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Abstract 

 The spatio-temporal properties of saccadic eye movements can be influenced 

by the cognitive demand and the characteristics of the observed scene. Probably due 

to its crucial role in social communication, it is argued that face perception may 

involve different cognitive processes compared with non-face object or scene 

perception. In this study, we investigated whether and how face and natural scene 

images can influence the patterns of visuomotor activity. We recorded monkeys’ 

saccadic eye movements as they freely viewed monkey face and natural scene images. 

The face and natural scene images attracted similar number of fixations, but viewing 

of faces was accompanied by longer fixations compared with natural scenes. These 

longer fixations were dependent on the context of facial features. The duration of 

fixations directed at facial contours decreased when the face images were scrambled, 

and increased at the later stage of normal face viewing. The results suggest that face 

and natural scene images can generate different patterns of visuomotor activity. The 

extra fixation duration on faces may be correlated with the detailed analysis of facial 

features. 
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Introduction 

Visual exploration of a complex scene involves a series of saccades and 

fixations, which can shift our attention between specific objects or informative 

features within the scene and make detailed analysis and identification of the scene 

(Biederman 1987; Henderson and Hollingworth 1999). There are two important 

aspects of eye movements while studying gaze control during the scene perception, 

where fixations tend to be directed (fixation position) and how long they typically 

remain there (fixation duration) (Henderson 2003). Although human saccadic eye 

movements show a variety of stereotypic patterns while inspecting visual scenes 

(Yarbus 1967), the frequency and size of saccades can be modulated by the cognitive 

demand and characteristics of the observed scene (Salthouse et al. 1981; Jacobs 1986; 

Pollatsek et al. 1986; Epelboim et al. 1995; Hooge and Erkelens 1998; Andrews and 

Coppola 1999). For example, longer fixations are normally associated with difficult 

words in reading task (Pollatsek et al. 1986) and decreased discriminability of target 

in visual search task (Jacobs 1986; Hooge and Erkelens 1998); and natural scenes 

generate shorter fixations and larger saccades compared with simple pattern images in 

free viewing task (Andrews and Coppola 1999).  

As faces can provide visual information about an individual’s gender, age and 

familiarity, and their expressions offer significant cues to intention and mental state 

(Bruce and Young 1998; Emery 2000), the ability to recognize these cues and to 

respond accordingly plays an important role in the social life of higher primates 

(Andrew 1963; Anderson 1998). It is argued that face perception is involved in a 

unique cognitive process compared with non-face object or scene perception. For 

example, psychophysical studies have observed detrimental recognition performance 

for inverted faces rather than non-face objects or scenes (face inversion effect) (e.g. 
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Yin, 1969; Valentine 1988; Rossion and Gauthier 2002), a visual preference for face-

like stimuli in human neonates (Johnson and Morton 1991; see also Turati et al. 

2002), and selective impairments of face and object recognition in neurological 

patients (prosopagnosia and visual agnosia) (e.g. Sergent and Signoret 1992; Farah 

1996; Moscovitch et al. 1997). Recordings of human event-related potentials showed 

a different topography to face (including human and animal faces) and non-face 

object or scene stimuli in the N170 time window (e.g. Bentin et al. 1996; Itier and 

Taylor 2004; Rousselet et al. 2004). Elecrtophysiology and brain imaging studies 

further suggested a distinct neuroanatomical region in cerebral cortex associated with 

the cortical processing of faces (face-selective neurons in monkey inferotemporal 

cortex, fusiform face area in human cortex) (e.g. Sergent et al. 1992; McCarthy et al. 

1997; Tanaka 1997; Tsao et al. 2003). However, this view is recently challenged by 

some brain imaging studies suggesting that faces are processed by a domain-general 

system for fine-grained, exemplar-level object perception but probably at different 

level of recognition or different degree of perceptual expertise (Gauthier et al. 1999, 

2000; Tarr and Cheng 2003). 

It is not clear, however, whether inspection of face and non-face scenes, which 

have different image characteristics and may involve different cognitive processes 

(i.e. different cortical processes, different level of recognition or different degree of 

perceptual expertise), can influence the patterns of visuomotor activity. To examine 

this issue, we compared monkeys’ saccadic eye movements when they freely viewed 

face and natural scene images. Familiar scenes sampled from monkeys’ daily 

environment were also used to examine potential influence of the familiarity of 

natural scene images. This exploratory project is not only important to increase our 

understanding of the relation between the category of real world stimuli and the 
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organisation of goal-directed eye movements in non-human primates, but also for 

comparison with findings from humans, as the behaviour and neurophysiology of 

monkeys comprises the most significant model for the advancement of research into 

human brain function. We observed that the face images tended to generate longer 

fixations compared with the natural scene images, and these longer fixations were 

associated with the context of facial features. 

 

Methods 

Subjects 

Three male adult rhesus monkeys (Macaca mulatta, 4.5-6.0 kg) were trained 

to fixate a small fixation point (FP) for several seconds in a dimming fixation 

detection task. To make eye movement recordings, a scleral eye coil and head 

restraint were implanted under aseptic conditions (Guo and Benson 1998). All 

procedures complied with the “Principles of laboratory animal care” (NIH publication 

no. 86-23, revised 1985) and UK Home Office regulations.  

Stimuli and apparatus 

Digitized gray scale images were presented through a VSG 2/3 graphics 

system (Cambridge Research Systems) and displayed on a high frequency non-

interlaced gamma-corrected color monitor (6.0 cd/m2 background luminance, 110 Hz 

frame rate, Sony GDM-F500T9) with the resolution of 1024 × 768 pixels. At a 

viewing distance of 57cm the monitor subtended a visual angle of 40 × 30°.   

Four different classes of images were used as stimuli (see examples in Fig. 1A 

and 2A): (1) 20 neutral monkey (Macaca mulatta) face images, (2) 20 natural scene 

images (including buildings, landscape, trees and plants etc.), (3) 15 familiar natural 

scene images which were taken from monkeys’ daily environment, (4) 10 scrambled 
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monkey face images. The scrambled images were generated by dividing each 

complete face image into a 4 × 4 matrix and randomly rearranging the parts (Guo et 

al. 2003). By doing so, most of the local facial features (eyes, nose and mouth) were 

kept intact and recognizable, but the global structure of the face was disrupted. All 

images were in sharp focus at all depths of field, and were gamma-corrected and 

displayed once in a random order at the center of the screen with a resolution of 512 × 

512 pixels (20 × 20°). 

During the experiments the monkey sat in a primate chair with head 

restrained, and viewed the display binocularly. To calibrate eye movement signals, a 

small red FP (0.2° diameter, 7.8 cd/m2 luminance) was displayed randomly at one of 

twenty-five positions (5 × 5 matrix) across the monitor. The distance between 

adjacent FP positions was 5°. The monkey was trained to follow the FP and maintain 

fixation for 1 s. After the calibration procedure, the trial was started with a FP 

displayed on the center of monitor. If the monkey maintained fixation for 500 ms, the 

FP disappeared and an image was presented for 20 s. During the presentation, the 

monkeys passively viewed the images. No reinforcement was given during this 

procedure, neither were the animals trained on any other task with these stimuli, 

which could have potentially affected the structure of their behavior. It was 

considered that with their lack of training, and in the absence of instrumental 

responding, their behavior should be as natural as possible.  

Eye movement recordings and analysis 

 Horizontal and vertical eye positions were measured using an 18-inch cubic 

scleral search coil assembly with 6 min arc sensitivity (CNC Engineering). Eye 

movement signals were amplified and sampled at 500 Hz through CED1401 plus 

digital interface (Cambridge Electronic Design). The software developed in Matlab 
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computed horizontal and vertical eye displacement signals as a function of time to 

determine eye velocity and position. Fixation locations and durations were then 

extracted from the raw eye tracking data using velocity (less than 0.2° eye 

displacement at a velocity of less than 20°/s) and duration (greater than 50 ms) criteria 

(Guo et al. 2003).  

 As the main experimental design comprised three levels of image category 

(faces vs natural scenes vs familiar scenes), one-way repeated analysis of variance 

(ANOVA) was carried out after pooling the data from three monkeys. Appropriate 

post hoc testing of differences between levels of image category (Tukey’s least 

significant procedure) was also carried out following detection of significant overall 

variable ratios.  

 

Results 

The gray scale face and natural scene images appeared equally salient to the 

monkeys. No difference was observed in the number of fixations across the image 

categories (ANOVA, F(2,162)=0.5, p=0.61; Fig. 1B). During the entire 20-second 

presentation, three monkeys made 24.73 ± 1.51 (Mean ± SEM), 24.82 ± 1.69 and 

22.82 ± 1.58 fixations across the face, familiar scene and natural scene images.  

The fixation durations were influenced by the image categories. Although 

frequency distribution analysis showed that the monkeys made frequent short 

fixations (peak around 200 ms) while viewing the images (Guo et al. 2003), the faces 

tended to generate longer fixations (ANOVA, F(2,3975)=35.7, p=4.29E-16; post-hoc 

test, face vs familiar scene: p=7.91E-13, face vs natural scene: p=1.71E-11; Fig. 1C). 

In contrast, the familiar scenes and natural scenes had indistinguishable fixation 

durations (post-hoc test, p=0.66). The mean fixation durations were 317 ± 8 (Mean ± 
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SEM), 249 ± 5 and 253 ± 5 ms for face, familiar scene and natural scene images. The 

conclusion also holds for the median fixation durations which are less sensitive for the 

skewed distributions of fixation durations (e.g. Fig. 3B in Guo et al., 2003). The 

median fixation durations were 222, 205 and 200 ms for face, familiar scene and 

natural scene images. 

Inspection of the natural scene is accompanied by a series of fixations directed 

towards important and informative scene regions. Recent studies observed higher 

local luminance contrast and lower local two-point correlation for fixated scene 

patches than un-fixated patches (Reinagel and Zador 1999; Krieger et al. 2000; 

Parkhurst and Niebur 2003), suggesting that local image statistics, such as luminance 

contrast, is a major contributor to the saliency map for overt attention (Parkhurst et al. 

2002). To examine whether the differences in fixation durations for the three classes 

of images were due to the differences in the physical properties and statistics of those 

fixated image regions, we calculated local luminance contrasts around individual 

fixations in different images. The local contrast is a measure of variability of the 

intensity within an image patch, and is defined as the standard deviation of the 

luminance within a square image divided by the mean intensity of the whole image 

(Reinagel and Zador 1999; Einhäuser and König 2003). The size of the square region 

was chosen to be 2° × 2° (±1° around the fixation) which roughly covers the spatial 

scale of the size of the fovea. While the average fixation duration in the face images 

was longer than that in the familiar scenes (Fig. 1C), the average local contrast around 

the fixations in the face images (0.2568 ± 0.0034) was not significantly different from 

that in the familiar scenes (0.2539 ± 0.0038; t-test, p>0.05; Fig. 2). However, the 

average local contrast around the fixations in the natural scene images (0.3512 ± 

0.0061) was higher than that in the face and familiar scene images (ANOVA, 
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F(2,3975)=157.11, P=2.63E-66). This is due to the physical properties of the natural 

scene images, as the average local contrast from random samples in the natural scenes 

(25 samples per image) was also proportionally higher than that in the face and 

familiar scene images (ANOVA, F(2,1372)=113.02, p=3.67E-46; Fig. 2). 

For individual fixations sampled while viewing face, familiar scene and 

natural scene images, we further plotted its duration against its local contrast (Fig. 3). 

In agreement with previous study of human subjects (Einhäuser and König 2003), 

over all images and all subjects, we found no correlation between local contrast and 

fixation duration (r = 0.00005, 0.0007 and 0.0002 for face, familiar scene and natural 

scene images). This holds also true for the local contrasts calculated using smaller (1° 

× 1°) or larger (3° × 3°) spatial scale around the fixations (r<0.001 for all images). 

This analysis shows that the local luminance contrast was unlikely related to the 

differences in the fixation durations while viewing face, familiar scene and natural 

scene images.  

As the measurement of local contrast is insensitive to the spatial organization 

of intensities within an image patch, we also employed two-point correlation function, 

which calculates the correlation between the point at the centre of each fixation and a 

point within local neighbourhood of the fixation (±1° around the fixation in this 

study), to quantify the correlation in intensity between pairs of pixels in the image 

patch (Reinagel and Zador 1999). The mean and covariance of correlation matrices 

over the fixations within individual face, familiar scene and natural scene images 

were calculated and further averaged over each class of the images and subjects 

(Cootes and Taylor 1992; Cootes et al. 1992). Figure 4 shows the mean of correlations 

for each class of images. In general, correlation is a function of distance between 
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image points (pixels). The local image structures around the fixations in the natural 

scene images seemed to be less correlated than that in the face images. 

To further quantify the variations of correlations for each class of images, 

eigenvalues and eigenvectors of the covariance matrix were computed to analyse 

principle components of our correlation data over each class (Kreyszig 1999). The 

Mahalanobis (weighted) distance between the mean of each class and the mean of 

other classes were finally calculated to determine whether different classes were 

overlapped with each other or separated from each other (Cootes and Taylor 1992; 

Cootes et al. 1992). Figure 5 shows the distribution of our data for these three classes 

of images by considering first two important modes (components) of variations. The 

distribution function was assumed as a multidimensional Gaussian function whose 

variances correspond to the eigenvalues of the covariance of the correlation data. 

These Gaussian functions were considered in a feature space obtained by applying 

Hotelling transform to our data (Cootes and Taylor 1992; Cootes et al. 1992; Kreyszig 

1999). This analysis shows a clear difference in spatial correlations between fixations 

sampled from the face and natural scene images. The local image structures are more 

spatially correlated in the face images. However, this difference in local spatial 

correlations between the face and natural scene images is unlikely related to the 

difference in fixation durations while viewing the face and natural scene images. 

Compared with the face images, the correlations between nearby pixels were weak in 

the natural scene images, indicating a rich structure on small spatial scale in the 

natural scene images. Therefore the natural scene images are statistically less 

redundant (Field 1987; Ruderman and Bialek 1994; Simoncelli and Olshausen 2001), 

and consequently should attract longer fixation durations for the purpose of foveal 

analysis rather than shorter fixation durations as we observed in the recording. 
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However, the relationship between fixation duration and local spatial structure of the 

stimulus may well be task dependent. For example, the natural scene image could 

attract longer fixation durations in a search task compared with the free viewing task 

we employed in this experiment. Nevertheless, our observation suggests that the 

fixation duration is dependent upon not only simple local properties like contrast and 

spatial correlation, but also some complex features like informativeness. 

While viewing the faces, the monkeys’ fixation was mainly directed to the 

principal local facial features, even with the scrambled faces (see examples in Fig. 1A 

and 6A) (Guo et al. 2003). To investigate whether the longer fixations on facial 

features are dependent upon their spatial configurations, we compared the durations of 

fixations on eyes, nose, mouth and facial contours (including hairlines) within normal 

and scrambled face images (Fig. 6A). While the fixations on eyes, nose and mouth 

had the same durations between normal and scrambled faces (paired t-test, p>0.05), 

the mean duration of fixations on facial contours of normal faces (302 ± 12 ms) was 

longer than that of scrambled faces (282 ± 20 ms) (paired t-test, p=0.03). 

We further compared the durations of each of the first seven fixations on the 

eyes and facial contours within normal face images (this number was chosen as it 

represented the maximum number of fixations within the region for some images, Fig. 

6B). While the fixation durations on the eyes were the same with changing fixation 

sequence (ANOVA, F(6,268)=0.85, p=0.53), the duration of fixations on the facial 

contours increased gradually at the later stage of fixation (ANOVA, F(6,214)=3.75, 

p=0.001). There was no significant change of the fixation durations on the same 

regions within scrambled faces with increasing fixation sequence (ANOVA, eyes: 

F(6,98)=1.25, p=0.29; facial contours: F(6,115)=0.67, p=0.68). 
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Discussion 

 In the present study, we compared the patterns of saccadic eye movements 

while monkeys freely viewed face and natural scene images (including familiar and 

novel natural scenes). The face and natural scene images appeared equally salient to 

the monkeys. They attracted similar number of fixations during the image 

presentation. However, viewing of the faces was accompanied by longer fixations 

compared with the natural scenes. This difference in fixation durations across 

different classes of images is unlikely to be related to the differences in local physical 

properties and statistics of these images which was demonstrated by the analysis of 

local luminance contrast (standard deviation of intensity in a fixation patch, Fig. 2, 3) 

and local two-point correlation function (intensity of the fixated point and nearby 

points, Fig. 4, 5) across the different classes of images. Comparison between familiar 

and novel natural scenes showed that these two classes of natural images attracted 

similar amount of fixation durations (Fig. 1). Because our familiar scenes were 

‘artificial’ man-made scenes sampled from monkeys’ daily environment, and novel 

natural scenes included both ‘artificial’ scenes (i.e. buildings) and ‘natural’ scenes 

(i.e. plants), it is difficult to exclude the potential influence of the ‘naturalness’ of 

scenes on fixation duration without further detailed examination with large sample 

size. However, as our analysis also revealed that the fixation durations sampled from 

novel ‘natural’ scenes (253 ± 7 ms) were not significantly different from those 

sampled from novel ‘artificial’ scenes (248 ± 11 ms) (t-test, p=0.61), it is unlikely that 

the potential interaction between familiarity and ‘naturalness’ of the tested scenes 

could fully account for our observation of difference in fixation durations between 

face and natural scene images.  
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Detailed examination of facial configurations further revealed that the longer 

fixations on facial contours appeared to be dependent upon the arrangement of these 

contours into a coherent and recognizable object, namely a face. The duration of the 

fixations on the same facial contours in the scrambled face images were significantly 

shorter (Fig. 6). These results suggest that face and natural scene images may generate 

different patterns of visuomotor activity. The extra fixation duration on faces may be 

correlated with the detailed analysis of facial features. 

Oculomotor strategies are closely linked with the cognitive demand (Epelboim 

et al. 1995), and the fixation duration has been correlated with the amount of 

information being processed during foveal analysis (Moffit 1980). Longer fixations 

are usually associated with extra cognitive demand and/or display complexity 

(Salthouse et al. 1981; Jacobs 1986; Hooge and Erkelens 1998). For example, 

individual fixation durations are longer during scene memorization than search 

(Henderson et al. 1999), or when the image at fixation is reduced by contrast or 

partially obscured by a noise mask (van Diepen 1995). 

One of the major differences between face and natural scene images is that 

faces have inherent social significance. They are behaviorally relevant visual stimuli 

for primates, which provide essential information about an individual’s gender, age, 

familiarity, intention and mental state (e.g. Bruce and Young 1998; Emery 2000). 

When viewing a complex scene containing faces, the highest portion of human 

fixations is directed to the faces (Yarbus 1967). The local facial features, such as eyes, 

are not just simple geometric patterns or objects. They also contain significant social 

communicative signals. Like human, monkeys are also heavily reliant on facial 

signals for social communication. Based on facial cues alone, they are readily able to 

respond appropriately to the expressions of other individuals (Mendelson et al. 1982), 
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to recognize and discriminate the faces of familiar and unfamiliar individuals 

(Rosenfeld and van Hoesen 1979; Parr et al. 2000). Their visual system also appears 

to be tuned to the informative facial features (Guo et al. 2003). They showed a 

preferential interest, high density of fixations and longer fixation durations, to the 

major local facial features while viewing faces. As local image complexity around the 

fixations is unlikely account for the differences in fixation durations between the face 

and natural scene images (Fig. 2, 3, 4, 5), the extra duration of fixations for the faces 

may be correlated with the extra cognitive demand (i.e. “configural process”) which 

involves detailed analysis of local facial features and perceiving relations among the 

facial features, and therefore maybe important for acquisition and processing of facial 

cues, such as identity, expression and gaze direction (Maurer et al. 2002). As we only 

tested neural face images in a free viewing task in this experiment, in the future study 

it will be interesting to systematically manipulate social relevance over controlled sets 

of face images and/or cognitive demand, and to investigate the relations among social 

perception, cognitive demand and patterns of saccadic eye movements.  

Interestingly, the disruption of facial configuration (i.e. scrambled faces) 

seems only affect the number of fixations (Guo et al. 2003) rather than the duration of 

fixations on the faces (Fig. 6). The fixations on major local facial features, such as 

eyes, nose and mouth, had the same durations between normal and scrambled faces, 

only fixations on facial contours slightly decreased for scrambled faces. 

Facial cues, such as identity, gender and attractiveness, are sensitive to the 

manipulation of metric properties of a face (Burton et al. 1993; Perrett et al. 1994; 

Fellous 1997). Humans can detect variations in facial metric information as small as 

one minute of visual angle, a value close to the limits of acuity (Haig 1984). Previous 

studies suggest that this facial metric information is explicitly encoded in the brain 
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and may be used for face perception and discrimination (Yamane et al. 1988; Young 

and Yamane 1992). Indeed, the responses of face-selective neurons in anterior 

inferotemporal cortex of macaques are correlated with dimensions relating the hairline 

to other facial points, especially the eyes, in face discrimination tasks (Young and 

Yamane 1992). In our study, the observed monkeys’ fixations on facial contours may 

be correlated with the analysis of the properties of facial dimensions, and this process 

may require extra fixation time. While in the scrambled faces, due to the lack of 

information about the facial dimensions, the fixations to these features may just 

provide less sophisticated local information (i.e. local contrast and local contour). 
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Legends 

Figure 1. (A) Examples of static gray scale face, familiar scene and natural scene 

images used in the recording. The white dots within the images indicate the position 

of each fixation sampled during the image presentation. (B and C) Number of 

fixations (B) and fixation duration (C) measured while viewing face, familiar scene 

and natural scene images. Error bars mean standard error of mean. 

 

Figure 2. The average local contrast around the fixations while viewing face, familiar 

scene and natural scene images (left white columns), and the average local contrast 

from random samples in face, familiar scene and natural scene images (25 samples 

per image, left grey columns). Error bars mean standard error of mean. 

 

Figure 3. Dependence of fixation duration on local luminance contrast in face, 

familiar scene and natural scene images. 

 

Figure 4. The mean of correlations over two-degree image patches around the 

fixations in face (left), familiar scene (middle) and natural scene images (right). In the 

far right side of the figure, a scale is presented to indicate the brightness with the 

corresponding correlation values. 

 
Figure 5. Two dimensional Gaussian functions in feature space corresponding to face, 

familiar scene and natural scene images. The two axes correspond to the two most 
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important variations in the covariance matrix, and the units of the axes indicate 

standard deviations of modes. 

 

Figure 6. (A) Comparison of the durations of fixations on facial contours, eyes, nose 

and mouth region within normal and scrambled face images. Error bars indicate 

standard error of the mean. The top graphs are examples of normal and scrambled 

face images used in the experiment. (B) The change of the fixation durations with 

increasing fixation sequence at the eyes and facial contours within normal face 

images. 
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Figure 1 
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Figure 2. 
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Figure 3 
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Figure 4 
 
 
 
 

  Face             Familiar Scene                 Natural Scene  

 
 
 

1°

-1°D
is

ta
nc

e 
to

 fi
xa

tio
n 

ce
nt

re
 

-1° -1°1°
Distance to fixation centre 

1

0
-1°1° 1°

 
 
 
 
 
 
 
 

 26



  

Figure 5 
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Figure 6 
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