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the longest path in the price model
tim S. evans*, Lucille calmon & Vaiva Vasiliauskaite

the price model, the directed version of the Barabási–Albert model, produces a growing directed 

acyclic graph. We look at variants of the model in which directed edges are added to the new vertex 

in one of two ways: using cumulative advantage (preferential attachment) choosing vertices in 

proportion to their degree, or with random attachment in which vertices are chosen uniformly at 

random. In such networks, the longest path is well defined and in some cases is known to be a better 
approximation to geodesics than the shortest path. We define a reverse greedy path and show both 
analytically and numerically that this scales with the logarithm of the size of the network with a 

coefficient given by the number of edges added using random attachment. This is a lower bound on 
the length of the longest path to any given vertex and we show numerically that the longest path also 

scales with the logarithm of the size of the network but with a larger coefficient that has some weak 
dependence on the parameters of the model.

�e Price  model1,2 is one of the oldest network models and it was motivated by the pattern of citations in aca-
demic papers. In a citation network, each node represents a document while every entry in the bibliography of a 
document t is represented by a directed edge from an older document, node s, to node t. One of the key features 
of a citation network, one inherent in the Price model, is that there is a fundamental arrow of time in the net-
work; bibliographies can only refer to older documents. �is means that there are no cycles in the network, you 
can never �nd a path from a node that returns to that node. �us a citation network is an example of a Directed 
Acyclic Graph (DAG).

Mathematically, DAGs have some distinctive properties and one of them is that for any pair of connected 
nodes there is a well de�ned and meaningful longest path length, for example see Fig. 1. Contrast this with, for 
example, undirected networks, where you can o�en �nd many paths between two given vertices that visit most 
of the nodes in a component so longest paths are o�en as long as the component is big, if all nodes in the path 
must be distinct, and in�nite, if multiple visits to the same node were allowed. In directed graphs with cycles, 
the longest path is in�nite, if multiple visits to a node are allowed. Both of these de�nitions of the longest path 
coincide if the network is acyclic, as the absence of cycles ensures that in any path, a node can only occur once.

In a citation network, it is not clear how useful the shortest path is. For instance, in writing this paper, the 
oldest citation we have is to a paper by  Price1. �e shortest path to Price’s paper from this work has length one. 
On the other hand, most of the knowledge of that work contained in this paper did not come directly from that 
paper. We only reread Price’s paper to check one detail while working on this project. So the length of the shortest 
path to that paper seems largely irrelevant. Rather, the information in this early bibliometrics paper by Price has 
reached us through a sequence of other work, much of it not explicitly referenced in our paper. We drew on much 
more recent documents such as the reference book by  Newman4 which in turn cites papers which developed 
various aspects of the Price model. Indeed there is much  evidence3,5,6 that typically 70% or so of a bibliography 
may not have been used directly when producing the work in an academic paper.

So our thesis is that for DAGs the longest path plays a much more important role than the shortest path. 
In simple models the longest path has been shown to be the best approximation to the geodesic for models of 
DAGs embedded in Minkowski  space7 where there is a single time direction. �is has been exploited in real data 
sets where dimension and curvature of a DAG can be  measured8,9 enabling us to embed DAGs such as citation 
networks in Minkowski  space10. A similar rigorous link for undirected networks has only been made for the 
shortest path in networks embedded in Euclidean space where there is no arrow of  time11,12].

�e properties of the longest path have been investigated in the context of simple models known as Cube 
 Spaces13 which include those built from Poisson Point Processes in Minkowski spaces where all causally con-
nected points are connected to form a network. However these are examples of transitively complete DAGs, 
that is if there is a path between two points then there is always an edge connecting those two points directly. 
However, that is not true for a citation network where the limited size of a bibliography means no document 
ever cites every older paper to which it has some connection. What we seek to do in this paper is to look at the 
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properties of the longest path in a simple model, the Price  model2 and its variations, where the network is neither 
transitively complete nor (except for one parameter value) transitively reduced, the situation for most DAGs in 
a social context such as citation networks. Can we calculate the length of the longest path in the Price model? 
How does this length depend on the parameters of the model?

We start by outlining our analytic results. We then compare these predictions to numerical simulations and 
summarise our �ndings.

Analytic results
In the Price  model2 (for instance see Sect. 14.1 of  Newman4) we start from a network G(t) de�ned at an integer 
‘time’ t. We create a new graph G(t + 1) by �rst adding one new vertex, which we label with the time (t + 1) . �is 
new node, (t + 1) , is connected to m existing vertices s in the graph G(t). �ese m existing vertices {s} are each 
chosen with probability �(t, s) . We will use a convention that these edges point from older to newer vertices, from 
s to (t + 1) . Once these edges have been added we have our new graph G(t + 1) . �e process is then repeated. 
For an example of how a network grows according to the Price model, see Fig. 2.

�e mathematical and numerical simplicity of this model comes from the simple de�nition of �(t, s) . 
To de�ne the probability �(t, s) we �rst de�ne N(t) = N0 + t be the number of nodes in the graph G(t) for 

Fig. 1.  An illustration of a Price-model style DAG where the longest, shortest and reverse greedy paths from 
last point to the �rst are distinct. �e longest path from the source node to the sink node is highlighted in blue 
dot-dash line; the reverse greedy path is the dotted green path. Note the �rst edge is the same for both—the 
green-blue edge. As illustrated here, the Price model produces DAGs which are neither transitively complete nor 
transitively reduced. In a transitively complete DAG, all nodes which are connected by a path are connected by a 
direct edge. Likewise, except for the case of one-incoming edge per node, the model is not transitively  reduced3, 
that is some edges could be removed without removing a path between any pair of nodes.
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some constant N0 . �e number of edges in the graph G(t), a�er all m edges have been added to node t, is 
E(t) = E0 + mt where E0 is some constant. Finally in the graph G(t) let the node created at time s have out-degree 
k
(out)(t, s) , the number of edges leaving s and connecting it to later nodes.

In this model, the connection of edges to new node (t + 1) is made in one of two ways. With probability 
p node (t + 1) is connected to an existing vertex s chosen in proportion to the number of edges leaving s for 
later nodes in G(t), k(out)(t, s) . Price called this cumulative advantage and, a�er normalisation, we have that the 
probability of choosing s is k(out)(t, s)/E(t) . �e second process happens with probability p̄ = (1 − p) and in 
this case we choose the source vertex s uniformly at random from the set of vertices in G(t), i.e. with probability 
1/N(t). If we start the process at time equal to 1, then the probability of connecting the vertex (t + 1) to existing 
vertex s is �(t, s) where

unless s = t = 1 when �(t, s) = 1 , otherwise �(t, s) = 0 . Note that in his original paper, Price considered 
p = m/(m + 1) where � ∝ k

(out)
+ 1 . �is more general form for the attachment probability �(s, t) in Eq. (1) 

has been used in many related contexts since Price, see  Newman4 for a review.
�ere is an issue about the starting point for this process. �e usual form for � , the t ≥ s > 1 form in Eq. (1), 

leaves us with a problem for �(t = 1, s = 1) when looking at the attachment to the second vertex, t = 2 . Our 
solution is to demand that �(t = 1, s = 1) = 1 . �is �xes the cumulative probability �≤ to have a consistent 
value which is in fact all we need for this calculation. However, we will also assume that the number of nodes and 
number of edges are given by N(t) = t and E(t) = mt respectively. �is is only needed for t ≥ 2 so in principle 
we must allow multiple edges between nodes starting with m edges added between node 2 and node 1. Again 
this cannot be true for at least the �rst node at t = 1.

We also note that our analytic calculations allow our networks to contain multiple edges (node pairs linked 
by more than one edge). Of course, a real citation network and many numerical calculations of this model 
(though not our numerical calculations) do not have multiple edges. However, in the long time limit the e�ect 
of such edges becomes negligible as they form a small fraction of the edge population, a fraction that dies o� as 
a power law in  time4.

Now we would like to de�ne the longest path algebraically. Unfortunately, �nding the longest path requires 
global knowledge of all the paths. �is is extremely hard to do algebraically (though is surprisingly straight-
forward numerically). So the �rst stage of our calculation is to decide to calculate a path de�ned with local 
knowledge only. �at is we de�ne what is called a reverse greedy path using an iterative process where at each 
stage we only need to know about the properties of the next vertex in the path. We will denote the length of the 
reverse greedy path from the source vertex s = 1 to a target vertex t as ℓ(t) . �e length of the longest path from 
the source vertex to a target vertex t will be denoted as L(t).

�e reverse greedy path to a node t is a path running from the source node at the initial time t = 1 to node t. 
�is always exists and it is unique. To de�ne it suppose that we have found the reverse greedy path to all earlier 
nodes. �e last step on the reverse greedy path to node t is made along the edge arriving at t from its most recent 
predecessor node, say s. �e idea is that the most recent predecessor of node t, furthest from the source node 
in terms of the time, is also the most likely to be the predecessor node furthest from the sink node in terms of 
network path lengths. �ere is no guarantee that our reverse greedy path is identical to the longest path, so the 
reverse greedy path length is a lower bound on the longest path length. A more formal de�nition is given in 
Appendix A.1 in the Supplementary Information.

Of course in any one instance of the Price model, this reverse greedy path length will �uctuate if we look 
at nodes of similar ages, not least because ℓ is integer valued. We will use a mean �eld approach so our ℓ(t) is 

(1)�(t, s) = p
k(out)(t, s)

E(t)
+ p̄

1

N(t)
if t ≥ s ≥ 1 ,

Fig. 2.  An illustration of the Price Model. Here the height of the node on the page indicates the time with the 
�rst node at the bottom being the node t = 1 . At each stage we show the graph G(t) so a�er the new nodes and 
its incoming edges have been added.
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an average over many realisations of the model though for simplicity we will not include the expectation value 
notation 〈. . .〉 . For that reason our ℓ(t) will be a real valued monotonically increasing function of time t.

We can �nd the long-time behaviour using the following simple argument. On average, there are pm edges 
added with cumulative advantage at each time step. Suppose we are adding a new node at time (t + 1) and we 
are looking for source nodes s for the m edges we are going to add. �e source nodes chosen with cumulative 
advantage are those with largest degree and those are the oldest nodes created at small values of time s (since 
k(out)(t, s) ∝ (t − s)p , for instance see  Newman4). So the youngest source node chosen, nodes created at the 
largest value of time s, is likely to be one of the mrnd = mp̄ nodes chosen uniformly at random. �e probability 
that all these mrnd randomly chosen source nodes are chosen between time 1 and time ŝ inclusive is (ŝ/t)mrnd . 
Suppose we consider the time ŝ1/2 where with probability one half the time coordinate of the largest randomly 
chosen source node is ŝ1/2 or less, then this sets the scale for the birth date of the youngest source node connected 
to node (t = 1) , namely that ŝ1/2 = µt where µ = 2

−mrnd . �is is the previous node on the reverse greedy path 
from the initial node to node t. We can then estimate the numbers of steps it takes to get back to the source node 
at t = 1 as µℓ

t ≈ 1 which leads to

�e simplicity of the attachment probability in the Price model means we can also produce more detailed deri-
vation using a mean-�eld approach. Let the probability that the length of the reverse greedy path, ℓ , from new 
node (t + 1) to the initial node at t = 1 , be P(ℓ, t) . �en the master equation is of the form

Here �max(t, s) is the probability that of the m predecessor nodes connected to a new node at (t + 1) , the oldest 
of them is s. In terms of the generating function G(z, t) =

∑
∞

ℓ=0 z
ℓ
P(ℓ, t) we �nd that the exact solution in the 

Price model is (see Appendix A.3 in the Supplementary Information for details)

Exact forms for the expected reverse greedy path length can be found from this expression, especially for speci�c 
small values of m. However, the leading order contribution for large times is always of the form

where it is implicit that there is no contribution from the term with the sum for the case of m = 1 . Here ψ(z) is 
the digamma function and ζ(z) is the Riemann zeta-function. �e details of the calculation are given in Appendix 
A.3 of the Supplementary Information.

Finally, the scaling properties of the longest path in the Price model suggests that the properties of height 
antichains are also very simple. �e height of a node in a DAG is the length of the longest path to a node from 
a source node, any node with zero in-degree. �us in the Price model, the height of a node is simply the length 
of the longest path length from the initial node to the given node, our L.

Nodes connected by a path cannot be of the same height. �us the subset of all nodes at the same height 
form an antichain, a set of nodes in which no two are connected by a  path14. �e scaling properties of these 
height antichains are simple to estimate if we conjecture that the average longest path L of a node t, its average 
height, scales as ln(t) . �is suggests that if the median index of a node in an antichain of integer valued height 
h is tmid = (µ)h then the mean index of nodes in the antichain will scale as cosh(

√

µ)(µ)h , the variance in the 
index of nodes in the antichain will be roughly (1/

√

3) sinh(
√

µ)(µ)h , and the number of nodes in the antichain 
will vary as in the 2 sinh(

√

µ)(µ)h.

numerical methods and results
In the master Eq. (3), multiedges (attaching two edges from the new vertex to the the same vertex) are not 
excluded. In our numerical implementation code we also allowed multiedges to be created. However the prob-
ability of attaching one edge from new vertex (t + 1) to any existing vertex s is decreasing as (s/t)p (for instance 
see p. 489–90  Newman4). So the creation of a multiedge becomes negligible at large times hence our networks 
are essentially the same as implementations of the Price model in which multiedges are excluded.

�e �rst few steps of the numerical implementation of the Price model have some subtleties which are worth 
mentioning. �e problems noted analytically with the initial node at t = 1 , which is the only node with zero-
in-degree, exemplify the issue. �e earliest nodes are those with the shortest values of our ℓ and L path lengths 
to the �rst node. Since the path lengths of the �rst few nodes will be added to any other path routed via one of 
these early nodes, we expect the initial graph to give a constant contribution to the path lengths we measure but 
not to alter the growth in length scales over long-times.

We chose to start our simulations from a complete graph of (2m + 1) nodes, labelled t = 1 to t = (2m + 1) . 
All pairs of nodes are connected in this initial graph, with the edge direction from earlier to later node. �is 
initial graph ensures that E(t) = mt for all graphs generated numerically, G(t) for t ≥ (2m + 1) . �e out-degree 

(2)ℓ(t) =
mp̄

ln(2)
ln(t) .

(3)P(ℓ, t + 1) =

t∑

s=1

P(ℓ − 1, s)�max(t, s) .

(4)G(z, t) =

t−1
∏

s=1

(

z

(

1 −

(

s − p̄

s

)m)

+

(

(s − p̄)

s

)m)

.

(5)lim
t→∞

ℓ(t) =mp̄ ln(t) − mp̄ψ(mp̄ + 1) +

m
∑

n=2

(

m
n

)

(−1)n−1(p̄)nζ(n) + O(t−1)
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distribution is fairly even but the in-degree is not �xed to be m for nodes in this initial graph. Further notes on 
the e�ect of the initial graph are given in Appendix B.4 in the Supplementary Information.

In order to simplify and accelerate the numerical analysis, for each new node (t + 1) added we drew nodes 
uniformly at random from an “attachment list” which we maintain. A�er we have chosen the source edges for 
the m edges attached to the new vertex, we update our attachment list by adding each source node once for every 
edge, and we add (p̄/pm) references to the new node. �is means we restrict our results to cases where (p̄/pm) 
is an integer. Drawing nodes uniformly from our attachment list means that we are choosing vertices according 
the the probability Eq. (1). For the special case where there was no cumulative advantage, p = 0 , the attachment 
list was simply a list of the existing vertices where each is referenced once. A more detailed explanation is given 
in Appendix B.1 of the Supplementary Information.

For each node s, we also record values for the lengths of the reverse greedy path ℓ(s) and the longest path L(s) . 
When adding a new node t, it is simple to look at the values of the lengths of these paths to the m nodes attached 
to the new node. From that information, it is simple to record the lengths of these paths to the new vertex, ℓ(t) 
and L(t) . Storing and manipulating these results proved to be more of a limiting factor than the speed to produce 
them. We produced results for networks of up to 108 nodes.

�e results for these path lengths are quite noisy for any one node as shown by an exemplary run in Fig. 3. 
Despite the relatively large �uctuations in results for any one node, there is a clear trend in the nodes created at 
later times. �e �uctuations of the path length scaling are greatly reduced when averaged over multiple networks 
as shown in Fig. 3. So we use 100 runs for each set of parameter values in our work.

In order to compare our numerical data with the analytical results we �tted the path lengths found to the 
function f(t) where

�e �t was made by using a non-linear �tting routine based on the optimisation of the chi-squared measure of 
goodness of �t (for instance  see15) as described in more detail in Appendix B.3 of the Supplementary Informa-
tion. Errors on parameters were estimated from the covariance matrix produced by such a method. Given that 
our analytical work only studies the long-time limit and that the early times in the numerical simulation do not 
satisfy all the conditions of the analytical work, it is not surprising that in Fig. 4 we still see signi�cant di�erence 
between the numerical results and analytical predictions for the length of paths from t = 1 to those nodes created 
at early times. So when �tting to our numerical data we only use data for nodes created from time t0 = 1, 000 up 
to the last node at t = 10

8 . �e e�ect of this cuto� is discussed in Appendix B.3 but we found varying this lower 
cuto� had little e�ect on our results since we had so many data points from the region where the asymptotic 
growth dominates.

�e dependence of the coe�cient of the ln(t) term found from the �t, a, on the model parameters is shown 
in Figs. 5 and 6.

�e next-to-leading order coe�cient, b of Eq. (6), showed no clear trends. We also considered a non-linear �t 
with a term of c/t added to the expression in the Eq. (6). We found that in practice, this term had little in�uence 
on the remaining parameters of interest, namely, a and b. Furthermore, the errors in c were found to be relatively 
large in comparison to the errors of the parameters a.

Finally, it is clear that the longest path length is scaling as ln(t) to a good approximation. As noted above this 
then implies that the properties of height antichains in the Price model should follow a regular pattern which 
depends on the height of nodes in each antichain. Numerical con�rmation of these patterns are given in Appen-
dix B.6 of the Supplementary Information.

(6)f (t) = a ln(t) + b .

Fig. 3.  On the le� is a plot of path length against t for a single network realisation showing noisy the data is. 
Averaging over 100 runs greatly reduces the �uctuations as shown in the righthand plot. Fitted lines are of the 
form a ln(t) + b . In both �gures, a random sample of 105 points is plotted. �e abscissa axes are logarithmic to 
show the linear behaviour between the path lengths and t.
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Discussion
�e numerical results for the leading behaviour of the path length scales are striking. Within the margin of 
numerical error, our results in Fig. 5 show that the length of the reverse greedy path scales asymptotically as 
mp̄ ln(t) for a wide range of parameter values. �is is consistent with both the simple argument and the detailed 
analytical calculation presented in the Analytic Results (see also Appendix A of the Supplementary Information). 
�e analytical approach also shows that for long times, the distribution of lengths of reverse greedy paths in the 
Price model is Poisson distributed with mean equal to mp̄ ln(t) (see Appendix A).

�e reverse greedy path length is a lower bound on the length of the longest path so it is no surprise that the 
longest path length also scales as ln(t) with a coe�cient, amax , which is larger than the corresponding scaling 
factor for the reverse greedy path length, agr . Interestingly this coe�cient of the ln(t) term, amax , for the longest 
path shows some additional weak dependence on the parameters beyond the mp̄ found for the reverse greedy 
path, as both Figs. 5 and 6 clearly show.

�e Price model is not in itself a very realistic model for any particular context. For instance, a true citation 
network o�en shows many other features such as a preference to cite recent papers, for example  see6,16–21. �e 
choice of a simple linear form for the attachment probability Eq. (1) appears to be part of this simpli�cation, a 
form linear in degree motivated by the need for mathematical simplicity. At �rst sight, this form seems unrealistic 

Fig. 4.  �e ratio of the average over 100 runs of the path length measured numerically, Lobs and ℓobs , divided 
by the expected values, as described by the numerical best �t. �e data for p = 0.375m = 5 from t = 1, 000 
(represented by a vertical dashed line) to t = 10

8 was �tted to Eq. (6). �e reverse greedy path results are 
shown on the le�, and the longest path are shown on the right. �e error bar on each point is calculated from 
the standard error in the mean from the results for each node over 100 runs. A random sample of 103 points is 
plotted in both �gures.

Fig. 5.  �e ratio of aobs/(mp̄) where aobs is the coe�cient of ln(t) derived from the best �t of the numerical 
path length data to a ln(t) + b Eq. (6) while mp̄ is the analytical prediction for the value of a when looking at 
the length of the reverse greedy path. �e red triangles show the results for the reverse greedy path value of a 
while yellow circles are the longest path values. �ese values were obtained by �tting the form to nodes created 
between t = 1, 000 and t = 10

8 from 100 realisations. Errors on the �tted values of a were smaller than the 
marker size and are not shown.
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since it requires authors of papers to have global information about the citation network because of the normalisa-
tion factors. No author can know exactly how many citations a paper has let alone the total number of citations 
in the network. However, this form emerges naturally in many situations as the result of doing local searches on 
the network,  see6,21–27 and references therein. In more realistic models, the cumulative advantage, the p term in 
� emerges from doing a local search back through the current citation network, while the random attachment, 
the p̄ term in � , represents a simple model of other possible processes. So like all good models, the emphasis in 
the Price model on the linear form for � in terms of degree does capture an important and realistic feature of 
many real situations. �is linear form of the attachment probability � is also the critical feature in the analysis of 
undirected versions of this model, such as the Barabási–Albert  model28 where the cumulative advantage aspect 
is known as preferential attachment and the original example worked with p = 1/2 in our notation.

However, the Price model, simple as it is, also emphasises another critical aspect of a citation network, and 
that is the inherent arrow of time in this context. Citations (almost) always point backwards in time. Typical 
data  sets3,8 suggest that less than 1% of citations are to documents which are labelled as being published later 
than the citing document. �e networks created in the Price model are realistic in this way, they always produce 
directed acyclic graphs. �is acyclic property is lost when the edge direction is ignored, as in the Barabási–Albert 
implementations of this model. Since many analyses work in the undirected version, they have missed this key 
feature of the Price model and of real-world citation networks.

For instance, the length of the shortest path between two nodes is a natural measure for undirected net-
works since in some circumstances it can be related to the geodesic of networks embedded in Euclidean space, 
for example  see11,12. For an undirected version of the Price model, the LCD model of Bollobás and  Riordan29,30 
(a more precisely de�ned version of the Barabási–Albert  model28), it is known that the diameter, the largest 
length of any shortest path between two nodes, scales as ln(t)/(ln ln(t)) if m > 1 while the diameter scales as 
ln(t) for the special case of m = 129 (see also theorem 18  of30). For the case m > 1 , Bollobás points out that while 
in any random graph we expect to see the small-world  e�ect31 and a ln(N) scaling of lengths (for N nodes in 
the network), for the undirected version of this model “one might expect the diameter to be even smaller: the 
unbalanced degree distribution pushes up the number of small paths, and thus, perhaps, pushes the diameter 
down” (see Bollobás30 section 13, p 25). �at is, the unusual slow scaling of the shortest path distance scale in 
this undirected version of this model is due to the e�ect of the very high degree nodes created because of the 
cumulative advantage (preferential attachment) process.

However, the situation is completely di�erent when we take account of the direction of edges in this model. 
First, the link between shortest path lengths and geodesics in Euclidean space used in Ref.11,12 is lost. �e natural 
order of nodes in a DAG, the arrow of time, means we should compare the path lengths network against geodesic 
lengths for network models embedded in Minkowski space, and indeed there is a proven relationship between 
these  two7,10,32. Following on from this, when using the longest path in the directed form of these models, our 
analysis has shown that the longest path is likely to be created by edges created from random attachment not 
those formed using the cumulative advantage mechanism, the opposite of what is suggested for the shortest path 
in the undirected form of these models. �us the fat-tailed nature of the degree distribution in the Price model 
(or directed versions of the Barabási–Albert/LCD models) is not a factor for the longest path and so, using Bol-
lobás’  insight30, we should expect the longest path to scale simply as ln(t) , and not something slower than that. 
�at is, indeed what we have shown in our work here.

Looking more widely, we note that Bollobás30 (p 10) suggested that “For these models the orientation is not 
very interesting”. Our conclusion is the opposite. Namely that for any directed network in which vertices are 

Fig. 6.  �e ratio of amax/agr where a is the coe�cient of ln(t) in the best �t of the numerical path length data 
to Eq. (6), amax for the longest path data and agr for the reverse greedy path data. �ese values were obtained by 
�tting the form to nodes created between t = 1, 000 and t = 10

8 from 100 realisations. As a result the errors on 
the �tted values of a, as estimated from the covariance matrix of the linear �tting algorithm, were smaller than 
the marker size and so these are not shown.
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added sequentially, the arrow-of-time inherent in these growing network models is both physically relevant and 
this vertex order produces new and distinctive features. Our analytical and numerical analysis of the longest path 
length is just one illustration of what is possible.
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