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Longer time steps for molecular dynamics
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Simulations of the dynamics of biomolecules have been greatly accelerated by the use of multiple
time-stepping methods, such as the Verlet-l/r-RES@éversible reference system propagator
algorithmg method, which is based on approximating “slow” forces as widely separated impulses.
Indeed, numerical experiments have shown that time steps of 4 fs are possible for these slow forces
but unfortunately have also shown that a long time step of 5fs results in a dramatic energy drift. To
overcome this instability, a symplectic modification of the impulsive Verlet-1/r-RESPA method has
been proposed, called the mollified impulse method. The idea is that one modifies the slow part of
the potential energy so that it is evaluated at “time averaged” values of the positions, and one uses
the gradient of this modified potential for the slow part of the force. By filtering out excitations to
the fastest motions, these averagings allow the use of longer time steps than does the impulse
method. We introduce a new mollified methddquilibrium, that avoids instability in a more
effective manner than previous averaging mollified methods. Our experiments show that
Equilibrium with a time step of 6 fs is as stable as the impulsive Verlet-l/r-RESPA method with a
time step of 4 fs. We show that it may be necessary to include the effect of nonbonded forces in the
averaging to make yet longer time steps possible. We also show that the slight modification of the
potential has little effect on accuracy. For this purpose we compare self-diffusion coefficients and
radial distribution functions against the Leapfrog method with a short time(6tédy. © 1999
American Institute of Physic§S0021-960609)01520-7

I. INTRODUCTION Molecular dynamics(MD) is a well-established tech-
nique in biophysical simulatiofsThe central question an-
Simulations of the dynamics of biomolecules have beerswered in this area is the relationship among structural and
greatly accelerated by the use of multiple time-steppinGunctional properties of proteins with respect to atomic inter-
methods, such as the Verlet-I/r-RESPA method, which isactions. MD requires the solution of Newton’s equations of
based on approximating “slow” forces as widely separatedmotion for a classical unconstrained simulation
impulses.(This method was proposed but not implemented
by the authors of Refs. 1 and 2, and independently discov-
ered by the authors of Ref. 3, who also demonstrated its

usefulness.Indeed, numerical experiments have shown that ) ) . )
time steps of 4fs are possible for these slow forces, but un/hereM is a diagonal matrix of atomic masses; X(t) are

fortunately have also shown that a long time step of 5 fdhe atomic trajectories, and the potential fiélds typically

results in a dramatic energy drift. To overcome this instabil-9\V€n by

ity, a modification of the impulsive Verlet-l/r-RESPA U = ybnd4 ynonbnd 2)
method has been proposed, called the mollified impulse
method (MOLLY ),* which allows the use of longer time
StepSS. We introduce a neviequilibrium version of MOLLY ynonbnd_ | jLennard-Joneg. | j electrostatic (4)
that avoids instability in a more effective manner than pre-

vious averaging mollified methods. Our experiments shoWrpe gynamics of such a system can be described, as a first
that Equilibrium with a time step of 6 fs is as stable as the 55 oximation, as a superposition of harmonic oscillations
impulsive Verlet-1/r-RESPA method with a time step of 4 1s. 5|j6qnormal modesvhose frequencies are obtained by per-
We also compare dynamical and structural propeiesf- o ming normal mode analysidlMA ). This analysis of bio-
diffusion coefficient and radial distribution functigregainst logical systems reveals that normal mode motions occur in

d2
MEX(t):—VU(X(t)), (1)

U bnd_ U bond+ U angle+ U dihedral_'_ U improper, (3)

the leapfrog method with a short time stéps fs). disparate time scales. Bonded forces in & correspond to
very high-frequency motions, whereas nonbonded forces
dElectronic mail: izaguirr@uiuc.edu have mostly low-frequency motiorisee Sec. IV R
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When these systems of ordinary differential equations 35 T T T T
are numerically integrated, the fastest motions restrict the
time step. For the popular Verlet or leapfrog integrators, this 30r 1
is typically 1 fs. The real problem is that the computation of Fast part
the (slower motion nonbonded forces accounts for most of _ar 1
the computational time, since there are many more of these g
forces. To alleviate this computation burden imposed by the ~ §20F 7
small time-step restriction, simulations are sometimes done T
with a cutoff in the nonbonded forces. However, there is 215 1
increasing evidence that this introduces serious artifacts into (&
the simulationg:”® Situations where it is especially impor- 1or Slow part i
tant to include full electrostatics aréa) When simulating
charged species such as molten silfis) when computing °r 3
properties such as the dielectric constéotwhenever DNA . , , ,
is involved in the simulatioR.The development of multiple % 3 6 9 12 15
time stepping methods has facilitated the inclusion of full Distance (Angstroms)

electrostatics. These methods integrate different components - _ o

of the force field using different time steps, and therefore aré!®: 1. Splitting of electrostatic potential into slow and fast parts. The
. electrostatic force is the derivative of this potential.

well suited to the nature of the systems. Hence, dlmng-

ranged forces are sampled less frequently than “fast”

(short-rangeyiforces. It turns out that in MD the systems integrated are cha-

otic. That is, very small perturbations to the initial conditions
A. Verlet-l/-RESPA multiple time stepping ~ (MTS) grow exponentially in time. Hence, it is inappropriate to ex-

A method that integrates different force terms using dif-Pect that accurate trajectories for macromolecules be com-

ferent time steps is the Verlet-I/r-RESPA impulse MTS puted for more than a short time interval. Rather, it is ex-
method. We start by rewriting Eql) as pected only that the trajectories have tmrect statistical

properties This is believed to be accomplished if the nu-
merical integrator is symplectic, because the use of a sym-
plectic integrator ensures that the system actually integrated
by the numerical method is a slightly different Hamiltonian
whereFS= — U2 and FS°%= — U$°". The partitioning of  system® On the other hand violations of this property such

F into F™' and = is chosen so that an appropriate time as that produced by velocity rescaling lead to skewed energy
stepAt for the slow part is larger than a time stépfor the  distributionst*

fast part. As an illustration, the electrostatic force could be  Reversibility is another important property of E¢p)

d2
MEXZFfaSI(X)_i_FSIOW(X)’ (5)

split into a fast and slow part as shown in Fig. 1. that the numerical integrator should preserve. It has been

With these definitions in place, the impulse method is stated® that “any lack of perfection of such reversal should

¢ o be due to rounding-off errors only, not the program.” Many
M—X= >  St&t—mat)Fas(x) symplectic integrators are reversible. Reversibility and sym-

dt? m== plecticness(actually only volume preservation in phase

w space are also sufficient for the validity of hybrid Monte

+ D Ata(t—nAt)FSOWX). (6) Carlo methods, which employ short MD integratidfis.
n=—ow

Trains of impulses at different frequencies sample different

force components, as illustrated in Fig. 2. Although uncon- mid%fi(t) = Z‘St 8(t — /5ty (— VUt Y)
strained dynamics is being considered here, the ideas extend dt "

to the case where bond lengtfend bond anglgsare con-

strained. In fact, results for the Verlet-I/r-RESPA method JU]_HJU]_H_H_[LH_H_H_

using constrained dynamics are reported in Sec. IlIC. Re- + ZAt 5(t — nAt)(—ViUSbW(. )
sults using this approach have been reported in Refs. 10-12. n

B. Symplectic and reversible integrators

An important property of the Verlet-l1/r-RESPA impulse
MTS method is that it is symplecti¢. Here, we explain its
significance. Numerical integrators for MD need to produce
correct results for long integration periods, since simulations
of tens of thousands of atoms for one or more nanoseconds
are often necessary. Therefore, it is important to assess the
validity of the numerical integration after such a long time. FIG. 2. Diagram for the multiple time-stepping impulse method.
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The mollified impulse method that we describe in this Averagings based in approximating the fastest forces by
paper is both symplectic and reversible, as we discuss iB-spline functions are described in Sec. Il A. These methods
Sec. Il allow increasing the time step to 5 fs, and therefore break the
5 fs time step barrier of the impulse method.
The main contribution of this paper is thgguilibrium
version of the mollified impulse method, in which the aver-
) i . aging is defined to be a projection in configuration space
Based on accuracy considerations only, it seems that gnto the manifold defined by equilibrium positions for the
largest At _of 16 fs for the slowest forces should be fagtest forces. WittEquilibrium, it is possible to take time
achievablé Considering that for large systems the bulk of steps of 6 fs, a 50% acceleration over thulsemethod. It
the computational cost is in evaluating these slowest forceg,gn pe shown thatfor linear systems, Equilibrium’song
this would represent substantial speedups over evaluating eyme step is not restricted by the frequency of the fastest
ery 1fs. . _ force unlikelmpulseand B-spline averaging MOLLYEqui-
Nevertheless, if the frequency of the slow force impulsejipiym is described conceptually in Sec. 1B and algorith-
term on Eq.(6) coincides with a natural frequency of the mically in the Appendix.

system, then there may exist an oscillation in the positions  gyperiments with all these methods are described in Sec.
whose amplitude increases with timfeesonance When jj aso, progress has been made in understanding the limi-
resonance occurs, there is an accuracy reduction in the corsiions of the mollified impulse method. By contrived experi-
putation, and it may also lead to instability. The fastest NOMnents, we have discovered that not only the fagtestded
mal modes of the system are the first to induce a resonanggyces but the fast parts of the nonbonded forces as well
as At increases. Flexible covalent bonds to hydrogen in Ufast,nonbnjl influence the stability oEquilibrium (see Sec.
biomolecule are usually responsible for the fastest normg ). We are developing a mollified method that will include
modes, because among all interactions, bond Stretchingjiast,nonbndin the averaging to make even longer time steps
have the largest force constants and hydrogen atoms have tBSssibIe.
smallest mass. The period of these modes is between 9 and
10 fs in moleculegcf. Sec. IV B.

Experiment& have shown that there is an upper limit of Il. MOLLIFIED IMPULSE METHOD (MOLLY)
4 fs (a 5 fs “barrier”) in the longest time stept for the This method, introduced in Refs. 4 and 19, is an attempt
Verlet-1/r-RESPA method(Impulsg. This barrier corre- to evaluate the dynamics of the system more accurately and
sponds to a time step a bit smaller than half the period of thelso to shift upwards the stability barriers on the time step by
fastest normal mode, as is explained in Ref. 19. This barriefiltering excitations to the highest frequency forces. This is
shifts upwards if the highest frequencies are eliminated byaccomplished by a change to the impulse method
imposing constraints.

Instability problems are less severe for a biomolecule in
an implicit solvent modeled by Langevin dynamics. There,
the method termed L realizes the full potential of mul- Which induces the change

tiple time stepping. FS0%) s A, (x)TES A(X)), ®

This has two effects:

C. MTS stability barriers

UsIOW(X)_)UsIOW(A(X)), (7)

D. Overcoming MTS stability barriers (1) The force is evaluated at averaged positionkis gives

In Sec. Il we describe a symplectic and reversible modi-
fication to the impulse method, the mollified impulse method

(MOLLY)), and results obtained by applying the method to(2)

flexible water. MOLLY softens the contributions of the slow
force impulse to bonded forces. Experience with Verlet-I/r-
RESPA shows that flexible water is much more sensitive to
instability than biomolecule¥: Hence, we are confident that
equally good behavior will occur for more heterogeneous
simulations. Implementation requires only a little more than
the programming of a SHAKE routine for constraining co-
valent bonds to hydrogers.

The idea of the mollified impulse method is that one
modifies the slow part of the potential enefd§®" so that it
is evaluated at “time averaged” values of the positions, and
one uses the gradient of this modified potential for the slow
part of the force. The averaging is based on the effects of the
“fastest” forces. Its net effect is to filter excitations of the
slow impulses to the fastest motions which induce instability.
This is described in Sec. Il.

a more accurate description of the rapidly varying trajec-
tory X(t).

The destabilizing components of the''® impulse are
removed the impulse is mollified. This transformation
brings accuracy and stability gains.

One step of the mollified metho@OLLY ) described
above is

half a mollified kick

At
Pn 1+e_ Pn 1+ ? Fslow,n l. (9)
a vibration PropagateX"~1, P"~1*€ py integrating
Ex=|\/|—1P d P=F"(X) (10
dt "dt '

(e.g., using Verlet/leapfrog with time stefi) for an
interval At to getX", P"" €
a time averagingCalculate a temporary vector of time-
averaged positionX"=A4(X") and a Jacobian matrix
J"=A(XMT. The time-averaging functiotd(x) uses
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only the fastest forceB™"*{x), to avoid the introduc-
tion of many nonzero elements into the Jacobian matrix.
half a mollified kick

—® [ongAvg

----- LongLinearAvg
— 0.8 LongQuadraticAvg| |
Fslow,n:JnFsIOW(Xn), (11) .
Pn: Pnfe_{_ f Fslow,n_ (12) ?S)O-G
2 2

The symbolsP"~1*€ and P"~ € represent momenta just
after the 6 —1)st kick, and just before theth kick, respec-

tively. Note thatX" is used only for the purpose of evaluat- 0.2
ing F3°% it does not replace the value &f.
The use of molecular dynamics as a tool to sample other 0

1.5

ensembles is common practice. Combinations of Verlet-1/r- VAL

RESPA with constant-temperature NVT and constant-
temperature- and -pressure NpT ensembles are proposed in FIG. 3. Weight vst/At for first three B-spline filters.
Ref. 23. It should be straightforward to do a substitution of
USoA(x)) for US°Yx) in these methods.
Since MOLLY is simply the application of Verlet-/r- long quadratic average
RESPA to a slightly modified potential energy, the symplec- H9)=13-9), |9<1;
ticness and reversibility of MOLLY follow from the sym- 4 ' '
plecticness and reversibility of Verlet-I/r-RESPA. The only HS)=%3-9?2 1ss<3; ¢(5)=0, s=3.
property needed for the averaging functigt{x) is that it
depends only on positions and it does because zero velocities Regarding the accuracy of these averaging methods, the
are used in its calculation. In what follows, we present twooriginal motivation behind them was to defin&x) in such
instances of averaging functions that have this property. a way that it compensated for the finite of the Verlet-I/r-
RESPA integrator. The positiond(x) are a function ofAt
and
A. B-spline averaging methods
A(X)=x+O(At?),
A family of averagings is defined in Ref. 19:
so the error due to the modification of the potential is attrib-
1= [t utable to a finite time stept. Mathematical analysis and
A(X) = " ¢(E>X(t)dt’ numerical experiments in Ref. 19 confirm that the trajectory
0 error on a given time interval is proportional &2 indepen-
dently of the stiffness of the fast modes for these B-spline
averaging methods; this is not true for the Verlet-1/r-RESPA
method. We do not discuss these averagings in further detail
here because the experiments indicate that they are inferior
to the Equilibrium method.

where ¢(t/At) is a weight function that is nonzero on a
finite interval, andX(t) solves arauxiliary problem

Pe e < d_
M?X=F""Ste{X), X(0)=x, SX(©0)=0. (13

d B. Equilibrium method

The mollified methods described above filter the slow
We also need to computd,(x)". Weight functions defined force impulse in a partial way: their level of effectiveness is
by B-splines were used in Refs. 5 and 19. We implementedlirectly related to the extensiveness of their time averaging.
and tested several of those for this paper, plus a higher ordétere, we introduce an averaging that completely eliminates
one, |ong quadra’[ic average]'hese Weight functions are the contributions of the slow force in the directions that ex-

shown in Fig. 3, and their formulas are here: cite the fastest forces in the system; that is, the bond and
angle interactions. We projeat onto the manifold in con-
long average figuration spacdthe space of position coordinajedefined

by the reference values of the bond lengths and bond angles.

— . _1 —_1.
HI=1, [s|<1; ¢(s)=3 [s|=1; The main assumption for the effectiveness of this

#(s)=0, |g|>1 method is that bond and angle interactions are the fastest
' ' forces and impose the most stringent requirement on the time
long linear average step of Equilibrium. In cases where forces other than the

fastest may induce instabilitg quilibrium can be combined
d9)=1-135, 0=s<2; ¢(s)=0, |[s]=2. with other averagings.
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—(X3=X1) 72
USo"(x) = (X3=Xz)
(X3—Xq) 2= (Xg—Xp) "2
The[unmollified] slow force impulse changes the vibrational
energy of the spring since the force on each atom is different.
That is, the impulse stretches the spring. Both stretching
modes are excited by the impulse. In contrast, the mollified
impulse does not stretch the spring. Tguilibrium averag-
ing

Reference Length

FIG. 4. Effect ofEquilibrium on a water molecule. Atoms in the molecule

. " o I 1 1 101
are pulled toward their rest length position for the mollificationfiltering) 2(xg+ Xz) - E' 2 2 0
of the slow force impulse, but left unchanged for the dynamics. N . T 11
A(X): E(X1+X2)+ EI l AX(X) = 2 2 0 ’
X3 0 0 1

This averaging is obtained by determining the magnitude

of the displacements along the bonds that would restore thgliminates this stretching effect by adding equal forces to
bond lengthsiand anglesto their reference value, and it is each atom. The net effect of the mollified impulse is to trans-

defined by late the spring without any stretching. However, in 3D, these
fastest forces are nonlinear. A mollified impulse will excite
AX)=x+M g, (x)"\, (14  even those fastest forces for which the mollification is de-

signed. Consider an impulse delivered at right angles to one
with A determined by the constraint equations of two balls co_nnected by a spring. The impulse will act to
stretch the spring.
9(A(x))=0. (15
Ill. EVALUATION OF METHODS
This is similar to the constraining procedure used in
SHAKE 22 We provide algorithmic details in the Appendix.
In fact, the calculation ofA(x) is exactly SHAKE with zero
velocities. Equilibrium MOLLY is not SHAKE, however,
becauseA(x) is used only in the evaluation d¥°" and

does not replace in the integration. That is, we still use ime step upwards but do not eliminate it completaiy-
unconstrained dynamics. Figure 4 illustrates the effect o ulseis stable up to 4 fsB-spline averaging MOLLY up to
Equilibriumin a water molecule. Atoms in the molecule are g ¢o Equilibrium up to 6 fs, and SHAKE-I up to 8 fs. Even
pulled toward the!r rest length position for the mollification thodgh SHAKE is the mo,st stable method overall, it gives
of the slow.force impulse. I . less accurate results, as the computation of radial distribution
R.egardmg Fhe accuracy oEq}J|l|br|um, unlike the ¢ nctions illustrates, wheredsquilibrium’s is practically in-
B-spline averaging methoc_js, there is no dependencé(x distinguishable from Leapfrog. All these methods were
on At; rather, we would simply be advised to cho04€X)  i.cted in the molecular dynamics programmp .2+
=x if At is small enough.

nge, we present the main motivation concerning theA_ Test problem
stability of this method by means of an example. Consider a
system of two charged particles of unit mass interacting We performed our simulations using flexible water,
through a harmonic force;pring with reference |ength), based upon the TIP3P mO&é'Wlth ﬂEXIbI'Ity incorporated
and a third, negatively charged, unit mass particle interactin§y adding bond stretching and angle bending harmonic terms

through an electrostatic Coulomb force. This system haécf. Ref. 6. We used a small problem consisting of a 10 A
Hamiltonian radius sphere with 423 atoms equilibrated during 100 ps of

simulation time by temperature rescaling to 300, 370, and
380 K. We also used a bigger problem consisting of a 20 A
radius spher¢3243 atomy equilibrated to 340 K.

The potential energy of flexible water is given by

In this section, we present results of a comparison of
various B-spline averaging methods, tBquilibrium molli-
fied impulse method, thémpulsemethod, and constrained
dynamics in combination with MT$SHAKE-I). We show
that the mollified methods shift the stability barrier on the

U=3K(X;—Xo— )%= (Xa—Xp) "1+ (Xa—x1) %,

where x;<x,<x3. Split the forces as)™{x)+USx),

with
 electrostatic_ 4iq;
Xjj
k(Xl— X2_ I ) g
12 6
Uiast(X) =| —k(xg=x2—1) |, Lennard-Jones. 4 . i\ _ i SW(x;))
O 1] Xij Xij 1]/
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(ybond— KB(X”_|”)2, For severe instability, an exponential fit would be more ad-
equate. We also computed the percent relatigiseassoci-
uandle= K ,(6— 6,)?, ated to the relative drift. It is the rms variation of the residual

. . of the linear regression, and gives us an error bar of the drift
wherex;; =|x; —x||. For this discussion, these potentials arefor a given simulation lengticf. Refs. 18 and 26
split as follows: To measure accuracy, we computed a relative variation
U faste yfastbndy (fastnonbnd in the true energyAE, given by

fast,ond_ | jangle bond 1 J _
UEEOTER U AE= 53 Jeli) e
Ufast,nonbnd__ Ufast,elecgi_ U Lennard-Jone,s i=1
fastelect (lectrostatigyy . ) wheree is average totz_il energy:(_i) i_s instantaneous total

o energy, andl is simulation lengthin time steps For sym-

| Slow— [ yelectrostatic_ | jfast,elect plectic integratorsAE is an excellent indicator of accuracy:
it measures the distance between the true energy surface in
phase space and a modified energy surface arising from the
use of a finite time steAt (see Ref. 13, p. 132The differ-
ence between the two energy surfaces will determine the
accuracy with which most quantities are calculated.

The switching function SW;) serves to split the elec-
trostatic potential into slow and fast pafend also to bring
the Lennard-Jones force to zero smoottdy that the force is
a derivative of the potential even when using cutoff. It is
defined by

(0 if xj;>cutoff,
1 if XijSSWm,

2. Statistical quantities

We computed structural and dynamical properties for the

SWI(X;j) = 4 (Cutoffz—xizj)(cutoff2+ 2xi2j —3SW,2) various integrators. We obtained radial distribution functions

(Cutof— SW, 2 of the test problem for site—site O—0O, O—H, and H-H inter-
on actions for the flexible TIP3P waté¢ef. Ref. 25. These were

L if SWosxj<cutoff. computed using XPLOR'’s trajectory analysis capabilities.
For flexible water, C=332.0636kcal/mo)K %, K,  We also obtained the mean square displacerRent (MSD)
=55(kcal/moldegree$, K g=450(kcal/mo) A2, qo asa function of time and the self-diffusion coefficiebt

=0.417e, qy=—0.834e, 1o =0.957A, I, ,=1.514A, using Einstein’s relation B=R(7)/(27). The procedure to
0,=104.52 degrees. The Lennard-Jones parameters af@mpute these quantities is described in more detail in Refs.
ohy=0.4A, oo 4=1.75253A, €,_,=0.046kcal/mol, 6 and 27, among others. The self-diffusion coefficient was
€o_r=0.08365 kcal/mol. As indicated above, the systemcOmputed by averaging over all molecules and all time ori-
was equilibrated to 300, 340, 370, and 380 K. gins of 100 ps simulations of a 10 A radius sphere of water
(141 molecules To get the diffusion coefficient for liquid
water, one would normally use periodic boundary conditions
B. Performance metrics to avoid surface tension effects. The programmp 1.5 in
which we have tested our methods does not implement peri-
odic boundary conditions with an Ewald sUadthough it is
For each simulation, we generated a history of all of themplemented invamp 2.07%). Hence, we have used spherical
components of the energy, positioftsajectorie$, velocities,  constraints with a radius of 11 A and 21(f reduce surface
and forces. Most simulations ran for 200 ps, and several foeffecty and averaged the results. There was no discernible
750 ps. These lengths allowed us to observe instabilities thalifference in quality between the two sets of results. The
were not evident in the first few picoseconds of simulation,quantities we compute are not physically correct but they are
and gave us significant confidence in our error estimates foof the same nature as the physical quantities and should
energy conservation. serve well to compare the proposed methods to the Leapfrog
We monitored stability using th@seudoenergyThis  method, which is of known quality.
quantity is the energy withUS®™(x) replaced by
USo A(x)). Itis the quantity that the integrator is trying to
conserve, and therefore is a better indicator of instabilityC' Results
than the energy. The amount of fluctuation exhibited by the  Here, we summarize the results of our experiments. Fig-
pseudoenergis a fraction of the true energy’s. ure 5 compares the stability dimpulse, Equilibrium,and
To measure drift in the energy, we devised a metric, theSHAKE-I (SHAKE using ImpulseMTS as the integrator
percent relative drift, given bip =d/K whered is the abso- As mentioned above, SHAKE-I is the most stable of all the
lute pseudoenergdrift (linear regression coefficientandK methods, for time steps up to 8 fispulseis stable up to 4
is the average kinetic energy for the simulation. fs; Equilibrium is stable up to 6.25 fs. Figure 6 shows their
Our experiments showed th&t is a robust metric of relative accuracy. Observe that the inaccuracies with long
drift and corresponds to our visual perception of the drifttime steps are mostly due to the drift in the energy. Both of
experienced by the methods we tested. The linear model aphe above figures plot the results for simulations of water at
plies to systems of interest where there is only slight growth300 K for At up to 7 fs, and at 380 K foAt of 8 fs or more.

1. Energy conservation



J. Chem. Phys., Vol.

110, No. 20, 22 May 1999

1000 T T T T T T
2 100f -
o
(=3
N
8
£ 10F -
o)
)]
=
©
° 1k 7
o
o —® Impuise
o Equilibrium
a O0.1fF B—a SHAKE n
i 1 1 1 1 1
0.01 4 6 8 10 12 14

Long Time Step AT (fs)

16

FIG. 5. Percent relative drifd (kcal mol"*K 1) for 200 ps vsAt (fs).

Tables | and Il list results of 200 ps simulations of 125
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Long Time Step AT (fs)

FIG. 6. Percent relative variation in energyf (kcal molr* K~1) vs At

(fs).

waters forimpulse, Equilibrium,and SHAKE-I at 300 and A for Lennard-Jones and short-range electrostatic force com-
380 K respectively. They are sorted By, the method, and putation. This is shorter than usual for testing purposes —
5t for easy comparison among methods for a given long timevith a more customary cutofff® A or greater, the long-
stepAt. Similarly, Table Il lists results of 750 ps simula- range force would be too weak to test the integrators due to
tions. All the experiments with 125 waters use a cutoff of 6.5the small number of atoms. Other parameters arg Js-

TABLE |. Results for 200 ps of simulation of flexible water at 300 K. All experiments use spherical boundary

conditions with a radius of 21 A, except those marked withy*which do not use spherical BCs. The drift and
noise are the coefficient and rms variation on the residual, respectively, of a linear regression on the energy.

At ot SW,n, Noise

(fs) Method (fs) A Drift (kcal mol™ K1) AE

0.5 Leapfrog 0.5 4 —0.009% 0.290% 0.029%
1 Leapfrog 1 4 0.028% 0.280% 0.122%
2 Impulse 1 4 —0.019% 0.220% 0.128%
3 Impulse 1 4 0.087% 0.170% 0.130%
4 Equilibrium 1 4 0.084% 0.160% 0.206%
4 Impulse 1 4 1.060% 0.190% 0.305%
4 SHAKE- 1 4 0.039% 0.310% 0.047%
5 Equilibrium 1 4 0.159% 0.170% 0.213%
5 Impulse 1 4 396.000% 8.800% 101.000%
5 SHAKE- 1 2 —0.043% 0.130% 0.045%
5 SHAKE-I 1 4 0.214% 0.083% 0.082%
6 Equilibrium 0.5 2 0.575% 0.110% 0.202%
6 Equilibrium 0.5 4 1.040% 0.160% 0.317%
6 Equilibrium* 1 2 1.590% 0.210% 0.417%
6 Equilibrium 1 2 1.960% 0.220% 0.557%
6 Equilibrium® 1 4 1.290% 0.260% 0.382%
6 Equilibrium 1 4 1.380% 0.260% 0.422%
6 Impulse 1 4 187.000% 8.400% 47.200%
6 SHAKE-I 1 2 0.086% 0.370% 0.052%
6 SHAKE- 1 4 0.288% 0.140% 0.099%
6.25  Equilibrium 0.625 2 1.630% 0.190% 0.423%
6.25  Equilibriunt 1.25 2 2.270% 0.350% 0.622%
6.25 Impulse 0.625 2 456.000% 11.000% 118.000%
6.25  SHAKE-I 0.625 2 0.020% 0.390% 0.047%
7 Equilibrium® 1 2 13.600% 0.280% 3.410%
7 Equilibrium 1 4 17.700% 0.830% 4.590%
7 Impulsé 1 2 355.000% 33.000% 92.800%
7 SHAKE-I 1 4 0.498% 0.100% 0.146%
8 Equilibrium 1 2 57.900% 1.010% 14.600%
8 Equilibrium 1 4 86.100% 2.687% 22.100%
9 SHAKE-I 1 4 2.465% 0.230% 0.630%
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TABLE Il. Results for 200 ps of simulation of flexible water at 380 K. All experiments use spherical boundary
conditions with a radius of 41 A, except those marked with™which do not use spherical BCs. S\\s 4.
The drift and noise are the coefficient and rms variation on the residual, respectively, of a linear regression on

the energy.
At ot Noise
(fs) Method (fs) Drift (kcal mol™K 1) AE
6.25 Equilibrium 0.625 4.050% 0.200% 1.060%
6.25 Equilibrium 1.25 15.560% 0.470% 2.000%
6.25 SHAKE-I 0.625 0.232% 0.280% 0.054%
7 Equilibrium 0.5 10.860% 0.300% 1.440%
7 SHAKE-I 1 -0.025% 0.080% 0.064%
8 Equilibrium 1 81.300% 1.500% 20.300%
8 SHAKE-I 1 0.720% 0.310% 0.253%
9 Equilibrium 1 158.000% 2.200% 40.000%
9 SHAKE-I 1 2.310% 0.350% 0.642%
10 Equilibrium 1 121.000% 2.400% 30.500%
10 SHAKE-I 1 2.660% 0.400% 0.733%
12 Equilibrium 1 214.444% 5.100% 47.800%
12 SHAKE-I 1 21.600% 0.910% 5.150%
15 Equilibrium 1 185.000% 25.000% 47.300%
15 SHAKE-I 1 188.000% 11.000% 48.900%

tance at which a €switching function is activatedand the  the methods using unconstrained dynamics, and the shift in
small time stepst. Notice that a smallest reduces the drift phase exhibited by SHAKE-I. This shift is more pronounced
observed in a simulation. For examplequilibrium with in the O—0 and O-H radial distributions but is nevertheless
At=6 fs and SW,=2A, has a drift of 1.96% in 200 ps with noticeable in the H—H distribution function. It is important to
ot=1 fs, and only 0.575% in 200 ps witht=0.5 fs. A" note that this is not only an effect of the large time step used
similar trend is observed in the rest of these tables. (8 fs) for SHAKE-I. The same shift is observed with smaller
We have evidence that a sufficiently nonsmooth switchyime steps. This is expected, since SHAKE-I eliminates sev-

ing function creates extreme instability. For example, in 3ral degrees of freedom from the dynamics. These radial

test of a protein and watéi5 000 atomsat 300K using the . .. = . . . . .
Impulsemethod with aAt of 4 fs, we get no drift using the g:cs;rét())uggn functions were obtained by sampling simulations

C? switching function implemented inamMp and described . cep -
in Ref. 18. However, using thepLOR switching functior® Table IV lists the self-diffusion coefficient and the stan-

for the same problem and parameters above gives a drift gfard deviation computed using the above methodology. The

44.000% per ns! uncertainty in the computation grows slightly fétmpulse
Figures 7—9 show the radial distribution functions for and Equilibrium as At increases. However, no statistically
the site-to-site O—0O, O—H, and H-H interactions Equi-  significant difference can be detected for either method and

librium with At=6 fs, st=1 fs; Verlet/leapfrog withst  parameters. The inaccuracy in the computation for SHAKE-|
=1 fs; and SHAKE-I. Notice the close agreement betweergrows more pronouncedly witht=8 fs, but it remains the

TABLE Ill. Results for 750 ps of simulation for water. Most experiments are at 300 K. Those marked with a
“+” are at 380 K. All experiments use spherical boundary conditions with a radius of 21 A, except those
marked with “*,”” which do not use spherical BCs. The drift and noise are the coefficient and rms variation on
the residual, respectively, of a linear regression on the energy.

At ot SWon Noise

(fs) Method (fs) R) Drift (kcal molrtK—1) AE

1 Leapfrog 1 4 0.258% 0.340% 0.125%
4 Impulse 1 4 2.000% 0.500% 0.598%
5 Impulse 1 4 1320.000% 18.000% 327.000%
5 SHAKE-I 1 2 —0.030% 0.440% 0.047%
6 Equilibrium 1 2 6.120% 0.420% 1.580%
6 Equilibrium 1 4 2.050% 0.340% 0.461%
6 SHAKE-I 1 2 0.131% 0.250% 0.063%
6.25 Equilibriumt 0.625 4 14.880% 0.440% 2.620%
6.25 Equilibrium 0.625 2 8.795% 0.330% 1.430%
6.25 Equilibriumt 1.25 4 34.350% 1.000% 5.680%
6.25 Equilibrium* 1.25 2 15.112% 0.640% 4.820%
6.25 SHAKE-I 0.625 2 0.118% 0.340% 0.048%
7 Equilibrium 1 4 53.788% 1.100% 10.600%
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FIG. 7. Radial distribution function for the O—O interaction for three dif- FIG. 9. Radial distribution function for the H—H interaction for three dif-
ferent integrators. Notice th&quilibrium’s is indistinguishable from Leap-  ferent integrators. Notice th&quilibrium’s is indistinguishable from Leap-
frog, but SHAKE’s peak is in a different position. frog, but SHAKE's peak is slightly shifted and higher.

E. SHAKE-I: SHAKE plus the Impulse method
m =6 fs. W mment next on h meth - . ) .
same att=6 fs. We comment next on each method sepa We tested SHAKE as implemented WamD 1.5 using

rately. the MTSImpulsemethod as the integrat¢SBHAKE-I). This
approach is a more radical treatment of the bond and angle
forces tharEquilibrium, because it eliminates their contribu-

D. Equilibrium MOLLY tion to the dynamics altogether. These experiments were a

We implemented Equilibrium into NAMD  (http:// valuable test of the viability of constrained dynamics and

www.ks.uiuc.edu/Research/namd/namd/htmiersion 1.5, MTS methods.

using the algorithm given in the Appendix. We validated and ~ They also served to corroborate that the bond and angle
tested this method extensively. It has been shown to be stabfgrces are responsible for instabilities. The numerical experi-
for At of up to 6 or 6.25fs. Our standard for comparison isMents showed that SHAKE- is stable bt of up to 8 fs but

the Impulsemethod withAt=4 fs, st=1 fs, which accord- S Slightly unstable for time stepSt of 9 fs.

ing to Table | has a drift of 1.06% for 200 ps. Fig. 10 shows  hese results suggest that the bond and angle forces are
that Equilibrium at 6.25 is superior to an averaging method partly 'respon5|b.le fo'r the instabilities observgd |n.the meth-
and to thempulsemethod. The valudt=6.25fs is particu- ods discussed in this paper. Further analydisscribed in

larly useful, since it divides evenly into 100 and is machineS€c: V) leads us to conclude that the contributions of the
representable. Lennard-Jones interactions to the “bond-stretching” normal

modes are also important. Hence, the averaging including the
fastest forces only is not enough to get rid of all instabilities,
since their source should be traced not only to the fastest

v ' ' ' ' ' ! (bonded forces but to the fast part of at least some non-
ok A J bonded forces as well.
T '
(e ! .
T , F. Averaging MOLLY
c r
S . .
£ 1.5 . ] We also implemented thieng averagelong linear av-
= . .
T ] erage andlong quadratic averagenethods described above.
1 . . . . .
5 ' Our implementation used Hessian matri¢ejuired for the
-
= )
@ [
a ! TABLE IV. Self-diffusion coefficient (10° cn?/s). Values with standard
e} 1 deviations were computed by averaging over all molecules and all time
303 ) origins of 100 ps simulations of a 10 A radius sphere of w#tel mol-
o ' Leapfrog At=1fs ecules)
4 = Equilibrium At=6 fs
5 ---- SHAKE At=8fs
0 1 1 1 1 1 1 ot,At (fs)
15 2 25 3 3.5 4 4.5 5 Method 0.5 1 1,4 0.5,6 1,6 1,8
Distance R(OH) (Angstroms)
Impulse 8.90.3 8.9:0.3 9.0:0.4
FIG. 8. Radial distribution function for the O—H interaction for three dif- Equilibrium 9.4-0.4 9.1+-0.3 9.2:0.4 9.3:0.4
ferent integrators. Notice th&quilibrium’s is indistinguishable from Leap- SHAKE-I 9.0+0.3 8.9-05 9.1+0.3 10.10.8

frog, but SHAKE's peak is in a different position.
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-340 T T T nism to correct instabilities. Because of noise, simple obser-
Impulse vation of the energy components does not reveal which one
-350F D = 1700%] rises first.
-360[ 7 A. First experiment
§-370- - One study was an attempt to reduce nonlinear effects by
ig LonaLineat. doing an ex_perlmgntal s_mall-ener_gy analysis. This con5|s_ts
<-880F D=9290% of running simulations with coordinates near a stable equi-
g _ librium of the Hamiltonian. For this, we ran simulations on
g9 the test problem with minimized energgear zero Kelvin
_400 - The reason for this analysis is twofold: First, by starting
- the simulation close to an equilibrium point, KAM
-410 Equilibriunt] (Kolmogorov—Arnol’d—Moser theory’ shows that the solu-
. . D=8% tion will remain close to the equilibrium at all times except
420 5000 10000 15000 for instabilities caused by resonances of time steps whose
Time (fs) length is close to some multiple of 1/3, or 1/4, of some
FIG. 10. Mollified methods with\t=6.25 fs. natural period in the system. This holds provided a non de-

generacy condition is satisfied and Arnol'd diffusion can be
neglectedcf. Ref. 39. Second, it avoids the strong coupling
of normal modes that happens at higher temperatures allow-
ing the more precise use of spectral analysis.

We ran simulations for 750 ps with flexible water near 0
K with At from 5 to 12 fs, every 0.1 fs. These experiments
showed instabilities starting ait=7.7 fs for the regular wa-
t%r. To check the validity of our assumption that the fastest

mollification of the slow force impulgegenerated by auto-
matic differentiation tools for €+ developed at Argonne
National Labs® These experiments showed that all three
averaging methods work fakt=5 fs, succeeding in break-
ing the 5 fs barrier of the impulse method. This is illustrated

It?wa::r:gE.qlulil.i:r ic:mever, these averaging methods are less rObu?orces(bond and angleare responsible for these instabilities,
C . . . we conducted a series of experiments with “accelerated”
Results(not given hergshow that it makes little differ- water at the same temperature
ence o include the a”.g'? forces; most of the benefit i.” _sta- The latter water model was‘ designed to produce the de-
k_)|||ty comes f“’“_“ molhfymg j[he_bond forces. He_nce, It is stabilizing effects of the bond and angle force for smaller
likely that a variation ofEquilibrium that constrains only “values ofAt (atAtfaSEO.SAtreg“'aﬁ. It is a modification of
gr:g:l_'esl,)(gngds t\r/]vgllj_lld_lg ediztsar?ggs ir?s\‘/vg;eer that also constralqﬁe test problem already described, where the bond and angle
ha force constants were multiplied by (5f4)25/16. This is
equivalent to multiplying the frequency by 5/4. The set of
IV. EXPERIMENTAL STABILITY ANALYSIS experiments with the fast water showed a similar pattern of
instabilities as the regular water, but with slightly smaller
After observing instabilities foEquilibrium at 8 fs, we ~ drifts and strong instabilities appearing 4t™=6.4 fs (a
sought to discover which components of the force are re~scaled” At=8 fs), rather than 6.16 fs(a scaled At
sponsible for the instability, in order to devise a stronger=7.7fs).
mollification for those components, or some other mecha-  Figure 12 show® vs At (scaled for the fast waterThis
suggests that there may be other force components causing
instability besides the angle and bond forces. We then accel-

-380 . . . ' erated another force, the Lennard-Jones interaction. After do-
Impulse ing this we got a much better scaling. The asterisks in Fig. 12
_a90k D=1500% - | correspond to the water model with accelerated angle, bond,
and Lennard-Jones interactions. Therefore, it would help to
include the fast part of the Lennard-Jones force in the aver-
?‘400 LongAverage | aging(the frequency of the slowest parts of this force is very
3 D=11% slow and unlikely to have any contribution to the stability of
§,-410WW’WWM‘ - Equilibrium).
5 LongLinear
2 D=0%
w420 &
LongQuadratic B. Normal mode analysis
_430k D=0% - Normal mode analysis was performed for the test prob-
st AN M A AN lem in the manner described in Ref. 6. Equat{dh can be
440 . . . . approximated linearly at an equilibriui,(xg) =0 by
0 1000 2000 3000 4000 5000
Time (fs) do?

_ M — x= = U(X) = = U (o) (X—Xo) = O([|x—X|*).
FIG. 11. Averaging methods @tt=>5 fs. dt
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12X 10° ing. In the absence of other forces, there would be no other
' ' ' vl frequencies. The last row shows the effect of the Lennard-
Jones and electrostatic forces, with periods as fast as 38.235
10f 1 fs and as slow as 2890.3 fs.
@——® Regular Water|
8t |m—n E";‘zm;’}’:}‘e’ . C. Another experiment: Pure  Equilibrium

This experiment was performed to show that the insta-
bilities in Equilibrium stem from the effect of the fast non-
bonded forces on the fastest forces, and therefore it is impor-
tant to include the former in the averaging.

PureEquilibrium is Equilibrium with all but the fastest
forces included in the long-time step, that i&S°"
= fslow.electy. pfastnonbnd Fqr accyracy and stability, a much
shorter long time stepAt=2) must be used. In order to test

IS
T
1

Percent relative drift per ns
(2]
L
L

5 7. 8 85 88 9 9.5 for instabilities the fastest forces were made faster by a factor
Long Time Step AT (fs) of 4. The following results seem to indicate tiire Equi-
FIG. 12. Percent relative drift per i) vs At for regular, fast, andfast librium performs nearly as well as SHAKE-I. T_hls means
LJ water. that the effects of the fast nonbonded forces are important for

the stability of Equilibrium.

Then, we can transform our problem into a set of harmonic Method Drift Noise
oscillators Shake (t=2) 0.04% 0.47%
d d Pure Equil At=2scaledAt=8) 0.10% 0.85%
GNP gPi= - w?Xi, Equilibrium (At=8) 57.90% 0.01%
Shake (t=8) 0.70% 0.30%

o =\(M~ UM 22), Th

ese results are for 200 ps run for all of the above AAt
whose solution is a superposition of oscillatiofreormal =8 SW,,is 2 A. With SW,,=4 A, Equilibrium does worse
modes with periods™'=w;/27 and with directions given (86.1%*2.7% and the results are more dramatic. The scaled
by eigenvectors. For example, a linear triatomic moleculeAt=8 corresponds to multiplying the bond force constant by
with 3 unit masses connected by 2 springs of stiffiebas 16, a fourfold increase in the bond energy.
a matrix M~ Y20, M ~ 12 with
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third is the angle bending normal mode. The last row shows normal modes ~ A(X) =X+M77g,(x) "N, with g(A(x))=0. (A1)
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keep the bond lengths constant, thereby finding the “equilib-

A Mi M . " .
Rank (f\g’ (flsr; (f‘:;( rium” positions A(x) (if only the fastest forces are presgnt
From g,(A(x))"A,(x)=0, obtained by differentiating
1-125 9.898 9.821 9.976 ; ; it
126,250 10.083 9978 10197 Eqg. (Al), it follows that, by des!gn, we are gnnlhllatlng the
251-375 18.844 18232 19.440 components of the slow force in the directions spanned by
376—1119 38.235 2890.3 the columns ofg,(.A(x)). These are the directions in con-

figuration space along which the bond length and angle
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tions influence stability the most. In cases where other forces
may induce instabilityfor example, Lennard-Jones interac-

tions), this method cannot be extended satisfactorily.
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