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Longer time steps for molecular dynamics
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Simulations of the dynamics of biomolecules have been greatly accelerated by the use of multiple
time-stepping methods, such as the Verlet-I/r-RESPA~reversible reference system propagator
algorithms! method, which is based on approximating ‘‘slow’’ forces as widely separated impulses.
Indeed, numerical experiments have shown that time steps of 4 fs are possible for these slow forces
but unfortunately have also shown that a long time step of 5 fs results in a dramatic energy drift. To
overcome this instability, a symplectic modification of the impulsive Verlet-I/r-RESPA method has
been proposed, called the mollified impulse method. The idea is that one modifies the slow part of
the potential energy so that it is evaluated at ‘‘time averaged’’ values of the positions, and one uses
the gradient of this modified potential for the slow part of the force. By filtering out excitations to
the fastest motions, these averagings allow the use of longer time steps than does the impulse
method. We introduce a new mollified method,Equilibrium, that avoids instability in a more
effective manner than previous averaging mollified methods. Our experiments show that
Equilibrium with a time step of 6 fs is as stable as the impulsive Verlet-I/r-RESPA method with a
time step of 4 fs. We show that it may be necessary to include the effect of nonbonded forces in the
averaging to make yet longer time steps possible. We also show that the slight modification of the
potential has little effect on accuracy. For this purpose we compare self-diffusion coefficients and
radial distribution functions against the Leapfrog method with a short time step~0.5 fs!. © 1999
American Institute of Physics.@S0021-9606~99!01520-2#
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I. INTRODUCTION

Simulations of the dynamics of biomolecules have be
greatly accelerated by the use of multiple time-stepp
methods, such as the Verlet-I/r-RESPA method, which
based on approximating ‘‘slow’’ forces as widely separa
impulses.~This method was proposed but not implemen
by the authors of Refs. 1 and 2, and independently disc
ered by the authors of Ref. 3, who also demonstrated
usefulness.! Indeed, numerical experiments have shown t
time steps of 4 fs are possible for these slow forces, but
fortunately have also shown that a long time step of 5
results in a dramatic energy drift. To overcome this insta
ity, a modification of the impulsive Verlet-I/r-RESPA
method has been proposed, called the mollified impu
method ~MOLLY !,4 which allows the use of longer tim
steps.5 We introduce a newEquilibrium version of MOLLY
that avoids instability in a more effective manner than p
vious averaging mollified methods. Our experiments sh
that Equilibrium with a time step of 6 fs is as stable as t
impulsive Verlet-I/r-RESPA method with a time step of 4 f
We also compare dynamical and structural properties~self-
diffusion coefficient and radial distribution functions! against
the leapfrog method with a short time step~0.5 fs!.

a!Electronic mail: izaguirr@uiuc.edu
9850021-9606/99/110(20)/9853/12/$15.00
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Molecular dynamics~MD! is a well-established tech
nique in biophysical simulations.6 The central question an
swered in this area is the relationship among structural
functional properties of proteins with respect to atomic int
actions. MD requires the solution of Newton’s equations
motion for a classical unconstrained simulation

M
d2

dt2
X~ t !52¹U~X~ t !!, ~1!

whereM is a diagonal matrix of atomic masses,x5X(t) are
the atomic trajectories, and the potential fieldU is typically
given by

U5Ubnd1Unonbnd, ~2!

Ubnd5Ubond1Uangle1Udihedral1U improper, ~3!

Unonbnd5ULennard-Jones1Uelectrostatic. ~4!

The dynamics of such a system can be described, as a
approximation, as a superposition of harmonic oscillatio
callednormal modeswhose frequencies are obtained by pe
forming normal mode analysis~NMA !. This analysis of bio-
logical systems reveals that normal mode motions occu
disparate time scales. Bonded forces in Eq.~2! correspond to
very high-frequency motions, whereas nonbonded for
have mostly low-frequency motions~see Sec. IV B!.
3 © 1999 American Institute of Physics
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When these systems of ordinary differential equatio
are numerically integrated, the fastest motions restrict
time step. For the popular Verlet or leapfrog integrators, t
is typically 1 fs. The real problem is that the computation
the ~slower motion! nonbonded forces accounts for most
the computational time, since there are many more of th
forces. To alleviate this computation burden imposed by
small time-step restriction, simulations are sometimes d
with a cutoff in the nonbonded forces. However, there
increasing evidence that this introduces serious artifacts
the simulations.2,7,8 Situations where it is especially impo
tant to include full electrostatics are:~a! When simulating
charged species such as molten salts;6 ~b! when computing
properties such as the dielectric constant;~c! whenever DNA
is involved in the simulation.9 The development of multiple
time stepping methods has facilitated the inclusion of f
electrostatics. These methods integrate different compon
of the force field using different time steps, and therefore
well suited to the nature of the systems. Hence, slow~long-
ranged! forces are sampled less frequently than ‘‘fas
~short-ranged! forces.

A. Verlet-I/r-RESPA multiple time stepping „MTS…

A method that integrates different force terms using d
ferent time steps is the Verlet-I/r-RESPA impulse MT
method. We start by rewriting Eq.~1! as

M
d2

dt2
X5F fast~X!1Fslow~X!, ~5!

whereF fast52Ux
fast andFslow52Ux

slow. The partitioning of
F into F fast andFslow is chosen so that an appropriate tim
stepDt for the slow part is larger than a time stepdt for the
fast part. As an illustration, the electrostatic force could
split into a fast and slow part as shown in Fig. 1.

With these definitions in place, the impulse method i

M
d2

dt2
X5 (

m52`

`

dtd~ t2mdt !F fast~X!

1 (
n52`

`

Dtd~ t2nDt !Fslow~X!. ~6!

Trains of impulses at different frequencies sample differ
force components, as illustrated in Fig. 2. Although unco
strained dynamics is being considered here, the ideas ex
to the case where bond lengths~and bond angles! are con-
strained. In fact, results for the Verlet-I/r-RESPA meth
using constrained dynamics are reported in Sec. III C.
sults using this approach have been reported in Refs. 10

B. Symplectic and reversible integrators

An important property of the Verlet-I/r-RESPA impuls
MTS method is that it is symplectic.13 Here, we explain its
significance. Numerical integrators for MD need to produ
correct results for long integration periods, since simulatio
of tens of thousands of atoms for one or more nanoseco
are often necessary. Therefore, it is important to assess
validity of the numerical integration after such a long tim
s
e
s
f

se
e
e

s
to

l
nts
e

-

e

t
-
nd

-
2.

e
s
ds
he

It turns out that in MD the systems integrated are ch
otic. That is, very small perturbations to the initial conditio
grow exponentially in time. Hence, it is inappropriate to e
pect that accurate trajectories for macromolecules be c
puted for more than a short time interval. Rather, it is e
pected only that the trajectories have thecorrect statistical
properties. This is believed to be accomplished if the n
merical integrator is symplectic, because the use of a s
plectic integrator ensures that the system actually integra
by the numerical method is a slightly different Hamiltonia
system.13 On the other hand violations of this property su
as that produced by velocity rescaling lead to skewed ene
distributions.14

Reversibility is another important property of Eq.~5!
that the numerical integrator should preserve. It has b
stated15 that ‘‘any lack of perfection of such reversal shou
be due to rounding-off errors only, not the program.’’ Man
symplectic integrators are reversible. Reversibility and sy
plecticness~actually only volume preservation in phas
space! are also sufficient for the validity of hybrid Mont
Carlo methods, which employ short MD integrations.16

FIG. 1. Splitting of electrostatic potential into slow and fast parts. T
electrostatic force is the derivative of this potential.

FIG. 2. Diagram for the multiple time-stepping impulse method.
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The mollified impulse method that we describe in th
paper is both symplectic and reversible, as we discus
Sec. II.

C. MTS stability barriers

Based on accuracy considerations only, it seems th
largest Dt of 16 fs for the slowest forces should b
achievable.17 Considering that for large systems the bulk
the computational cost is in evaluating these slowest for
this would represent substantial speedups over evaluating
ery 1 fs.

Nevertheless, if the frequency of the slow force impu
term on Eq.~6! coincides with a natural frequency of th
system, then there may exist an oscillation in the positi
whose amplitude increases with time~resonance!. When
resonance occurs, there is an accuracy reduction in the c
putation, and it may also lead to instability. The fastest n
mal modes of the system are the first to induce a resona
as Dt increases. Flexible covalent bonds to hydrogen in
biomolecule are usually responsible for the fastest nor
modes, because among all interactions, bond stretch
have the largest force constants and hydrogen atoms hav
smallest mass. The period of these modes is between 9
10 fs in molecules~cf. Sec. IV B!.

Experiments18 have shown that there is an upper limit
4 fs ~a 5 fs ‘‘barrier’’! in the longest time stepDt for the
Verlet-I/r-RESPA method~Impulse!. This barrier corre-
sponds to a time step a bit smaller than half the period of
fastest normal mode, as is explained in Ref. 19. This bar
shifts upwards if the highest frequencies are eliminated
imposing constraints.

Instability problems are less severe for a biomolecule
an implicit solvent modeled by Langevin dynamics. The
the method termed LN20 realizes the full potential of mul-
tiple time stepping.

D. Overcoming MTS stability barriers

In Sec. II we describe a symplectic and reversible mo
fication to the impulse method, the mollified impulse meth
~MOLLY !, and results obtained by applying the method
flexible water. MOLLY softens the contributions of the slo
force impulse to bonded forces. Experience with Verlet-
RESPA shows that flexible water is much more sensitive
instability than biomolecules.21 Hence, we are confident tha
equally good behavior will occur for more heterogeneo
simulations. Implementation requires only a little more th
the programming of a SHAKE routine for constraining c
valent bonds to hydrogens.22

The idea of the mollified impulse method is that o
modifies the slow part of the potential energyUslow so that it
is evaluated at ‘‘time averaged’’ values of the positions, a
one uses the gradient of this modified potential for the s
part of the force. The averaging is based on the effects of
‘‘fastest’’ forces. Its net effect is to filter excitations of th
slow impulses to the fastest motions which induce instabil
This is described in Sec. II.
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Averagings based in approximating the fastest forces
B-spline functions are described in Sec. II A. These meth
allow increasing the time step to 5 fs, and therefore break
5 fs time step barrier of the impulse method.

The main contribution of this paper is theEquilibrium
version of the mollified impulse method, in which the ave
aging is defined to be a projection in configuration spa
onto the manifold defined by equilibrium positions for th
fastest forces. WithEquilibrium, it is possible to take time
steps of 6 fs, a 50% acceleration over theImpulsemethod. It
can be shown that,for linear systems, Equilibrium’slong
time step is not restricted by the frequency of the fast
force unlikeImpulseand B-spline averaging MOLLY.Equi-
librium is described conceptually in Sec. II B and algorit
mically in the Appendix.

Experiments with all these methods are described in S
III. Also, progress has been made in understanding the li
tations of the mollified impulse method. By contrived expe
ments, we have discovered that not only the fastest~bonded!
forces but the fast parts of the nonbonded forces as w
(Ux

fast,nonbnd) influence the stability ofEquilibrium ~see Sec.
IV !. We are developing a mollified method that will includ
Ux

fast,nonbndin the averaging to make even longer time ste
possible.

II. MOLLIFIED IMPULSE METHOD „MOLLY …

This method, introduced in Refs. 4 and 19, is an attem
to evaluate the dynamics of the system more accurately
also to shift upwards the stability barriers on the time step
filtering excitations to the highest frequency forces. This
accomplished by a change to the impulse method

Uslow~x!→Uslow~A~x!!, ~7!

which induces the change

Fslow~x!→Ax~x!TFslow~A~x!!. ~8!

This has two effects:

~1! The force is evaluated at averaged positions: This gives
a more accurate description of the rapidly varying traje
tory X(t).

~2! The destabilizing components of the Fslow impulse are
removed: the impulse is mollified. This transformatio
brings accuracy and stability gains.
One step of the mollified method~MOLLY ! described
above is
half a mollified kick

Pn211e5Pn211
Dt

2
Fslow,n21. ~9!

a vibration PropagateXn21, Pn211e by integrating
d

dt
X5M21P,

d

dt
P5Ffast~X! , ~10!

~e.g., using Verlet/leapfrog with time stepdt) for an
interval Dt to getXn, Pn2e.

a time averagingCalculate a temporary vector of time
averaged positionsX̄n5A(Xn) and a Jacobian matrix
Jn5Ax(X

n)T. The time-averaging functionA(x) uses
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only the fastest forcesF fastest(x), to avoid the introduc-
tion of many nonzero elements into the Jacobian mat
half a mollified kick

Fslow,n5JnFslow~X̄n!, ~11!

Pn5Pn2e1
Dt

2
Fslow,n. ~12!

The symbolsPn211e and Pn2e represent momenta jus
after the (n21)st kick, and just before thenth kick, respec-
tively. Note thatX̄n is used only for the purpose of evalua
ing Fslow; it does not replace the value ofXn.

The use of molecular dynamics as a tool to sample o
ensembles is common practice. Combinations of Verlet-
RESPA with constant-temperature NVT and consta
temperature- and -pressure NpT ensembles are propos
Ref. 23. It should be straightforward to do a substitution
Uslow(A(x)) for Uslow(x) in these methods.

Since MOLLY is simply the application of Verlet-I/r
RESPA to a slightly modified potential energy, the symple
ticness and reversibility of MOLLY follow from the sym
plecticness and reversibility of Verlet-I/r-RESPA. The on
property needed for the averaging functionA(x) is that it
depends only on positions and it does because zero veloc
are used in its calculation. In what follows, we present t
instances of averaging functions that have this property.

A. B-spline averaging methods

A family of averagings is defined in Ref. 19:

A~x!5
1

DtE0

`

fS t

Dt D X̃~ t !dt,

where f(t/Dt) is a weight function that is nonzero on
finite interval, andX̃(t) solves anauxiliary problem

M
d2

dt2
X̃5F fastest~X̃!, X̃~0!5x,

d

dt
X̃~0!50. ~13!

We also need to computeAx(x)T. Weight functions defined
by B-splines were used in Refs. 5 and 19. We implemen
and tested several of those for this paper, plus a higher o
one, long quadratic average.These weight functions ar
shown in Fig. 3, and their formulas are here:

long average

f~s!51, usu,1; f~s!5 1
2, usu51;

f~s!50, usu.1.

long linear average

f~s!5121
2s, 0<s<2; f~s!50, usu>2.
.

er
r-
t-

in
f

-
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d
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long quadratic average

f~s!51
4~32s2!, usu,1;

f~s!51
8~32s!2, 1<s<3; f~s!50, s>3.

Regarding the accuracy of these averaging methods,
original motivation behind them was to defineA(x) in such
a way that it compensated for the finiteDt of the Verlet-I/r-
RESPA integrator. The positionsA(x) are a function ofDt
and

A~x!5x1O~Dt2!,

so the error due to the modification of the potential is attr
utable to a finite time stepDt. Mathematical analysis and
numerical experiments in Ref. 19 confirm that the trajecto
error on a given time interval is proportional toDt2 indepen-
dently of the stiffness of the fast modes for these B-spl
averaging methods; this is not true for the Verlet-I/r-RESP
method. We do not discuss these averagings in further d
here because the experiments indicate that they are infe
to theEquilibrium method.

B. Equilibrium method

The mollified methods described above filter the slo
force impulse in a partial way: their level of effectiveness
directly related to the extensiveness of their time averag
Here, we introduce an averaging that completely elimina
the contributions of the slow force in the directions that e
cite the fastest forces in the system; that is, the bond
angle interactions. We projectx onto the manifold in con-
figuration space~the space of position coordinates! defined
by the reference values of the bond lengths and bond ang

The main assumption for the effectiveness of th
method is that bond and angle interactions are the fas
forces and impose the most stringent requirement on the
step of Equilibrium. In cases where forces other than t
fastest may induce instability,Equilibrium can be combined
with other averagings.

FIG. 3. Weight vst/Dt for first three B-spline filters.
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This averaging is obtained by determining the magnitu
of the displacements along the bonds that would restore
bond lengths~and angles! to their reference value, and it i
defined by

A~x!5x1M 21gx~x!Tl, ~14!

with l determined by the constraint equations

g~A~x!!50. ~15!

This is similar to the constraining procedure used
SHAKE.22 We provide algorithmic details in the Appendix
In fact, the calculation ofA(x) is exactly SHAKE with zero
velocities. Equilibrium MOLLY is not SHAKE, however,
becauseA(x) is used only in the evaluation ofFslow and
does not replacex in the integration. That is, we still us
unconstrained dynamics. Figure 4 illustrates the effect
Equilibrium in a water molecule. Atoms in the molecule a
pulled toward their rest length position for the mollificatio
of the slow force impulse.

Regarding the accuracy ofEquilibrium, unlike the
B-spline averaging methods, there is no dependence ofA(x)
on Dt; rather, we would simply be advised to chooseA(x)
5x if Dt is small enough.

Here, we present the main motivation concerning
stability of this method by means of an example. Conside
system of two charged particles of unit mass interact
through a harmonic force~spring with reference lengthl ),
and a third, negatively charged, unit mass particle interac
through an electrostatic Coulomb force. This system
Hamiltonian

U5 1
2k~x12x22 l !22~x32x2!211~x32x1!21,

where x1,x2,x3 . Split the forces asUx
fast(x)1Ux

slow(x),
with

Ux
fast~x!5F k~x12x22 l !

2k~x12x22 l !

0
G ,

FIG. 4. Effect ofEquilibrium on a water molecule. Atoms in the molecu
are pulled toward their rest length position for the mollification~or filtering!
of the slow force impulse, but left unchanged for the dynamics.
e
he

f

e
a
g

g
s

Ux
slow~x!5F 2~x32x1!22

~x32x2!22

~x32x1!222~x32x2!22
G .

The @unmollified# slow force impulse changes the vibration
energy of the spring since the force on each atom is differ
That is, the impulse stretches the spring. Both stretch
modes are excited by the impulse. In contrast, the mollifi
impulse does not stretch the spring. TheEquilibrium averag-
ing

A~x!5F 1
2~x11x2!2 1

2l

1
2~x11x2!1 1

2l

x3

G , Ax~x!T5F 1
2

1
2 0

1
2

1
2 0

0 0 1
G ,

eliminates this stretching effect by adding equal forces
each atom. The net effect of the mollified impulse is to tra
late the spring without any stretching. However, in 3D, the
fastest forces are nonlinear. A mollified impulse will exci
even those fastest forces for which the mollification is d
signed. Consider an impulse delivered at right angles to
of two balls connected by a spring. The impulse will act
stretch the spring.

III. EVALUATION OF METHODS

In this section, we present results of a comparison
various B-spline averaging methods, theEquilibrium molli-
fied impulse method, theImpulsemethod, and constraine
dynamics in combination with MTS~SHAKE-I!. We show
that the mollified methods shift the stability barrier on t
time step upwards but do not eliminate it completely.Im-
pulseis stable up to 4 fs,B-spline averaging MOLLY up to
5 fs, Equilibrium up to 6 fs, and SHAKE-I up to 8 fs. Even
though SHAKE is the most stable method overall, it giv
less accurate results, as the computation of radial distribu
functions illustrates, whereasEquilibrium’s is practically in-
distinguishable from Leapfrog. All these methods we
tested in the molecular dynamics programNAMD.24

A. Test problem

We performed our simulations using flexible wate
based upon the TIP3P model,25 with flexibility incorporated
by adding bond stretching and angle bending harmonic te
~cf. Ref. 6!. We used a small problem consisting of a 10
radius sphere with 423 atoms equilibrated during 100 ps
simulation time by temperature rescaling to 300, 370, a
380 K. We also used a bigger problem consisting of a 2
radius sphere~3243 atoms!, equilibrated to 340 K.

The potential energy of flexible water is given by

Uelectrostatic5C
qiqj

xi j
,

ULennard-Jones54e i j S S s i j

xi j
D 12

2S s i j

xi j
D 6DSW~xi j !,
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Ubond5KB~xi j 2 l i j !
2,

Uangle5KA~u2u0!2,

wherexi j 5ix¢ j2x¢ i i . For this discussion, these potentials a
split as follows:

U fast5U fast,bnd1U fast,nonbnd,

U fast,bnd5Uangle1Ubond,

U fast,nonbnd5U fast,elect1ULennard-Jones,

U fast,elect5UelectrostaticSW~xi j !,

Uslow5Uelectrostatic2U fast,elect.

The switching function SW(xi j ) serves to split the elec
trostatic potential into slow and fast parts~and also to bring
the Lennard-Jones force to zero smoothly! so that the force is
a derivative of the potential even when using cutoff. It
defined by

SW~xi j !55
0 if xi j .cutoff,

1 if xi j <SWon,

~cutoff22xi j
2 !~cutoff212xi j

2 23SWon
2!

~cutoff22SWon
2!

if SWon<xi j ,cutoff.

For flexible water, C5332.0636~kcal/mol!K21, KA

555~kcal/mol!degrees2, KB5450~kcal/mol! Å2, qO

50.417e, qH520.834e, l O–H50.957 Å, l H–H51.514 Å,
u05104.52 degrees. The Lennard-Jones parameters
sH–H50.4 Å, sO–H51.75253 Å, eH–H50.046 kcal/mol,
eO–H50.08365 kcal/mol. As indicated above, the syste
was equilibrated to 300, 340, 370, and 380 K.

B. Performance metrics

1. Energy conservation

For each simulation, we generated a history of all of
components of the energy, positions~trajectories!, velocities,
and forces. Most simulations ran for 200 ps, and several
750 ps. These lengths allowed us to observe instabilities
were not evident in the first few picoseconds of simulatio
and gave us significant confidence in our error estimates
energy conservation.

We monitored stability using thepseudoenergy. This
quantity is the energy with Uslow(x) replaced by
Uslow(A(x)). It is the quantity that the integrator is trying t
conserve, and therefore is a better indicator of instabi
than the energy. The amount of fluctuation exhibited by
pseudoenergyis a fraction of the true energy’s.

To measure drift in the energy, we devised a metric,
percent relative drift, given byD5d/K whered is the abso-
lute pseudoenergydrift ~linear regression coefficient!, andK
is the average kinetic energy for the simulation.

Our experiments showed thatD is a robust metric of
drift and corresponds to our visual perception of the d
experienced by the methods we tested. The linear mode
plies to systems of interest where there is only slight grow
are

e

r
at
,
or

y
e

e

t
p-
.

For severe instability, an exponential fit would be more a
equate. We also computed the percent relativenoiseassoci-
ated to the relative drift. It is the rms variation of the residu
of the linear regression, and gives us an error bar of the d
for a given simulation length~cf. Refs. 18 and 26!.

To measure accuracy, we computed a relative varia
in the true energy,DE, given by

DE5
1

KJ (
i 51

J

ue~ i !2ēu,

where ē is average total energy,e( i ) is instantaneous tota
energy, andJ is simulation length~in time steps!. For sym-
plectic integrators,DE is an excellent indicator of accuracy
it measures the distance between the true energy surfac
phase space and a modified energy surface arising from
use of a finite time stepDt ~see Ref. 13, p. 132!. The differ-
ence between the two energy surfaces will determine
accuracy with which most quantities are calculated.

2. Statistical quantities

We computed structural and dynamical properties for
various integrators. We obtained radial distribution functio
of the test problem for site–site O–O, O–H, and H–H int
actions for the flexible TIP3P water~cf. Ref. 25!. These were
computed using XPLOR’s trajectory analysis capabilitie
We also obtained the mean square displacementR(t) ~MSD!
as a function of time and the self-diffusion coefficientD
using Einstein’s relation 3D5R(t)/(2t). The procedure to
compute these quantities is described in more detail in R
6 and 27, among others. The self-diffusion coefficient w
computed by averaging over all molecules and all time o
gins of 100 ps simulations of a 10 Å radius sphere of wa
~141 molecules!. To get the diffusion coefficient for liquid
water, one would normally use periodic boundary conditio
to avoid surface tension effects. The programNAMD 1.5 in
which we have tested our methods does not implement p
odic boundary conditions with an Ewald sum~although it is
implemented inNAMD 2.028!. Hence, we have used spheric
constraints with a radius of 11 Å and 21 Å~to reduce surface
effects! and averaged the results. There was no discern
difference in quality between the two sets of results. T
quantities we compute are not physically correct but they
of the same nature as the physical quantities and sh
serve well to compare the proposed methods to the Leap
method, which is of known quality.

C. Results

Here, we summarize the results of our experiments. F
ure 5 compares the stability ofImpulse, Equilibrium,and
SHAKE-I ~SHAKE using ImpulseMTS as the integrator!.
As mentioned above, SHAKE-I is the most stable of all t
methods, for time steps up to 8 fs;Impulseis stable up to 4
fs; Equilibrium is stable up to 6.25 fs. Figure 6 shows the
relative accuracy. Observe that the inaccuracies with lo
time steps are mostly due to the drift in the energy. Both
the above figures plot the results for simulations of wate
300 K for Dt up to 7 fs, and at 380 K forDt of 8 fs or more.
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Tables I and II list results of 200 ps simulations of 1
waters forImpulse, Equilibrium,and SHAKE-I at 300 and
380 K respectively. They are sorted byDt, the method, and
dt for easy comparison among methods for a given long t
stepDt. Similarly, Table III lists results of 750 ps simula
tions. All the experiments with 125 waters use a cutoff of 6

FIG. 5. Percent relative driftD (kcal mol21K21) for 200 ps vsDt ~fs!.
e

Å for Lennard-Jones and short-range electrostatic force c
putation. This is shorter than usual for testing purposes
with a more customary cutoff of 8 Å or greater, the long-
range force would be too weak to test the integrators du
the small number of atoms. Other parameters are SWon ~dis-

FIG. 6. Percent relative variation in energyDE (kcal mol21 K21) vs Dt
~fs!.
dary
d
nergy.
TABLE I. Results for 200 ps of simulation of flexible water at 300 K. All experiments use spherical boun
conditions with a radius of 21 Å, except those marked with ‘‘* ,’’ which do not use spherical BCs. The drift an
noise are the coefficient and rms variation on the residual, respectively, of a linear regression on the e

Dt d t SWon Noise
~fs! Method ~fs! ~Å! Drift (kcal mol21K21) DE

0.5 Leapfrog 0.5 4 20.009% 0.290% 0.029%
1 Leapfrog 1 4 0.028% 0.280% 0.122%
2 Impulse 1 4 20.019% 0.220% 0.128%
3 Impulse 1 4 0.087% 0.170% 0.130%
4 Equilibrium 1 4 0.084% 0.160% 0.206%
4 Impulse 1 4 1.060% 0.190% 0.305%
4 SHAKE-I 1 4 0.039% 0.310% 0.047%
5 Equilibrium 1 4 0.159% 0.170% 0.213%
5 Impulse 1 4 396.000% 8.800% 101.000%
5 SHAKE-I 1 2 20.043% 0.130% 0.045%
5 SHAKE-I 1 4 0.214% 0.083% 0.082%
6 Equilibrium 0.5 2 0.575% 0.110% 0.202%
6 Equilibrium 0.5 4 1.040% 0.160% 0.317%
6 Equilibrium* 1 2 1.590% 0.210% 0.417%
6 Equilibrium 1 2 1.960% 0.220% 0.557%
6 Equilibrium* 1 4 1.290% 0.260% 0.382%
6 Equilibrium 1 4 1.380% 0.260% 0.422%
6 Impulse 1 4 187.000% 8.400% 47.200%
6 SHAKE-I 1 2 0.086% 0.370% 0.052%
6 SHAKE-I 1 4 0.288% 0.140% 0.099%
6.25 Equilibrium 0.625 2 1.630% 0.190% 0.423%
6.25 Equilibrium* 1.25 2 2.270% 0.350% 0.622%
6.25 Impulse 0.625 2 456.000% 11.000% 118.000%
6.25 SHAKE-I 0.625 2 0.020% 0.390% 0.047%
7 Equilibrium* 1 2 13.600% 0.280% 3.410%
7 Equilibrium 1 4 17.700% 0.830% 4.590%
7 Impulse* 1 2 355.000% 33.000% 92.800%
7 SHAKE-I 1 4 0.498% 0.100% 0.146%
8 Equilibrium 1 2 57.900% 1.010% 14.600%
8 Equilibrium 1 4 86.100% 2.687% 22.100%
9 SHAKE-I 1 4 2.465% 0.230% 0.630%
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TABLE II. Results for 200 ps of simulation of flexible water at 380 K. All experiments use spherical boun
conditions with a radius of 41 Å, except those marked with ‘‘* ,’’ which do not use spherical BCs. SWon is 4.
The drift and noise are the coefficient and rms variation on the residual, respectively, of a linear regres
the energy.

Dt d t Noise
~fs! Method ~fs! Drift (kcal mol21K21) DE

6.25 Equilibrium 0.625 4.050% 0.200% 1.060%
6.25 Equilibrium 1.25 15.560% 0.470% 2.000%
6.25 SHAKE-I 0.625 0.232% 0.280% 0.054%
7 Equilibrium* 0.5 10.860% 0.300% 1.440%
7 SHAKE-I 1 -0.025% 0.080% 0.064%
8 Equilibrium 1 81.300% 1.500% 20.300%
8 SHAKE-I 1 0.720% 0.310% 0.253%
9 Equilibrium 1 158.000% 2.200% 40.000%
9 SHAKE-I 1 2.310% 0.350% 0.642%

10 Equilibrium 1 121.000% 2.400% 30.500%
10 SHAKE-I 1 2.660% 0.400% 0.733%
12 Equilibrium 1 214.444% 5.100% 47.800%
12 SHAKE-I 1 21.600% 0.910% 5.150%
15 Equilibrium 1 185.000% 25.000% 47.300%
15 SHAKE-I 1 188.000% 11.000% 48.900%
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tance at which a C2 switching function is activated! and the
small time stepdt. Notice that a smallerdt reduces the drift
observed in a simulation. For example,Equilibrium with
Dt56 fs and SWon52Å , has a drift of 1.96% in 200 ps with
dt51 fs, and only 0.575% in 200 ps withdt50.5 fs. A
similar trend is observed in the rest of these tables.

We have evidence that a sufficiently nonsmooth swit
ing function creates extreme instability. For example, in
test of a protein and water~15 000 atoms! at 300 K using the
Impulsemethod with aDt of 4 fs, we get no drift using the
C2 switching function implemented inNAMD and described
in Ref. 18. However, using theXPLOR switching function29

for the same problem and parameters above gives a dri
44 000% per ns!

Figures 7–9 show the radial distribution functions f
the site-to-site O–O, O–H, and H–H interactions forEqui-
librium with Dt56 fs, dt51 fs; Verlet/leapfrog withdt
51 fs; and SHAKE-I. Notice the close agreement betwe
-
a

of

n

the methods using unconstrained dynamics, and the shi
phase exhibited by SHAKE-I. This shift is more pronounc
in the O–O and O–H radial distributions but is neverthele
noticeable in the H–H distribution function. It is important
note that this is not only an effect of the large time step u
~8 fs! for SHAKE-I. The same shift is observed with small
time steps. This is expected, since SHAKE-I eliminates s
eral degrees of freedom from the dynamics. These ra
distribution functions were obtained by sampling simulatio
of 100 ps.

Table IV lists the self-diffusion coefficient and the sta
dard deviation computed using the above methodology.
uncertainty in the computation grows slightly forImpulse
and Equilibrium as Dt increases. However, no statistical
significant difference can be detected for either method
parameters. The inaccuracy in the computation for SHAK
grows more pronouncedly withDt58 fs, but it remains the
ith a
those
n on
TABLE III. Results for 750 ps of simulation for water. Most experiments are at 300 K. Those marked w
‘‘ 1’’ are at 380 K. All experiments use spherical boundary conditions with a radius of 21 Å, except
marked with ‘‘* ,’’ which do not use spherical BCs. The drift and noise are the coefficient and rms variatio
the residual, respectively, of a linear regression on the energy.

Dt
~fs! Method

d t
~fs!

SWon

~Å! Drift
Noise

(kcal mol21K21) DE

1 Leapfrog 1 4 0.258% 0.340% 0.125%
4 Impulse 1 4 2.000% 0.500% 0.598%
5 Impulse 1 4 1320.000% 18.000% 327.000%
5 SHAKE-I 1 2 20.030% 0.440% 0.047%
6 Equilibrium 1 2 6.120% 0.420% 1.580%
6 Equilibrium 1 4 2.050% 0.340% 0.461%
6 SHAKE-I 1 2 0.131% 0.250% 0.063%
6.25 Equilibrium1 0.625 4 14.880% 0.440% 2.620%
6.25 Equilibrium 0.625 2 8.795% 0.330% 1.430%
6.25 Equilibrium1 1.25 4 34.350% 1.000% 5.680%
6.25 Equilibrium* 1.25 2 15.112% 0.640% 4.820%
6.25 SHAKE-I 0.625 2 0.118% 0.340% 0.048%
7 Equilibrium 1 4 53.788% 1.100% 10.600%
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same atDt56 fs. We comment next on each method se
rately.

D. Equilibrium MOLLY

We implemented Equilibrium into NAMD ~http://
www.ks.uiuc.edu/Research/namd/namd/html! version 1.5,
using the algorithm given in the Appendix. We validated a
tested this method extensively. It has been shown to be st
for Dt of up to 6 or 6.25 fs. Our standard for comparison
the Impulsemethod withDt54 fs, dt51 fs, which accord-
ing to Table I has a drift of 1.06% for 200 ps. Fig. 10 sho
that Equilibrium at 6.25 is superior to an averaging meth
and to theImpulsemethod. The valueDt56.25 fs is particu-
larly useful, since it divides evenly into 100 and is machi
representable.

FIG. 7. Radial distribution function for the O–O interaction for three d
ferent integrators. Notice thatEquilibrium’s is indistinguishable from Leap-
frog, but SHAKE’s peak is in a different position.

FIG. 8. Radial distribution function for the O–H interaction for three d
ferent integrators. Notice thatEquilibrium’s is indistinguishable from Leap-
frog, but SHAKE’s peak is in a different position.
-

d
ble

E. SHAKE-I: SHAKE plus the Impulse method

We tested SHAKE as implemented inNAMD 1.5 using
the MTS Impulsemethod as the integrator~SHAKE-I!. This
approach is a more radical treatment of the bond and a
forces thanEquilibrium, because it eliminates their contribu
tion to the dynamics altogether. These experiments we
valuable test of the viability of constrained dynamics a
MTS methods.

They also served to corroborate that the bond and an
forces are responsible for instabilities. The numerical exp
ments showed that SHAKE-I is stable forDt of up to 8 fs but
is slightly unstable for time stepsDt of 9 fs.

These results suggest that the bond and angle forces
partly responsible for the instabilities observed in the me
ods discussed in this paper. Further analysis~described in
Sec. IV! leads us to conclude that the contributions of t
Lennard-Jones interactions to the ‘‘bond-stretching’’ norm
modes are also important. Hence, the averaging including
fastest forces only is not enough to get rid of all instabilitie
since their source should be traced not only to the fas
~bonded! forces but to the fast part of at least some no
bonded forces as well.

F. Averaging MOLLY

We also implemented thelong average, long linear av-
erage, andlong quadratic averagemethods described above
Our implementation used Hessian matrices~required for the

FIG. 9. Radial distribution function for the H–H interaction for three d
ferent integrators. Notice thatEquilibrium’s is indistinguishable from Leap-
frog, but SHAKE’s peak is slightly shifted and higher.

TABLE IV. Self-diffusion coefficient (1025 cm2/s). Values with standard
deviations were computed by averaging over all molecules and all t
origins of 100 ps simulations of a 10 Å radius sphere of water~141 mol-
ecules.!

d t,Dt ~fs!
Method 0.5 1 1,4 0.5,6 1,6 1,8

Impulse 8.960.3 8.960.3 9.060.4
Equilibrium 9.460.4 9.160.3 9.260.4 9.360.4
SHAKE-I 9.060.3 8.960.5 9.160.3 10.160.8
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mollification of the slow force impulse! generated by auto
matic differentiation tools for C11 developed at Argonne
National Labs.30 These experiments showed that all thr
averaging methods work forDt55 fs, succeeding in break
ing the 5 fs barrier of the impulse method. This is illustrat
in Fig. 11. However, these averaging methods are less ro
thanEquilibrium.

Results~not given here! show that it makes little differ-
ence to include the angle forces; most of the benefit in
bility comes from mollifying the bond forces. Hence, it
likely that a variation ofEquilibrium that constrains only
O–H bonds would be as good as one that also constr
angles~e.g., the H–H distances in water!.

IV. EXPERIMENTAL STABILITY ANALYSIS

After observing instabilities forEquilibrium at 8 fs, we
sought to discover which components of the force are
sponsible for the instability, in order to devise a strong
mollification for those components, or some other mec

FIG. 10. Mollified methods withDt56.25 fs.

FIG. 11. Averaging methods atDt55 fs.
st

a-

ns

-
r
-

nism to correct instabilities. Because of noise, simple obs
vation of the energy components does not reveal which
rises first.

A. First experiment

One study was an attempt to reduce nonlinear effects
doing an experimental small-energy analysis. This cons
of running simulations with coordinates near a stable eq
librium of the Hamiltonian. For this, we ran simulations o
the test problem with minimized energy~near zero Kelvin!.

The reason for this analysis is twofold: First, by starti
the simulation close to an equilibrium point, KAM
~Kolmogorov–Arnol’d–Moser! theory31 shows that the solu-
tion will remain close to the equilibrium at all times exce
for instabilities caused by resonances of time steps wh
length is close to some multiple of 1/3, or 1/4, of som
natural period in the system. This holds provided a non
generacy condition is satisfied and Arnol’d diffusion can
neglected~cf. Ref. 32!. Second, it avoids the strong couplin
of normal modes that happens at higher temperatures al
ing the more precise use of spectral analysis.

We ran simulations for 750 ps with flexible water near
K with Dt from 5 to 12 fs, every 0.1 fs. These experimen
showed instabilities starting atDt57.7 fs for the regular wa-
ter. To check the validity of our assumption that the fast
forces~bond and angle! are responsible for these instabilitie
we conducted a series of experiments with ‘‘accelerate
water at the same temperature.

The latter water model was designed to produce the
stabilizing effects of the bond and angle force for smal
values ofDt ~at Dt fast50.8Dt regular). It is a modification of
the test problem already described, where the bond and a
force constants were multiplied by (5/4)2525/16. This is
equivalent to multiplying the frequency by 5/4. The set
experiments with the fast water showed a similar pattern
instabilities as the regular water, but with slightly small
drifts and strong instabilities appearing atDt fast56.4 fs ~a
‘‘scaled’’ Dt58 fs!, rather than 6.16 fs~a scaled Dt
57.7 fs).

Figure 12 showsD vs Dt ~scaled for the fast water!. This
suggests that there may be other force components cau
instability besides the angle and bond forces. We then ac
erated another force, the Lennard-Jones interaction. After
ing this we got a much better scaling. The asterisks in Fig.
correspond to the water model with accelerated angle, bo
and Lennard-Jones interactions. Therefore, it would help
include the fast part of the Lennard-Jones force in the av
aging~the frequency of the slowest parts of this force is ve
slow and unlikely to have any contribution to the stability
Equilibrium!.

B. Normal mode analysis

Normal mode analysis was performed for the test pr
lem in the manner described in Ref. 6. Equation~5! can be
approximated linearly at an equilibriumUx(x0)50 by

M
d2

dt2
x52Ux~x!52Uxx~x0!~x2x0!2O~ ix2x0i2!.
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Then, we can transform our problem into a set of harmo
oscillators

d

dt
xi5pi ,

d

dt
pi52v i

2xi ,

v i
25l i~M 21/2UxxM

21/2!,

whose solution is a superposition of oscillations~normal
modes! with periodst215v i /2p and with directions given
by eigenvectors. For example, a linear triatomic molec
with 3 unit masses connected by 2 springs of stiffnessk has
a matrixM 21/2UxxM

21/2 with

eigenelements

5H l5k, y5@1 0 21# symmetric stretch,

l50, y5@1 1 1# translation,

l53k, y5@ 1
2 21 1

2# asymmetric stretch.

The matrix Ax(X
n)T for Equilibrium removes the

stretching components. Periods of the normal modes for
test problem near 0 K are presented in Table V. The fi
column is the average period for similar normal modes fr
different molecules. The last two columns are the minim
and maximum value of the periods. The first two rows c
respond to the bond stretchings, the next to the angle b

FIG. 12. Percent relative drift per ns~D! vs Dt for regular, fast, and fast
LJ water.

TABLE V. Period of the normal modes of 125 waters ranked from high
to lowest frequency. The first column is the average period for nor
modes from all molecules. The last two columns give the minimum
maximum period. The first two rows are bond-stretching normal modes
third is the angle bending normal mode. The last row shows normal mo
produced by the Lennard-Jones and electrostatic forces.

Avg Min Max
Rank ~fs! ~fs! ~fs!

1–125 9.898 9.821 9.976
126–250 10.083 9.978 10.197
251–375 18.844 18.232 19.440
376–1119 38.235 2890.3
ic

e

ur
t

-
d-

ing. In the absence of other forces, there would be no o
frequencies. The last row shows the effect of the Lenna
Jones and electrostatic forces, with periods as fast as 38
fs and as slow as 2890.3 fs.

C. Another experiment: Pure Equilibrium

This experiment was performed to show that the ins
bilities in Equilibrium stem from the effect of the fast non
bonded forces on the fastest forces, and therefore it is im
tant to include the former in the averaging.

PureEquilibrium is Equilibrium with all but the fastest
forces included in the long-time step, that is,Fslow

5Fslow,elect1F fast,nonbnd. For accuracy and stability, a muc
shorter long time step (Dt52) must be used. In order to tes
for instabilities the fastest forces were made faster by a fa
of 4. The following results seem to indicate thatPure Equi-
librium performs nearly as well as SHAKE-I. This mean
that the effects of the fast nonbonded forces are importan
the stability ofEquilibrium.

Method Drift Noise

Shake (Dt52) 0.04% 0.47%
Pure Equil (Dt52,scaledDt58) 0.10% 0.85%
Equilibrium (Dt58) 57.90% 0.01%
Shake (Dt58) 0.70% 0.30%

These results are for 200 ps run for all of the above. AtDt
58 SWon is 2 Å. With SWon54 Å, Equilibrium does worse
~86.1%62.7%! and the results are more dramatic. The sca
Dt58 corresponds to multiplying the bond force constant
16, a fourfold increase in the bond energy.
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APPENDIX: THE Equilibrium MOLLIFIED IMPULSE
METHOD

In analogy to the procedure used by SHAKE to constr
bond lengths, we define theEquilibrium averagingA(x) to
be

A~x!5x1M 21gx~x!Tl, with g~A~x!!50. ~A1!

We are hereby computing displacementsM 21gx(x0)Tl that
keep the bond lengths constant, thereby finding the ‘‘equi
rium’’ positionsA(x) ~if only the fastest forces are presen!.

From gx(A(x))TAx(x)50, obtained by differentiating
Eq. ~A1!, it follows that, by design, we are annihilating th
components of the slow force in the directions spanned
the columns ofgx(A(x)). These are the directions in con
figuration space along which the bond length and an
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forces can get excited and induce instability. The main
sumption for the effectiveness of this method is that bo
and angle interactions are the fastest forces, whose cont
tions influence stability the most. In cases where other for
may induce instability~for example, Lennard-Jones intera
tions!, this method cannot be extended satisfactorily.

Our numerical simulations were on flexible water. F
each water molecule there are three constraints of the fo

gi j ~x!5ix¢ j2x¢ i i22 l i j
2 , ~A2!

where l i j
2 is the square of the reference bond length, 1< i

, j <3. For general molecules, we constrain only the bo
to H. Notice that we can easily analytically computegx(x)
andgxx(x); for example,

gx
12~x!52F x¢ i2x¢ j

x¢ j2x¢ i

0
G ,

gxx
1252F I 2I 0

2I I 0

0 0 0
G .

For each water molecule we have threel i j to determine
by solving a system of three nonlinear equationsg(x
1M 21gx(x)Tl)50. We iterate using Newton’s method t
solve for a function

C~l![g~A~x!!50,

with an iterationl15l2Cl
21~l!C~l!

whereCl5gx~A~x!!M 21gx~x!T.

In this way we determinel andA(x).
Next, we computeAx(x). Differentiating Eq.~A1! gives

Ax~x!5I 1M 21(
i j

l i j gxx
i j

~x!1M 21gx~x!Tlx. ~A3!

At this point we needlx , which we get from substituting Eq
~A3! into Eq. ~A1!, yielding

lx52~gx~A~x!!M 21gx~x!T!21gx~A~x!!

3S I 1M 21(
i j

l i j gxx
i j D . ~A4!

Using Eq.~A4!, we rewrite Eq.~A3! as

Ax~x!5~ I 2M 21gx
T~ ḡxM

21gx
T!21ḡx!

3S I 1M 21(
i j

l i j gxx
i j D , ~A5!

whereḡx5gx(A(x)),andgx5gx(x). Equation~A5! is used
to computeAx(x) givenA(x) andx.
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