condition is satisfied by the physical
Maxwell-Bloch systems, and we also prove that if it is satisfied then the non-
linearity of the second equation of (S) vanishes, so that Assumption 5 can be
proved.

Assumption 7 (Strong transparency condition) There exists C > 0 such
that for all η, η′ and η′′ in Rd, all 1 ≤ j, k ≤ p1 and 1 ≤ l ≤ p2, and all
a,b ∈ CN , one has

‖πM (β′′)g
(
πL(β)a, πL(β′)b

)
‖ ≤ C‖a‖ ‖b‖ |τ j

L(η) + τk
L(η′)− τ l

M (η′′)|,

where β := (τ j
L(η), η) , β′ := (τk

L(η′), η′) et β′′ := (τ l
M (η′′), η′′).

Remark. It is straighforward to see that the Transparency Condition 4 can be
deduced from the above assumption.

The following proposition asserts that under this assumption, the nonlinear-
ity of the second equation of (S) vanishes and that Assumption 5 can therefore
be proved.

Proposition 8 Suppose that the Strong Transparency Assumption 7 is satisfied,
then
i) One has

−π1
M (0)g(∂1πL(β)U11, π(β)U11) + π1

M (0)A1L(0)−1g(π(β)U11, π(β)U11) = 0;

ii) The system (S) reads
∂TU11 +

i

2
∂2
1τ(η)∂

2
ζU11 = 2πL(β)f(πL(β)U11, π

1
M (0)U20),

∂TU20 − π1
M (0)AII(∂Y )

p∑
j=2

1
∂1τL(η) + vj

∂−1
ζ πj

M (0)AII(∂Y )π1
M (0)U20 = 0,

so that Assumption 5 is satisfied.

Proof.
i) Let α be in a neighborhood of 0 in R and take here β = (τ1

L(η+(α/2, 0)), η+
(α/2, 0)), β′ = (τ1

L(−η + (α/2, 0)),−η + (α/2, 0)) and β′′ = (τ1
M (α, 0), (α, 0)).

Expending πM (β′′)g(πL(β′)a, π(β)b) with respect to α near 0 yields, for all a
and b in CN ,

πM (β′′)g(πL(β′)a, π(β)b) = π1
M (0)g(πL(β)a, πL(−β)b)

+ α
[1
2
π1

M (0)g(∂1πL(β)a, πL(−β)b)− 1
2
π1

M (0)g(πL(β)a, ∂1πL(−β)b)

+ (π1
M )′(0)g(π(β)a, π(−β)b)

]
+ o(α).
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The leading term of this expension vanishes thanks to the Transparency Con-
dition 4. Using the fact that π(−β) = π(β) and taking b = a therefore yields

πM (β′′)g(πL(β′)a, π(β)a) (50)
= α

[
π1

M (0)g(∂1πL(β)a, πL(β)a) + (π1
M )′(0)g(π(β)a, π(β)a)

]
+ o(α).

Now, introducing η = η + (0, α/2), η′ = −η + (0, α/2) and η′′ = (α, 0) and
expanding τ1

L(η) + τ1
L(η′)− τ1

M (η′′) yields

τ1
L(η) + τ1

L(η′)− τ1
M (η′′) = 0 + α

[
∂1τ

1
L(η)− ∂1τ

1
M (0)

]
+ o(α),

but thanks to the Long-Wave Short-Wave Resonance Condition 6, we have
∂1τ

1
L(η) = ∂1τ

1
M (0), so that

τ1
L(η) + τ1

L(η′)− τ1
M (η′′) = o(α). (51)

Thanks to the Strong Transparency Condition 7, we know that

‖πM (β′′)g(πL(β′)a, π(β)a)‖
|τ1

L(η) + τ1
L(η′)− τ1

M (η′′)|

must remain bounded for all α. Eqs (50)-(51) say that this is possible if and
only if

π1
M (0)g(∂1πL(β)a, πL(β)a) + (π1

M )′(0)g(π(β)a, π(β)a) = 0. (52)

We now prove that this condition gives the one given in point i) of the propo-
sition. As in the proof of Prp. 4, we write that, for all α in a neighborhood of
0,

π1
M (α)(τ ′′L(α) +A1α+

L0

i
) = 0.

Differentiating this equality with respect to α and taking the limit α→ 0 yields

(π1
M )′(0)

L0

i
+ π1

M (0)
(
(τ1

L)′(0)I +A1) = 0,

and multiplying on the right by L(0)−1 thus gives

(π1
M )′(0)(I − πM (0)) + π1

M (0)A1L(0)−1 = 0.

therefore, one has

(π1
M )′(0)(I − πM (0))g(π(β)a, π(β)a) = −π1

M (0)A1L(0)−1g(π(β)a, π(β)a),

that is, since πM (0)g(π(β)a, π(β)a) = 0,

(π1
M )′(0)g(π(β)a, π(β)a) = −π1

M (0)A1L(0)−1g(π(β)a, π(β)a). (53)

Eqs. (52)-(53) then prove the desired result.
ii) It is a straightforward consequence of point i) that System (S) takes the

form given in the proposition. It is also easy to prove that Assumption 5 can
be proved in this case.
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2

We can now prove a stability result for those Maxwell-Bloch systems.

Theorem 2 Let U0
11 = πL(β)U0

11 and V0
20 = π1

M (0)V0
20 be in H∞(Rd

Y,ζ), and
suppose Assumptions 5, 6 and 7 are satisfied.
Then there exists Tmax > 0 such that
i) For all 0 < T < Tmax, there exists a unique smooth exact solution (uε,vε),
defined on [0, T/ε]× Rd, to Problem (48) with initial conditions

uε|t=0(y) = ε1/2
(
U0

11(0,
√
εyII , y1)ei

η·y
ε + c.c.

)
and

vε|t=0(y) = εV0
20(0,

√
εyII , y1).

ii) We can write uε and vε under the form

uε(x) = ε1/2Uε(εt,
√
εyII , t, y1,

β · x
ε

)

and

vε(x) = εVε(εt,
√
εyII , t, y1,

β · x
ε

),

with Uε and Vε bounded in C
(
[0, T ];Hs(Rd × T)

)
, and we have

‖Uε − 1√
ε
Uε

a‖C
(
[0,T ];Hs(Rd×T)

) + ‖Vε − 1
ε
Vε

a‖C
(
[0,T ];Hs(Rd×T)

) = o(1).

In particular,

1√
ε
‖uε − uε‖L∞([0, T

ε ]×Rd×T) +
1
ε
‖vε − vε‖L∞([0, T

ε ]×Rd×T) = o(1).

Proof.
Existence on a small time intervalle (depending on ε) is given by general theo-
rems. It is therefore sufficient to obtain some bounds in Hs for the solution in
order to prove the existence part of the theorem. Call Mε = Uε − 1√

ε
Uε

a and
N ε = Vε − 1

εV
ε
a. Then Mε and N ε satisfy{

∂T +
1
ε
A1∂ζ +

1√
ε
AII(∂Y ) +

1
ε
∂1τ(η)∂ζ + i

L(βDθ)
ε2

}
Mε

= f(Mε,N ε) + f(Mε,
1
ε
Vε

a) + f(
1√
ε
Uε

a ,N ε) +
Rε

ε3/2

(54)

and {
∂T +

1
ε
B1∂ζ +

1√
ε
BII(∂Y ) +

1
ε
∂1τ(η)∂ζ + i

M(βDθ)
ε2

}
N ε

=
1
ε
g(Mε,Mε) +

2
ε
g(Mε,

1
ε
Uε

a) +
Sε

ε2
,

(55)
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where, thanks to Prop. 7,

|Rε|L∞([0,T ];Hs) = O(ε2)

and
|Sε|L∞([0,T ];Hs) = O(ε2).

Following [JMR2] and [C], we perform the change of functions

P = e−(εA1∂ζ+ε3/2AII(∂Y )+ε∂1τ(η)∂ζ+iL(βDθ)) T
ε2Mε := Sε

1(
T

ε2
)Mε

and

Q = e−(εB1∂ζ+ε3/2BII(∂Y )+ε∂1τ(η)∂ζ+iM(βDθ)) T
ε2N ε. := Sε

2(
T

ε2
)N ε

Note that this kind of groups has also been used in [S], [Gr], [BMN] and [Ga].
The equations satisfied by P and Q write

∂TP = Sε
1(
T

ε2
)f(Sε

1(− T

ε2
)P, Sε

2(− T

ε2
)Q)

+Sε
1(
T

ε2
)f(Sε

1(− T

ε2
)P, 1

ε
Vε

a) + Sε
1(
T

ε2
)f(

1√
ε
Uε

a , S
ε
2(− T

ε2
)Q) + Sε

1(
T

ε2
)
Rε

ε3/2

(56)
and

∂TQ =
1
ε
Sε

2(
T

ε2
)g(Sε

1(− T

ε2
)P, Sε

1(− T

ε2
)P)

+
2
ε
Sε

2(
T

ε2
)g(Sε

1(− T

ε2
)P, 1√

ε
Uε

a) + Sε
2(
T

ε2
)
Sε

ε2
.

(57)

As Sε
1 and Sε

2 are unitary groups on all the Sobolev spaces Hs, we just have to
find estimates on P and Q in L∞T ([0, T ];Hs(Rn

ζ,Y × Tθ) for a T > 0. Denoting
by | · |T the norm associated to this space, Eq. (56) yields

|P|T ≤ CT
(
|P|T |Q|T + |P|T + |Q|T +O(ε1/2)

)
+

∣∣P(T = 0)
∣∣
Hs (58)

where we have used the fact that

|V
ε
a

ε
|T ≤ C, | U

ε
a√
ε
|T ≤ C and |Rε|T = O(ε2).

Moreover, one also has

|∂TP|T ≤ C
(
|P|T |Q|T + |P|T + |Q|T +O(ε1/2)

)
. (59)

The case of Equation (57) is more delicate. One has

Q = Q(T = 0) +
1
ε

∫ T

0

Sε
2(
s

ε2
)g

(
Sε

1(− s

ε2
)P(s), Sε

1(− s

ε2
)P(s)

)
ds

+
2
ε

∫ T

0

Sε
2(
s

ε2
)g

(
Sε

1(− s

ε2
)P, U

ε
a(s)√
ε

)
ds+

∫ T

0

Sε
2(
s

ε2
)
Sε

ε2
ds

= Q(T = 0) + I1 + I2 + I3.
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We now estimate I1, I2 and I3 separatly.
• Estimate of I1:
We use the spectralization of the groups Sε

1 and Sε
2 as follows. Denote by m,

ξ1 and ξII the Fourier dual variables of θ, ζ and Y respectively and introduce
πl

L(η) := πL(τ l
L(η), η) and πl

M (η) := πM (τ l
M (η), η).

We then have

̂
Sε

1(
T

ε2
) =

∑
l

πl
L

(
ηm+ (εξ1, ε3/2ξII)

)
e−i[mτ+ε∂1τ(η)ξ1−τ l

L(ηm+(εξ1,ε3/2ξII)] T
ε2

and

̂
Sε

2(
T

ε2
) =

∑
l

πl
M (ηm+ (εξ1, ε3/2ξII))ei[mτ+ε∂1τ(η)ξ1−τ l

M (ηm+(εξ1,ε3/2ξII)] T
ε2 .

Denoting by F(I1)(m, ξ) the Fourier transform of I1 we have therefore

F(I1)(m, ξ) =
1
ε

∫ T

0

∑
p

∑
l

∑
l′

∑
l′′

∫
πl

M

(
ηm+ (εξ1, ε3/2ξII)

)
× e−i[mτ+ε∂1τ(η)ξ1−τ l

M (ηm+(εξ1,ε3/2ξII)] s
ε2

× g
(
πl′

L

(
ηp+ (εη1, ε3/2ηII)

)
ei[pτ+ε∂1τ(η)η1−τ l′

L (ηp+(εη1,ε3/2ηII))] s
ε2 P̂p(η),

πl′′

L

(
η(m− p) + (ε(ξ1 − η1), ε3/2(ξII − ηII))

)
ei[(m−p)τ+ε∂1τ(η)(ξ1−η1)−τ l′′

L (η(m−p)+(ε(ξ1−η1),ε
3/2(ξII−ηII))] s

ε2

P̂m−p(ξ − η)
)
dηds

and thus

F(I1)(m, ξ) =
1
ε

∫ T

0

∑
P

∑
l

∑
l′

∑
l′′

ei[τ l
M (ηm+(εξ1,ε3/2ξII))−τ l′

L (ηp+(εη1,ε3/2ηII))−τ l′′
L (η(m−p)+(ε(ξ1−η1),ε

3/2(ξII−ηII)))] s
ε2

πl
M

(
ηm+ (εξ1, ε3/2ξII)

)
g

(
πl′

L

(
ηp+ (εη1, ε3/2ηII)

)
P̂p(η),

πl′′

L

(
η(m− p) + (ε(ξ1 − η1), ε3/2(ξII − ηII))

)
P̂m−p(ξ − η)

)
dηds

Integrating by parts and using Assumption 7 yields

|F(I1)(m, ξ)| ≤ Cε

∫ T

0

∑
p

∫
|P̂p(η)||∂T P̂m−p(ξ − η)|dηds

+ Cε
∑

p

∫
|P̂p(η)||P̂m−p(ξ − η)|dη(T )

+ Cε
∑

p

∫
|P̂p(η)||P̂m−p(ξ − η)|dη(0).
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It follows that

|I1|T ≤ CεT |P|T |∂TP|T + Cε
(
|P|2T + |P(T = 0)|2Hs

)
. (60)

• Estimate of I2:
Recall that

Uε
a(T, Y, ζ, θ) =

√
ε
(
πL(β)U11e

iθ + c.c.
)

+ ε3/2
(
iL(β)−1A1∂ζπL(β)U11e

iθ + c.c.
)

+ε2
(
iL(β)−1AII(∂Y )πL(β)U11e

iθ + c.c.
)

+O(ε5/2)

As in [C], introduce
Ũε

11 = 1{|(∂ζ ,∂Y )|≤ 1√
ε
}U11.

The following lemma is a direct consequence of the decreasing properties asso-
ciated to the regularity of U11.

Lemma 5 The difference between U11 and Ũε
11 is controled by

|Ũε
11 − U11|T ≤ Cε2|U11|L∞(0,T ;Hs+4).

As β is a smooth point of CL there exists a local parametrization η 7→ τ l0
L (η)

defined on a neighborhood of η such that τ l0
L (η) = τ . We denote by πl0

L (η) the
associated spectral projector. Thanks to [C], we know that for all j

iL(β)−1Ajπ
l0
L (η) = −i∂jπ

l0
L (η),

so that
1√
ε
Uε

a = πl0
L (η + (ε∂ζ , ε

3/2∂Y ))Ũε
11e

iθ + c.c.+ ε2Tε

with
|Tε|T ≤ C

since πl0
L (ξ) is smooth near ξ = η and since the spectrum of Ũε

11 is included in
|ξ| ≤ 1√

ε
.

We can therefore write

I2 =
2
ε

∫ T

0

Sε
2(
s

ε2
)g

(
Sε

1(− s

ε2
)P(s), πl0

L (η + (ε∂ζ , ε
3/2∂Y )

)
Ũε

11 + c.c.)ds

+
√
ε

∫ T

0

Sε
2(
s

ε2
)g

(
Sε

1(− s

ε2
)P(s), Tε)ds

= I21 + I22.

It is clear that
|I22|T ≤ CT

√
ε|P|T . (61)

Now remark that

τ l0
L (η + ε(ξ1,

√
εξII)) = τ l0

L (η) + εξ1∂1τ(η) +O(ε2)
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since ∂IIτ(η) = 0. Defining

Ŵε
11 = ei[τ

l0
L (η+ε(ξ1,

√
εξII))−τ

l0
L (η)−εξ1∂1τ(η)] T

ε2 πl0
L (η + (εξ1, ε3/2ξII))

̂̃Uε
11.

we thus obtain
|Wε

11|T ≤ C et |∂TWε
11|T ≤ C (62)

and we can write

πl0
L (η + (ε∂ζ , ε

3/2∂Y ))Ũε
11 = Sε

1(− T

ε2
)Wε

11

and

I21 =
2
ε

∫ T

0

Sε
2(
s

ε2
)g

(
Sε

1(− s

ε2
)P(s), Sε

1(− s

ε2
)Wε

11

)
ds

It follows that I21 has the same form as I1 and an integration by parts yields,
using (62),

|I21|T ≤ CεT
(
|∂TP|T + |P|T

)
+ Cε

(
|P|T + |P(T = 0)|Hs

)
. (63)

It follows from Eqs. (61) and (63) that

|I2|T ≤ CT
√
ε
(
|∂TP|T + |P|T

)
+ Cε

(
|P|T + 1

)
. (64)

• Estimate of I3:

We first recall that thanks to Prop. 7 we have
Sε

ε2
= Sε

1 +O(ε) and

Sε
1 = Sε

10(T, ζ, Y ) + (Sε
12e

2iθ + c.c.),

as well as π1
M (0)Sε

10 = 0, thanks to point ii) of this same proposition.
We now introduce the notation

Ij
3 =

∫ T

0

Sε
2(
s

ε2
)Sε

1je
ijθds.

As Sε
1j is smooth enough, we have

|1|(∂ζ ,∂Y )|≥ 1√
ε
Sε

1j |T ≤ Cε.

and thus

|Ij
3 |T ≤

∣∣∣∣∣
∫ T

0

Sε
2(
s

ε2
)1|(∂ζ ,∂Y )|≤ 1√

ε
Sε

1je
ijθds

∣∣∣∣∣
T

+ Cε.

For j = 2, since 2β is not in the characteristic variety of M , an integration by
parts yields

|I2
3 |T ≤ Cε2 + Cε ≤ Cε. (65)
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For j = 0, one has

F(I0
3 ) =

∫ T

0

∑
l

ei(ε∂1τ(η)ξ1−τ l
M (ε(ξ1,

√
εξII))) s

ε2 πl
M (ε(ξ1,

√
εξII))

× 1{|(∂ζ ,∂Y )|≤ 1√
ε
}Ŝε

10(s, ξ)ds+O(ε)

:=
∑

l

F(I0
3 (l)) +O(ε).

We may encounter three cases;
i) τ l

M (ε(ξ1,
√
εξII)) → τ l

M (0) 6= 0 when ε tends towards zero.
In this case, an integration by parts yields∣∣∣∣∣∣

∑
l,τ l

M (0) 6=0

I0
3 (l)

∣∣∣∣∣∣
T

≤ Cε2.

ii) If τ l
M (ε(ξ1,

√
εξII)) ∼ ε∂1τ

l
M (0)ξ1 and ∂1τ

l
M (0) 6= ∂1τ(η). In this case, the

phase does not vanish except in a neighborhhod of 0, and a standard argument
yields ∣∣∣∣∣∣

∑
l,∂1τ l

M (0) 6=∂1τ(η)

I0
3 (l)

∣∣∣∣∣∣
T

= o(1).

iii) If τ l
M (ε(ξ1,

√
εξII)) ∼ ε∂1τ(η)ξ1. In this case, we cannot expect anything

from the phase; however, we have the following lemma.

Lemma 6 If ∂τ l
M (0) = ∂1τ(η) then we have

lim
ε→0

πl
M (ε(ξ1,

√
εξII))(1− π1

M (0)) = 0.

Proof.
First recall that π1

M (0) is the spectral projector of πM (0)B1πM (0) associated to
the eigenvalue −∂1τ(η).
The mapping

ε 7→ πl
M

(
ε(ξ1,

√
εξII)

)
is analytical and bounded for ε small enough and ε 6= 0. Thanks to [K], we can
therefore extend this function analytically to 0. We denote by πl

M (0) the value
of this extension.
By definition of πl

M

(
ε(ξ1,

√
εξII)

)
, one has(

τ l
M (ε(ξ1, ξII)) + εB1ξ1 + ε3/2BII(ξII) +

M0

i

)
πl

M

(
ε(ξ1,

√
εξII)

)
= 0. (66)

Multiplying this expression on the left by πM (0), dividing it by ε and finally
taking the limit when ε→ 0 yields

πM (0)
(
ξ1∂1τ

l
M (0) +B1ξ1

)
πl

M (0) = 0.
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As we have ∂1τ
l
M (0) = ∂1τ(η), we can conclude that

πM (0)B1π
l
M (0) = −∂1τ(η)πM (0)πl

M (0),

and we just have to prove that the range of πl
M (0) is containded in the range of

πM (0) to complete the proof.
But taking the limit when ε→ 0 in Eq. (66), yields L0π

l
M (0) = 0, which proves

the desired result.

2

It follows that I0
3 → 0 when ε→ 0 and we thus obtain

lim
ε→0

I3 = 0. (67)

It follows from (60), (64) and (67) that

|Q|T ≤ |Q(T = 0)|Hs + CεT |P|T |∂TP|T + Cε
(
|P|2T + |P(T = 0)|Hs

)
+ C

√
εT

(
|∂TP|T + |P|T

)
+ Cε(|P |T + 1) + o(1) (68)

Thanks to (58), (59) and (68), we can end the proof of the theorem as in [C].

2

5 The one dimensionnal case

We consider in this section one dimensionnal problems which belong to the
general class (1). They read(

∂t +A1∂1)uε +
L0

ε
uε = f(uε,uε). (69)

As said in the introduction, one seeks in this case approximate solutions to
this system under the form

uε(x) =
√
εU(ε, εt, t, y1,

β · x
ε

),

with

U(ε, T, t, y1, θ) :=(
U1 +

√
εU2 + εU3 + ε3/2U4 + ε2U5

)
(ε, T, t, y1, θ).

We have also seen that the long-wave/short wave resonance condition reduces
in this case to the usual rectification condition.

The study of this one dimensionnal case can easily be deduced from the
multi-dimensionnal study made in the previous sections.
The following theorem gives the evolution equations that the leading terms of
the ansatz must satisfy in order for uε to be a good approximation of the exact
solution uε.

37



Theorem 3 Suppose that uε given by

uε(x) =
√
εU(ε, εt, t, y1,

β · x
ε

),

with
U := U1 +

√
εU2 + εU3 + ε3/2U4 + ε2U5

is the approximate solution to Eq. (69) given by geometric optics.
If U1 = U11e

iθ + c.c. and U2 = U20 + U21e
iθ + c.c. then one has

π(β)U11 = U11, U21 = 0 and π(0)U20 = U20.

Moreover, π(β)U11 and π1(0)U20 =< π(0)U20 > are transported at the group
velocity −∂1τ(η), that is(

∂t − ∂1τ(η)∂y1

)
π(β)U11 =

(
∂t − ∂1τ(η)∂y1

)
π1(0)U20 = 0,

and must also satisfy

∂Tπ(β)U11 +
i

2
∂2
1τ(η)∂

2
y1
π(β)U11 = 2π(β)f(π(β)U11, π

1(0)U20), (70)

and

∂Tπ
1(0)U20 = −2i∂y1π

1(0)f
(
∂1π(β)U11, π(β)U11

)
+ 2iπ1(0)A1∂y1L(0)−1<

(
f
(
π(β)U11, π(β)U11

))
. (71)

The system that π(β)U11 and π1(0)U20 must solve is simpler than the system
(S) found in the multi-dimensionnal case since the dispersive term ∂−1

ξ disap-
pears. The system found here can be solved, so that we do not need to do an
assumption like Assump. 5.
Since the dependance of π(β)U11 and π1(0)U20 on t and y1 is made through
ζ := y1 + t∂1τ(η), we can write π(β)U11(T, t, y1) and π1(0)U20(T, t, y1) under
the form π(β)U11(T, ζ) and π1(0)U20(T, ζ). We then have the following theorem.

Theorem 4 Let U0
11 = π(β)U0

11 and U0
20 = π1(0)U0

20 be in Hs(Rζ) for s ≥ 0.
There exists a T > 0 and a unique couple of profiles U11,U20 ∈ C

(
[0, T ];Hs(Rζ)

)
satisfying

(S1)


∂Tπ(β)U11 +

i

2
∂2
1τ(η)∂

2
ζπ(β)U11 = 2π(β)f(π(β)U11, π

1(0)U20),

∂Tπ
1(0)U20 = −2i∂ζπ

1(0)f
(
∂1π(β)U11, π(β)U11

)
+2iπ1(0)A1L(0)−1∂ζ<

(
f
(
π(β)U11, π(β)U11

))
,

together with the polarization conditions

U11 = π(β)U11, and U20 = π1(0)U20,
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and the initial conditions

U11

∣∣
T=0

= U0
11, and U20

∣∣
T=0

= U0
20.

Proof.
The theorem will be proved if we can have an existence/uniqueness result for a
general system writing {

∂Tu+ iλ∂2
ζu = f1(u, v)

∂T v = ∂ζf2(u, u),
(72)

where λ ∈ R\{0}, f1 and f2 are two bilinear mappings and u and v are vector
valued functions defined on [0, T ]×Rζ . This system is completed with the initial
conditions

u(T = 0) = u0 ∈ H2(R), and v(T = 0) = v0 ∈ H1(R).

A direct proof using Picard iterates cannot yield the result for a system like
(72) since we must deal with the loss of a derivative because of the term ∂ζ in
front of the second member of the equation. In order to overcome this difficulty,
we use a technique introduced in [OT] for the Zakharov equations. We thus
introduce the following system.

∂Tw + iλ∂2
ζw = f1(w, v) + f1(u0 +

∫ T

0

w, ∂T v)

∂T v = ∂ζf2(u, u)

(∂2
ζ − 1)u =

i

λ
w − u0 −

∫ T

0

w − 1
λ
f1(u0 +

∫ T

0

w, v),

(73)

together with the initial conditions

v(T = 0) = v0, and w(T = 0) = −iλu′′0 + f1(u0, v0) ∈ L2(R).

This system is formally obtained by differentiating the first equation in (72)
with respect to T and introducing w = ∂Tu. The problem due to the loss of
derivatives has disappeared from this new formulation.
The third equation in (73) gives u in terms of v and w thanks to an elliptical
inversion. Using the expression of u thus found, the first two equations of (73)
write in terms of v and w.
It is easy to show using classical Picard iterates that this system of two equations
on v and w admits a unique solution (v, w) ∈ C

(
[0, T ];H1(R) × L2(R)

)
, for a

T > 0, and satisfying (v, w)(T = 0) = (v0, w0).
Once v and w are known, we can find u thanks to the formula

u = (∂2
ζ − 1)−1

( i
λ
w − u0 −

∫ T

0

w − 1
λ
f1(u0 +

∫ T

0

w, v)
)
.

The system (73) thus admits a unique solution (u, v, w) ∈ C
(
[0, T ];H2(R) ×

H1(R)× L2(R)
)

such that (v, w)(T = 0) = (v0, w0). The proof of the theorem
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will therefore be complete once we have proved that u ∈ C1
(
[0, T ];L2(R)

)
with

∂Tu = w, and that u(T = 0) = u0.
Differentiating the third equation in (73) with respect to T , one gets

(∂2
ζ − 1)∂Tu =

i

λ
∂Tw − w − 1

λ
∂T f1(u0 +

∫ T

0

w, v). (74)

But thanks to the first equation of (73) one has

(∂2
ζ − 1)w =

i

λ
∂Tw − w − 1

λ
∂T f1(u0 +

∫ T

0

w, v),

so that we can conclude to the equality ∂Tu(T ) = w(T ) in H−2(R). But
it is easy to see thanks to (74) that ∂Tu is in C

(
[0, T ];L2(R)

)
, so that u ∈

C1
(
[0, T ];L2(R)

)
.

Using the third equation of (73) and the initial conditions associated to this
system, one gets u(T = 0) = u0 and the proof of the theorem is thus complete.

2

The above theorem gives the leading oscillating term and the leading non-
oscillating term of the ansatz. As done previously for the multi-dimensionnal
case, we can determine completely our ansatz thanks to these two profiles. Here
again, a stability property for the approximate solution uε can be proved, but
only in the case of systems of the form (48).

6 About Prop. 1 and Assumption 5

6.1 Proof of Prop. 1

More precisely, we prove the following proposition.

Proposition 9 Suppose that Assumptions 1 and 2 are satisfied and assume that
τ ′(η) · η0 6= 0.

Then there exists a problem (̃1) in one-to-one correspondance with problem (1),
and for which the contact direction and the group speed are colinear..

Proof.
We can always suppose that β0 as defined in the introduction is of the form
β0 = (1, η0

1 , 0, . . . , 0).
Let P = (pjk) be an invertible matrix; to any function u(t, y) we associate the
function ũ defined as

ũ(t, y) := u(t, P−1y).

Then, if u solves (1), i.e. if

Lε(∂x)u+ f(u, u) = 0,
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then ũ solves (̃1),
L̃ε(∂x)ũ+ f(ũ, ũ) = 0,

where

L̃ε(∂x) := ∂T +
d∑

j=1

Ãj∂j +
L0

ε
and Ãj :=

d∑
k=1

pjkAk.

We also introduce the operators L̃(β) and π̃(β) linked to (̃1), and whose defini-
tion is straightforward. To β we also associate β̃ defined as β̃ := (τ , (P−1)T η).
a) We prove here that π̃(β̃) = π(β). Indeed, one has

L̃(β̃) = τ +
d∑

j=1

Ãj η̃j
+
L0

i

= τ +
d∑

j=1

( d∑
k=1

pjkAk

)
η̃

j
+
L0

i

= τ +
d∑

k=1

( d∑
j=1

pjkAk

)
η̃

j
+
L0

i

= τ +
d∑

k=1

(
Pek · η̃

)
Ak +

L0

i
,

where (e1, . . . , ed) denotes the canonical basis of Rd.
Since η̃ = (P−1)T η, one has Pek · η̃ = η

k
, and therefore

L̃(β̃) = τ +
d∑

j=1

Ajηj
+
L0

i
,

that is, L̃(β̃) = L(β). The kernels of these matrices are therefore the same, and
thus, we have π̃(β̃) = π(β).
b) Denoting by τ̃(η) a parametrization of CL̃, we now prove that τ̃ ′(β̃) =
(∂1τ(β), 0, . . . , 0).
We know that

π̃(β̃)Ãj π̃(β̃) = −∂j τ̃(β̃)π̃(β̃),

which, thanks to the result of a), reads

π(β)Ãjπ(β) = −∂j τ̃(β̃)π(β).

We now say which matrix P we take. Denoting by lj its line vectors, we take
l1 = e1, and for (l2, . . . , ld) any basis of the orthogonal hyperplane to τ ′(β).
Since we have supposed that τ ′(β) · η0 6= 0, i.e. that τ ′(β) · e1 6= 0, P is
invertible.
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We then have π(β)Ã1π(β) = π(β)A1π(β), and since this last quantity is equal
to −∂1τ(β)π(β), we can conclude that ∂1τ̃(β̃) = ∂1τ(β). When j ≥ 2, one has

π(β)Ãjπ(β) =
d∑

k=1

pjkπ(β)Akπ(β)

= −
d∑

k=1

pjk∂kτ(β)

= −lj · τ ′(β)
= 0

since (lj)j≥2 is a basis of the orthogonal hyperplane to τ ′(β).
We therefore have ∂j τ̃(β̃) = 0 for j ≥ 2, so that

τ̃ ′(β̃) = (∂1τ(β), 0, . . . , 0).

c) Denoting by C̃0 the tangent cone at (0, 0) to CL̃, we now prove that the
tangent plane P̃ to CL̃ at β̃ is also tangent to C̃0 at β0.
Thanks to the results of b), we know that the vector −→n := (1,−∂1τ(β), 0, . . . , 0)
is normal to P̃. We therefore have to show that it is also normal to C̃0 at β0.
With arguments similar to those used in a), we can prove that

(τ, η) ∈ C0 ⇐⇒ (τ, (P−1)T η) ∈ C̃0,

so that if τ0(η) is a parametrization of C0, then τ̃0(η) := τ0(PT η) is a parametri-
zation of C̃0. We have therefore

τ̃0 ′(η0) = τ0 ′(PT η0)PT

= τ0 ′(η0)PT ,

since η0 = e1. But Assumption 2 says that τ0 ′(η0) = τ ′(β), so that one has
τ̃0 ′(η0) = τ ′(β)PT , and hence ∂j τ̃

0(η0) = τ ′(β) · lj for all j. Thanks to the
definition of the lj , this yields

τ̃0 ′(η0) = (∂1τ(β), 0, . . . , 0),

and therefore −→n = (1,−∂1τ(β), 0, . . . , 0) and is thus normal to C̃0 at β0, as we
wanted to prove.
d) We have thus proved that for the problem (̃1), Assumptions 1 and 2 remain
true, and that Assumption 1 is also satisfied.

2
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6.2 An existence theorem

In Assumption 5 we have supposed the existence and uniqueness of a regular
solution to the coupled problem (S) which gives the leading terms of our ap-
proximate solution. We have not proved yet this existence/uniqueness theorem,
but we give here an existence theorem for a simplified version of system (S)
which also appears in the study of water waves (see [L2] and [Su]). This system
reads

(T)
{
i∂tu+ ∂2

1u = u∂1v
∂tv + ∂−1

1 ∂2
2v = −|u|2,

where ∂1 and ∂2 denote the partial derivative with respect to the first and the
second space coordinate respectively. We want v to be real valued, while u may
take complex values.
The second equation does not make sense since the operator ∂−1

1 ∂2
2 does not act

on distributions. However, the following integral equation (used in Theorem 9)
makes sense:

v = e∂−1
1 ∂2

2 tv0 −
∫ t

0

e∂−1
1 ∂2

2(t−s)|u|2(s)ds,

since the group e∂−1
1 ∂2

2 t acts on every Sobolev spaceHs, and for u ∈ L∞(0, T ;L2),
|u|2 lies in L∞(0, T ;Hs) for some negative s.
This system may be seen as a simplified version of (S) in space dimension equal
to 2 where u plays the role of π(β)U11, and ∂1v the role of π1(0)U20.
Throughout this section, the Fourier dual variable of y1 and y2 are denoted by
ξ1 and ξ2 respectively.

6.2.1 The regularized problem

In order to define a regularized problem associated to (T), we introduce, for
any µ > 0, the operateur ∂µ whose symbol is given by

i
µ+ ξ21
ξ1

.

The operator ∂−1
µ is therefore given by the symbol

−i ξ1
µ+ ξ21

,

which is also used to regularize the KP equation in R2 (see [IMS]).
In the following lemma, we give some of the properties of these operators.

Lemma 7 i) ∂µ and ∂−1
µ are anti-adjoints.

ii) If ϕ is a real-valued function, then ∂µϕ and ∂−1
µ ϕ are also real-valued.

Proof.
i) This is a consequence of the fact that the symbols of ∂µ and ∂−1

µ are purely
imaginary.
ii) It follows from the fact that these symbols are also odd.
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2

We can now define the regularized problem. For ε > 0 and µ > 0,

(Tε,µ)
{
i∂tu+ ∂2

1u = u∂1v
∂t(1 + ε∆2)v + ∂−1

µ ∂2
2v = −|u|2

The end of this section is devoted to the proof of the following theorem.

Theorem 5 i) Let (u0, v0) ∈ L2 × H5/2(R2). There exists a unique solution
(u, v) ∈ C

(
R;L2(R2)×H5/2(R2)

)
∩C1

(
R;H−2(R2)×H5/2(R2)

)
of (Tε,µ) with

initial values (u, v)(t = 0) = (u0, v0).
ii) If (u0, v0) ∈ H2 ×H5, then (u, v) ∈ C

(
R;H2 ×H5

)
∩ C1

(
R;L2 ×H7

)
.

Proof.
Solving (Tε,µ) in the spaces given in the theorem is equivalent to solving the
two following integral equations

u = S1(t)u0 − i

∫ t

0

S1(t− s)u∂1v(s)ds (75)

and

v = S2(t)v0 −
∫ t

0

S2(t− s)(1 + ε∆2)−1|u|2(s)ds, (76)

where
S1(t) := ei∂2

1 t and S2(t) := e−∂−1
µ ∂2

2(1+ε∆2)−1t

are two unitary groups on L2.
For (u, v) ∈ C

(
R;L2 ×H5/2(R2)

)
, let us introduce

C(u, v) =
(
C1(u, v), C2(u, v)

)
with

C1(u, v) = S1(t)u0 − i

∫ t

0

S1(t− s)u∂1v(s)ds (77)

and

C2(u, v) = S2(t)v0 −
∫ t

0

S2(t− s)(1 + ε∆2)−1|u|2(s)ds. (78)

We also introduce the space XT := C
(
[0, T ];L2(R2) ×H5/2(R2)

)
and consider

its natural norm

‖(u, v)‖XT
:= max

(
|u|L∞([0,T ];L2), |v|L∞([0,T ];H5/2)

)
.

For any R > 0, we also denote by BR the ball of XT with radius R. We can
now state the following lemma.

Lemma 8 Let R := 2 max
(
|u0|L2 , |v0|H5/2

)
.

There exists T1 > 0 such that for all T ≤ T1, the application C maps BR into
itself.
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Proof.
One has

|C1(u, v)|L∞([0,T ];L2) ≤ |u0|L2 + T |u∂1v|L∞([0,T ];L2)

≤ |u0|L2 + T |u|L∞([0,T ];L2)|∂1v|L∞([0,T ];L∞)

≤ |u0|L2 + C1T |u|L∞([0,T ];L2)|v|L∞([0,T ];H5/2), (79)

since ∂1v ∈ H3/2(R2) ⊂ L∞.
We also have

|(1−∆)5/4C2(u, v)|L∞([0,T ];L2) ≤ |v0|H5/2

+ T
∣∣(1−∆)5/4(1 + ε∆2)−1|u|2

∣∣
L∞([0,T ];L2)

,

but ∣∣(1−∆)5/4(1 + ε∆2)−1|u|2
∣∣
L∞([0,T ];L2)

≤ C
∣∣(1−∆)3/4|u|2

∣∣
L∞([0,T ];L2)

and ∣∣|u|2∣∣
H−1−α ≤ C

∣∣|u|2∣∣
L1 ,

for any α > 0. Taking α = 1/2 thus yields∣∣|u|2∣∣
H−3/2 ≤ C

∣∣|u|2∣∣
L1 = C|u|2L2 .

We have therefore

|(1−∆)5/4C2(u, v)|L∞([0,T ];L2) ≤ |v0|H5/2 + C2T |u|2L∞([0,T ];L2). (80)

With R = 2 max
(
|u0|L2 , |v0|H5/2

)
and (u, v) ∈ BR, (79) yields

|C1(u, v)|L∞([0,T ];L2) ≤
R

2
+ C1TR

2,

and (80) yields

|C2(u, v)|L∞([0,T ];H5/2) ≤
R

2
+ C2TR

2.

With T1 = min(1/2C1R, 1/2C2R) and T ≤ T1, we have therefore ‖C(u, v)‖XT
≤

R, and Lemma 8 is thus proved.

2

We now prove another lemma before pursuing the proof of the theorem.

Lemma 9 There exists T2 > 0 such that for all T ≤ T2, C is a contraction on
the ball BR of XT .
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Proof.
Let (u, v) and (ũ, ṽ) in XT such that (u, v)(t = 0) = (ũ, ṽ)(t = 0) = (u0, v0).
One has

C1(u, v)− C1(ũ, ṽ) = −i
∫ t

0

S1(t− s)(u∂1v − ũ∂1ṽ)ds,

so that∣∣C1(u, v)− C1(ũ, ṽ)
∣∣
L∞([0,T ];L2)

≤ T
(
|(u− ũ)∂1v|L∞([0,T ];L2)

+ |ũ(∂1v − ∂1ṽ)|L∞([0,T ];L2)

)
≤ T

(
C1|u− ũ|L∞([0,T ];L2)|v|L∞([0,T ];H5/2)

+ C1|ũ|L∞([0,T ];L2)|v − ṽ|L∞([0,T ];H5/2)

)
.

If (u, v) ∈ BR and (ũ, ṽ) ∈ BR, one then has∣∣C1(u, v)− C1(ũ, ṽ)
∣∣
L∞([0,T ];L2)

≤ 2C1TR‖(u, v)− (ũ, ṽ)‖XT
, (81)

and one can show in the same way that∣∣C2(u, v)− C2(ũ, ṽ)
∣∣
L∞([0,T ];H5/2)

≤ 2C2TR‖(u, v)− (ũ, ṽ)‖XT
, (82)

and the lemma is thus proved if we take T2 = 1/4C2R.

2

Thanks to those two lemma, the proof of the following proposition is straight-
forward.

Proposition 10 For all (u0, v0) ∈ L2 × H5/2, there exists a unique maximal
solution (u, v) ∈ C

(
[0, Tmax[;L2 × H5/2

)
to (Tε,µ) such that (u, v)(t = 0) =

(u0, v0).
Moreover, if Tmax <∞,then

|u|L2(t) + |v|H5/2(t) →∞, when t→ Tmax.

Once the next proposition will be showed, the proof of point i) of Theorem
5 will be complete.

Proposition 11 One has Tmax = +∞ (where Tmax is defined in Prop. 10)
and for all t ∈ R, one has ( ∫

R2
|u|2

)
(t) =

∫
R2
|u0|2.

Proof.
Let (u, v) be as given by Prop. 10. We have

i∂tu+ ∂2
1u = u∂1v, (83)
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and u ∈ C
(
[0, Tmax), L2

)
∩ C1

(
[0, Tmax),H−2

)
.

Let ρα(y1, y2) be a regularizing sequence defined on R2
y. We then take the

convolution product of ρα and (83). The L2 scalar product of each term of the
equation thus obtained with ρα ∗ u is well defined. Taking the imaginary part
yields

1
2
∂t

∫
|ρα ∗ u|2 = =

( ∫
ρα ∗ (u∂1v)(ρα ∗ u)

)
.

Integrating this equality with respect to the time variable t then yields∫
|ρα ∗ u|2(t)−

∫
|ρα ∗ u0|2 = 2

∫ t

0

=
( ∫

ρα ∗ (u∂1v)(ρα ∗ u)
)
.

But since u ∈ C
(
[0, Tmax), L2

)
, we have ρα ∗ u(t) → u(t) for all t when α→ 0

Moreover, one has u∂1v ∈ C
(
[0, Tmax), L2

)
, so that ρα ∗ (u∂1v)(t) → u∂1v(t)

for all t. We have therefore∫
ρα ∗ (u∂1v)ρα ∗ u(t) →

∫
|u|2∂1v(t),

when α→ 0, and thus

=
( ∫

ρα ∗ (u∂1v)ρα ∗ u(t)
)
→ 0.

We now prove a domination property. One has∣∣= ∫ (
ρα ∗ (u∂1v)ρα ∗ u(t)

)∣∣ ≤ |ρα ∗ (u∂1v)|L2 |ρα ∗ u|L2

≤ |u∂1v|L2 |u|L2 ≤ R3,

with R such that (u, v) is in the ball BR of XT .
Thanks to Lebesgue’s dominated convergence theorem, we have therefore∫ t

0

=
( ∫

ρα ∗ (u∂1v)ρα ∗ u
)
ds→ 0,

when α→ 0, and we have thus proved that |u|L2(t) = |u0|L2 for all t.
Moreover, Inequality (80) applied to C2(u, v) = v yields, for all T < Tmax,

|v|L∞([0,T ];H5/2) ≤ |v0|H5/2 + C2T |u|2L∞([0,T ];L2)

= |v0|H5/2 + C2T |u0|2L2 .

Therefore, if Tmax <∞, we have

|v|L∞([0,Tmax);H5/2) ≤ |v0|H5/2 + C2Tmax|u0|2L2 ,

and
|u|L∞([0,Tmax);L2) = |u0|L2 ,

which is in contradiction with the explosion condition of Prop. 10. We have
therefore Tmax = +∞ and the proposition is thus proved.
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We now prove point ii) of the theorem, which concerns the regularity of the
solutions. Let (u0, v0) be in H2×H5. Solving the Cauchy problem in H2×H5

locally in time does not raise any difficulty, and we omit the proof. It remains
to show that the result is valid globally in time.
Thanks to point i) of the theorem, we know that we can find a continuous
function C(t) such that |v|H5/2(t) ≤ C(t) for all t.
From Eq. (77) we deduce

|u|H1(t) ≤ |u0|H1 +
∫ t

0

|u∂1v|H1(s)ds. (84)

But one has ∂(u∂1v) = ∂u∂1v + u∂∂1v, and

|∂u∂1v|L2 ≤ |∂u|L2 |∂1v|L∞
≤ |u|H1C(t); (85)

we also have

|u∂∂1v|L2 ≤ |u|L4 |∂∂1v|L4

≤ Cst |u|H1/2 |∂∂1v|H1/2

≤ Cst |u|H1/2 |v|H5/2

≤ Cst C(t)|u|H1 . (86)

Thanks to Eqs. (84)-(86), we have

|u|H1(t) ≤ |u0|H1 + Cst
∫ t

0

C(s)|u|H1(s)ds,

so that Gronwall’s lemma yields the existence of a continuous function D(t)
such that |u|H1(t) ≤ D(t).

From Eq. (77) we also deduce

|u|H2(t) ≤ |u0|H2 +
∫ t

0

|u∂1v|H2(s)ds. (87)

But one has ∂2(u∂1v) = ∂2u∂1v + 2∂u∂∂1v + u∂2∂1v, and

|∂2u∂1v|L2 ≤ |∂2u|L2 |∂1v|L∞
≤ Cst C(t)|u|H2 ; (88)

we also have

|∂u∂1∂v|L2 ≤ |∂u|L4 |∂1∂v|L4

≤ Cst |∂u|H1/2 |∂1∂v|H1/2

≤ Cst |∂u|H1/2 |v|H5/2

≤ Cst C(t)|u|H2 , (89)
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and

|u∂2∂1v|L2 ≤ |u|L2 |∂2∂1v|L∞
≤ Cst |u|L2 |∂2∂1v|H2

≤ Cst |u0|L2 |u|H5 . (90)

Thanks to Eqs. (87)-(90), we have

|u|H2(t) ≤ |u0|H2 + Cst
∫ t

0

(
C(s)|u|H2(s) + |v(s)|H5

)
ds. (91)

From Eq. (78) we deduce

|v|H5 ≤ |v0|H5 +
∫ t

0

∣∣|u|2∣∣
H1(s)ds, (92)

and we have ∂|u|2 = 2<(u∂u) and

|u∂u|L2 ≤ |u|L4 |∂u|L4

≤ Cst |u|H1/2 |∂u|H1/2

≤ Cst |u|1/2
L2 |u|1/2

H1 |u|H3/2 ,

so that |u∂u|L2 ≤ Cst
√
D(t)|u|H2 . From (92) we then deduce

|v|H5 ≤ |v0|H5 + Cst
∫ t

0

√
D(s)(|u|H2(s) + 1)ds. (93)

Eqs. (91) and (93) together with Gronwall’s lemma yield that

|v|H5 + |u|H2 ≤ E(t),

where E(t) is a continuous function.
It is now easy to conclude the proof of the theorem.

2

Remark. i Since |v|H5 and |u|H2 control |v|W 1,∞ and |u|∞, we can easily obtain
results for more regular solutions. One has for instance a solution in H3 ×H6.
ii In the above proof, we have found two constants C1(T ) and C2(T ) such that

|(u, v)|L∞([0,T ];H2×H5) ≤ C1(T ) and |(u, v)|L∞([0,T ];L2×H5/2) ≤ C2(T ).

These constants C1(T ) and C2(T ) depends on T , ε, u0 and v0 but not on µ.

We now prove the following theorem, which deals with the continuity of the
solutions given by Theorem 5 with respect to the parameter µ.
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Theorem 6 i) We take here µ = 0. If (u0, v0) ∈ L2 × H5/2 then there exists
a unique solution (u, v) ∈ C

(
R;L2 ×H5/2

)
to the integral equations (75)-(76)

such that (u, v)(t = 0) = (u0, v0).
Moreover, if (u0, v0) ∈ H2 ×H5, then we also have (u, v) ∈ C

(
R;H2 ×H5

)
.

ii) Let (u0, v0) ∈ L2 ×H5/2 (resp. H2 ×H5 or H3 ×H6), and let (uµ, vµ) be
the solution of (75)-(76) such that (u, v)(t = 0) = (u0, v0), with µ ≥ 0. Then
the mapping

R+ → C
(
R;L2 ×H5/2

)
( resp. H2 ×H5 or H3 ×H6 )

µ 7→ (uµ, vµ)

is continuous.

Proof.
i) The proof made for Theorem 5 remains valid. The only difference is that we
cannot use the partial differential equation satisfied by v because of the operator
∂−1
1 , but we do not need it.

ii) We conside here the case L2 ×H5/2.
We write the integral equations (75)-(76) for µ and µ0 ≥ 0.

uµ = S1(t)u0 − i

∫ t

0

S1(t− s)uµ∂1v
µ(s)ds

vµ = Sµ
2 (t)v0 −

∫ t

0

Sµ
2 (t− s)(1 + ε∆2)−1|uµ|2(s)ds,

and 
uµ0 = S1(t)u0 − i

∫ t

0

S1(t− s)uµ0∂1v
µ0(s)ds

vµ0 = Sµ0
2 (t)v0 −

∫ t

0

Sµ0
2 (t− s)(1 + ε∆2)−1|uµ0 |2(s)ds.

Substracting those two systems yields on the one hand

|uµ − uµ0 |L2 ≤
∫ t

0

|uµ∂1v
µ − uµ0∂1v

µ0 |L2(s)ds

≤
∫ t

0

|uµ|L2 |∂1v
µ − ∂1v

µ0 |L∞ + |∂1v
µ0 |L∞ |uµ − uµ0 |L2(s)ds.

We have seen that |uµ|L2 = |u0|L2 and |vµ0 |H5/2(t) ≤ C(t), where C(t) is a
continuous function of t which does not depend on µ. We have therefore

|uµ − uµ0 |L2 ≤ Cst
∫ t

0

(
|vµ − vµ0 |H5/2(s) + C(s)|uµ − uµ0 |L2(s)

)
ds. (94)

One has on the other hand

|vµ − vµ0 |H5/2 ≤
∣∣(Sµ

2 (t)− Sµ0
2 (t)

)
v0

∣∣
H5/2

+
∫ t

0

∣∣(Sµ
2 (t− s)− Sµ0

2 (t− s)
)
(1 + ε∆2)−1|uµ0 |2(s)

∣∣
H5/2ds

50



+
∫ t

0

∣∣(1 + ε∆2)−1
(
|uµ0 |2 − |uµ|2

)∣∣
H5/2ds

≤
∣∣(Sµ

2 (t)− Sµ0
2 (t)

)
v0

∣∣
H5/2

+
∫ t

0

∣∣(Sµ
2 (t− s)− Sµ0

2 (t− s)
)
|uµ0 |2(s)

∣∣
H−3/2ds

+
∫ t

0

∣∣(|uµ0 |2 − |uµ|2
)∣∣

H−3/2(s)ds.

But we know that∣∣|uµ0 |2 − |uµ|2
∣∣
H−3/2 ≤ Cst

∣∣|uµ0 |2 − |uµ|2
∣∣
L1

≤ Cst
(
|uµ0 |L2 + |uµ|L2

)
|uµ0 − uµ|L2

≤ Cst |uµ0 − uµ|L2 ,

so that

|vµ − vµ0 |H5/2 ≤
∣∣(Sµ

2 (t)− Sµ0
2 (t)

)
v0

∣∣
H5/2 + Cst

∫ t

0

|uµ0 − uµ|L2

+
∫ t

0

∣∣(Sµ
2 (t− s)− Sµ0

2 (t− s)
)
|uµ0 |2

∣∣
H−3/2ds. (95)

We introduce

m1(t) :=
∫ t

0

∣∣(Sµ
2 (t− s)− Sµ0

2 (t− s)
)
|uµ0 |2(s)

∣∣
H−3/2ds,

and want to prove that m1(t) → 0 when µ→ µ0. Denoting by iPµ the symbol
of ∂µ, we have

F
((
Sµ

2 (t− s)− Sµ0
2 (t− s)

)
|uµ0 |2(s)

)
(ξ1, ξ2)

=
(
e−iPµ(ξ1)(1+ε|ξ|4)−1ξ2

2(t−s) − e−iPµ0 (ξ1)(1+ε|ξ|4)−1ξ2
2(t−s)

)
F(|uµ0 |2)(ξ),

and it is clear that the second member tends toward 0 for almost every ξ1, ξ2
and t when µ→ µ0.
Since the integrand which appears in the definition of m1(t) is dominated by∣∣|uµ0 |2

∣∣
H−3/2(s) ∈ L1

loc(R), we can therefore conclude thanks to Lebesgue’s dom-
inated convergence theorem that

m1(t) → 0 in L∞loc(R), when µ→ µ0.

We now introduce

m2(t) :=
∣∣(Sµ

2 (t)− Sµ0
2 (t)

)
v0

∣∣
H5/2 ,

and we want to prove that it also tends towards 0 when µ→ µ0. We have

F
((
Sµ

2 (t)− Sµ0
2 (t)

)
v0

)
51



=
(
e−iPµ(ξ1)(1+ε|ξ|4)−1ξ2

2t − e−iPµ0 (ξ1)(1+ε|ξ|4)−1ξ2
2t

)
v̂0(ξ)

=
(
e−iPµ(ξ1)(1+ε|ξ|4)−1ξ2

2t − e−iPµ0 (ξ1)(1+ε|ξ|4)−1ξ2
2t

)
1l{|ξ|≤α}1l{|ξ1|≥β}v̂0(ξ)

+
(
. . .

)
(1− 1l{|ξ|≤α}1l{|ξ1|≥β})v̂0(ξ)

= fµ(t, ξ) + gµ(t, ξ).

Let γ > 0 and choose α > 0 sufficiently big, and β > 0 sufficiently small to have∣∣(1 + |ξ|2)5/4gµ(t, ξ)
∣∣
L2 ≤ γ. (96)

With the same α and β, one has∣∣(1 + |ξ|2)5/4fµ(t, ξ)
∣∣2
L2 =

∫ [
(1 + |ξ|2)5/2

∣∣v̂0(ξ)∣∣2
×

∣∣e−iPµ0 (ξ1)(1+ε|ξ|4)−1ξ2
2t − e−iPµ(ξ1)(1+ε|ξ|4)−1ξ2

2t
∣∣2

× 1l{|ξ|≤α}1l{|ξ1|≥β}

]
dξ,

and as, for |ξ| ≤ α and |ξ1| ≥ β, one has, for t ≤ T ,∣∣e−iPµ0 (ξ1)(1+ε|ξ|4)−1ξ2
2t − e−iPµ(ξ1)(1+ε|ξ|4)−1ξ2

2t
∣∣2 ≤ C(α, β)T 2|µ− µ0|2,

so that it is easy to see that∣∣(1 + |ξ|2)5/4fµ(t, ξ)
∣∣2
L2 ≤ γ2,

if µ and µ0 are close enough. Together with (96), this yields

m2(t) → 0 in L∞loc(R), when µ→ µ0.

Equation (95) thus writes

|vµ − vµ0 |H5/2(t) ≤ m1(t) +m2(t) + Cst
∫ t

0

|uµ − uµ0 |L2(s)ds,

with m1(t) +m2(t) → 0 as µ → µ0 in L∞loc(R). Using Eq. (94) and Gronwall’s
lemma yields

|uµ − uµ0 |L2 + |vµ − vµ0 |H5/2 → 0 in L∞loc(R) as µ→ µ0,

and the proof is thus complete.

2

6.2.2 Energy estimates

We first prove a few energy estimates linked to the regularized problem (Tε,µ),
for µ > 0. These estimates are very similar to those obtained by P. Laurençot
[La] for the one-dimensionnal problem.
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Theorem 7 Let (u0, v0) ∈ H3 ×H6.
Then the solution (u, v) ∈ C

(
R;H3×H6

)
given by Theorem 5 for µ > 0 satisfies

i) ∫
R2
|u|2(t) =

∫
R2
|u0|2;

ii) ∫
R2
|∂1u|2 + |u|2∂1v +

1
2
|∂2(∂−1

µ ∂1)1/2v|2

=
∫

R2
|∂1u0|2 + |u0|2∂1v0 +

1
2
|∂2(∂−1

µ ∂1)1/2v0|2 ;

iii) ∫
R2
|(1 + ε∆2)1/2∂1v|2 + 2iu∂1u =

∫
R2
|(1 + ε∆2)1/2∂1v0|2 + 2iu0∂1u0 ;

iv) ∫
R2

∣∣(1 + ε∆)1/2v
∣∣2 =

∫
R2

∣∣(1 + ε∆)1/2v0
∣∣2 − 2

∫ t

0

∫
R2
|u|2v(s)ds.

Proof.
i) Taking the imaginary part of the L2 product of the first equation of (Tε,µ)
with u yields

∂t

∫
|u|2 = 0,

and the result follows.
ii) Taking the real part of the L2 product of the first equation of (Tε,µ) with
∂tu yields

−1
2
∂t

∫
|∂1u|2 = <

( ∫
∂tuu∂1v

)
=

1
2

∫
∂t|u|2∂1v

=
1
2
∂t

∫
|u|2∂1v −

1
2

∫
|u|2∂t∂1v,

and therefore
∂t

∫
|∂1u|2 + ∂t

∫
|u|2∂1v =

∫
|u|2∂t∂1v. (97)

The second equation of (Tε,µ) may be written under the form

∂tv + ∂−1
µ ∂2

2(1 + ε∆2)−1v = −(1 + ε∆2)−1|u|2, (98)

so that
∫
∂1(98)|u|2 reads∫

∂1∂tv|u|2 +
∫
∂−1

µ ∂1∂
2
2(1 + ε∆2)−1v|u|2 = 0, (99)
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since (1 + ε∆2)−1∂1 is anti-adjoint.
We now compute

∫
(98)∂2

2∂
−1
µ ∂1v and find

−1
2
∂t

∫ ∣∣∂2(∂−1
µ ∂1)1/2v

∣∣2 = −
∫

(1 + ε∆2)−1|u|2∂2
2∂

−1
µ ∂1v. (100)

Since (1 + ε∆2)−1 is self-adjoint, Eqs. (99)-(100) yield∫
∂1∂tv|u|2 = −1

2
∂t

∫ ∣∣∂2(∂−1
µ ∂1)1/2v|2,

so that plugging this equation in (97) yields

∂t

∫
R2
|∂1u|2 + |u|2∂1v +

1
2
|∂2(∂−1

µ ∂1)1/2v|2 = 0,

and the result follows.
iii) Taking the L2 product of the second equation of (Tε,µ) with ∂2

1v yields

−1
2
∂t

∫
|(1 + ε∆2)1/2∂1v|2 = −

∫
|u|2∂2

1v

=
∫
u∂1u∂1v + u∂1u∂1v.

One then take the expression on u∂1v and u∂1v given by the first equation of
(Tε,µ) and plugs them into the above equation, and thus obtains

−1
2
∂t

∫
|(1 + ε∆2)1/2∂1v|2 =

∫
∂1u

(
− i∂tu+ ∂2

1u
)

+ ∂1u
(
i∂tu+ ∂2

1u
)

= i

∫
∂1u∂tu− ∂1u∂tu+ 0

= i

∫
∂1u∂tu+ u∂t∂1u

= i∂t

∫
u∂1u,

so that
∂t

( ∫
|(1 + ε∆2)1/2∂1v|2 + 2i

∫
u∂1u

)
= 0,

and the result follows.
iv) Taking the L2 product of the second equation of (Tε,µ) with v reads

∂t

∫ ∣∣(1 + ε∆2)1/2v
∣∣2 = −2

∫
|u|2v,

which yields the result.

2
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The following corollary gives energy estimates associated to the solutions of
(Tε,0).

Corollary 1 We take here µ = 0. The solution (u, v) given in this case by
Theorem 6 satisfies:
i) ∫

R2
|u|2(t) =

∫
R2
|u0|2;

ii) ∫
R2
|∂1u|2 + |u|2∂1v +

1
2
|∂2v|2

=
∫

R2
|∂1u0|2 + |u0|2∂1v0 +

1
2
|∂2v0|2 ;

iii) ∫
R2
|(1 + ε∆2)1/2∂1v|2 + 2iu∂1u =

∫
R2
|(1 + ε∆2)1/2∂1v0|2 + 2iu0∂1u0 ;

iv) ∫
R2

∣∣(1 + ε∆)1/2v
∣∣2 =

∫
R2

∣∣(1 + ε∆)1/2v0
∣∣2 − 2

∫ t

0

∫
R2
|u|2v(s)ds.

Proof.
This corollary is a consequence of Theorem 7 and of the continuity of the flow
with respect to the parameter µ.

2

Remark. The results of the corollary cannot be obtained directly, without
treating the case µ > 0. Indeed, the estimates cannot be done directly on (Tε,0)
since ∂−1

1 ∂2
2v and ∂tv are not distributions.

6.2.3 Finding bounds independant of ε

Useful inequalities

We first give two useful inequalities we will use throughout this section.

Lemma 10 If u and ∂1u are in L2(R2), then∫ (
sup
y1∈R

|u|2
)
(y2)dy2 ≤ 2|u|2|∂1u|2.

Proof.
Since for any function f ∈ H1(R) one has |f |∞ ≤

√
2|f |2|f ′|2, we can write(

sup
y1∈R

|u|2
)
(y2) ≤ 2|u|2,y1(y2)|∂1u|2,y1(y2).

Integrating this inequality with respect to y2 and using the Cauchy-Schwartz
inequality then yields the result.
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2

Lemma 11 If v and ∂2v are in L2(R2), then

sup
y2

( ∫
v2(y1, y2)dy1

)1/2 ≤
√

2|v|1/2
2 |∂2v|1/2

2 .

Proof.
Let ψ be defined as

ψ : y2 7→
( ∫

R
v2(y1, y2)dy1

)1/2
.

One has ψ ∈ L2(R) and |ψ|2 = |v|2. Moreover, we have

ψ′(y2) =
∫
v∂2vdy1( ∫

v2(y1, y2)dy1
)1/2

,

so that |ψ′(y)| ≤
( ∫

|∂2v|2dy1
)1/2 by Cauchy-Schwartz.

One has therefore ψ ∈ H1(R) and |ψ′|2 ≤ |∂2v|2, and thus

|ψ|∞,y2 ≤
√

2|v|1/2
2 |∂2v|1/2

2 .

2

Local bounds in time, for small initial data

The following theorem gives useful bounds independant of ε.

Theorem 8 We take here µ = 0 and let T > 0.
There exists ε0 > 0 and there exist λ > 0 and C > 0, independant of ε such that
if (u0, v0) ∈ H3 ×H6 is such that

|u0|22 + |∂1u0|22 + |v0|2H1 ≤ λ,

then the solution (u, v) of (Tε,0) such that (u, v)(t = 0) = (u0, v0), given by
Theorem 6, satisfies

|u|L∞([0,T ];L2) + |∂1u|L∞([0,T ];L2) + |v|L∞([0,T ];H1) ≤ C.

Proof.
We first introduce the quantity N1 defined as

N1 :=
∫
|∂1u0|2 + |u0|2∂1v0 +

1
2
|∂2v0|2.

Thanks to point ii) of Cor. 1, one has

|∂1u|22 +
1
2
|∂2v|22 ≤ N1 +

∣∣ ∫
|u|2∂1v

∣∣
≤ N1 + 2

∫
|u| |∂1u| |v|, (101)
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but we also have

2
∫
|u| |∂1u| |v| = 2

∫ ( ∫
|u| |∂1u| |v|dy1

)
dy2

≤ 2
∫
|u|∞,y1(y2)

( ∫
|∂1u| |v|dy1

)
dy2

≤ 2
∫
|u|∞,y1(y2)

( ∫
|∂1u|2dy1

)1/2( ∫
|v|2dy1

)1/2
dy2

≤ 2 sup
y2

( ∫
|v|2dy1

)1/2
∫
|u|∞,y1

( ∫
|∂1u|2dy1

)1/2
dy2

≤ 2 sup
y2

( ∫
|v|2dy1

)1/2 ( ∫
|u|∞,y1dy2

)1/2|∂1u|2

≤ 4|v|1/2
2 |∂2v|1/2

2 |u|1/2
2 |∂1u|3/2

2 , (102)

the last inequality being a consequence of Lemmas 10-11.
Thanks to Eq. (101), we have therefore

|∂1u|22 +
1
2
|∂2v|22 ≤ N1 + 4|v|1/2

2 |∂2v|1/2
2 |u0|1/2

2 |∂1u|3/2
2 , (103)

since for all t, |u|2(t) = |u0|2.
It is also a consequence of (102) that

N1 ≤ |u0|22 +
1
2
|∂2v0|22 + 4|v0|1/2

2 |∂2v0|1/2
2 |u0|1/2

2 |∂1u0|3/2
2 . (104)

Thanks to point iv) of Cor. 1, one also has

|(1 + ε∆2)1/2v|22 = |(1 + ε∆2)1/2v0|2 − 2
∫ t

0

∫
|u|2v,

where we can write ∫
|u|2v =

∫ ( ∫
uuvdy1

)
dy2

so that ∣∣ ∫
|u|2v

∣∣ ≤
∫
|u|∞,y1

( ∫
|u| |v|dy1

)
dy2

≤
∫
|u|∞,y1

( ∫
|u|2dy1

)1/2( ∫
|v|2dy1

)1/2
dy2

≤ sup
y2

( ∫
|v|2dy1

)1/2
∫
|u|∞,y1

( ∫
|u|2dy1

)1/2
dy2

≤ sup
y2

( ∫
|v|2dy1

)1/2 ( ∫
|u|2∞,y1

dy2
)1/2|u|2

≤ 2|v|1/2
2 |∂2v|1/2

2 |u0|3/2
2 |∂1u|1/2

2 ,
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where the last inequality is a consequence of Lemmas 10-11 and of the conser-
vation of the L2 norm of u.
We have therefore

|(1 + ε∆2)1/2v|22 ≤ |(1 + ε∆2)1/2v0|22 + 4
∫ t

0

|v|1/2
2 |∂2v|1/2

2 |u0|3/2
2 |∂1u|1/2

2 , (105)

so that for T > 0 and t ≤ T , one has

|(1 + ε∆2)1/2v|2 ≤ |(1 + ε∆2)1/2v0|22 + 4T |v|1/2|∂2v|1/2|u0|3/2
2 |∂1y|1/2,

where the norm | · |L∞([0,T ];L2) is denoted by | · |.
Since |v|2 ≤ |(1 + ε∆2)1/2v|2, and that for ε small enough, one has |(1 +
ε∆2)1/2v0|22 ≤ 2|v0|22, we have

|v|2 ≤ 2|v0|22 + 4T |v|1/2|∂2v|1/2|u0|3/2
2 |∂1y|1/2. (106)

Taking the sup in time in Eq. (103) and summing with (106) then yields

|∂1u|2 +
1
2
|∂2v|2 + |v|2 ≤ N1 + 2|v0|22 + 4|v|1/2|∂2v|1/2|u0|1/2

2 |∂1u|3/2

+ 4T |v|1/2|∂2v|1/2|u0|3/2
2 |∂1u|1/2. (107)

We now use the Young inequality abcd ≤ 1
4 (a4+b4+c4+d4), with a = 4T |u0|3/2

2 ,
b = |v|1/2, c = |∂2v|1/2 and d = |∂1u|1/2 to obtain

3
4
(
|∂1u|2 +

1
3
|∂2v|2 + |v|2

)
≤ N1 + 2|v0|22 + 4|v|1/2|∂2v|1/2|u0|1/2

2 |∂1u|3/2

+
1
4
(
4T |u0|3/2

2

)4
. (108)

We now use another Young inequality, abcd ≤ 1
8 (a8 + b8 + 3c8/3 + 3d8/3) with

a = |v|1/2, b = |∂2v|1/2, c = |u0|1/2
2 , and d = |∂1u|3/2 to obtain

|∂1u|2 + |∂2v|2 + |v|2 ≤ Cst
(
N1 + |v0|22 + T 4|u0|62

)
+ Cst

(
|u0|4/3

2 + |v|4 + |∂2v|4 + |∂1u|4
)

Introducing f := |v|2 + |∂1u|2 + |∂2v|2, we obtain from the above equation

f ≤ Cst
(
N1 + T 4|u0|62 + |v0|22 + |u0|4/3

2

)
+ Cst f2,

which is of the form αX2 − X + β ≥ 0. We want to choose α and β such
that the trinomial αX2 −X + β has two distinct real roots. We want therefore
1− 4αβ > 0, which reads

Cst
(
N1 + T 4|u0|6 + |v0|22 + |u0|4/3

2

)
<

1
4
. (109)
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For λ > 0 small enough, it is a consequence of (104) that if

|u0|2 + |∂1u0|2 + |v0|2H1 ≤ λ,

then condition (109) is satisfied, and we denote by X0 < X1 the two roots.
Since for all t such that 0 ≤ t ≤ T , one has αf(t)2−f(t)+β ≥ 0, one has either
f(t) < X0 or f(t) > X1 for all t ≤ T . We are in the first case if f(0) < X0 and
in the second otherwise. In order to have an upper bound for f(t), we therefore
want to have f(0) < X0, which is the case if 2αf(0)− 1 < 0, that is, if

Cst
(
|v0|2 + |∂1u0|2 + |∂2v0|2

)
< 1,

which is satisfied if the λ defined above is small enough. One then has for all
t ≤ T , (

|v|2 + |∂1u|2 + |∂2v|2
)
(t) ≤ X0 =

1−
√

1− αβ

2
≤ 1

2
. (110)

We now want a bound for |∂1v|2; one has∫
|∂1v|2 ≤

∫ ∣∣(1 + ε∆2)1/2∂1v|2

≤
∣∣ ∫

|(1 + ε∆2)1/2∂1v|2 + 2iu∂1u
∣∣ + 2

∣∣ ∫
u∂1u

∣∣
and using point iii) of Cor. 1 yields∫

|∂1v|2 ≤
∣∣ ∫

|(1 + ε∆2)1/2∂1v0|2 + 2iu0∂1u0

∣∣ + 2|u|L2 |∂1u|L2

For ε small enough, one has therefore∫
|∂1v|2 ≤ 2|∂1v0|2L2 + 2

∫
|u0∂1u0|+ 2|u|L2 |∂1u|L2 ,

and since f(t) ≤ 1
2 , for all t ≤ T , we can conclude that∫

|∂1v|2 ≤ Cst .

This inequality, together with (110), proves the theorem.

2

6.2.4 Conclusion

Throughout this section, we denote by (uε, vε) the solution to (Tε,0) given by
Theorem 6. Thanks to Theorem 8, we can consider a subsequence, still denoted
by (uε, vε), such that

uε ⇀ u in L∞([0, T ];L2) weak ∗,

∂1u
ε ⇀ ∂1u in L∞([0, T ];L2) weak ∗,

vε ⇀ v in L∞([0, T ];H1) weak ∗ .
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We want to prove that (u, v) solves (T).

We first give a compactness result for vε.

Lemma 12 If |u0|2 ∈ H1, then one has vε → v strongly in L∞([0, T ];L2
loc).

Proof.
Multiplying the first equation of (Tε,0) by uε and taking the imaginary part
yields

1
2
∂t|uε|2 + 2=

(
∂2
1u

εuε
)

= 0,

and therefore

|uε|2 = |u0|2 − 4∂1

∫ t

0

=
(
∂1u

εuε
)
(s)ds,

since ∂1u
ε∂1u

ε is real. Introduce now

Uε :=
∫ t

0

=
(
∂1u

εuε
)
(s)ds,

so that

vε = e−∂−1
1 ∂2

2(1+ε∆)−1tv0−
∫ t

0

e−∂−1
1 ∂2

2(1+ε∆)−1(t−s)(1+ ε∆)−1
[
|u0|2−4∂1U

ε
]
ds.

We also introduce

V ε := e−∂−1
1 ∂2

2(1+ε∆)−1tv0 −
∫ t

0

e−∂−1
1 ∂2

2(1+ε∆)−1(t−s)(1 + ε∆)−1|u0|2ds

and

W ε := 4
∫ t

0

e−∂−1
1 ∂2

2(1+ε∆)−1(t−s)(1 + ε∆)−1∂1U
ε(s)ds,

so that vε = V ε +W ε.
As soon as v0 ∈ H1 and |u0|2 ∈ H1, we have V ε bounded in L∞([0, T ];H1)

and V ε → V in L∞([0, T ];H1) when ε→ 0, where

V := e−∂−1
1 ∂2

2 tv0 −
∫ t

0

e−∂−1
1 ∂2

2(t−s)|u0|2ds.

Since vε and V ε are bounded in L∞([0, T ];H1), then so is W ε = vε − V ε.
Moreover, one has

∂tW
ε = 4(1 + ε∆2)−1∂1U

ε(t)− 4
∫ t

0

e−∂−1
1 ∂2

2(1+ε∆2)−1(t−s)(1 + ε∆2)−2∂2
2U

εds.

But the sequence Uε, as defined above, is bounded in L∞([0, T ];L1) and there-
fore in L∞([0, T ];H−3/2), so that ∂tW

ε is bounded in L∞([0, T ];H−7/2).
It follows that W ε is strongly compact in L∞([0, T ];L2

loc), and the lemma is
thus proved.
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2

The following lemma says that (u, v) solves the first equation of (T).

Lemma 13 The functions u and v solve

i∂tu+ ∂2
1u = u∂1v.

Proof.
We know that

i∂tu
ε + ∂2

1u
ε = u∂1v

ε,

which is equivalent to

i∂tu
ε + ∂2

1u
ε = ∂1(uεvε)− ∂1u

εvε.

But since vε → v strongly in L∞([0, T ];L2
loc) and uε and ∂1u

ε converge weakly
in L∞([0, T ];L2), we can take the limit in the above equation, that is,

i∂tu+ ∂2
1u = ∂1(uv)− ∂1uv,

which yields the result of the lemma.

2

In order to prove a strong compactness result for uε, we will need the fol-
lowing lemma.

Lemma 14 i) One has u∂1v ∈ L∞
(
[0, T ];L1

y2
(L2

y1
)
)
.

ii) Let u0 ∈ L1
y2

(L2
y1

) and f ∈ L∞
(
[0, T ];L1

y2
(L2

y1
)
)
.

Then the solution w of {
i∂tw + ∂2

1w = f
w(0, y) = u0(y),

is in C
(
[0, T ];L1

y2
(L2

y1
)
)
.

Proof.
i) One has ∫

|u∂1v|2dy1 ≤ |u|2∞,y1

( ∫
|∂1v|2dy1

)
,

and thus ( ∫
|u∂1v|2dy1)1/2 ≤ |u|∞,y1

( ∫
|∂1v|2dy1

)1/2
,

so that ∫ ( ∫
|u∂1v|2dy1)1/2dy2 ≤

( ∫
|u|2∞,y1

dy2
)1/2|∂1v|2

≤
√

2|u|1/2
2 |∂1u|1/2

2 |∂1v|2,
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thanks to Lemma 10, and the proof is thus complete.
ii) The function w writes

w = ei∂2
1 tu0 − i

∫ t

0

ei∂2
1(t−s)f(s)ds,

but since ∫ ∣∣ei∂2
1 tu0

∣∣2dy1 =
∫
|u0|2dy1,

the function t 7→ ei∂2
1 tu0 is in C

(
[0, T ];L1

y2
(L2

y1
)
)
.

The proof does not differ for the component of w concerning the second member
f .

2

We can now state a compactness result for uε.

Proposition 12 Let u0 ∈ L1
y2

(L2
y1

).
Then uε → u strongly in L2

(
[0, T ]× R2

)
.

Proof.
Thanks to points i) and ii) of Lemma 14), we know that the weak limit u of uε

is in C
(
[0, T ];L1

y2
(L2

y1
)
)
.

We now introduce a regularizing sequence ρα(y1) of Ry1 , and we consider

∂t

∫
R
(ρα ∗ u)2dy1 = 2<

( ∫
(ρα ∗ u)(ρα ∗ ∂tu)dy1

)
.

We know thanks to Lemma 13 that

∂tu− i∂2
1u = −iu∂1v,

so that

∂t

∫
R
(ρα ∗ u)2dy1 = 2<

( ∫
(ρα ∗ u)

[
i∂2

1(ρα ∗ u)− iρα ∗ (u∂1v)
]
dy1

)
= 2=

( ∫
ρα ∗ (u∂1v)(ρα ∗ u)dy1

)
.

But since for almost every y2 and t, we have u∂1v ∈ L2
y1

(because u ∈ H1
y1
⊂

L∞y1
). We have therefore ρα ∗ (u∂1v) → u∂1v in L2

y1
when α→ 0.

Moreover, for almost all y2, u(·, y2) ∈ L2
y1

, and therefore ρα ∗ u→ u in L2
y1

. We
have therefore

gα(y2, t) := 2=
( ∫

ρα ∗ (u∂1v)(ρα ∗ u)dy1
)
→ 0,

almost everywhere in y2 and t.
But we also have

gα(y2, t) = −2=
( ∫

ρα ∗ (∂1uv)(ρα ∗ u)dy1
)
− 2=

( ∫
ρα ∗ (uv)(ρα ∗ ∂1u)dy1

)
,
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so that
|gα(y2, t)| ≤ 4|∂1u|2,y1 |v|2,y1 |u|∞,y1 := g(y2, t),

and we have∫ t

0

∫
R
g(y2, t)dy2dt ≤ 4

∫ T

0

|∂1u|2
( ∫

|u|2∞,y1
dy2

)1/2 sup
y2

|v|2,y1dt

≤ 8
∫ T

0

|∂1u|2|u|1/2
2 |∂1u|1/2

2 |v|1/2
2 |∂2v|1/2

2 dt,

thanks to Lemmas 10-11, and thus, by Theorem 8,∫ t

0

∫
R
g(y2, t)dy2dt ≤ Cst T,

and we have therefore a domination condition on gα. Since we have also seen that
gα → 0 almost everywhere in y2 and t, we can conclude thanks to Lebesgue’s
dominated convergence theorem that gα → 0 in L1([0, T ]× R).
We have therefore

∂t

∫
R
|u|2dy1 = 0,

and therefore ∫
R
|u|2dy1 = Cst.

We now prove that this constant is equal to
∫

R |u0|2dy1. As we have u ∈
C

(
[0, T ];L1

y2
(L2

y1
)
)
, we have∫ ( ∫
|u− u0|2dy1

)1/2
dy2 → 0 as t→ 0,

and therefore ∫
|u− u0|2dy1 → 0

when t→ 0, almost everywhere in y2.
Hence, we have

∫
R |u|

2dy1 →
∫

R |u0|2dy1 almost everywhere in y2. The constant∫
R |u|

2dy1 is therefore equal to
∫

R |u0|2dy1.
Integrating this relation with respect to y2 yields

|u|2 = |u0|2.

We recall that we also have |uε|2 = |u0|2, so that uε converges weakly towards u,
and converges also in L2 norm. We can therefore conclude that uε → u strongly
in L2([0, T ]× R2), and the proposition is thus proved.

2
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Remark. Thanks to the compactness properties of (uε, vε), given by Lemma
12 and Prop. 12, Theorem 8 remains valid with initial values (u0, v0) ∈ L2×H1

instead of H3 × H6. One just has to consider regularizations of these initial
values and then take the limit.

Thanks to Prop. 12, we can now take the limit in the expression which gives
vε,

vε = e∂−1
1 ∂2

2(1+ε∆2)−1tv0 −
∫ t

0

e∂−1
1 ∂2

2(1+ε∆2)−1(t−s)(1 + ε∆2)−1|uε|2(s)ds,

and state the following theorem.

Theorem 9 Let (u0, v0) be two functions such that:
- u0 and ∂1u0 are in L2, |u0|2 ∈ H1, and u0 ∈ L1

y2
(L2

y1
);

- v0 ∈ H1.
Let T > 0. If |u0|2 + |∂1u0|2 + |v0|H1 is small enough, then there exists (u, v)
such that 

i∂tu+ ∂2
1u = u∂1v

v = e∂−1
1 ∂2

2 tv0 −
∫ t

0

e∂−1
1 ∂2

2(t−s)|u|2(s)ds,

and
u ∈ C

(
[0, T ];L2

)
, ∂1u ∈ L∞

(
[0, T ];L2

)
,

u(0, y1, y2) = u0(y1, y2),
v ∈ L∞

(
[0, T ];H1

)
∩ C([0, T ];L2

loc

)
.

Recall that the integral equation for v used in this result makes sense since the
group e∂−1

1 ∂2
2 t acts on every Sobolev space Hs, and for u ∈ L∞(0, T ;L2), |u|2

lies in L∞(0, T ;Hs) for some negative s.
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