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PAPER Special Section on Foundations of Computer Science

Longest Path Problems on Ptolemaic Graphs∗∗∗

Yoshihiro TAKAHARA†∗, Sachio TERAMOTO†∗∗, Nonmembers, and Ryuhei UEHARA†a), Member

SUMMARY Longest path problem is a problem for finding a longest
path in a given graph. While the graph classes in which the Hamiltonian
path problem can be solved efficiently are widely investigated, there are
few known graph classes such that the longest path problem can be solved
efficiently. Polynomial time algorithms for finding a longest cycle and a
longest path in a Ptolemaic graph are proposed. Ptolemaic graphs are the
graphs that satisfy the Ptolemy inequality, and they are the intersection of
chordal graphs and distance-hereditary graphs. The algorithms use the dy-
namic programming technique on a laminar structure of cliques, which is a
recent characterization of Ptolemaic graphs.
key words: dynamic programming, Hamiltonian path/cycle problem,
longest path/cycle problem, Ptolemaic graphs

1. Introduction

The Hamiltonian path and cycle problems are the most
well known NP-hard problems having numerous applica-
tions [1]. There are two major approaches for such in-
tractable problems; approximation algorithms and algo-
rithms with parameterized complexity analyses. We have to
change the decision problems to optimization ones in both
approaches. Thus the longest path/cycle problems are basic
problems from the viewpoint of combinatorial optimization.
It is also natural to try to find a longest path/cycle in a given
graph even if it does not have a Hamiltonian path/cycle from
the practical point of view. However, the longest path/cycle
problems seem to be more difficult than the Hamiltonian
path/cycle problems: It is impossible to find a path of length
n−nε in polynomial time for any ε < 1 unless P = NP even
if a graph has a Hamiltonian path [2]. The longest path/cycle
problems are hard to approximate. They are not inAPX un-
less P = NP. The best known approximation algorithm by
Gabow [3] finds a cycle of length exp(Ω(

√
log �/ log log �))

in polynomial time in a graph that contains a longest cycle
of length � (see also [4]–[6] for related results).

We turn to the polynomial time algorithms that find
exact solutions for a given restricted graph. There are
few polynomial time algorithms of the longest path/cycle
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problems for restricted graph classes. A linear time al-
gorithm for finding a longest path in a tree was invented
by Dijkstra around 1960, and the formal proof is given by
Bulterman et al. [7]. Recently, Uehara and Uno propose two
approaches [8]; one is an extension of the Dijkstra’s algo-
rithm to some tree-like graph classes, and the other is dy-
namic programming to some graph classes that have inter-
val representations. As the extensions of the Dijkstra’s algo-
rithm, they show polynomial time algorithms for weighted
trees, block graphs, Ptolemaic graphs, and cactus.

However, the algorithm for a Ptolemaic graph ([8, The-
orem 3]) contains an error [9], and fails in general. Later,
Uehara and Uno investigate the laminar structure of Ptole-
maic graphs, and show a linear time algorithm for the
Hamiltonian cycle problem on a Ptolemaic graph, which
gives a partial answer to the longest path problem on a Ptole-
maic graph [10]. We extend their algorithm to the longest
path problem. In other words, we complete to correct the
wrong algorithm in [8] by the following theorem:

Theorem 1: For a Ptolemaic graph G = (V, E), (1) a
longest cycle can be found in O(|V |3) time and O(|V |2) space,
and (2) a longest path can be found in O(|V |5) time and
O(|V |2) space.

A Ptolemaic graph G satisfies Ptolemy inequality for
any four vertices, which is originally a relation in Eu-
clidean geometry between the four sides and two diago-
nals of a quadrilateral. Intuitively, each edge in a Ptole-
maic graph connects “near” vertices in Euclidean space.
From the viewpoint of graph theory, Ptolemaic graphs are
the intersection of chordal graphs and distance-hereditary
graphs. The Hamiltonian path problem is NP-complete on
chordal graphs [11]. Hence we have no polynomial time al-
gorithm for the longest path problem on chordal graphs un-
less P = NP. Recently, some polynomial time algorithms
for the Hamiltonian problems on distance-hereditary graphs
are shown [12]–[15]. They stand on the characterization by
Bandelt and Mulder [16], which seems to be hard to extend
to the longest path problem. The new characterization in
[10] by a simple laminar structure allows us to use the dy-
namic programming technique.

2. Preliminaries

The neighbor set of a vertex v in a graph G = (V,E) is the
set NG(v) = {u ∈ V | {u, v} ∈ E}, and the degree of a vertex v
is |NG(v)| and is denoted by degG(v). For a subset U of V , we

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers
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denote by NG(U) the set {v ∈ V | v ∈ N(u) for some u ∈ U}.
If no confusion can arise we will omit the index G. Given a
graph G = (V, E) and a subset U of V , the induced subgraph
by U, denoted by G[U], is the graph (U, E′), where E′ =
{{u, v} | u, v ∈ U and {u, v} ∈ E}. A vertex set U is a clique
if every pair of vertices in U is joined by an edge.

Given a graph G = (V, E), a sequence of the distinct
vertices v1, v2, . . . , v� is a path, denoted by (v1, v2, . . . , v�),
if {v j, v j+1} ∈ E for each 1 ≤ j < �. A sequence of
the distinct vertices v1, v2, . . . , v� is a cycle, denoted by
(v1, v2, . . . , v�, v1), if (v1, v2, . . . , v�) is a path and {v1, v�} ∈ E.
The length of a path P (denoted by |P|) and a cycle C
(denoted by |C|) is the number of edges of the path and
cycle, respectively. Hence we have |P| = � − 1 for a
path P = (v1, v2, . . . , v�), while |C| = � for a cycle C =
(v1, v2, . . . , v�, v1). Longest path (and cycle) problem is the
problem for finding a longest path (and cycle, respectively)
in a given graph. Hamiltonian path (and cycle) problem is
the problem for finding a path (and cycle, respectively) that
visits each vertex in a given graph exactly once. An edge
which joins two vertices of a cycle but is not itself an edge
of the cycle is a chord of that cycle. A graph is chordal if
and only if each cycle of length at least 4 has a chord.

For two vertices u and v, the distance of the vertices,
denoted by d(u, v), is the minimum length of paths joining
u and v. Given a graph G = (V,E) and a subset U of V ,
an induced connected subgraph G[U] is isometric if the dis-
tances in G[U] are the same as in G. A graph G is distance-
hereditary if and only if G is connected and every induced
path in G is isometric.

A connected graph G is Ptolemaic if and only if we
have the Ptolemy inequality d(u, v)d(w, x) ≤ d(u,w)d(v, x)+
d(u, x)d(v,w) for any four vertices u, v,w, x of G. The
Ptolemy inequality holds for any apexes of a quadrilateral
in Euclidean geometry; that is, a Ptolemaic graph is a graph
that has a geometric property. It is known that a graph
G is Ptolemaic if and only if G is distance-hereditary and
chordal [17].

Let V be a set of n vertices. Two sets X and Y overlap
if and only if X ∩ Y � ∅, X \ Y � ∅, and Y \ X � ∅. A family
F ⊆ 2V is laminar if and only if F contains no overlapping
sets; that is, for any pair of two distinct sets X and Y in F
satisfy either X ∩ Y = ∅, X ⊂ Y, or Y ⊂ X.

For any given graph G = (V,E), two sets of cliques are
defined byM(G) := {M | M is a maximal clique in G}, and
L(G) := {L | L is a non-empty intersection of two or more
cliques inM}. We denote by C(G) := M(G) ∪ L(G). For
a maximal clique M inM(G), we denote by CM(G) := {C |
C ∈ C(G) and C ⊆ M}. Then a graph G is Ptolemaic if and
only if CM(G) is laminar for any maximal clique M [10].

For given Ptolemaic graph G = (V,E), we can con-
struct from C(G), a directed tree �T (C(G)) = (C(G), �A) as fol-
lows [10]; �A contains an arc (C1,C2) if and only if C2 ⊂ C1

and there are no other clique C such that C2 ⊂ C ⊂ C1 for
any cliques C1 and C2 in C(G). We denote the underlying
graph of �T (C(G)) by T (C(G)) = (C(G), A), where A is the

Fig. 1 Ptolemaic graph G and its CL-tree �T (C(G), A).

set of edges obtained from �A by ignoring directions. For
given Ptolemaic graph G, the (directed) tree is uniquely de-
termined up to isomorphism. Hence it is called clique lam-
inar tree (CL-tree) of G. We borrow some notations from
directed trees, and use slightly different meanings like roots
(with indegree 0), leaves (with one associate edge), ances-
tors, and descendants. For example, each maximal clique is
a root on �T (C(G)) since it has no indegree on the CL-tree.
On the other hand, a leaf L is a maximal clique in G since
any clique inL(G) has at least two parents in �T (C(G)). Thus
every leaf L in T (C(G)) has one outdegree on �T (C(G)).

We define a label of each node C in �T (C(G)), denoted
by �(C), as follows: If C is a leaf, �(C) = C. If C is not a leaf
and has children S 1, S 2, . . . , S h, �(C) = C \ (S 1 ∪ S 2 ∪ · · · ∪
S h). That is, each vertex v in V appears in �(C) where C is
the minimal clique containing v. Since C(G) is laminar, each
vertex in V appears exactly once in �(C) for some C ⊆ V ,
and its corresponding node is uniquely determined. We note
that some internal nodes in �T (C(G)) have a label ∅ when it
is partitioned completely into its subsets in C(G).

For example, the CL-tree �T (C(G)) of the graph in
Fig. 1 (a) is depicted in Fig. 1 (b); each double rectangle is
a maximal clique in M(G) and each single rectangle is a
non-maximal clique in L(G). The labels �(C) of the cliques
C are described in the rectangles; e.g., the center double
rectangle with label p is the maximal clique {k, �,m, n, o, p},
which is the union of labels reachable from the rectangle.
The CL-tree �T (C(G)) has at most 2|V | nodes, and it can be
constructed in O(|V | + |E|) time and space [10]. Hereafter,
we assume that a Ptolemaic graph G is given in the form of
the CL-tree �T (C(G)) as the labeled tree.

3. Proof of Theorem 1

The CL-tree �T (C(G)) plays an important role in our algo-
rithms. The first point is that each node L ∈ L(G) is a sepa-
rator of G. That is, if we have two arcs (L1, L) and (L2, L) in
�A, L separates L1 \ L and L2 \ L [10], which allows us to use
dynamic programming. The second point is that each node
C ∈ C(G) induces a clique. They lead us to the following
lemma:

Lemma 1: Let P be any path in a Ptolemaic graph G. Let
C1,C2 be two cliques in C(G) with C1 ⊂ C2 such that P
contains some edges joining two vertices in �(C1) and �(C2).
Then, we can (re)connect P and obtain a new path P′ such
that (1) P′ contains at most two edges joining two vertices
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in �(C1) and �(C2), (2) P′ has the same length of P, and (3)
P′ shares two endpoints with P.

Proof. Assume that P contains three independent edges
{v1, u1}, {v2, u2}, and {v3, u3} between �(C1) and �(C2) with
v1, v2, v3 ∈ �(C1) and u1, u2, u3 ∈ �(C2). (The case that
some edges share a common endpoint is similar, and omit-
ted here.) Without loss of generality, we can assume that
P consists of seven subpaths P1 = (. . . , v1), P2 = (v1, u1),
P3 = (u1 . . . , u2), P4 = (u2, v2), P5 = (v2, . . . , v3), P6 =

(v3, u3), and P7 = (u3, . . .). Then, the sets {v1, v2, v3} and
{u1, u2, u3} induce cliques since {v1, v2, v3} ⊆ �(C1) ⊆ C1

and {u1, u2, u3} ⊆ �(C2) ⊆ C2. Hence we can construct
P′ that consists of the subpaths P1 = (. . . , v1), (v1, v2),
P5 = (v2, . . . , v3), (v3, u1), P3 = (u1 . . . , u2), (u2, u3), and
P7 = (u3, . . .). Repeating this process, we can decrease the
number of edges between �(C1) and �(C2) to at most 2 with-
out changing the length and two endpoints of the path. �
We first show a polynomial time algorithm for finding a
longest cycle in a Ptolemaic graph, and next extend it to
find a longest path.

3.1 Longest Cycle

We first prove Theorem 1 (1). The algorithm is based on
the standard dynamic programming. That is, the algorithm
performs the computation along the edges of the underly-
ing graph T (C(G)) of the CL-tree �T (C(G)). Except the last
step, the algorithm deals with one node L whose all neigh-
bors have been already processed by the algorithm except
one neighbor X. We here note that X is a neighbor of L on
the underlying graph T (C(G)). That is, X is either a parent
of L or a child of L on the CL-tree �T (C(G)). Then, from
T (C(G)), removing the edge between X and L, we obtain
two subtrees of T (C(G)). The subtree T ′ containing L is the
underlying graph of the CL-tree �T ′ of a Ptolemaic graph G′
induced by the set of vertices in V on the subtree, and all
nodes of the tree T ′ have been processed by the algorithm.
We call a longest cycle in G′ local longest cycle at L, which
is denoted by LLC(L). We denote by |LLC(L)| the length of
the local longest cycle at L. (In this section, we will show
the algorithms for computing the length of cycles and paths.
However, it is easy to modify them to output cycle and path
themselves.) The outline of the algorithm is described in
Algorithm 1.

We describe the details of the algorithm. Let p(L) and
c(L) be the numbers of parents and children of L except X,
respectively. To simplify, we distinguish X from the other
nodes. Let P1, P2, . . . , Pp(L) and C1,C2, . . . ,Cc(L) be the par-
ents and children of L on �T (C(G)), respectively. That is, we
have C j ⊂ L ⊂ Pi with 1 ≤ i ≤ p(L) and 1 ≤ j ≤ c(L).

By Lemma 2 in [10], L separates G into G1,G2, . . . ,
Gp(L) such that Gi contains Pi \ L, and by Lemma 1, it is
sufficient that L provides exactly two edges that join L and
one ancestor to construct a longest cycle. We note that when
L is joined to an ancestor A, the path has to go through a
parent Pi with L ⊂ Pi ⊂ A.

Input : A CL-tree �T (C(G))
Output: The length of a longest cycle in G.
let Q be a queue of the leaves in T (C(G));1
while Q � ∅ do2

pick up a node L in Q;3
// L has only one unprocessed neighbor.
let X be the unique unprocessed neighbor of L;4
// X is either parent or child of L.
update tables for L;5
compute |LLC(L)|;6
put X into Q if X has only one unprocessed neighbor;7

end8
// There remains only one node L′ having all
processed neighbors.

update tables for the last node L′;9
compute |LLC(L′)|;10
output maxL |LLC(L)|;11

Algorithm 1: Longest Cycle

Fig. 2 Node L with its parents and children.

The basic strategy to construct a longest cycle is simi-
lar to the algorithm for finding a Hamiltonian cycle in [10];
each node L uses its own vertices in �(L), and borrows some
vertices from its children to connect paths provided by the
parents of L. The algorithm expands an edge of a cycle in L
or its children by replacing a longer path given by a parent.
We note that L has |�(L)| + c(L) edges in this level, which
can be expanded to parents, joining the vertices in �(L) and
children. L may be able to provide more edges from its chil-
dren, which cannot be computed in this level. For example,
the node L in Fig. 2 (a) has |�(L)|+c(L) = 3+3 = 6 edges, and
two edges of them are used to obtain five vertices from P1

(and its ancestors). This expansion brings profits of length
five to L.

3.1.1 Profit Tables

Each Pi and C j have their profit tables ΔPi [k] and ΓC j [k],
respectively. From the tables, the algorithm computes the
profit table of L which will be provided to X.

We first deal with the table ΔPi [k]. Let Gi be the con-
nected component that contains the vertices in Pi\L in graph
induced by V \ L. Then, for a parent Pi, the table ΔPi [k]
maintains the following information: ΔPi [k] gives the max-
imum number of vertices in Gi provided by the parent Pi

to L such that the algorithm can replace k edges in L and
its children by k paths that consists of ΔPi [k] vertices in Gi.
Intuitively, Pi can give k independent paths to L, and the to-
tal number of the vertices on the paths is ΔPi [k], which is
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maximized. For example, if Pi is a leaf, put in Q in step 1,
ΔPi [ j] = |�(Pi)| for all j > 0. Precisely, L can obtain a path
of length ΔPi [k] + k by giving k edges to Pi. We note that k
is the number of edges in G[L], while ΔPi [k] is the number
of vertices in Gi. This disunity makes the arguments simple.
We define ΔPi [0] := 0, δi[k] := ΔPi [k]−ΔPi[k− 1] for k > 1,
and hence δi[1] = ΔPi [1]. For the tables Δ and δ, we have
the following lemma:

Lemma 2: (1) For each Pi, ΔPi and δi takes O(n) space. (2)
For each k with ΔPi [k] > 0, 0 ≤ δi[k + 1] ≤ δi[k].

Proof. By definition of Gi, the maximum value of ΔPi [k]
is at most the number of vertices in Gi. Hence there exists
an integer k ≤ n such that ΔPi [k] = ΔPi [k

′] and δi[k′] =
0 for all k′ > k. Thus we only need to store ΔPi [k

′] and
δi[k′] for δi[k′] > 0, which can be represented in O(n) space.
Therefore we have (1).

Clearly, L can obtain longer path from Gi when L gives
k + 1 edges to Gi than the case that L gives only k edges to
Gi. Thus we always have δi[k] ≥ 0 if ΔPi [k] > 0.

Let l := ΔPi [k] for some k, and l′ := ΔPi [k + 1]. Then, l
is the total number of the vertices on paths P1,P2, . . . ,Pk in
Gi that replace at most k edges in L. On the other hand, l′ is
the total number of the vertices on paths P′1,P

′
2, . . . ,P

′
k,P

′
k+1

in Gi that replace at most k + 1 edges in L. Without loss of
generality, we assume that |P1| ≥ |P2| ≥ · · · ≥ |Pk | and∣∣∣P′1
∣∣∣ ≥
∣∣∣P′2
∣∣∣ ≥ · · · ≥

∣∣∣P′k
∣∣∣ ≥
∣∣∣P′k+1

∣∣∣. By a simple induction for
k with the same technique in the proof of Lemma 1, the paths
can be arranged to satisfy |Pi| =

∣∣∣P′i
∣∣∣ for each i = 1, 2, . . . , k.

In the case, δi[k + 1] =
∣∣∣P′k+1

∣∣∣ and δi[k] = |Pk | =
∣∣∣P′k
∣∣∣. Thus

we have δi[k + 1] ≤ δi[k]. �
Next we turn to the table ΓC j [k] for the maintenance of

paths and profits from children C j. The table ΓC j [k] is more
involved than Δ. Intuitively, for each k, L can obtain k edges
from C j to be extended in L, and a path of length ΓC j [k] −
1 from C j. Precisely, ΓC j [k] gives the maximum number
of vertices provided by the child C j to L such that L can
obtain k edges and a path of ΓC j [k] vertices from C j, which
is maximized. When k ≥ ∣∣∣C j

∣∣∣, we define ΓC j [k] = −∞ and
inhibit the case. We note that all leaves L on the underlying
graph T (C(G)) of the CL-tree �T (C(G)) is a maximal clique
on G. Hence every node L put in Q in step 1 has profit table
ΔL[k]; that is, we do not need to define any initial value of
ΓL[k] for the leaves.

For example, we consider the node L in Fig. 2 (b) with
its child C1. The child C1 is shared by three cliques L, M1,
M2. By assumption of dynamic programming, M1 and M2

have been already processed by the algorithm. In the case,
we have ΓC1 [0] = ΓC1 [1] = ΓC1 [2] = 10, ΓC1 [3] = 8, and
ΓC1 [4] = 5. Then L cannot use the fifth edge in C1 since we
already use it to join C1 to L. Hence we have ΓC1 [5] = −∞.

Clearly, if L takes more edges from C j, L obtains
shorter path from C j. We now define γ j[k] := ΓC j [k] −
ΓC j [k + 1] if ΓC j [k] > 0, and γ j[k] := ∞ if ΓC j [k] = −∞.
For the tables Γ and γ, we have the following lemma.

Lemma 3: (1) For each C j, ΓC j and γ j takes O(n) space.

(2) For each k with ΓC j [k] > 0, 0 ≤ γ j[k] ≤ γ j[k + 1].

The proof is essentially the same as Lemma 2, and hence
omitted.

To perform dynamic programming in polynomial time,
we have to merge the tables in polynomial time. The fol-
lowing two lemmas play key roles for the polynomial time
computability.

Lemma 4: We assume that all tables Δ of parents Pi of the
current node L (except X) are computed. Fix an integer k
with k > 0. Then the length of a longest path among the
paths P such that (1) P uses exactly k + 1 vertices in L and
other vertices in G1∪G2∪· · ·∪Gp(L) (2) P has two endpoints
in L can be computed in O(n log n) time and O(n) space.

Proof. When k = 1, we find l := max1≤i≤p(L) ΔPi [1], and
obtain a path of length l + 1 that consists of l vertices in the
parent and two endpoints in L. We show that we can extend
it incrementally, or in a greedy way. The description of the
algorithm is given in Algorithm 2.

We note that Q is a priority queue in decreasing order
of δi[qi]. Hence, step 4 can be done in O(1) time, and step
7 requires O(log n) time. Thus the greedy algorithm runs in
O(n log n) time and O(n) space. Hence we show the correct-
ness. We let q′1, q

′
2, . . . , q

′
p(L) be values at the last line of the

algorithm. We define l :=
∑p(L)

i=1 ΔPi [q
′
i]. Then, by Lemma 2,

we can construct a path of length l + k that use k + 1 ver-
tices in L and l vertices in G1 ∪G2 ∪ · · ·Gp(L) (the l vertices
induces k paths).

Hence, to derive a contradiction, we assume that there
is a longer path P′ of length l′ > l by other values
q′′1 , q

′′
2 , . . . , q

′′
p(L) where l′ :=

∑p(L)
i=1 ΔPi [q

′′
i ] and

∑p(L)
i=1 q′′i = k.

We assume that P′ is the longest one among such paths.
Now, by definition, we have l =

∑p(L)
i=1 ΔPi [q

′
i] =∑p(L)

i=1

∑q′i
q=1 δi[q]. Then, since k is fixed, there are two in-

tegers i and i′ such that q′i > q′′i and q′i′ < q′′i′ . In some iter-
ation, the algorithm chooses the variable qi and increments
from q′′i to q′′i + 1. Then, since the algorithm is greedy,
δi[q′′i ] > δi′ [qi′]. (we omit the case δi[q′′i ] = δi′ [qi′] in
this paper, since it is tedious and not essentially). Then, by
Lemma 2, δi[q′′i ] > δi′[qi′] ≥ δi′ [q′′i′ ]. Hence, replacing q′′i′
by q′′i′ −1 and q′′i by q′′i +1, we can improve the length of the
longest path P′ of length l′, which contradicts the assump-

Input : Table ΔP1 , ΔP2 , . . ., ΔPp(L) and integer k
Output: The length of a longest path using k + 1 vertices in L

and its parents.
foreach i = 1, 2, . . . , p(L) do initialize qi := 1;1
let Q be a priority queue of δis in decreasing order of δi[1];2
while k > 0 do3

pick up the largest element δi[qi] in Q;4
qi := qi + 1;5
k := k − 1;6
push δi into Q again according to the value of δi[qi];7

end8

return
(∑p(L)

i=1 ΔPi [qi − 1]
)
;9

Algorithm 2: Merge Δs



174
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.2 FEBRUARY 2008

Input : Tables ΓC1 , ΓC2 , . . ., ΓCc(L) and integer k
Output: The length of a longest path using the vertices in G′js

and L that contains k edges in L.

if k ≥
∣∣∣∣∪c(L)

j=1 C j

∣∣∣∣ then return −∞;1

foreach j = 1, 2, . . . , c(L) do initialize qj := 1;2
let Q be a priority queue of γ js in increasing order of γ j[1];3
while k > 0 do4

pick up the smallest element γ j[qj] in Q;5
qj := qj + 1;6
k := k − 1;7
push γ j into Q again according to the value of γ j[qj];8

end9

return
(∑c(L)

j=1 max{ΓC j [qj − 1], 0}
)
;10

Algorithm 3: Merge Γs

tion. Hence the greedy algorithm computes the length of a
longest path with the condition in O(n log n) time and O(n)
space. �

Next we turn to the table Γ. Suppose that we remove
the node L from �T (C(G)). Then �T (C(G)) is partitioned into
c(L) + p(L) + 1 subtrees. Among them, for each j with
1 ≤ j ≤ c(L), let �T j be a subtree of �T (C(G)) that contains
the node C j. Since C js are children of L, exactly c(L) sub-
trees �T j are defined. Let G′j be induced subgraph by the set

of vertices appearing as labels on �T j. We note that (1) the
vertex set of G′j is not contained in L since C j is shared by
some other cliques, (2) for each j and j′ with j � j′, G′j and

G′j′ have no common vertex, (3) all nodes in �T j have been
processed by the algorithm. For the subgraphs, we have the
symmetric lemma for Γ:

Lemma 5: We assume that all tables Γ of children C j of
the current node L (except X) are computed. Fix an integer
k with k > 0. Then the length of a longest path among the
paths P such that (1) P consists of vertices in G′1∪G′2∪· · ·∪
G′c(L) ∪ G[L] (2) P contains exactly k edges in G[L] can be
computed in O(n log n) time and O(n) space.

Proof. Using Lemma 3 instead of Lemma 2, we can use a
symmetric argument of the proof of Lemma 4. Hence we
have a greedy Algorithm 3 for children of L. When k is too

large, precisely, k ≥
∣∣∣∣∪c(L)

j=1 C j

∣∣∣∣, the children cannot give k
edges to L. In the case, the algorithm returns −∞. The other
case is symmetric. �

At node L, the algorithm computes two tables Δ̂L[k]
and Γ̂L[k] obtained by calling Algorithms 2 and 3 for each
k = 1, 2, . . . , respectively. By Lemmas 4 and 5, the tables
can be computed in O(n log n) time and O(n) space. Using
the tables, the algorithm computes a local longest cycle at L,
and prepares a table of L for X.

3.1.2 Local Longest Cycle at L

We first show the computation of a local longest cycle at the
node L. We have two cases.
(1) L is a leaf of the underlying graph T (C(G)) of the CL-
tree �T (C(G)). Then L is a maximal clique of G, and hence

X ⊂ L, and we have an arc (L, X) on �T (C(G)). This is a
simple case; we have |LLC(L)| = |�(L)|.
(2) L is not a leaf of T (C(G)). In the case, the algorithm
joins the paths from its parents and children by edges in L
and children. The node L itself has |�(L)| + c(L) edges (as
shown in Fig. 2 (a)), and it borrows k edges from its children
for some integer k with k ≥ 0. Then, the algorithm obtain
a path of length |�(L)| + c(L) + Γ̂L[k] in the vertices in L
and children. Moreover, the algorithm can extend each of
|�(L)| + c(L) + k edges in G[L] by replacing a path provided
by the parents. The total length of the extension is given by
Δ̂L[|�(L)| + c(L) + k]. We define |LLCk(L)| as follows:

|LLCk(L)| := |�(L)|+ c(L)+ Γ̂L[k]+ Δ̂L[|�(L)|+ c(L)+ k].

Roughly, parents can provide longer path if L gives more
edges. On the other hand, L and children have a limit to pro-
vide extra edges without decreasing their own paths. Thus,
for each k = 0, 1, 2, . . . , the values of |LLCk(L)| are uni-
modal; that is, |LLC0(L)| ≤ |LLC1(L)| ≤ · · · ≤ |LLCk(L)| >
|LLCk+1(L)| ≥ |LLCk+2(L)| · · · for some k ≤ n. Then,
|LLC(L)| is given by maxk{|LLCk(L)|}. Hence the algorithm
can compute |LLC(L)| for the k in O(n) time and O(n) space
for given Γ̂L and Δ̂L.

3.1.3 Profit Table of L to Node X

Next, the algorithm prepares the table of L for the node X.
We have three cases.
(1) L is a leaf of T (C(G)). Then L is a maximal clique of G,
and hence X ⊂ L. Thus ΔL[k] = |�(L)| for any k ≥ 1.
(2) L is not a leaf of T (C(G)), and X is a child of L on the
CL-tree �T (C(G)). Then the algorithm computes ΔL for X. If
X gives an edge to L, L can provide |LLC(L)| vertices to X.
If X gives more edges to L, L may be able to provide more
edges to X since L can save the edges which was taken from
its children. Precisely, ΔL[i] is given by

max
k
{|�(L)| + c(L) + Γ̂L[k] + Δ̂L[|�(L)| + c(L) + k+i]}

for i > 0, and ΔL[0] := 0. Using the similar monotonicity in
Lemmas 2 and 3, the algorithm can compute ΔL incremen-
tally in O(n2) time and O(n) space.
(3) L is not a leaf of T (C(G)), and X is a parent of L on the
CL-tree �T (C(G)). Then the algorithm computes ΓL for X, or
L has to provide a part of cycle to X. At first, we define

ΓL[i] := −∞ for all i ≥ 0 if |L| < 2

since L has no contribution to X. When |L| ≥ 2, we can see
that ΓL[0] := LLC(L) since L has a path of length |LLC(L)|
with two endpoints in L. In general, L can provide i edges
to X from L if 0 < i ≤ |�(L)| + c(L). On the other hand,
if i > |�(L)| + c(L), L has to provide more edges from its
children. Hence, by letting Δ̂L[k] := −∞ for k ≤ 0, we can
define ΓL[i] for i > 0 by

max
k
{|�(L)| + c(L) + Γ̂L[k] + Δ̂L[|�(L)| + c(L) + k−i]}

if |L| ≥ 2.
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Similarly, ΓL[i] is unimodal for k = O(n). Thus the algo-
rithm can compute ΓL incrementally in O(n2) time and O(n)
space.

Hence we can compute the length of a longest cycle
by Algorithm 1. Each node has its table, which takes O(n)
space. At each node L, merging the tables from parents and
children takes O(n log n) time and O(n) space, and the com-
putation of |LLC(L)| with ΔL or ΓL takes O(n2) time and
O(n) space. Hence Algorithm 1 runs in O(n3) time and
O(n2) space in total, which completes the proof of Theo-
rem 1 (1).

3.2 Longest Path

Now we turn to Theorem 1 (2). The basic idea for finding
a longest path is simple; for each two cliques S and T in
C(G), the algorithm guesses �(S ) and �(T ) contain two end-
points of a longest path. When S = T , the path induces a
cycle, which can be found by Algorithm 1. Hence, here-
after, we assume that S � T . When S and T are fixed, there
is a unique path joining them on T (C(G)), which is called
(S , T )-path. Then, for each node L not on the (S , T )-path,
the algorithm performs the dynamic programming process
for computing ΔL and ΓL stated in Sect. 3.1, which finds a
set of long paths induced by the processed nodes. Next, the
algorithm joins the paths along the (S , T )-path and obtains
a longest path among the paths of two endpoints belonging
to S and T , respectively. The following lemma reduces the
number of choices of S and T .

Lemma 6: Let P be a longest path in G, and S and T be
two nodes in C(G) such that �(S ) and �(T ) contain two end-
points of P. Then S and T are maximal cliques.

Proof. To derive a contradiction, we assume that S is not a
maximal clique. Then C(G) contains at least two maximal
cliques S 1 and S 2 with S ⊂ S 1 and S ⊂ S 2. Without loss
of generality, we can assume that S 1 is on (S , T )-path, and
S 2 is not. Then, joining a vertex in S 2 \ S to P, we can
obtain a longer path, which contradicts that P is a longest
path. Hence S and T are maximal cliques. �

Hence the outline of the algorithm is given in Algo-
rithm 4.

We now show the details of steps 10, 12, and 14. In-
tuitively, the tables ΔL and ΓL carry the length of a local
longest cycle by an edge, which can be extended by the next
node. On the other hand, Δ′L and Γ′L carry the length of a
local longest path by a vertex, which is a current endpoint,
and the vertex will be extended by the next node. We re-
mind that Δ′L and Γ′L maintains the number of vertices, not
the number of edges.
At node S in Step 10: First, Δ̂ and Γ̂ are computed by ΔPi

and ΓC j for parents and children of S in the same way as
Algorithm 1. By Lemma 6, S is a maximal clique. Hence
L2 is a child of S . Then Δ′S [i] is defined by

max
k
{|�(S )|+ c(S )+ Γ̂L[k]+ Δ̂S [|�(S )|+ c(S )+ k+ i−1]}

for i ≥ 0. We have two differences comparing to Δ. First,

Input : A CL-tree �T (C(G))
Output: The length of a longest path in G.
foreach S and T inM(G) with S � T , �(S ) � ∅, and �(T ) � ∅ do1

find the (S , T )-path P = (S = L1, L2, . . . , Lh−1, Lh = T );2
let Q be a queue of the leaves in C(G) and not on P;3
while Q � ∅ do4

pick up a node L in Q;5
let X be the unique unprocessed neighbor of L;6
compute ΔL or ΓL by Algorithm 1;7
put X into Q if X has only one unprocessed neighbor8
and X is not on P;

end9
compute Δ′S or Γ′S according to L1;10

foreach h′ = 2, 3, . . . , h − 1 do11
compute Δ′Lh′

or Γ′Lh′
according to Lh′+1;12

end13
compute the length of a longest path at T ;14

end15
return (The length of a longest path among all longest paths16
with two fixed endpoints);

Algorithm 4: Longest Path

we cannot use one edge in �(S ) since it makes a local cycle
in S . Second, Δ′S [0] � 0 in general, since S will give an
endpoint of a path to L2 even if L2 gives no edge to S .
At node Lh′ in Step 12: We have four subcases.
Lh′−1 is a parent and Lh′+1 is a child. In the case, we first

modify the computation of Δ̂ in Algorithm 2; the algorithm
has to handle the tableΔ′Lh′−1

. However, the only exception is

Δ̂L′h [0] which should be Δ′Lh′−1
[0]; the algorithm can connect

one vertex in Lh′ to the current endpoint in Lh′−1 without
using an edge in Lh′ . The other case can be computed by
Algorithm 2. Hence, letting Δ̂Lh′ [0] := Δ′Lh′−1

[0] with Al-

gorithm 2, we have Δ̂′Lh′ . The table Γ̂Lh′ can be computed
by Algorithm 3. The algorithm can use |�(Lh′ )| + c(Lh′) − 1
edges in Lh′ to inhibit a cycle. Thus, Δ′Lh′ [i] is defined by

max
k
{|�(Lh′ )| + c(Lh′) + Γ̂Lh′ [k]

+Δ̂′Lh′ [|�(Lh′ )| + c(Lh′) + k + i−1]}.

Lh′−1 is a child and Lh′+1 is a parent. This case is symmetric.

Thus Δ̂Lh′ by Algorithm 2 can be used, and Γ̂′Lh′
is computed

by Algorithm 3 with letting Γ̂′Lh′
[0] := Γ′Lh′−1

[0]. Using them,
Γ′Lh′ [i] is defined by

max
k
{|�(Lh′ )| + c(Lh′) + Γ̂′Lh′ [k]

+Δ̂Lh′ [|�(Lh′ )| + c(Lh′) + k − i−1]}.
Lh′−1 and Lh′+1 are children. In the case, Lh′ has to make two
endpoints in Lh′−1 and Lh′+1. Since no parents are on the
(S , T )-path, Δ̂Lh′ by Algorithm 2 can be used. The algo-
rithm loses one edge between Lh′−1 and Lh′+1. (For exam-
ple, in Fig. 2 (a), assume that C1 and C2 contain two end-
points. Then the algorithm cannot use the edge between
them.) The table Γ̂′Lh′ is computed by Algorithm 3 with let-

ting Γ̂′Lh′ [0] := Γ′Lh′−1
[0]. Thus Δ′Lh′ [i] is defined by
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max
k
{|�(Lh′ )| + c(Lh′) + Γ̂′Lh′ [k]

+Δ̂Lh′ [|�(Lh′ )| + c(Lh′) + k + i−1]}.
Lh′−1 and Lh′+1 are parents. This case is symmetric and
hence Γ′Lh′ [i] is defined by

max
k
{|�(Lh′ )| + c(Lh′) + Γ̂Lh′ [k]

+Δ̂′Lh′ [|�(Lh′ )| + c(Lh′) + k − i−1]}.
At node T in Step 14: By Lemma 6, Lh−1 is a child of T .
The algorithm first computes Δ̂ by ΔPi for parents of T in
the same way of Algorithm 1. Then the algorithm computes
Γ̂′T by Algorithm 3 with letting Γ̂′T [0] := Γ′Lh−1

[0]. Then the
length of a longest path with two endpoints in S and T can
be computed by

max
k
{|�(T )| + c(T ) + Γ̂′T [k] +

Δ̂T [|�(T )| + c(T ) + k−1]−1}.
We note that the first “−1” inhibits to make a cycle, and the
second “−1” adjusts the number of vertices to the length of
a path.

The correctness follows from careful case analysis
about the relationship of each node with two endpoints,
which is straightforward and hence omitted. The number of
choices of S and T is

(
n
2

)
= O(n2) and it takes O(n3) time and

O(n2) space for each pair of S and T . Thus the complexity
of the algorithm is O(n5) time and O(n2) space.

Algorithms 1 and 4 output the length of a longest cy-
cle and a longest path, respectively. However, it is easy to
modify them to output cycle and path themselves. Hence we
have Theorem 1.

4. Concluding Remarks

We have two future works. First one is improving the com-
plexity of the algorithms. Second one is the longest path
problem on a distance-hereditary graph. It is open if this
problem can be solved in polynomial time or not. The
clique laminar tree of a Ptolemaic graph can be extended
in a natural way to a distance-hereditary graph by replac-
ing “clique” by “clique or independent set” [18]. However,
the tree for a distance hereditary graph is not uniquely de-
termined. Moreover, in the tree, if a node corresponds to
an independent set, we cannot make a cycle that joins the
vertices in the node like Fig. 2 (a). Hence it is hard to extend
the algorithms in this paper to the tree structure for distance-
hereditary graphs.
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