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Abstract. We consider a variant of the continuous and discrete Ulam-Hammersley
problems: we study the maximal number of points of an increasing path through a
Poisson point process (or a Bernoulli point process) with the restriction that there
must be minimal gaps between abscissae and ordinates of successive points of the
path.

For both cases (continuous and discrete) our approach rely on couplings with
well-studied models: respectively the classical Ulam-Hammersley problem and last-
passage percolation with geometric weights. Thanks to these couplings we obtain
explicit limiting shapes in both settings. We also establish that, as in the classical
Ulam-Hammersley problem, the fluctuations around the mean are given by the
Tracy-Widom distribution.

1. Introduction

Motivated by the Ulam problem (which asks for the asymptotic behavior of the
maximal length of an increasing subsequence in a uniform random permutation),
Hammersley (1972) studied the problem of the maximal number of points L(x,t) of
an increasing path in a Poisson process in (0, x) × (0, t). He used subadditivity to
prove the existence of a constant π/2 ≤ c ≤ e such that L(t,t)/t→ c in probability
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and conjectured c = 2. The first probabilistic proof of c = 2 was obtained by Aldous
and Diaconis (1995), by exploiting the geometric construction of Hammersley. (We
refer to Romik (2015) for a nice and modern introduction to the Ulam-Hammersley
problem.) In this article we obtain the limiting behaviour of the maximal length
of an increasing path in a Poisson process, if we impose minimal gaps between
abscissae and ordinates of successive points in the path.

Our proof uses a coupling with the original Ulam-Hammersley problem, and
therefore we make a strong use of Aldous-Diaconis’ result. This coupling also allows
us to use the celebrated result by Baik-Deift-Johansson regarding the fluctuations of
L(x,t) around its mean. We obtain that, with the proper rescaling, the fluctuations
of our problem around the mean are also given by the Tracy-Widom distribution.

It turns out that our strategy also applies to the discrete settings: we obtain
explicit asymptotic results for the length of the longest increasing path with gaps
through Bernoulli random points on the square lattice. We now state our results.

Continuous settings. Let Ξ be a homogeneous Poisson point process in (0,+∞)2

with intensity 1. We write Ξy,s = 0/1 for the absence/presence of a point of Ξ at
(y, s), and we say that (y, s) ∈ Ξ if Ξy,s = 1. Let h = (h1, h2) be a pair of non
negative real numbers. We introduce the strict partial order on (0,+∞)2 defined
by

(y, s)
h≺ (y′, s′) if and only if

{

y + h1 ≤ y′,

s+ h2 ≤ s′.

For x, t > 0, we consider the random variable Lh

(x,t) given by the length of the

longest increasing path in Ξ∩ [0, x]× [0, t] with horizontal gaps h1 and vertical gaps
h2. Namely,

Lh

(x,t) = max

{

L; there are (y1, s1), . . . , (yL, sL) ∈ Ξ such that

0< y1<. . .<yL<x, 0<s1<. . .<sL<t, (y1, s1)
h≺(y2, s2)

h≺ . . . h≺ (yL, sL).

}

In the case h = 0 := (0, 0), the random variable L(x,t) := L0

(x,t) is just the length

of the longest increasing path. It turns out that there exists a (random) coupling
between L and Lh. As an application, we will show the following identity:

Theorem 1.1. For every x, t > 0, and every k ≥ 0,

P(Lh

(x,t) ≤ k) = P(L(x−h1k,t−h2k) ≤ k).

(In the above equation, we take the convention L(y,s) = 0 whenever y < 0 or s < 0.)
The asymptotic behavior of L(at,bt) for every a, b was obtained by Aldous and

Diaconis (1995). (Identification of the limit actually dates back to Veršik and Kerov,
1977, different probabilistic proofs can be found in Seppäläinen, 1996; Groeneboom,
2002.)

Theorem 1.2 (Aldous and Diaconis, 1995, Th.5). Let a, b > 0. Then

f(a, b) := lim
t→+∞

L(at,bt)

t
= 2

√
ab. (1.1)

The convergence holds a.s. and in L1.
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Figure 1.1. A realization of Lh

(x,t) (points of Ξ are represented

with •). Here we have Lh

(x,t) = 4, one of the maximizing paths is

drawn in red.

Theorem 1.1 allows us to extend the formula (1.1) to every pair of gaps :

Proposition 1.3. For every h1, h2 ≥ 0, we have the following limit:

fh(a, b) := lim
t→∞

Lh

(at,bt)

t

=















2(ah2 + bh1)− 2
√

(ah2 − bh1)2 + ab

4h1h2 − 1
if h1h2 ̸= 1/4,

ab

h1b+ h2a
if h1h2 = 1/4.

(1.2)

The convergence holds a.s. and in L1.

(We have no probabilistic interpretation of the case h1h2 = 1/4, but one can
check that the right-hand side of (1.2) is continuous at every point of the line
h1h2 = 1/4.)

In some cases the above formula for fh(a, b) simplifies:

• If h1 = h2 = h, then

f (h,h)(1, 1) =
2

1 + 2h
.

• If h2 = 0 then

f (h,0)(1, 1) = 2
√

h2 + 1− 2h.

For h = (0, 0), the fluctuations of L(at,bt) around its mean have been determined
by Baik et al. (1999).

Theorem 1.4 (Baik et al., 1999). For every a, b > 0 and z ∈ R,we have

lim
t→∞

P

(

L(at,bt) − 2
√
abt

(
√
abt)1/3

≤ z

)

= FTW (z),

where FTW is the distribution function of the Tracy-Widom distribution.



1144 A.-L. Basdevant and L. Gerin

In fact the main result of Baik et al. (1999) is stated for the longest increasing
subsequence in a uniform permutation. Theorem 1.4 follows by elementary pois-
sonization arguments. This theorem can also be extended to every pair of gaps:

Proposition 1.5. For every h1, h2, a, b ≥ 0 and z ∈ R, we have

lim
t→∞

P

(

Lh

(at,bt) − fh(a, b)t

σh(a, b)t1/3
≤ z

)

= FTW (z), (1.3)

where FTW is the distribution function of the Tracy-Widom distribution and

σh(a, b) =
fh(a, b)4/3

21/3
1

2(bh1 + ah2) + fh(a, b)(1− 4h1h2)
.

(In some cases the expression for σh(a, b) simplifies, for instance σ(h,h)(1, 1) =
(1 + 2h)−4/3.)

Thanks to the scale-invariance property of the Poisson process we also easily
obtain asymptotic results in the case where gaps and intensity of the Poisson process
both depend on t (see Section 2.4).

Discrete settings. The same strategy allows us to obtain analogous results in the
discrete settings. Let Ξ = (Ξi,j)i,j∈Z>0

be i.i.d. Bernoulli random variables with

mean p. We also consider Ξ as a random set of integer points of the quarter-plane
by saying that (i, j) is present in Ξ if Ξi,j = 1.

Let h = (h1, h2) be a pair of non-negative integers, we assume h ̸= 0 = (0, 0).
We introduce the strict partial order on (Z>0)

2 defined by

(i, j)
h≺ (i′, j′) if and only if

{

i+ h1 ≤ i′,

j + h2 ≤ j′.

We consider the random variable given by the length of the longest non-
decreasing path from (1, 1) to (m,n) in Ξ with horizontal gaps h1 and vertical
gaps h2. Namely,

Lh

(m,n) = max

{

L; there are (i1, j1), . . . , (iL, jL) ∈ Ξ such that

1≤ i1≤ . . .≤ iL≤m, 1≤j1≤ . . .≤jL≤m, (i1, j1)
h≺ (i2, j2)

h≺ · · · h≺ (iL, jL)

}

.

This problem is close to what is sometimes called slope-constrained longest increas-
ing subsequence (SCLIS) in the literature of algorithms see Deorowicz (2009). Two
particular cases have received particular attention:

• If h = (1, 1), L(1,1)
(m,n) is the length of the longest increasing path in Ξ.

• If h = (1, 0), L(1,0)
(m,n) is the length of the longest non-decreasing path.

Both problems have been first studied by Seppäläinen (1997, 1998)1 (see also Bas-
devant et al. (2016) for a different proof).

1There is no explicit mention of non-decreasing paths in Seppäläinen (1998) but we observe

that the random variable Tm,n in Seppäläinen (1998) satisfies L
(1,0)
(m,n)

(d)
= m+n−Tm,n with λ = 0,

κ = τ0 = 1.
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Figure 1.2. Realizations of L(2,1)
(m,n) (left) and L(3,2)

(m,n) (right) for

(m,n) = (10, 8) and the same sampling of Ξ (points of Ξ are rep-

resented with •). Here we have L(2,1)
(m,n) = 4, L(3,2)

(m,n) = 3. In both

pictures one of the maximizing paths is drawn in red.

Similarly to our approach for the continuous settings, we will use a coupling
between Lh and a well-studied model: last passage percolation with geometric
weights (which in turn is in correspondence with synchronous TASEP).

Let us recall formally this latter model. Let Ξ′ =
(

Ξ′
i,j

)

i,j∈Z>0
be i.i.d. geometric

random variables with law

P(Ξ′
i,j = k) = pk(1− p) for k ≥ 0

and let
T(m,n) = max{

∑

(i,j)∈P

Ξ′
i,j ; P ∈ Pm,n},

where Pm,n denotes the set of paths from (1, 1) to (m,n) taking only North and
East steps.

The discrete analogous of Theorem 1.1 is the following:

Theorem 1.6. Let h = (h1, h2) ̸= (0, 0). For every m,n ≥ 0, and every k ≥ 0,

P(Lh

(m,n) ≤ k) = P(T(m−h1k,n−h2k) ≤ k).

Remark 1.7. As we will see in the proof of Theorem 1.6, many relevant quantities
regarding T are obtained by taking formally h = (0, 0) in the formulas for Lh. As
suggested by Theorem 1.6, the key difference is that the Bernoulli point process
must be replaced by a point process with geometric weights.

Therefore we cannot extend our methods and results to the study of L(0,0). This
last model can be seen as (directed) site percolation on the quarter-plane, for which
the critical threshold remains unknown.

Theorem 1.6 is related to previous results in literature. In the case h = (1, 1),
a similar coupling was implicit in Rajesh and Dhar (1998) (see also Georgiou and
Ortmann, 2018; Majumdar and Nechaev, 2005). Still in the case h = (1, 1) another
coupling between with asynchronous TASEP (also called directed TASEP) was also
given in Georgiou (2010, Sec.3), Priezzhev and Schütz (2008).

The explicit formula for the limiting shape of T(⌊an⌋,⌊bn⌋) is originally due to
Jockusch et al. (1998) in the context of synchronous TASEP (see Theorem 3.2
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below). Theorem 1.6 then allows us to deduce the limiting shape for Lh. The
limiting constant is less explicit than in the continuous settings.

Proposition 1.8. Let h1, h2 be two non-negative integers such that h = (h1, h2) ̸=
(0, 0). For every a, b > 0, there exists a constant

gh(a, b) := lim
n→+∞

1

n
Lh

(⌊an⌋,⌊bn⌋),

where the convergence holds a.s. and in L1. Moreover, we have

• If h1

(h2−1)+1/p <
a
b <

h1−1+1/p
h2

, gh(a, b) is the unique solution of equation

gh(a, b) = g
(

a− h1g
h(a, b), b− h2g

h(a, b)
)

, (1.4)

where g is defined by (3.3) ;
• If a

b ≤ h1

(h2−1)+1/p , gh(a, b) = a
h1

,

• If a
b ≥ h1−1+1/p

h2
, gh(a, b) = b

h2
.

The second and third cases correspond to a flat edge in the limiting shape. This
differs from the continuous case.

We explicit here the solution of (1.4) in some cases:

• Increasing paths. For h = (1, 1) the above formula reduces to

g(1,1)(a, b) =











√
p
(

2
√
ab− (a+ b)

√
p
)

1− p
if p < min {a/b, b/a} ,

min {a, b} otherwise.

.

Thus we recover the asymptotic behavior of L(1,1)
(⌊an⌋,⌊bn⌋) which was obtained

by Seppäläinen (1997) using hydrodynamic limits of a given particle system
(see also Majumdar et al., 2008, Sec.3, Basdevant et al., 2016, Th.1.1, Ciech
and Georgiou, 2019, Th.2.2 for different proofs).

• Non-decreasing paths. If h = (1, 0) the above formula reduces to

g(1,0)(a, b) =

{

2
√

abp(1− p) + (a− b)p if p < a/(a+ b),

a otherwise.
(1.5)

This formula also follows from a result by Seppäläinen (1998, Th.1). In the
more general case h = (h, 0) we obtain with (1.4) the following expression
(we only write the formula for a = b = 1):

g(h,0)(1, 1) =















2(1 + h)p(1− p) + 2
√

p(1− p+ h2p)(1− p)
(

h
√
p+

√

(1− p+ h2p)(1− p)
)2 if p < 1/(h+ 1),

1/h otherwise.

• Symmetric case. If (a, b) = (1, 1) and h1 = h2 = h we can easily solve
(1.4) and we get

g(h,h)(1, 1) =
2
√
p

1 + (2h− 1)
√
p
.

Johansson (2000) has computed the fluctuations of T(⌊an⌋,⌊bn⌋) around its mean
(see Theorem 3.3 below, note that Johansson, 2001, Th.5.3 also obtained the fluc-
tuations in the case h = (1, 0)) so we can combine the coupling of Theorem 1.6
with Johansson’s results in order to obtain the fluctuations of Lh

(an,bn).
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We deduce the fluctuations of Lh for one particular direction (see Proposition 3.5
for a weaker statement valid in any direction):

Proposition 1.9. Let h = (h1, h2) be a pair of gaps such that h1, h2 > 0 and let
a, b > 0 be such that a/h1 = b/h2. Then for every real z

lim
n→∞

P

(

Lh

(an,bn) − gh(a, b)n

σh(a, b)n1/3
≤ z

)

= FTW (z), (1.6)

where σh(a, b) is an explicit contant given by (3.14).

In the case h = (h, h) and a = b = 1 there is a simple expression for σh(a, b):

σ(h,h)(1, 1) =
(1− p)1/3p1/6

(1 + (2h− 1)
√
p)4/3

.

Priezzhev and Schütz (2008) state a close result to Proposition 1.9 (see Eq.(14)-
(16)) for the case h = (1, 1) (see also Eq.(16) of Majumdar and Nechaev, 2005).
However, we have not been able to fill the gap between their result and the conver-
gence of rescaled fluctuations.

2. Proofs in the continuous settings

We fix a pair h = (h1, h2) of non-negative real numbers all along this section.

2.1. Preliminary result. We first justify that 1
tL

h

(at,bt) converges almost surely and

in L1. Let us stress that for any x, x′, t, t′ ≥ 0, we have the stochastic domination

Lh

(x+x′,t+t′) ≽ Lh

(x,t) + L′h
(x′,t′) − 1,

where L′h
(x′,t′) has the same distribution as Lh

(x′,t′) but is independent of Lh

(x,t).

Indeed, if (i1, j1), . . . , (iL, jL) is a longest increasing path in Ξ with gaps h in
(0, x) × (0, t) and (i′1, j

′
1), . . . , (i

′
L′ , j′L′) a longest increasing path in (x, x + x′) ×

(t, t+ t′) , then

(i1, j1), . . . , (iL, jL), (i
′
2, j

′
2), . . . , (i

′
L′ , j′L′)

is an increasing path with gaps h in (0, x + x′) × (0, t + t′). Thus, the family of

random variables
{

Lh

(x,t) − 1
}

x>0,t>0
is superadditive. Hence, Kingman’s subad-

ditive theory (see for example Romik (2015) Th.A2-A3) implies the existence of a
constant

fh(a, b) := lim
t→∞

Lh

(at,bt)

t
,

where the limit is a.s. and in L1.

2.2. Hammersley’s lines and dilatation. A very useful way to handle the random
variables Lh

(x,t) is the geometric interpretation of Hammersley’s lines. In the clas-

sical case h = 0 this construction was first implicitly introduced by Hammersley
(1972), a more explicit construction was given by Aldous and Diaconis (1995) (con-
tinuous settings) and by Seppäläinen (1997) (discrete settings).

We now define Hammersley lines formally. These are a sequence Hh
1 ,Hh

2 , . . . of
broken lines in (0,+∞)2 defined inductively as follows (an example is provided in
Fig.2.3).
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H1

H2

H3

H4

Figure 2.3. An example of Hammersley lines for the same re-
alization of Ξ as that of Fig.1.1. The four Hammersley lines are
drawn in blue.

The broken line Hh
1 is the shortest path made of vertical and horizontal straight

lines whose minimal points2 for
0≺ are exactly the minimal points of Ξ for

0≺.
The line Hh

2 is defined as follows: we remove the points of Hh
1 + [0, h1]× [0, h2]

(hatched in gray in Fig. 2.3) and reiterate the procedure: Hh
2 is the shortest path

made of vertical and horizontal straight lines whose minimal points for
0≺ are ex-

actly the minimal points of Ξ \
(

Hh
1 + [0, h1]× [0, h2]

)

for
0≺. Inductively we define

Hh
3 ,Hh

4 , . . . in the same way.

Lemma 2.1. For each (x, t) ∈ (0,+∞)2, there are exactly Lh

(x,t) distinct Hammer-

sley lines which intersect (0, x)× (0, t).

Proof of Lemma 2.1: Let denote by N(x,t) the number of distinct Hammersley lines
which intersect (0, x)× (0, t).
Proof of Lh

(x,t) ≤ N(x,t). Let P = (y1, s1) ≺ · · · ≺ (yL(x,t)
, sL(x,t)

) be a maximizing

path in Ξ for L(x,t). For every ℓ ≤ N(x,t), there is at most one point of P in the

area Hh

ℓ + [0, h1]× [0, h2]. Therefore Lh

(x,t) ≤ N(x,t).

Proof of Lh

(x,t) ≥ N(x,t). Let Hh
1 ,Hh

2 , . . . ,Hh

ℓ be given, we will construct an

admissible path with ℓ points of Ξ (from top-right to bottom-left). We first take

any point (yℓ, sℓ) of Hh

ℓ . Let Ĥ = Hh

ℓ−1+(h1, h2) be the translation of Hh

ℓ−1 by the

gaps. By construction of Hh

ℓ the broken line Ĥ intersects (0, yℓ)× (0, sℓ). Since Ĥ
takes only directions North/West, necessarily there is a point (yℓ−1+h1, sℓ−1+h2) ∈
Ĥ ∩ (0, yℓ)× (0, sℓ), with (yℓ−1, sℓ−1) ∈ Ξ.

2Recall that (y, s) is minimal in the set E for
0

≺ iff there is no point (y′, s′) ∈ E such that
y′ < y and s′ < s.
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h1

h2
φh

H0
1

φ(H0
1
)=Hh

1

φh

H0
2

H0
3

H0
4

φ(H0
2
)=Hh

2

φ(H0
3
)=Hh

3

φh(x, t)

(x, t)

Figure 2.4. An example of the function ϕh. Left: A sample
of Ξ. Right: The same realization after the dilatation ϕh. The
gray areas correspond to regions which are not in the image of
ϕh. New points of Ξ̃ \ ϕh(Ξ) are drawn in green. We have that

L(x,t)(Ξ) = 3 = Lh

ϕh(x,t)(Ξ̃), as stated in Eq.(2.1).

Hh

ℓ−1

(yℓ, sℓ)
Hh

ℓ

(yℓ−1, sℓ−1)

Ĥ

Therefore, (yℓ−1, sℓ−1)
h≺ (yℓ, sℓ). By induction we construct an admissible path

of ℓ points in Ξ.
□

We want to make a coupling between random variables L(x,t) and Lh

(x′,t′) for

some x′ ≥ x, t′ ≥ t. We fix a realization of Ξ in the quarter-plane, and denote
by
{

L(x,t)(Ξ), (x, t) ∈ (0,+∞)2
}

the lengths of the longest paths corresponding to
this realization.

We introduce the (random) function

ϕh : (0,+∞)2 → (0,+∞)2

(y, s) 7→ (y + h1L(y,s)− , s+ h2L(y,s)−),

where L(y,s)− = limε→0 L(y−ε,s−ε).

An example is drawn in Fig.2.4. By construction, the image by ϕh of every
Hammersley line H0

ℓ is a translation of H0

ℓ (and the area between two consecutive
Hammersley lines H0

ℓ ,H0

ℓ+1 is also translated by ϕh).
The main idea is that on the right picture of Figure 2.4 we re-sample new points

in the regions which do not belong to the image of ϕh, according to an independent
Poisson process.
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Lemma 2.2 (Dilatation). Let Ξ̃ be the field of random points defined by
{

Ξ̃y′,s′ = Ξy,s if (y′, s′) ∈ Image(ϕh) and ϕh(y, s) = (y′, s′),

Ξ̃y′,s′ = Yy′,s′ if (y′, s′) /∈ Image(ϕh),

where Y is a homogeneous Poisson process with intensity one, independent of Ξ.
Then Ξ̃ is also a homogeneous Poisson process with intensity one.

Proof of Lemma 2.2: The key fact is that, knowing Ξ̃, we can exactly recover Ξ.
Indeed, let χ = (xi, ti)i≤n be a finite set of points of [0, x] × [0, t] such that xi ̸=
xj + nh1 and ti ̸= tj + nh2 for i ̸= j and n ∈ Z. We denote {Ξ̃(x, t) = χ} the

event that on [0, x]× [0, t], Ξ̃ has exactly one atom at each point of χ and no atom
anywhere else. Let us call Hh

1 , . . . ,Hh

k the Hammersley lines with gap h for the
points of χ, and define the subset G of [0, x]× [0, t] by

G := [0, x]× [0, t] ∩
k
∪

ℓ=1

(

Hh

ℓ + (0, h1]× (0, h2]
)

.

This is the set represented in grey in Figure 2.5. We claim that on the event
{Ξ̃(x, t) = χ}, each point of χ on G "comes from an atom of Y", whereas the other
points of χ "come from atoms of Ξ". More formally, for (y, s) ∈ [0, x]× [0, t], denote
Lh

(y,s)− the number of lines Hh
1 , . . . ,Hh

k which intersect the set [0, y) × [0, s)3 and

consider the application ψχ defined by

ψχ : [0, x]× [0, t] \ G → (0,+∞)2

(y, s) 7→ (y − h1L
h

(y,s)− , s− h2L
h

(y,s)−).

Thanks to the definition of G, ψχ is injective. Let S be the image of [0, x]× [0, t]\G
by ψχ (we can remark that S is a connected subset of [0, x] × [0, t]). With this

notations, we have by construction of Ξ̃,

{Ξ̃(s, t) = χ} = {Ξ|S = ψχ(χ)} ∩ {Y|G = χ|G}.
Since ψχ preserves area (we have in particular that |S| + |G| = xt where | · | of a
domain denotes its area) and using that Ξ and Y are independent Poisson processes

with unit intensity, we get that the same property holds for Ξ̃. (Note that G,S are
also deterministic functions of χ.)

□

Proof of Theorem 1.1: We will first prove that almost surely, for every x, t we have

L(x,t)(Ξ) = Lh

(x′,t′)(Ξ̃), (2.1)

where (x′, t′) = ϕh(x, t) i.e.

(x′, t′) = (x+ h1L(x,t)−(Ξ), t+ h2L(x,t)−(Ξ)).

The quarter-plane (0,+∞)2 is divided in two types of regions:

(1) The region W defined by the interior of ϕh((0,+∞)2) (represented in white

in Fig.2.4). There are no points of Ξ̃ in W.
(2) The regions Gℓ = ϕh(H0

ℓ ) + [0, h1] × [0, h2], for ℓ ≥ 1 (represented in gray
in Fig.2.4).

3Note that here Lh

(y,s)−
is a deterministic function of χ.
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x

t

h1

h2

Hh

1

Hh

2

Hh

3

t

x

H0

1

H0

2

H0

3

Ξ is known here x

t

S ?

?

?

Figure 2.5. Top left: A configuration of points χ. Top right:
Hammersley lines with gap h associated to χ. We recover which
points come from Ξ (black) and which ones come from Y (green).

Bottom: the original realization of Ξ which gave Ξ̃ (with the in-
formation of the left picture, Ξ is only determined on S).

Let P = (x1, s1)
0≺ · · · 0≺ (yL(x,t)

, sL(x,t)
) be a maximizing path in Ξ. Because of

the dilatation, the points of ϕh(P ) have horizontal gaps h1 and vertical gaps h2.
Therefore the path ϕh(P ) satisfies the gaps constraints and

L(x,t)(Ξ) ≤ Lh

(x′,t′)(Ξ̃).

For the reverse inequality, we observe that because of the gaps constraint, an ad-

missible path for the order
h≺ takes at most one point in each Gℓ. Since there are

L(x,t)(Ξ) gray regions which intersect (0, x′)× (0, t′), this proves that Lh

(x′,t′)(Ξ̃) ≤
L(x,t)(Ξ). Finally we have proved (2.1).

We now conclude the proof of the theorem. Let γ ≥ 0 be such that

γ = sup
{

y ≥ 0, L(x−yh1,t−yh2) ≥ k + 1
}

(with sup∅ = 0). If γ > 0 we have

k + 1 = L(x−γh1,t−γh2) = L(x−γh1,t−γh2)− + 1.

From (2.1)

k + 1 = Lh

(x−γh1+h1k,t−γh2+h2k)
= Lh

(x−γh1+h1k,t−γh2+h2k)−
+ 1.
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By monotonicity of L we deduce that

P(Lh

(x,t)(Ξ̃) < k + 1) = P(γ < k).

On the other hand, by definition of γ,

P(γ < k) = P(L(x−h1k,t−h2k)(Ξ) < k + 1),

and Theorem 1.1 is proved, as we have from Lemma 2.2 that Ξ, Ξ̃ are both Poisson
processes with intensity one. □

Remark 2.3. There is a geometric interpretation of the coupling equality (2.1): the
image of a Hammersley line under mapping ϕh is a Hammersley line as well. More
precisely, for every ℓ,

ϕh
(

H0

ℓ

)

= Hh

ℓ ,

where on the left-hand side H0

ℓ is defined with the points of Ξ and on the right-hand

side, Hh

ℓ is defined with the points of Ξ̃.

Proof of Proposition 1.3: Recall the asymptotics known for the length of the longest
increasing path:

f(a, b) := lim
t→+∞

L(at,bt)

t
= 2

√
ab.

We fix (a, b) ∈ (0,+∞)2 , let λ > 0 and t such that λt ∈ Z≥0. Using Theorem 1.1
we obtain

P(Lh

(at,bt) ≤ λt) = P(L(at−h1λt,bt−h2λt) ≤ λt)

t→+∞→
{

0 if λ < f (a− h1λ, b− h2λ) ,

1 if λ > f (a− h1λ, b− h2λ) .

Therefore, 1
tL

h

(at,bt) converges in probability to the unique solution λ ∈
(0,min(a/h1, b/h2)) of the equation

λ = f (a− h1λ, b− h2λ) i.e. λ = 2
√

(a− h1λ)(b− h2λ). (2.2)

We easily check that if h1h2 ̸= 1/4 the solution of (2.2) is given by

λ =
2(ah2 + bh1)− 2

√

(ah2 − bh1)2 + ab

4h1h2 − 1
.

If h1h2 = 1/4, then (2.2) reduces to λ = ab/(h1b+ h2a). □

2.3. Fluctuations of Lh(at, bt). Let us now explain how the combination of Baik-
Deift-Johansson’s result (Theorem 1.4) and Theorem 1.1 implies Proposition 1.5
for the fluctuations of Lh(at, bt).

Proof of Proposition 1.5: Using the scaling invariance of a Poisson point process
under transformations which preserve the volume, in the case without gaps con-
straint, the distribution of L(x,t) only depends on the value of the product xt. Thus,

we can define a family of random variables (Z(s), s ≥ 0) such that Z(xt)
d
= L(x,t)

for all x, t ≥ 0. Theorem 1.4 yields that

∀z ∈ R, lim
s→∞

P(Z(s2) ≤ 2s+ zs1/3) = FTW (z),

where FTW is the distribution function of the Tracy-Widom distribution.



Longest increasing paths with gaps 1153

Fix now a, b > 0 and let λ = fh(a, b). Using Theorem 1.1, we have that, for any
t ≥ 0 and β ∈ R such that λt+ βt1/3 ∈ Z≥0,

P(Lh

(at,bt) ≤ λt+ βt1/3) = P(L(t(a−h1λ)−βh1t1/3,t(b−h2λ)−βh2t1/3) ≤ λt+ βt1/3).(2.3)

= P(Z(s2) ≤ λt+ βt1/3)

with s ≥ 0 defined by

s2 := (t(a− h1λ)− βh1t
1/3)(t(b− h2λ)− βh2t

1/3)

= t2(a− λh1)(b− λh2)− t4/3β(h1b+ h2a− 2λh1h2) +O(t)

= t2
λ2

4
− t4/3β(h1b+ h2a− 2λh1h2) +O(t),

where we use (2.2) in the last line. Inverting this equality gives

t =
2

λ
s+ βδs1/3 +O(1) with δ := 24/3

h1b+ h2a− 2λh1h2
λ7/3

.

Plugging this expression of t in (2.3), we get

P(Lh

(at,bt) ≤ λt+ βt1/3) = P

(

Z(s2) ≤ 2s+ β
(

λδ +
21/3

λ1/3

)

s1/3 +O(1)

)

.

If we set σh(a, b) =
(

λδ+ 21/3

λ1/3

)−1
and apply the above equation with β = zσh(a, b),

we obtain

lim
t→∞

P(Lh

(at,bt) ≤ λt+ zσh(a, b)t1/3) = lim
s→∞

P(Z(s2) ≤ 2s+ zs1/3) = FTW (z).

One can check that this definition of σh(a, b) coincides with the one given in Propo-
sition 1.5. □

2.4. Case where h, λ depend on t. In this short section we show how to use the
scale-invariance of the Poisson point process to derive asymptotics in the case where
gaps and intensity of points depend on t. For the sake of simplicity we assume that
vertical and horizontal gaps are identical.

For every t, let ht = (ht, ht) be a pair of gaps, λt > 0 and denote by Lht,λt

(t,t) be

the length of the longest increasing path with gaps ht when Ξ is a Poisson process
with intensity λt.

Theorem 2.4. Let ct = ht
√
λt and assume that c := limt→∞ ct exists in [0,+∞].

Then,

(i) If c = 0 and
√
λtt→ +∞ then

1√
λtt

Lht,λt

(at,bt)

prob.→ f (0,0)(a, b).

(ii) If c ∈ (0,+∞) and
√
λtt→ +∞ then

1√
λtt

Lht,λt

(at,bt)

prob.→ f (c,c)(a, b).

(iii) If c = +∞ and t/ht → +∞ then

ht
t
Lht,λt

(at,bt)

prob.→ min{a, b}.
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Proof : We observe that by the scaling invariance of the Poisson process we have

Lht,λt

(at,bt)

(d)
= Lht

√
λt,1

(at
√
λt,bt

√
λt)
.

Assume first that c = limt→∞ ht
√
λt < +∞. Let ε > 0 and T such that c − ε ≤

ht
√
λt ≤ c+ ε for t ≥ T . Since Lh

(at,bt) is a non-increasing function in h, we get, for

t ≥ T , the stochastic domination:

1

t
√
λt
Lc+ε,1

(at
√
λt,bt

√
λt)

≼
1

t
√
λt
Lht,λt

(at,bt) ≼
1

t
√
λt
L
0∧(c−ε),1

(at
√
λt,bt

√
λt)

Assuming that t
√
λt tends to infinity, the left-hand side tends to f (c+ε,c+ε)(a, b)

whereas the right-hand side tends to f (0∧(c−ε),0∧(c−ε))(a, b). We conclude by con-
tinuity in c of the expression of f (c,c)(a, b).

Assume now that c = limt→∞ ht
√
λt = +∞. First, by definition of gaps, we

have the deterministic bound Lht,λ
(at,bt) ≤ 1 + min{a, b} × t/ht. This gives the upper

bound in (iii).
For the lower bound, let A > 0 and T such that ht

√
λt ≥ A for t ≥ T . For t ≥ T ,

λt ≥ (A/ht)
2, thus using the monotonicity of a Poisson point process with respect

to its intensity, we have

ht
t
Lht,λt

(at,bt) ≽
ht
t
L
ht,(A/ht)

2

(at,bt) . (2.4)

Using (ii) with λ̃t = (A/ht)
2, we get, if t/ht → +∞, the following convergence in

probability:

lim
t→∞

ht
At
L
ht,(A/ht)

2

(at,bt) = f (A,A)(a, b).

Observe that limA→+∞Af (A,A)(a, b) = a+b−|a−b|
2 = min{a, b}, so we obtain the

lower bound by letting A tend to infinity in (2.4).
□

3. Proofs in the discrete settings

3.1. Couplings. The main task of this Section is to prove the coupling between Lh

and T which leads to the identity of Theorem 1.6. For the sake of clarity we first
exhibit a coupling between Lh and L(1,1).

Lemma 3.1. Let h = (h1, h2) with (h1, h2) ̸= (0, 0). For every m,n ≥ 0, and
every k ≥ 0,

P(Lh

(m,n) ≤ k) = P(L(1,1)
(m−(h1−1)k,n−(h2−1)k) ≤ k).

3.1.1. Proof of Lemma 3.1: the case h1 > 0, h2 > 0. In the discrete settings and if
h1 > 0, h2 > 0, the proof of Lemma 3.1 is almost identical to that of Theorem 1.1.
We only explain how to change the definitions of the Hammersley lines and the
function ϕh.

The definition of the Hammersley lines is identical to the continuous case (an
example is provided in Fig. 3.6): the broken line Hh

1 is the shortest path made of

vertical and horizontal straight lines whose minimal points for
0≺ are exactly the

minimal points of Ξ for
0≺. The line Hh

2 is defined as follows: we remove the points
of Hh

1 +{0, 1, . . . , h1 − 1}×{0, 1, . . . , h2 − 1} and reiterate the procedure: Hh
2 is the

shortest path made of vertical and horizontal straight lines whose minimal points for
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m

n

H1

H2

H3

H4

Figure 3.6. An example with h = (2, 1) for the same realization
of Ξ as that of Fig.1.2. In every unit square (i, j) we write the

value of L(2,1)
(i,j) , the four Hammersley lines are drawn in blue.

0≺ are exactly the minimal points of Ξ\
(

Hh
1 + {0, 1, . . . , h1 − 1} × {0, 1, . . . , h2 − 1}

)

for
0≺. Inductively we define Hh

3 ,Hh
4 , . . . in the same way.

The function ϕh has to be replaced by its discrete counterpart:

ϕh : (Z>0)
2 → (Z>0)

2

(m,n) 7→ (m+ (h1 − 1)L(1,1)
(m−1,n−1), n+ (h2 − 1)L(1,1)

(m−1,n−1)).
(3.1)

We define a new set of points Ξ̃ by
{

Ξ̃i′,j′ = Ξi,j if (i′, j′) ∈ Image(ϕh) and ϕh(i, j) = (i′, j′),

Ξ̃i′,j′ = Yi′,j′ if (i′, j′) /∈ Image(ϕh),

where (Yi′,j′)i,j≥1 are independent Bernoulli random variables with mean p (see
an example in Figure 3.7). In the same manner as in the continuous settings, we

prove that (Ξ̃i,j)i,j≥1 are i.i.d Bernoulli random variables with mean p and for every
m,n ≥ 1 we have

L(1,1)
(m,n)(Ξ) = Lh

(m′,n′)(Ξ̃),

where (m′, n′) = ϕh(m,n) = (m+(h1−1)L(1,1)
(m−1,n−1), n+(h2−1)L(1,1)

(m−1,n−1)). We

deduce then Lemma 3.1 for h1h2 > 0 in the same manner as in Theorem 1.1.

3.1.2. Proof of Lemma 3.1: the case h1 > 0, h2 = 0. As in the previous section, we
can exhibit a coupling between L(h1,0) and L(1,1) which shows that Lemma 3.1 also
holds for h = (h1, 0). However, some change must be made compared to the case
h1h2 > 0 since the function ϕh defined in (3.1) is no more a dilation.

To make the exposition clearer, it is more convenient to explain the coupling
between the model with gap (h, 0) with the one with gap (h, 1). Thus, let us consider

a Bernoulli field Ξ on (Z>0)
2 and construct the associated random variables L(h,1)

(m,n).
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φ

φ

Figure 3.7. An example of the function ϕh for (m,n) = (8, 6)
and h = (3, 2). The points of the quarter-plane indicated by small

gray squares are not in the image of ϕh. The values of Ξ̃ at these
points are independent of Ξ.

ψh

ψh

Figure 3.8. An example of the function ψh and the definition of
set of points Ξ̃ for h = (1, 0). There is a point in Ξ̃ at (i′, j′) i.f.f.
there is one in Ξ at its highest antecedent by ψh.

Define the function ψh by

ψh : (Z>0)
2 → (Z>0)

2

(m,n) 7→ (m,n− L(h,1)
(m−1,n−1)).

Contrary to ϕh, the function ψh is surjective but no more injective. More precisely,
for any (m,n′) ∈ (Z>0)

2, there exist n ≥ 1 and k ≥ 0 such that

(ψh)−1(m,n′) = {(m,n), (m,n+ 1), . . . , (m,n+ k)}.
We define now the new set of points Ξ̃ by

Ξ̃m,n′ = Ξm,n+k where (ψh)−1(m,n′) = {(m,n), (m,n+ 1), . . . , (m,n+ k)}.
Again, one can prove that the random variables Ξ̃ = (Ξ̃i,j)i,j≥1 are i.i.d. Bernoulli

random variables with mean p and for every m,n ≥ 1 we have

L(h,1)
(m,n)(Ξ) = L(h,0)

(m,n′)(Ξ̃),
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φ

φ

φ

Figure 3.9. An example of the function ϕ0. Left: a realization

of Hammersley lines H(1,1)
ℓ . Right: The associated realization of

last-passage percolation with geometric weights. We have Ξ̃3,1 =

Ξ̂3,1 + Ξ̂4,2 + Ξ̂5,3 + Ξ̂6,4 = 1 + 1 + 1 + 0 = 3.

where (m,n′) = ψh(m,n) = (m,n−L(h,1)
(m−1,n−1)). Then, with the same argument as

in the proof of Theorem 1.1, we get that, for every m,n ∈ Z≥0, and every k ∈ Z≥0,

P(L(h,0)
(m,n) ≤ k) = P(L(h,1)

(m,n+k) ≤ k) = P(L(1,1)
(m−(h−1)k,n+k) ≤ k).

3.1.3. Proof of Theorem 1.6: coupling with T . We conclude the proof of Theo-

rem 1.6 with our last coupling between L(1,1)
(m,n) and T(m′,n′), for some (m′, n′). As

already said, this coupling already appeared in Rajesh and Dhar (1998); Georgiou
and Ortmann (2018); Majumdar and Nechaev (2005).

Let us consider a Bernoulli field Ξ on (Z>0)
2 and construct the associated random

variables L(1,1)
(m,n) associated to the gaps (1, 1). Formally, in the case h = (0, 0), the

function ϕh defined in (3.1) becomes

ϕ0 : (Z>0)
2 → (Z>0)

2

(m,n) 7→ (m− L(m−1,n−1), n− L(m−1,n−1)).
(3.2)

As in the previous case h = (h, 0), the function ϕ0 is surjective but not injective.
More precisely, for any (m′, n′) ∈ (Z>0)

2, there exist n,m ≥ 1 and k ≥ 0 such that

(ϕ0)−1(m′, n′) = {(m,n), (m+ 1, n+ 1), . . . , (m+ k, n+ k)}.
We first define a new collection of random variables Ξ̂ = {Ξ̂i,j , i, j ≥ 1} ∈
{0, 1}(Z>0)

2

by
{

Ξ̂m,n = Ξm,n = 1 if (m,n) is a minimal point of some H(1,1)
ℓ

Ξ̂m,n = 0 otherwise,

and we define now the family of random variables Ξ̃ = {Ξ̃i,j , i, j ≥ 1} ∈ (Z≥0)
(Z>0)

2

by

Ξ̃m′,n′ =
∑

(m,n)∈(ϕ0)−1(m′,n′)

Ξ̂m,n.

For every m′, n′ we have Ξ̃(m′,n′) = k if

Ξ̂(m,n) = Ξ̂(m+1,n+1) = · · · = Ξ̂(m+k−1,n+k−1) = 1, Ξ̂(m+k,n+k) = 0,
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which occurs with probability pk(1− p). Therefore we can show that Ξ̃ is a family

of i.i.d. geometric random variables: P(Ξ̃m,n = k) = pk(1− p) for k ≥ 0.
For m,n ≥ 1, recall the notation

T(m,n)(Ξ̃) = max{
∑

(i,j)∈P

Ξ̃i,j ; P ∈ Pm,n},

where Pm,n denotes the set of paths from (1, 1) to (m,n) taking only North and
East steps. With the same arguments of the previous cases one can prove that for
every m,n ≥ 1 we have

L(1,1)
(m,n)(Ξ) = T(m′,n′)(Ξ̃),

where (m′, n′) = ϕ0(m,n) = (m− L(1,1)
(m−1,n−1), n− L(1,1)

(m−1,n−1)).

We deduce that for every m,n ≥ 0, and every k ≥ 0,

P(T(m,n) ≤ k) = P(L(1,1)
(m+k,n+k) ≤ k),

which is in fact equivalent to Eq.(4.1) in Georgiou and Ortmann (2018). Combining
this equality with Lemma 3.1 yields Theorem 1.6.

3.2. Proof of the limiting shape: Proposition 1.8.

Proof of Proposition 1.8: We fix (a, b) ∈ (0,+∞)2 , let λ > 0 and n such that
λn ∈ Z≥0 and λ ≤ λ0 := min(a/h1, b/h2). This last condition implies in particular
that (an − h1λn) and (bn − h2λn) are non negative. Note also that, due to the
gap constraint, we have Lh

(an,bn) ≤ λ0n a.s. We want to apply the coupling of

Theorem 1.6 to the following result:

Theorem 3.2 (Jockusch et al., 1998,Th.2, see also Seppäläinen, 2009,Th.2.2). For
every a, b > 0, p ∈ (0, 1)

g(a, b) := lim
n→+∞

1

n
T(⌊an⌋,⌊bn⌋) =

√
p
(

2
√
ab+ (a+ b)

√
p
)

1− p
. (3.3)

We obtain that

P(Lh

(an,bn) ≤ λn) = P(T(an−h1λn,bn−h2λn) ≤ λn)

n→+∞→
{

0 if λ < g (a− h1λ, b− h2λ) ,

1 if λ > g (a− h1λ, b− h2λ)

Therefore, 1
nLh

(an,bn) converges in probability to

gh(a, b) := sup{λ ≤ λ0, λ < g (a− h1λ, b− h2λ)}.
Note that in (3.3), g is only defined on (R∗

+)
2 but one can extend g on (R+)

2 by
continuity so that g (a− h1λ0, b− h2λ0) is well defined. Two cases can occur:

• either
λ0 ≥ g (a− h1λ0, b− h2λ0) ,

and the equation

λ = g (a− h1λ, b− h2λ) , (3.4)

has a solution which is necessarily unique since the right hand side of (3.4)
decreases with respect to λ. Then 1

nLh

(an,bn) converges to this unique solu-
tion.
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• Or

λ0 < g (a− h1λ0, b− h2λ0) ,

and in this case, 1
nLh

(an,bn) converges λ0 = min(a/h1, b/h2).

Using the expression of g given in (3.3), one can check that λ0 ≥ g(a−h1λ0, b−h2λ0)
i.f.f. h1

(h2−1)+1/p ≤ a
b ≤ h1−1+1/p

h2
□

3.3. Fluctuations of Lh

(an,bn): Proof of Proposition 1.9. Johansson (2000) has com-

puted the fluctuations of T(⌊an⌋,⌊bn⌋) around its mean:

Theorem 3.3 (Cube root fluctuations, Johansson, 2000, Th. 1.2). For every a, b >
0 and x ∈ R, we have

lim
n→∞

P

(

T(⌊an⌋,⌊bn⌋) − ng(a, b)

σ(a, b)n1/3
≤ x

)

= FTW (x),

where FTW is the distribution function of the Tracy-Widom distribution, and

σ(a, b) =
p1/6

1− p
(ab)−1/6(

√
a+

√

pb)2/3(
√
b+

√
pa)2/3. (3.5)

From Theorem 3.3, it is not obvious to obtain a result as neat as Proposition 1.5
for every direction (a, b). The proof of Proposition 1.5 relies on the scaling invari-
ance property of the Poisson process: the law of L(x,t) only depends on the value of
xt. There is of course no analogous for fields of Bernoulli random points. However,
one can still show that for any a, b ≥ 0 and h, the fluctuations of Lh

(⌊an⌋,⌊bn⌋) are

also of order n1/3 (outside the flat edges of the limiting shape). Before stating our
result about the fluctuations of Lh

(⌊an⌋,⌊bn⌋), we must first prove a technical lemma.

Lemma 3.4. Let h be a gap constraint. For all a, b > 0 such that gh(a, b) <
min{a/h1, b/h2}, there exists a unique pair (α, β) of positive numbers such that
gh(a, b) = g(α, β). Moreover, (α, β) is solution to the system

{

α+ h1g(α, β) = a,

β + h2g(α, β) = b.
(3.6)

Proof : By symmetry, we can assume that gh(a, b) < a/h1 ≤ b/h2. Recall that in
this case, gh(a, b) is the unique λ solution of

λ = g (a− h1λ, b− h2λ) , (3.7)

and we necessarily have g
(

0, b− h2a
h1

)

< a
h1

.

Assume that there exists a solution (α, β) of the system

α+ h1g(α, β) = a, β + h2g(α, β) = b.

Putting g(α, β) in (3.7), we see that g(α, β) satisfies this equality and thus g(α, β) =
gh(a, b) < a/h1. In particular, we necessarily have α, β > 0. It remains to prove
that the system has indeed a (unique) solution. Noticing that g(α, β) = βg(α/β, 1)
and setting γ = α/β, we see now that the system is equivalent to

β(γ + h1g(γ, 1)) = a, β(1 + h2g(γ, 1)) = b. (3.8)

In particular, we have

b(γ + h1g(γ, 1)) = a(1 + h2g(γ, 1)).
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Hence, if a/h1 = b/h2, we get γ = a/b. In the other case : a/h1 < b/h2, we get

g(γ, 1) =
a− bγ

bh1 − ah2
.

The left hand side is increasing with γ whereas the right hand side decreases. Thus,
there exists a unique solution γ > 0 if and only if

g(0, 1) <
a

bh1 − ah2

which coincides with the condition g
(

0, b− h2a
h1

)

< a
h1

stated above. Finally, using

(3.8), we see that the existence and unicity of γ implies the existence and unicity
of (α, β). □

Proposition 3.5. Let h = (h1, h2) be a gap constraint and let a, b > 0 be such
that gh(a, b) < min{a/h1, b/h2}. Let us define (α, β) as in Lemma 3.4 such that
gh(a, b) = g(α, β). Set

Wh

an,bn =
Lh

(⌊an⌋,⌊bn⌋) − gh(a, b)n

σ(α, β)n1/3
.

Assuming for example that a/h1 ≤ b/h2, we have, for all z ≥ 0,

FTW

(bz

β

)

≤ lim inf
n→∞

P(Wh

an,bn ≤ z) ≤ lim sup
n→∞

P(Wh

an,bn ≤ z) ≤ FTW

(az

α

)

(3.9)

FTW

(−az
α

)

≤ lim inf
n→∞

P(Wh

an,bn ≤ −z) ≤ lim sup
n→∞

P(Wh

an,bn ≤ −z) ≤ FTW

(−bz
β

)

.

(3.10)

Remark 3.6. Proposition 3.5 states that, ouside the flat edge of the limiting shape,
the fluctuations of Lh

(an,bn) are of order n1/3. Inside the flat edge (except in the

critical direction), one can easily show that P(|Lh

(⌊an⌋,⌊bn⌋) − gh(a, b)n| ≥ 1) tends
to 0.

Proof of Proposition 3.5: A change of indexes in Theorem 1.6 yields

P(T(m,n) ≤ k) = P(Lh

(m+h1k,n+h2k)
≤ k). (3.11)

Let a, b > 0 such that gh(a, b) < min{a/h1, b/h2} and, according to Lemma 3.4,
take α, β > 0 solution of the system

α+ h1g(α, β) = a, β + h1g(α, β) = b

and such that gh(a, b) = g(α, β) =: λ. Using (3.11), we obtain

P(T(αn,βn) ≤ λn+ yn1/3) = P(Lh

(n(α+h1λ)+h1yn1/3,n(β+h2λ)+h2yn1/3) ≤ λn+ yn1/3).

= P(Lh

(an+h1yn1/3,bn+h2yn1/3) ≤ λn+ yn1/3). (3.12)

Assume now that a/h1 ≤ b/h2. Set

N := n+
h1
a
yn1/3 so that n = N − h1

a
yN1/3 + o(N1/3)

and define the function ω such that

Nω(N) = n+
h2
b
yn1/3,
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observe that because of a/h1 ≤ b/h2 we have

Nω(N) ≤ n+
h1
a
yn1/3 = N. (3.13)

With this notation, (3.12) becomes

P(Lh

(aN,bω(N)N) ≤ λN + y(1− h1λ

a
)N1/3 + o(N1/3)) = P(T(αn,βn) ≤ λn+ yn1/3).

Let us notice that

1− h1λ

a
= 1− a− α

a
=
α

a
> 0.

Using (3.13) we have that Lh

(aN,bNω(N)) ≤ Lh

(aN,bN) and therefore by putting x =

yα/a we have for any x ≥ 0,

P(Lh

(aN,bN) ≤ λN+xN1/3+o(N1/3)) ≤ P(Lh

(aN,bNω(N)) ≤ λN+xN1/3+o(N1/3))

≤ P(T(αn,βn) ≤ λn+
xa

α
n1/3).

Using Johansson’s result, we obtain, for x ≥ 0,

lim sup
N→∞

P(Wh

(aN,bN) ≤ x) ≤ lim
n→∞

P(T(αn,βn) ≤ λn+ xσ(α, β)
a

α
n1/3) = FTW (

xa

α
).

We obtain the lower bound in the same way, setting

Ñ := n+
h2
b
yn1/3

and ω̃ the function such that

Ñ ω̃(Ñ) = n+
h1
a
yn1/3.

Due to the condition a/h1 ≤ b/h2, we now have ω̃(Ñ) ≥ 1 for any y ≥ 0. The case
x ≤ 0 is also obtained with similar arguments. □

Proof of Proposition 1.9: In the particular direction a/h1 = b/h2 the LHS and RHS
of inequalities (3.9), (3.10) coincide. Indeed, recall from the proof of Lemma 3.4
that if a/h1 = b/h2 then a/b = γ = α/β. Therefore we obtain Proposition 1.9 with

σh(a, b) = σ(α, β)

√

αβ

ab
. (3.14)

□
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