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Abstract: We study two-dimensional weighted N = (2, 2) supersymmetric CP models

with the goal of exploring their infrared (IR) limit. WCP(N, Ñ) are simplified versions

of world-sheet theories on non-Abelian strings in four-dimensional N = 2 QCD. In the

gauged linear sigma model (GLSM) formulation, WCP(N, Ñ) has N charges +1 and Ñ

charges −1 fields. As well-known, at Ñ = N this GLSM is conformal. Its target space is

believed to be a non-compact Calabi-Yau manifold. We mostly focus on the N = 2 case,

then the Calabi-Yau space is a conifold.

On the other hand, in the non-linear sigma model (NLSM) formulation the model has

ultra-violet logarithms and does not look conformal. Moreover, its metric is not Ricci-flat.

We address this puzzle by studying the renormalization group (RG) flow of the model. We

show that the metric of NLSM becomes Ricci-flat in the IR. Moreover, it tends to the

known metric of the resolved conifold. We also study a close relative of the WCP model

— the so called zn model — which in actuality represents the world sheet theory on a

non-Abelian semilocal string and show that this zn model has similar RG properties.
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1 Introduction

Two-dimensional CP(N−1) models gained a renewed attention recently because they arise

as world sheet theories on non-Abelian strings in four-dimensional gauge theories. Non-

Abelian vortex strings were first found in N = 2 supersymmetric QCD (SQCD) with the

gauge group U(N) and Nf = N flavors of quark hypermultiplets [1–4]. In addition to four

translational moduli, the non-Abelian vortices have orientational moduli. Their low-energy

dynamics is described by two-dimensional N = (2, 2) supersymmetric CP(N −1) model on

the string world sheet, see [5–8] for reviews.

If the number of quark flavors in four-dimensional N = 2 QCD exceeds the number of

colors, Nf > N the world sheet theory becomes what is usually referred to in the physical

literature as a weighted CP (WCP(N, Ñ)) model1 [1, 4, 9–11], where Ñ = Nf −N .

A transparent formulation of WCP(N, Ñ) was suggested by Witten [12, 13] (see

also [14, 15]) in terms of a gauged linear sigma model (GLSM). In this formulation

WCP(N, Ñ) is considered as a low-energy limit on the Higgs branch of a U(1) gauge

theory (supersymmetric QED with the Fayet-Iliopouls term) with matter superfields: N

of them with charge +1 are denoted by ni and Ñ with charge −1 are denoted by ρa. The

1In fact, WCP(N, Ñ) is a simplified version of the world sheet theory on semilocal strings. The actual

world sheet theory is given by so called zn model [9]. We will discuss both types of models in this paper.
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WCP(N, Ñ) target space can be obtained by integrating out the gauge multiplet which

acquires a large mass MV due to the Higgs mechanism.

We will focus on a special case N = Ñ which is of a particular importance for the

dynamics of the non-Abelian strings. In this case the world sheet WCP(N, Ñ) model

in the GLSM formulation becomes conformal. The only ultraviolet-divergent logarithm

appears in the renormalization of the Fayet-Iliopoulos (FI) parameter β of the model. It

is exhausted by a single tadpole graph proportional to the difference in the numbers of

positive and negative charges, i.e. (N − Ñ), and vanishes at N = Ñ . It is believed that

the target space of WCP(N,N) model reduces to a non-compact Calabi-Yau manifold,

equipped with a Ricci-flat metric (see [16]). The latter implies that the beta function in

the model must vanish,

βij(g) ∼ Rij = 0 . (1.1)

A particularly interesting case is N = Ñ = 2. As was shown in [17–19], if N = Ñ = 2

the non-Abelian vortex behaves as a critical superstring. This happens because in this case

four translational moduli of the non-Abelian vortex combined with orientational and size

moduli form a ten-dimensional space required for a superstring to become critical. The

target space of our WCP(N,N) model in this case becomes six-dimensional Calabi-Yau

space, the conifold, see [16] for a review. In this paper we mostly focus on the conifold case.

The above considerations come in contradiction with the analysis in the NLSM formu-

lation of the WCP(N,N) model. In the latter approach one assumes the Higgs regime in

the U(1) gauge theory and uses classical equations of motion to eliminate heavy gauge and

Higgs fields at energies � MV neglecting their kinetic terms. Then it turns out that the

model has ultra-violet logarithms of the type logMV /µ where µ is an IR scale. Moreover,

its metric is not Ricci-flat so its beta function does not vanish [9, 20]. The model is not

apparently conformal.

It is important that in the case of CP(N − 1) models associated with a compact target

space this contradiction does not occur; CP(N − 1) model in both GLSM and NLSM

formulations has the same beta function.

A similar puzzle was noted recently [21] in the simplest case of WCP(1, 1). In this

case duality arguments suggest that the model should be a free field theory in the IR

while the NLSM formulation gives a non-trivial Ricci tensor. A numerical solution of the

renormalization group (RG) equations in [21] shows that the solution in fact flows to a free

theory in the IR.

In this paper we generalize this idea to the WCP(2, 2) model. The desired IR limit now

is not a free theory, but, rather Ricci-flat. We study the RG flow in the WCP(2, 2) case

and demonstrate that the NLSM metric indeed approaches the Ricci-flat conifold solution

of [22, 23] in the IR.

Next we analyze the zn model which actually represents the world sheet theory on the

non-Abelian string [9] and show that it has a similar RG flow.

Our qualitative understanding of this result is as follows. As a warm-up let us start

with the CP(N − 1) model. The NLSM formulation assumes the Higgs regime. One

component of a charge multiplet of fields ni, i = 1, . . . , N , say, n2 in sections 3, 4 or n1 in

– 2 –
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section 7, develops a vacuum expectation value (VEV). It becomies massive while (N − 1)

other components are massless Goldstone fields fluctuating over the target space. The

global SU(N) symmetry of the model is not realized linearly in the NLSM Lagrangian.

This classical picture does not survive at the quantum level as was shown by Witten

long ago [12, 13]. In the solution obtained at the quantum level the fields ni develop no

VEVs, they are smeared all over the target space of the model. All fields ni acquire mass

gap and the SU(N) global symmetry is restored. At the very end both formulations, GLSM

and NLSM, arrive at one and the same solution.2

The lesson to learn from this is that the NLSM setup is not “transparent” in a sense

that it starts from a picture very distant from the final solution. It ignores “microscopic”

physics captured by GLSM. The final IR results are the same, but the NLSM road to it

is not so straightforward as the GLSM one. This is especially true for supersymmentric

models in which GLSM allows one to apply such powerful methods as large N expansion [12]

and exact twisted superpotentials [13].

In the WCP(N,N) model we also expect that the charged fields after all have no VEVs.

At the quantum level n and ρ fields are smeared all over the non-compact Higgs branch.3

The NLSM formulation gives us a bad starting point. The road from this starting point

to the IR answer is non-trivial. And still, one can reach the desired endpoint, as will be

shown below.

The paper is organized as follows. In section 2 we present WCP(N,N) model and

discuss general aspects of the RG procedure. In section 3 we review the Calabi-Yau metric

on the conifold. In section 4 we study the RG flow of the WCP(N,N) model in the NLSM

formulation, while in section 5 we present our numerical solution of the RG equations. In

section 6 we study the vacuum structure of WCP(N,N) model using the exact twisted

superpotential. Section 7 is devoted to the emerging Z factors in NLSM. In section 8 we

consider the RG properties of the zn model.

2 The WCP(N,N) model

Let us present the N = (2, 2) supersymmetric WCP(N,N) model using the GLSM for-

mulation. First, we introduce two types (or flavors) of complex fields nk and ρa, with the

electric charges +1 and −1, respectively,

S =

∫
d2x

{
|∇µnk|2 +

∣∣∣∇̃µρa∣∣∣2 +
1

4e2
F 2
µν +

1

e2
|∂µσ|2 +

1

2e2
D2

+2|σ|2
(
|nk|2 + |ρa|2

)
+ iD

(
|nk|2 − |ρa|2 − β

)}
+ fermions . (2.1)

Both indices k and a are integers running from 1 to N in the case under consideration.

The action above is written in Euclidean conventions. The parameter β in the last term of

eq. (2.1) is dimensionless. It represents the two-dimensional Fayet-Iliopoulos term.

2Say, the CP(1) model in the NLSM formulation was solved in [24] long ago; this solution exhibits the

same features as Witten’s GLSM description.
3The model has also the Coulomb branch. It opens up at the value of the FI parameter β = 0. We

consider nonvanishing β in this paper.
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The U(1) gauge field Aµ acts on n and ρ through appropriately defined covariant

derivatives,

∇µ = ∂µ − iAµ , ∇̃µ = ∂µ + iAµ , (2.2)

reflecting the sign difference between the charges. The fields Aµ, complex scalar σ and

auxiliary real field D form the bosonic part of the U(1) gauge supermultiplet. The electric

coupling constant e2 has dimension of mass squared. It is supposed to be large. The last

term (D-term) classically enforces condensation of charged fields. In the Higgs phase the

gauge multiplet becomes massive. The scale of the gauge fields mass is defined through

the product

M2
V = 2e2β . (2.3)

At energies much below MV all heavy fields (i.e. the gauge and Higgs supermultiplets)

can be integrated out, and we are left with the low-energy sigma model on the Higgs

branch. All terms except the kinetic terms of n and ρ disappear from the action, while the

last term reduces to the constraint

N∑
k=1

|nk|2 −
N∑
a=1

|ρa|2 = β . (2.4)

This constraint defines the (real) dimension of the Higgs branch

dimH = 2(N + Ñ − 1) = 2(2N − 1), (2.5)

where 2N and 2Ñ are numbers of real degrees of freedom of fields nk and ρa respectively,

while −2 is associated with the real constraint (2.4) and one phase eaten by the Higgs

mechanism. For the conifold case N = 2 we have dimH = 6.

The global symmetry of the model (2.1) is

SU(N)× SU(N)×U(1). (2.6)

The RG flow domain we are interested in is depicted in figure 1. Here M0 is the genuine

UV scale where the action (2.1) is formulated, MV is the parameter defined in (2.3) while

µ is the sliding renormalization point.

We start our consideration of the RG flow at µ = M0. Until we reach µ = MV there is

no flow. The only parameter which could be renormalized is the Fayet-Iliopoulos parameter

β. However, the contributions of the fields n and ρ cancel each other due to the fact that

the signs in the last term in (2.1) are opposite (see e.g. [13]4).

Situation changes once we cross the line MV on figure 1. Once µ � MV we cross

into the domain of NLSM, with the gauge multiplet fields Aµ, D and σ integrated out

(their mass is represented by MV ). The target spaces in these cases are non-Einsteinian

4In our previous works notation was different. The Fayet-Iliopoulos (FI) term β in (2.4) was denoted as

r in [20]. In the latter paper the coordinate patch was chosen to be the one with ρN 6= 0. In the present

paper, we adopt, instead, a dual patch with non-vanishing nN , namely, nN =
√
β which interchanges the

role of z and w compared to [20] and flips the sign of the FI term. In the present paper β > 0. Note,

however, that in section 7 we use the patch n1 =
√
β for technical reasons.
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Figure 1. Three scales relevant for the RG flow of (2.1).

noncompact manifolds. Hence, these models are not renormalizable in the conventional

sense of this word.

Discussion of some previous results in the WCP(N, Ñ) model which inspired the cur-

rent work can be found in [21, 25]. In the latter paper the simplest case N = Ñ = 1 was

analyzed. Here we will address the general situation with arbitrary N focusing mostly on

the case N = Ñ = 2.

Transition from GLSM in eq. (2.1) to NLSM below MV was analyzed in detail for

arbitrary N and Ñ in ref. [20]. Renormalization of the effective action proves to be rather

complicated. At one loop it appears in the form of corrections containing logarithms

log
MV

µ
(2.7)

due to Z factors of the fields n and ρ. Since the Z factors are not protected and their RG

flow is not limited to one loop, each subsequent loop adds its own correction, see e.g. [20].

Note that the logarithm in (2.7) differs from the standard UV/IR logarithm logM0/µ.

They coincide only in the limit MV →M0. This is in one-to-one correspondence with the

fact that renormalization comes from the Z factors.

Our strategy is to write the RG equations in an appropriate Ansatz, determine the

boundary condition in the “UV” and then analyze the RG flow in the IR to demonstrate

that in this limit the Ricci tensor tends to zero. The “UV” above is in the quotation marks

because it refers to the scale MV which does not necessarily coincide with M0. At the

scale MV the Ricci tensor is not flat at all. In this way we generalize the simplest case

N = Ñ = 1 analyzed in [21] where the Ricci tensor is one-component and the IR flow

indeed tends to make it approximately zero. The latter paper is titled “A Long Flow to

Freedom” which explains the choice of our title.

3 The metric of the resolved conifold

In this section we review the metric on the conifold found in [22, 23]. Conifold can be

defined as a Higgs branch of the GLSM (2.1) for N = 2 subject to the constraint (2.4).

– 5 –
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Let us construct the U(1) gauge-invariant “mesonic” variables from the fields n and ρ,

Mia = niρa. (3.1)

These variables are subject to the constraint

detMia = 0. (3.2)

The matrix Mia has four complex parameters so the above equation defines threefold in

C4 in accordance with (2.5).

Equation (3.2) together with the requirements that the metric of the manifold should

be Kähler (this is ensured by N = (2, 2) supersymmetry of GLSM (2.1)) and Ricci-flatness

defines the non-compact Calabi-Yau space known as conifold [22], see also [16] for a review.

It is a cone which can be parametrized by the non-compact radial coordinate

r2 = TrMM † (3.3)

and five angles, see [22]. Its section at fixed r is S2 × S3.

At β = 0 the conifold develops a conical singularity, so both S2 and S3 can shrink

to zero. The explicit metric of the singular conifold was found in [22]. Large values of β

correspond to weak coupling.

One way to smoothen the conifold singularity is by deforming its Kähler form. This

option is called the resolved conifold and amounts to introducing a non-zero β in (2.4).

This resolution preserves the Kähler structure and Ricci-flatness of the metric. If we put

ρa = 0 in (2.4) we get the CP(1) model with the sphere S2 of the radius
√
β as a target

space. Thus, S2 cannot shrink to zero at positive β.

The explicit form of the metric on the resolved conifold was found in [23]. Noting that

for Kähler manifolds the metric is given by

gij̄ = ∂i∂j̄K, (3.4)

where K is the Kähler potential the authors of [23] look for the solution of the Ricci-flatness

condition using the Ansatz

K = f(r2) + β log

(
1 +
|n1|2

|n2|2

)
, (3.5)

in the patch where n2 6= 0. Here f(r2) is a function of the radial coordinate (3.3). The

motivation for this Ansatz is as follows. First note, that both terms here are invariant

with respect to the global symmetry group (2.6).5 Moreover, it turns out that the metric

associated with the first term in (3.5) vanishes at r = 0 on the Ricci-flat solution, while

the second term produces the round Fubini-Study CP(1) metric for the sphere S2 of the

radius
√
β as expected for the resolved conifold [22, 23]. The very same Ansatz naturally

emerged in the perturbative analysis in [20].

5To check this invariance for the second term above note, that the Kähler potential is defined up to an

additional holomorphic or anti-holomorphic function.
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For the Kähler manifolds the Ricci tensor is given by the formula

Rij̄ = −∂i∂j̄ log det gkl̄ . (3.6)

Using the Ansatz (3.5) one gets

det(gij̄) = f ′
(
β + r2f ′

) (
f ′ + r2f ′′

)
(3.7)

where prime denotes derivative with respect to r2. Then the condition of Ricci-flatness

leads to the equation

f ′
(
β + r2f ′

) (
f ′ + r2f ′′

)
=

2

3
(3.8)

or

γ′γ(β + γ) =
2

3
r2 ,

γ(r2) ≡ r2f ′(r2). (3.9)

In eqs. (3.8), (3.9) the integration constant 2/3 is chosen to fix the overall scale of Mia

in (3.2) and hence the scale of the radial coordinate r, see below.

Imposing the boundary condition

γ
(
r2
) ∣∣∣
r2=0

= 0 (3.10)

to match the limit β → 0 of the singular conifold [22], we can integrate (3.9) to get6

γ3 +
3

2
βγ2 − r4 = 0 . (3.11)

It is not difficult to solve this equation — we pick up the only real solution, namely,

γ∗(r
2) = −1

2
β +

1

4
β2ν−1/3(r2) + ν1/3(r2) (3.12)

where

ν(r2) =
1

2

[
r4 − 1

4
β3 +

(
r8 − 1

2
β3r4

)1/2
]
. (3.13)

and the subscript ∗ denotes the Ricci-flat solution. This solution matches the boundary

condition (3.10) provided we pick up the phase for ν(r2)1/3 equal to eiπ/3 at the origin

r2 = 0. Also note, that with the scale of r fixed as in (3.8) (by the choice of the integration

constant equal 2/3) the solution for γ∗ behaves as γ∗ = r4/3 with the unit coefficient in the

limit β → 0, see [22].

We conclude this section noting that f∗(r
2) can be written down explicitly as

f∗(r
2) =

3

2

[
γ∗ −

β

2
log

(
3 +

2γ∗
β

)]
(3.14)

where γ∗ is defined in (3.12).

6Note that for N > 2, the algebraic equation (3.11) to determine γ is of degree five or higher and has

no analytic solution.
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4 Renormalization group flow of WCP(N,N)

To obtain the renormalization group equation in the WCP(N,N) model, first recall the

NLSM formulation of the model at hand, (2.1). To do so, we must take into account

that (as we have already explained in section 2) the constraint (2.4) and the U(1) gauge

invariance reduce the number of complex fields from 2N in the set {ni} + {ρa} down to

2N − 1. The choice of coordinates on the target space manifolds can be made through

various patches. Let us choose the following patch, the last field in the set {ni} (assuming

it does not vanish on the selected patch) will be denoted as

nN = ϕ , (4.1)

where ϕ will be set real. Then the coordinates on the target manifold (the Higgs branch) are

zi =
ni
ϕ
, i = 1, 2, . . . , N − 1 ,

wa = ϕρa, a = 1, 2, . . . , N . (4.2)

A useful gauge invariant parametrization is provided by the N ×N matrix

Mia = niρa . (4.3)

We will also introduce a radial coordinate

r2 =

(
1 +

N−1∑
i=1

|zi|2
)(

N∑
a=1

|wa|

)
≡ TrMM †, (4.4)

cf. (3.1) and (3.3) written for the N = 2 case.

The one-loop β function is proportional to the Ricci tensor, while the second loop

contribution is proportional to a convolution of the Riemann tensors,

R
(2)
pq = R rs

p tR
t

q̄rs . (4.5)

Both quantities were calculated in [20]. With proper coefficients inserted, the β function

takes the form

βpq̄ =
1

2π
Rpq̄ +

1

8π2
R

(2)
pq̄ + · · · (4.6)

Furthermore, to understand how the geometry of WCP(N,N) model evolves, let us

consider the following renormalization group (RG) equation (valid at one loop):

∂gij̄
∂t

= − 1

2π
Rij̄ . (4.7)

Here t is a RG “time”,

t = − log µ, (4.8)

implying the larger the RG time, the lower the energy scale µ of the system. Also, as we

already mentioned on the Kähler manifold both the metric tensor and Ricci tensor can be

expressed as double derivatives of scalar functions i.e.

gij̄ = ∂i∂j̄K and Rij̄ = −∂i∂j̄ log det gkl̄ (4.9)

– 8 –
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where K is the Kähler potential of the manifold. Thus, we can reduce (4.7) to a scalar

equation
∂K

∂t
=

1

2π
log det gij̄ (4.10)

up to a linear combination of holomorphic and anti-holomorphic functions.

The classical Kähler potential for our theory in NLSM formulation was calculated

in [9, 20, 25, 26]. It has the form

K =
√
β2 + 4r2 − β log

(
β +

√
β2 + 4r2

)
+ β log

(
1 +

N−1∑
i=1

|zi|2
)
. (4.11)

We see that it is described by the generalization of the Ansatz (3.5) used to find the

Ricci-flat conifold metric to the case of arbitrary N ,

K = f(r2) + β log

(
1 +

N−1∑
i=1

|zi|2
)
, (4.12)

where the function f(r2) is given by

fUV(t = 0, r2) =
√
β2 + 4r2 − β log

(
β +

√
β2 + 4r2

)
. (4.13)

The superscript “UV” above shows that we will use the classical function f(r2) in eq. (4.13)

as a UV data at t = 0 in the RG equation. This motivates using the Ansatz (4.12)

to describe the RG flow in NLSM because both the UV metric and Ricci-flat conifold

metric (which will be reached in the IR) are described by the same Ansatz (4.12). As was

mentioned, the Ansatz (4.12) was confirmed in perturbation theory up to two loops in [20].

We can also argue that Ansatz (4.12) is maintained by the RG flow. Starting from this

Ansatz, at each order one convinces oneself that the metric determinant of such Kähler

potential is only a function of r2 as in eq. (4.14), so the further renormalization of the

Kähler potential should only appear as a function of r2. This follows from the fact that the

correction to the Kähler potential comes from the logarithm of the metric determinant. In

other words, the second term in (4.12) which contributes the angular dependence to the

Kähler potential, does not change along the RG evolution, see also [23].

Let us explore the metric determinant for a generic WCP(N,N) model more thor-

oughly, namely,

g ≡ det(gij̄) = (f ′)N−1
(
β + r2f ′

)N−1 (
f ′ + r2f ′′

)
(4.14)

where f ′, f ′′ represent the first and second derivative with respect to r2.

Now, we define an auxiliary function

γ(t, r2) ≡ r2f ′(t, r2) . (4.15)

Cf. (3.9). We switch to γ(t, r2) for the convenience of further discussions of the RG flow, in

particular, for setting the boundary condition at each RG time. Then, eq. (4.10) reduces to

∂f

∂t
=

1

2π

[
(N − 1) log f ′ + (N − 1) log

(
β + r2f ′

)
+ log

(
f ′ + r2f ′′

)]
+ C . (4.16)

For the time being we leave the constant C undetermined.
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Before exploring the general case in the subsequent sections, let us first have a closer

look at the simplest example, WCP(1, 1) whose RG equation is particularly simple, namely,

∂f

∂t
=

1

2π
log
(
f ′ + r2f ′′

)
. (4.17)

A detailed analysis of this RG equation has been carried out in [21] where the above-

formulated conjecture on the metric flow was also confirmed. However, the results in [21]

were formulated in the language of the original metric RG flow, as in eq. (4.7), by virtue of

Ω(u) = f ′ + r2f ′′ , (4.18)

where Ω(u) is the metric defined in the coordinate system {u, θ} used in [21]. Differentiating

twice with respect to u reproduces the metric RG equation (2.14) in [21] (up to a numerical

factor).

The next in complexity case on which we will focus for now is the RG flow in the

WCP(2, 2) model.7 Let us stress that our goal in this paper is to see whether or not the

“UV” metric obtained by Higgsing WCP GLSM will eventually reach a Ricci-flat fixed

point (3.12), (3.14) in the infrared regime. Therefore, the RG equation to discuss is

∂f

∂t
=

1

2π

[
log f ′ + log(β + r2f ′) + log(f ′ + r2f ′′)

]
+ C, (4.19)

with C being an integration constant. In addition, the initial condition (i.e. the function

f(r2) at the UV scale) is given by (4.13). The corresponding derivative function is

γUV(t = 0, r2) =
2r2

β +
√
β2 + 4r2

. (4.20)

Also, a reasonable boundary condition compatible with both the initial potential and that

at the IR fixed point, see (3.10), is

γ(t, 0) = 0 . (4.21)

Note that (4.21) is valid for any RG time rather than just for one specific RG time.

To proceed further we note that the metric of the manifold is given by double deriva-

tives of the Kähler potential, see (4.9). To take this into account we rewrite the RG

equation (4.19) in terms of the function γ (4.15), which actually defines the metric. In

particular, this allows us to get rid of the undetermined integration constant C in the

equation (4.19). Thus, our master RG equation takes the form

∂γ

∂t
=

1

2π

{
r2 γ

′2(2γ + β) + γ(γ + β)γ′′

γ(γ + β)γ′
− 1

}
. (4.22)

We will solve this equation numerically with the boundary condition (4.21) and initial

condition (4.20) in the next section.

7Of course, we can study the generic WCP(N,N) model in the same manner, but for N > 2 the

analytic fixed point solution which is used for comparison below is unknown, in contradistinction with the

WCP(2, 2) case.
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Figure 2. Convergence of the IR flow of γ(r2) from the starting UV point γ = 2r2/
√
β2 + 4r2 (red

dashed line) to the analytic IR solution (solid blue line). From the bottom to the top dashed lines

(yellow to purple) represent the intermediate Kähler potentials from the early RG time to the late

RG time. Also, in this case, the boundary condition for iteration flows is set to match the analytic

solution at r2 = 20.

5 Numerical solution to RG flow

In this section, we attempt to obtain the solution of (4.22). In general, as most partial differ-

ential equations, it is hard to solve it analytically. Instead, we develop a numerical solution.

For the purpose of solving equation (4.22) we used a Runge-Kutta relaxation solver

with a second order central difference discretization of the differential operators. At the

borders, the method is adapted to backwards and forwards difference schemes. The spatial

interval in r2 is discretized on an equidistant nx = 100 or nx = 150 point grid (depending

on interval size), with a step time of order δt = 10−3. A typical convergence is of the order

of O(103) iteration steps. The accuracy of the procedure is O(10−3). This accuracy can

be increased by raising the number of grid points nx at the cost of iteration time. We

performed several tests at higher accuracy confirming the results presented below.

In our numerical solution we set as boundary condition that γ(L) = γIR(L), where L

is the size of the r2 interval and γIR is given by equation (3.12). In order to show this is a

well-defined boundary condition, two signals are presented in the following order. First, the

notion of large r2 is relative to β since the only scale in the theory is β. Then, for different
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Figure 3. Larger r2 test of convergence of the IR flow of γ(r2) from the starting UV point

γ = 2r2/
√
β2 + 4r2 (red dashed line) to the analytic IR solution (solid blue line). From the bottom

to the top dashed lines (yellow to purple), they represent the intermediate Kähler potentials from

the early RG time to the late RG time. Also, in this case the boundary condition for iteration flows

is set to match the analytic solution at r2 = 60.

boundary points set at any sufficiently large r2, the flows all converge to the fixed point

solution (3.12) as shown in figure 2. Furthermore, we tested the convergence by changing

the size of the r2 interval, finding convergence again as shown in figure 3.

The converging curves in the above two graphs also show that the larger r2 we fix, the

longer time they would take to converge to the solution at the fixed point, which indicates

that once such fixing condition is performed at r2 = ∞, the curve actually take infinite

amount of RG time to converge. The other evidence for the convergence of this numerical

calculation is that if the boundary point is fixed at the same large r2 for different β, the

flow stably converges to the corresponding fixed point solution as the smaller time step

is applied.

6 Exact twisted superpotential of WCP(N,N)

In the previous section we use numerical methods to study the RG flow of the Kähler

potential in the WCP(2, 2) model. On the other hand, we also want to study the vacuum

structure of WCP(N,N) model. If the theory in deep IR flows to a conformal fixed point,
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there would be no dynamical mass generated. This is in contrast to CP(N − 1) model [12]

where a dynamical mass is generated due to a VEV of |σ|2 in the vector supermultiplet, see

in eq. (2.1). In this section, we use the exact twisted superpotential of the theory [13, 27]

to find the σ VEV.

To write it down for the case Ñ = N we introduce two sets of twisted masses {m̃k}
and {m̂a} for chiral matters nk and ρa, respectively, [14, 28] as an IR regularization. In

the end we put all masses to zero. Upon integrating out all matter fields it takes the form

Weff(Σ) = −βh
2

√
2Σ− 1

4π

N∑
k=1

(
√

2Σ + m̃k)

[
log

(√
2Σ + m̃k

µ

)
− 1

]

+
1

4π

N∑
a=1

(
√

2Σ + m̂a)

[
log

(√
2Σ + m̂a

µ

)
− 1

]
. (6.1)

Here βh is the complexified FI-coupling,

βh = β + i
θ

2π
, (6.2)

where θ is the θ angle.

The VEV of σ, to be denoted as Σ, is therefore given by the solution to

∂Weff

∂Σ

∣∣∣∣∣
Σ=〈σ〉

= 0 , (6.3)

i.e.
N∏
k=1

(
〈
√

2σ〉+ m̃k

)
= e−2πβh

N∏
a=1

(
〈
√

2σ〉+ m̂a

)
. (6.4)

When the twisted masses {m̃k} and {m̂a} tend to zero, the only solution to the above

equation is

〈σ〉 = 0 , (6.5)

for any nonvanishing βh. The zero value for σ means that the mass gap for n and ρ fields

is not generated and we are in the conformal regime. Note, that if β = 0 there is another

solution with an arbitrary non-zero σ. This solution describes the Coulomb branch which

opens up at β = 0. As was already mentioned, we do not consider the case of vanishing β

in this paper.

7 Renormalization in GLSM vs. NLSM

Another main observation in [20] is that, even though the FI-coupling constant β receives

no quantum corrections in the GLSM/NLSM, the NLSM Kähler potential still has loga-

rithmic divergences and thus evolves with the energy scale µ or RG-time t. It has been

mentioned in section 1, see also in [21], that the ni and ρa Z-factors are not protected and

therefore the RG flow is not limited to one loop. The non-trivial quantum corrections to
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the Kähler potential in NLSM are due to these Z factors. In this section, we will make the

statement concrete.

In fact, to understand this phenomenon from the GLSM viewpoint, it would be more

appropriate to study the anomalous dimensions of the meson operators

Mia = niρa , and Zji =
nj
ni
. (7.1)

Indeed, the above gauge invariant moduli span the vacuum manifold (the Higgs branch

of GLSM). The running of the Kähler potential in NLSM is due to renormalization of

the classically marginal mesons operators (7.1). In the GLSM formalism, their runnings is

described by their anomalous dimensions and can be computed perturbatively,

γMia = −µ ∂

∂µ
ZMia , and γ

Zj
i

= −µ ∂

∂µ
Z
Zj
i
. (7.2)

To calculate the anomalous dimensions of Mia and Zji , it is convenient to invoke the

superfield formulation of GLSM. Equation (2.1) can be obtained from the Lagrangian

L = Lv.m +

∫
d4θ

(
N̄ie

VNi + R̄ae
−VRa − βV

)
(7.3)

where Lv.m is the Lagrangian of the vector multiplet. Note that Ni and Ra are the chiral

multiplets with charges 1 and −1, respectively, and the summation of the indices i, a =

1, 2, · · · , N is performed.

On the Higgs branch, the chiral multiplets develop VEVs; for simplicity let us choose

|N1|2 = β . (7.4)

Then, (7.3) can be recast in terms of the moduli, namely,∫
d4θ

{
βeV

(
1 +

N∑
j=2

∣∣∣Zj1∣∣∣2
)

+
1

β
e−V

N∑
a=1

|M1a|2 − βV

}
. (7.5)

To study the Z-factor correction under this particular vacuum (7.4) we eliminate the mas-

sive V superfield by solving the equation of motion for the vector multiplet,

eV0 =
β +

[
β2 + 4

(
1 +

∑N
j=2

∣∣∣Zj1∣∣∣2 )(∑N
a=1 |M1a|2

) ]1/2

2β
(

1 +
∑N

j=2

∣∣∣Zj1∣∣∣2 ) . (7.6)

Here V0 is the classical solution. In the weak coupling limit β = 2
g2
� 1, upon substitution

of (7.6), eq. (7.3) takes the form

L = Lv.m+

∫
d4θ

{
1

β

N∑
a=1

|M1a|2 + β
N∑
j=2

∣∣∣Zj1∣∣∣2 − 1

2β3

N∑
a,b=1

|M1a|2 |M1b|2

+
1

β

N∑
a=1,j=2

∣∣∣Zj1∣∣∣2 |M1a|2 −
β

2

N∑
j,k=2

∣∣∣Zj1∣∣∣2 ∣∣∣Zk1 ∣∣∣2 +O(δV 2)

}
. (7.7)
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M11 M̄11

Figure 4. The crossed dot indicates the vertices essentially originates from the contraction of V

superfield (see below for detailed explanation) and the explicit expression can be read off from (7.7).

The dashed line denote both moduli, Zj
1 and M1a proparating in the loop.

Since the overall structure of the Kähler potential here is manifest, let us trace only the

renormalization of the term M11M̄11. The logarithmic one-loop correction results from the

tadpole graphs emerging from four-M terms in (7.7) as shown in figure 4,

− 1

2πβ2
log

MV

µ
·
[

2 · 2
2

+
2(N − 1)

2
− (N − 1)

]
= − 1

πβ2
log

MV

µ
(7.8)

where the first term in the square bracket comes from
(
M̄11M11

)2
while the latter two

terms come from the mixed terms
(
M̄11M11

)(
M̄1aM1a

)
and a similar one with M1a and

Zj1 moduli. Assembling all contributions we arrive at the coefficient in front of M̄11M11

1

β
M11M̄11 →

1

β

(
1− 1

πβ
log

MV

µ

)
M11M̄11 . (7.9)

The N -independence of the result is explained by the fact of a dis-balance of the n fields

(one of Ni develops a VEV).

Before demonstrating that the above result coincides with that in the NLSM formalism,

it is instructive to verify our previous claim that Zji has no Z-factor correction from the

direct computation. That is, from the tadpole diagrams similar to those in figure 4, we see

that the correction to Z̄j1Z
j
1 is

δZ
Z̄j
1Z

j
1

= − 1

2πβ
log

MV

µ
·
[

2 · 2
2

+
2(N − 2)

2
−N

]
= 0 . (7.10)

The multiplicity of tadpoles producing the logarithmic divergences is counted in the same

way and order as presented in (7.8): i.e. Zj1Z
j
1 , Z

j
1Z

k
1 and Zj1M1a.

As a concluding remark, let us explore how the heavy vector multiplet produces the

effective vertices. For simplicity, let us focus on the case of WCP(2, 2) and examine only the

term M̄11M11. Assume on the Higgs branch the field N1 acquires a VEV and is thought

of as a “heavy” field. We then have three light fields which can produce logarithms in

the tadpole loop, namely, N2 and R1,2. The four-leg operators comprising M11 can be

established via −R̄1,2R1,2V and N̄2N2V vertices upon contraction of the superfield V ,

and, indeed,

(R̄1R1)2 + 2R̄1R1

[
R̄2R2 − N̄2N2

]
∼ |M11|4 + 2 |M11|2

[
|M12|2 − β2

∣∣Z2
1

∣∣2]
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M11M̄11

M11
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M11

M̄11

Figure 5. The solid line represents the propagator of the light fields (or the corresponding moduli)

and the curvy line is V as it emerges from a blow up of the effective vertex (crossed circle) in

figure 4.

as the latter directly emerges from the expansion of the WCP Lagrangian. In particular, if

we want to restore V and see how M̄11M11 is convoluted, the tadpole diagram in figure 4

can be viewed as the combination of the two graphs in figure 5.

8 Comparison with the zn model

In the previous sections, we analyze the UV to IR flow of the WCP(2, 2) model from

different perspectives. In fact, it is not this particular model which emerges on the world

sheet of an appropriate semilocal string. The so-called zn model, which is close but not

quite identical to WCP(2, 2) emerges [9, 25]. In this section we will study it following the

same line of reasoning.

To begin with, recall that the zn-model consists of two kinds of massless complex fields

ñk and z̃a for k, a = 1, . . . , N , and a U(1) gauge field Aµ. The action of zn model in gauge

formulation reads

Szn =

∫
d2x

{
|∇µñk|2 + |∂µ(ñkz̃a)|2 +

1

4e2
F 2
µν +

1

e2
|∂µσ|2 +

1

2e2
D2

+ 2|σ|2|ñk|2 + iD
(
|ñk|2 − β

)}
+ fermions. (8.1)

Note that the U(1) gauge field Aµ acts on ñk through the covariant derivative ∇µ as defined

in (2.2), while the ñkz̃a operator (i.e. the second term in (8.1)) is neutral.

On the Higgs branch and after integrating out the heavy gauge field we arrive at the

theory whose Kähler potential is [9]

KUV
zn = |ζ|2 + β log(1 + |Φj |2) (8.2)

where

|ζ|2 = |Za|2 (1 + |Φj |2), with Za = z̃añN , Φj =
ñj
ñN

, (8.3)

a = 1, . . . , N and j = 1, . . . , N − 1. Here we choose a coordinate patch with ñN non-

vanishing. |ζ|2 is an invariant radial coordinate playing the same role as r2 in the previous

WCP model. We stress that (8.2) has the same type of Kähler potential as (4.12) and
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therefore the formulae developed in section 4 can be directly applied. In particular, the

Ricci tensor that determines the renormalization of the Kähler potential is given by the

second equation in (4.9), where the determinant of the metric is given by

det(g)UV
zn = (β + |ζ|2)N−1. (8.4)

8.1 Z factors

Let us examine the one-loop correction to the Kähler potential. The metric determinant

is given by (8.4) leading to the following correction in the Kähler potential:

∆K(1)
zn =

1

2π
log

MV

µ
· (N − 1) log(β + |ζ|2) (8.5)

which coincides with the one given in [25]. The former logarithm comes from the loop

integral while the latter factor (N−1) log(β+ |ζ|2) originates from the metric determinant.

Because the FI term β here does not run in the RG process, the correction (8.5) cannot

be attributed to it. In fact, this additional logarithm is associated with the similar Z

factor as was discussed8 in section 7. First, at O(β−1) level, the correction to the Kähler

potential gives

∆K(1)
zn ≈

N − 1

2πβ
log

MV

µ
· |ζ|2 , (8.6)

in the vicinity of the origin. Note that |ζ|2 is similar to r2 in the WCP(2, 2) model which

can also be expressed as

|ζ|2 = TrM̃M̃ † with M̃ka ≡ ñkz̃a . (8.7)

On the GLSM side, to calculate the Z factor of meson operator, it suffices to calculate the

Z factor of z̃ field. To see this is the case, we can look at the second term in (8.1). This

term is like a meson kinetic term∣∣∣∂µM̃ka

∣∣∣2 = |ñk|2 ∂z̃a∂z̃a + |z̃a|2 ∂ñk∂ñk + ñkz̃a∂z̃k∂ña + z̃añk∂ñk∂z̃a . (8.8)

Once M̃ka obtains a Z-factor renormalization, it will also be reflected on the right hand

side of (8.8) and vice versa. In particular, from the first term in (8.8), we see that this is

indeed a wave-function renormalization of z̃ field if we expand around the vacuum,

ñ0
j = 0, ñ0

N =
√
β, z̃0(x) for j = 1, . . . , N − 1 . (8.9)

In this background, (8.8) takes the form

|∂µñk|2 +
∣∣∣∂µM̃ka

∣∣∣2 =β ∂z̃0
a∂z̃

0
a + β ∂z̃qa∂z̃

q
a + ∂ñqk∂ñ

q
k + ñqkñ

q
k∂z̃

0
a∂z̃

0
a

+ ñqkñ
q
kz̃
q
az̃
q
a + ñ0

N z̃
q
a∂z̃

0
a∂ñ

q
N + ñ0

N z̃
q
a∂z̃

0
a∂ñ

q
N + · · · , (8.10)

8The contribution of the Z factor from another gauge invariant parameter ñi/ñN vanishes by the same

reason mentioned in section 7 for Za
b .
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∂z̃0a ∂z̃0a

(1)

∂z̃0a ∂z̃0a

(2)

l

p

Figure 6. The solid lines are the background field ∂z̃0a and ∂z̃0a while the dashed lines present ñqk
and the curvy line is the quantum z̃ field, z̃qa. In the second diagram, the dashed line propagator is

only for ñqN as indicated in (8.10).

where ñqk and z̃qa are the quantum parts of ñk and z̃a fields, respectively. Here we only list

the propagators and vertices we will use. The first diagram in figure 6 contributes

N · i
∫

d2l

(2π)2

1

l2
=
N

2π
log

MV

µ
, (8.11)

while the contribution from the second diagram is∣∣ñ0
N

∣∣2 ∂z̃0
a∂z̃

0
a · (−i)

∫
d2l

(2π)2

l2

l2 · β(l + p)2
= − 1

2π
log

MV

µ
· ∂z̃0

a∂z̃
0
a , (8.12)

where we plug in the background field
∣∣ñ0
N

∣∣2 = β. Combing the above two graphs, we thus

find the Z-factor of the z fields at one-loop

β ∂z̃0
a∂z̃

0
a →

(
1 +

N − 1

2πβ
log

MV

µ

)
· β ∂z̃0

a∂z̃
0
a . (8.13)

This indeed matches the additional logarithm shown in the NLSM one-loop effective Kähler

potential (8.6). Note that we can also expand around another point on the vacuum manifold

N∑
k=1

|ñk|2 = β . (8.14)

Nothing changes for the first diagram while in the second one, there would be N replicas

with all the same logarithmic contribution and the coefficient
∣∣ñ0
k

∣∣2 (no sum). The overall

coefficient in front of ∂z̃0
a∂z̃

0
a becomes

∑
|ñk|2 which is also β.

8.2 The RG flow in the zn model

Now we can study the RG flow equation for the Kähler potential of the zn model. We will

limit ourselves to the N = 2 case and show that the metric of the zn model flows to the

Ricci-flat conifold metric (3.12) in the IR.

The classical Kähler potential of the zn model (8.2) falls into the same class as the

one of WCP, namely, it is described by the same Ansatz (4.12),

Kzn = f(r̃2) + β log

(
1 +

∣∣∣∣ ñ1

ñ2

∣∣∣∣2
)
, (8.15)
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where f(r̃2) is a function depending only on the radial coordinate r̃2 ≡ |ζ|2, while the

second term is the standard CP(N − 1) Kähler potential. This suggests that we can use

the Ansatz above to study the RG flow in the zn model. The RG equation is essentially

the same as in (4.19),

∂f

∂t
=

1

2π

[
log f ′ + log(β + r̃2f ′) + log(f ′ + r̃2f ′′)

]
+ C, (8.16)

where now the prime denotes derivatives with respect to r̃2, while C is an integration

constant. The initial UV condition for fUV(t = 0, r̃2) is given by (8.2), namely

fUV(t = 0, r̃2) = r̃2. (8.17)

Much in the same way as for the WCP(N,N) model we rewrite eq. (8.16) in terms of

the function γ,

γ ≡ r̃2f ′(r̃2). (8.18)

This gives the same equation as in (4.22), namely

∂γ

∂t
=

1

2π

{
r2 γ

′2(2γ + β) + γ(γ + β)γ′′

γ(γ + β)γ′
− 1

}
. (8.19)

We solve this equation numerically below with the initial condition

γUV(t = 0, r̃2) = r̃2, (8.20)

see (8.17) and the boundary condition of the form

γ′(t, r̃2 = L) = γ′IR(t, r̃2 = L). (8.21)

Figures 7 and 8 show the results of the UV to IR convergence for different values

of β and at different L. All results indicate a stable convergence of the UV starting

point towards the IR solution. Note also that the exact twisted superpotential of the zn

model coincides with the one in WCP(N,N) [25]. Thus, in much the same way as in

WCP(N,N) we conclude that no dynamical mass gap is generated due to σ VEV (which

does not develop).

9 Conclusions

In this paper we thoroughly discussed the relationship between the GLSM and NLSM

formulations of one and the same model referred to as in WCP(N,N). The focus of our

study was WCP(2, 2). Its GLSM formulation is equivalent to 2D SQED with four flavors:

2 of charge 1 and two of charge -1, and the FI term β. Both formulations lead to identical

predictions in the IR, namely the six-dimensional (three complex dimensions) Calabi-Yau

manifold as the target space of a superconformal sigma model. This is the so-called resolved

conifold. The authors of [22] came to this conclusion from the analysis of GLSM, in an

indirect but simple way. First, they observed N = 2 that requires a Kähler manifold.

Second, they noted that with the given matter sector β is not renormalized, which implies
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Figure 7. Convergence of the IR flow of γ(r̃2) from the starting UV point γ = r̃2 (red dashed line)

to the analytic IR solution (solid blue line). From top to bottom dashed lines (yellow to orange)

represent the intermediate Kähler potentials from the early RG time to the late RG time.

Ricci-flatness and conformality. Third, they used the fact that global symmetries cannot be

spontaneously broken in two dimensions. They also assumed constraint (3.2). Combining

the above fact they came to conifold conclusion. An explicit expression for the metric was

obtained in [23].

On the other hand, there is a standard procedure leading to NLSM. In the framework

of this procedure one relies on the Higgs regime, assuming that some matter fields acquire

vacuum expectation values which force Higgsing of the U(1) gauge boson. At large β

the vector superfield V then becomes heavy and can be integrated out. After eliminating

V we arrive at a non-linear sigma model which does have logarithmic renormalizations

(logMV /µ corrections) and is neither Ricci-flat nor conformal. The target space metric

is rather contrived. Fortunately, the above renormalizations can be calculated order by

order although the required procedure is time and labor intensive. In this way one obtains

RG equations which cannot be solved analytically, but only numerically. We analyzed the

RG flow and demonstrated that the solution of the RG equations in the IR tends to the

analytic metric of [23]. The road to Ricci flatness is neither straightforward nor easy.

What is the reason?

The starting point in the NLSM formulation is far from the exact solution. It assumes
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Figure 8. Test at larger r̃2 of convergence of the IR flow of γ(r̃2) from the starting UV point

γ = r̃2 (red dashed line) to the analytic IR solution (solid blue line). From top to bottom dashed

lines (yellow to purple) represent the intermediate Kähler potentials from the early RG time to the

late RG time.

Higgsing which in fact does not occur in the case at hand — in the final solution quantum-

mechanical fluctuations smear the fields n and ρ all over the target space. The same is

true not only for WCP(N,N) but even in more conventional CP(N − 1) models. Passing

to NLSM implies a non-linear realization of the global SU(N) symmetry, while the exact

solution (known at N = 2 [24] and N � 1 [12]) proves its linear realizations.
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