
Longest Prefix Matching using Bloom Filters

Sarang Dharmapurikar Praveen Krishnamurthy David E. Taylor
sarang@arl.wustl.edu praveen@ccrc.wustl.edu det3@arl.wustl.edu

Washington University in Saint Louis
1 Brookings Drive

Saint Louis, MO 63130-4899
USA

ABSTRACT
We introduce the first algorithm that we are aware of to
employ Bloom filters for Longest Prefix Matching (LPM).
The algorithm performs parallel queries on Bloom filters,
an efficient data structure for membership queries, in or-
der to determine address prefix membership in sets of pre-
fixes sorted by prefix length. We show that use of this al-
gorithm for Internet Protocol (IP) routing lookups results
in a search engine providing better performance and scal-
ability than TCAM-based approaches. The key feature of
our technique is that the performance, as determined by
the number of dependent memory accesses per lookup, can
be held constant for longer address lengths or additional
unique address prefix lengths in the forwarding table given
that memory resources scale linearly with the number of
prefixes in the forwarding table. Our approach is equally
attractive for Internet Protocol Version 6 (IPv6) which uses
128-bit destination addresses, four times longer than IPv4.
We present a basic version of our approach along with opti-
mizations leveraging previous advances in LPM algorithms.
We also report results of performance simulations of our
system using snapshots of IPv4 BGP tables and extend the
results to IPv6. Using less than 2Mb of embedded RAM and
a commodity SRAM device, our technique achieves average
performance of one hash probe per lookup and a worst case
of two hash probes and one array access per lookup.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers

General Terms
Algorithms, Design, Performance

Keywords
Longest Prefix Matching, IP Lookup, Forwarding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’03, August 25–29, 2003, Karlsruhe, Germany.
Copyright 2003 ACM 1-58113-735-4/03/0008 ...$5.00.

1. INTRODUCTION
Longest Prefix Matching (LPM) techniques have received

significant attention in the literature over the past ten years.
This is due to the fundamental role it plays in the perfor-
mance of Internet routers. Due to the explosive growth of
the Internet, Classless Inter-Domain Routing (CIDR) was
widely adopted to prolong the life of Internet Protocol Ver-
sion 4 (IPv4) [9]. CIDR requires Internet routers to search
variable-length address prefixes in order to find the longest
matching prefix of the IP destination address and retrieve
the corresponding forwarding information for each packet
traversing the router. This computationally intensive task,
commonly referred to as IP Lookup, is often the performance
bottleneck in high-performance Internet routers. While sig-
nificant advances have been made in algorithmic LPM tech-
niques, most commercial router designers have resolved to
use Ternary Content Addressable Memory (TCAM) devices
in order to keep pace with optical link speeds despite their
larger size, cost, and power consumption relative to Static
Random Access Memory (SRAM). The performance bottle-
neck in LPM algorithms employing RAM is typically the
number of dependent memory accesses required per lookup.
Dependent memory accesses must be performed sequentially,
whereas independent memory accesses may be performed in
parallel. Some algorithms allow dependent memory accesses
to be masked via pipelining, with each stage accessing an
independent memory bank or port; however, this quickly
becomes an expensive option. We provide an overview of
the prominent LPM algorithmic developments and a com-
parison of TCAM and SRAM technologies in Section 2.

In this paper, we introduce the first algorithm that we are
aware of to employ Bloom filters for Longest Prefix Match-
ing, as Bloom filters are typically used for efficient exact
match searches. A Bloom filter is an efficient data structure
for membership queries with tunable false positive errors [3].
The probability of a false positive is dependent upon the
number of entries stored in a filter, the size of the filter, and
the number of hash functions used to probe the filter. Back-
ground on Bloom filter theory is presented in Section 3. Our
approach begins by sorting the forwarding table entries by
prefix length, associating a Bloom filter with each unique
prefix length, and “programming” each Bloom filter with
prefixes of its associated length. A search begins by per-
forming parallel membership queries to the Bloom filters by
using the appropriate segments of the input IP address. The
result of this step is a vector of matching prefix lengths, some
of which may be false matches. Hash tables corresponding to

each prefix length are probed in the order of longest match
in the vector to shortest match in the vector, terminating
when a match is found or all of the lengths represented in the
vector are searched. The key feature of our technique is that
the performance, as determined by the number of dependent
memory accesses per lookup, can be held constant for longer
address lengths or additional unique address prefix lengths
in the forwarding table given that memory resources scale
linearly with the number of prefixes in the forwarding table.
An overview of the basic technique as well as an analysis of
the effects of false positives is provided in Section 4.

In Section 5, we introduce optimizations to achieve op-
timal average case performance and limit the worst case,
including asymmetric Bloom filters which dimension filters
according to prefix length distribution. We show that with
a modest amount of embedded RAM for Bloom filters, the
average number of hash probes to tables stored in a separate
memory device approaches one. We also show that by em-
ploying a direct lookup array and properly configuring the
Bloom filters, the worst case can be held to two hash probes
and one array access per lookup while maintaining near opti-
mal average performance of one hash probe per lookup. We
report simulation results for IPv4 using routing databases
constructed from publicly available BGP tables in Section 6.

It is important to note that our approach is equally at-
tractive for Internet Protocol Version 6 (IPv6) which uses
128-bit destination addresses, four times longer than IPv4.
Based on analysis of publicly available IPv6 BGP tables and
address allocation and assignment policies for IPv6 deploy-
ment, we provide evidence for the suitability of our system
for IPv6 route lookups in Section 7. Finally, we discuss con-
siderations for hardware implementation in Section 8 . A
system configured to support 250,000 IPv4 prefixes requires
2Mb of embedded memory, only 8 bits per prefix, to achieve
near optimal average performance while bounding the worst
case. Implementation with current technology is capable of
average performance of over 300M lookups per second and
worst case performance of over 100M lookups per second us-
ing a commodity SRAM device operating at 333MHz. We
assert that this approach offers better performance, scala-
bility, and lower cost than TCAMs, given that commodity
SRAM devices are denser, cheaper, and operate more than
three times faster than TCAM-based solutions.

2. RELATED WORK
Due to its essential role in Internet routers, IP lookup is a

well-researched topic. While a broad spectrum of algorith-
mic approaches to the problem exist in the literature, most
high-performance routers employ Ternary Content Address-
able Memory (TCAM) devices in order to perform lookups
at optical link speeds. We examine both the prominent al-
gorithmic developments as well as the costs associated with
a pure hardware approach utilizing TCAMs.

2.1 Content Addressable Memories (CAMs)
Content Addressable Memories (CAMs) minimize the num-

ber of memory accesses required to locate an entry. Given
an input key, the CAM device compares it against all mem-
ory words in parallel; hence, a lookup effectively requires
one clock cycle. While binary CAMs perform well for ex-
act match operations and can be used for route lookups in
strictly hierarchical addressing schemes [14], the wide use of
address aggregation techniques like CIDR requires storing

and searching entries with arbitrary prefix lengths. In re-
sponse, Ternary Content Addressable Memories (TCAMs)
were developed with the ability to store an additional “Don’t
Care” state thereby enabling them to retain single clock cy-
cle lookups for arbitrary prefix lengths. This high degree
of parallelism comes at the cost of storage density, access
time, and power consumption. Since the input key is com-
pared against every memory word, each bit of storage re-
quires match logic to drive a match word line which signals
a match for the given key. The extra logic and capacitive
loading due to the massive parallelism lengthens access time
and increases power consumption.

We can make a first-order comparison between Static Ran-
dom Access Memory (SRAM) and TCAM technology by ob-
serving that SRAM cells typically require six transistors to
store a binary bit of information, consume between 20 to 30
nano-Watts per bit of storage, and operate with 3ns clock
periods (333 MHz). Current generation Dual Data Rate
(DDR) SRAMs are capable of retrieving two words per clock
cycle; however, these devices often have a minimum burst
length of two words [15]. Hence, the DDR feature effectively
doubles the I/O bandwidth but retains the same random
access time. A typical TCAM cell requires additional six
transistors to store the mask bit and four transistors for the
match logic, resulting in a total of 16 transistors and a cell
2.7 times larger than a standard SRAM cell [17]. In addition
to being less dense than SRAM, current generation TCAMs
achieve 100 million lookups per second, resulting in access
times over 3.3 times longer than SRAM due to the capac-
itive loading induced by the parallelism [18]. Additionally,
power consumption per bit of storage is on the order of 3
micro-Watts per “bit” [16]. In summary, TCAMs consume
150 times more power per bit than SRAM and currently
cost about 30 times more per bit of storage. Therefore,
a lookup technique that employs standard SRAM, requires
less than four memory accesses per lookup, and utilizes less
than 11 bytes per entry for IPv4 and less than 44 bytes per
entry for IPv6, not only matches TCAM performance and
resource utilization, but also provides a significant advan-
tage in terms of cost and power consumption.

2.2 Trie Based Schemes
One of the first IP lookup techniques to employ tries is

the radix trie implementation in the BSD kernel. Opti-
mizations requiring contiguous masks bound the worst case
lookup time to O(W) where W is the length of the address
in bits [19]. In order to speed up the lookup process, multi-
bit trie schemes were developed which perform a search us-
ing multiple bits of the address at a time. Srinivasan and
Varghese introduced two important techniques for multi-bit
trie searches, Controlled Prefix Expansion (CPE) and Leaf
Pushing [20]. Controlled Prefix Expansion restricts the set
of distinct prefixes by “expanding” prefixes shorter than the
next distinct length into multiple prefixes. This allows the
lookup to proceed as a direct index lookup into tables corre-
sponding to the distinct prefix lengths, or stride lengths, un-
til the longest match is found. The technique of Leaf Push-
ing reduces the amount of information stored in each table
entry by “pushing” best match information to leaf nodes
such that a table entry contains either a pointer or informa-
tion. While this technique reduces memory usage, it also in-
creases incremental update overhead. Variable length stride
lengths, optimal selection of stride lengths, and dynamic

programming techniques are discussed as well. Gupta, Lin,
and McKeown simultaneously developed a special case of
CPE specifically targeted to hardware implementation [10].
Arguing that DRAM is a plentiful and inexpensive resource,
their technique sacrifices large amounts of memory in order
to bound the number of off-chip memory accesses to two or
three. Their basic scheme is a two level “expanded” trie
with an initial stride length of 24 and second level tables of
stride length eight. Given that random accesses to DRAM
may require up to eight clock cycles and current DRAMs
operate at less than half the speed of SRAMs, this tech-
nique fails to out-perform techniques utilizing SRAM and
requiring less than 10 memory accesses.

Other techniques such as Lulea [5] and Eatherton and
Dittia’s Tree Bitmap [7] employ multi-bit tries with com-
pressed nodes. The Lulea scheme essentially compresses an
expanded, leaf-pushed trie with stride lengths 16, 8, and 8.
In the worst case, the scheme requires 12 memory accesses;
however, the data structure only requires a few bytes per en-
try. While extremely compact, the Lulea scheme’s update
performance suffers from its implicit use of leaf pushing. The
Tree Bitmap technique avoids leaf pushing by maintaining
compressed representations of the prefixes stored in each
multi-bit node. It also employs a clever indexing scheme to
reduce pointer storage to two pointers per multi-bit node.
Storage requirements for Tree Bitmap are on the order of
10 bytes per entry, worst-case memory accesses can be held
to less than eight with optimizations, and updates require
modifications to a few memory words resulting in excellent
incremental update performance.

The fundamental issue with trie-based techniques is that
performance and scalability are fundamentally tied to ad-
dress length. As many in the Internet community are push-
ing to widely adopt IPv6, it is unlikely that trie-based solu-
tions will be capable of meeting performance demands.

2.3 Other Algorithms
Several other algorithms exist with attractive properties

that are not based on tries. The “Multiway and Multicol-
umn Search” techniques presented by Lampson, Srinivasan,
and Varghese require O(W + log N) time and O(2N) mem-
ory [13]. Again, the primary issue with this algorithm is its
linear scaling relative to address length.

Another computationally efficient algorithm that is most
closely related to our technique is “Binary Search on Pre-
fix Lengths” introduced by Waldvogel, et. al. [21]. This
technique bounds the number of memory accesses via sig-
nificant precomputation of the database. First, the database
is sorted into sets based on prefix length, resulting in a max-
imum of W sets to examine for the best matching prefix. A
hash table is built for each set, and it is assumed that exam-
ination of a set requires one hash probe. The basic scheme
selects the sequence of sets to probe using a binary search
on the sets beginning with the median length set. For ex-
ample: for an IPv4 database with prefixes of all lengths,
the search begins by probing the set with length 16 pre-
fixes. Prefixes of longer lengths direct the search to its set
by placing “markers” in the shorter sets along the binary
search path. Going back to our example, a length 24 pre-
fix would have a “marker” in the length 16 set. Therefore,
at each set the search selects the longer set on the binary
search path if there is a matching marker directing it lower.
If there is no matching prefix or marker, then the search

continues at the shorter set on the binary search path. Use
of markers introduces the problem of “backtracking”: hav-
ing to search the upper half of the trie because the search
followed a marker for which there is no matching prefix in a
longer set for the given address. In order to prevent this, the
best-matching prefix for the marker is computed and stored
with the marker. If a search terminates without finding a
match, the best-matching prefix stored with the most recent
marker is used to make the routing decision. The authors
also propose methods of optimizing the data structure to the
statistical characteristics of the database. For all versions of
the algorithm, the worst case bounds are O(log Wdist) time
and O(N × log Wdist) space where Wdist is the number of
unique prefix lengths. Empirical measurements using an
IPv4 database resulted in memory requirement of about 42
bytes per entry.

Like the “Binary Search on Prefix Lengths” technique,
our approach begins by sorting the database into sets based
on prefix length. We assert that our approach exhibits sev-
eral advantages over the previously mentioned technique.
First and foremost, we show that the number of dependent
memory accesses required for a lookup can be held constant
given that memory resources scale linearly with the size of
the forwarding table. We show that our approach remains
memory efficient for large databases and provide evidence
for its applicability to IPv6. Second, by avoiding signifi-
cant precomputation like “markers” and “leaf pushing” our
approach retains good incremental update performance.

3. BLOOM FILTER THEORY
The Bloom filter is a data structure used for representing

a set of messages succinctly. A filter is first “programmed”
with each message in the set, then queried to determine
the membership of a particular message. It was formulated
by Burton H. Bloom in 1970 [3], and is widely used for
different purposes such as web caching, intrusion detection,
and content based routing [4]. For the convenience of the
reader, we explain the theory behind Bloom filters in this
section.

3.1 Bloom filters
A Bloom filter is essentially a bit-vector of length m used

to efficiently represent a set of messages. Given a set of mes-
sages X with n members, the Bloom filter is “programmed”
as follows. For each message xi in X, k hash functions are
computed on xi producing k values each ranging from 1 to
m. Each of these values address a single bit in the m-bit vec-
tor, hence each message xi causes k bits in the m-bit vector
to be set to 1. Note that if one of the k hash values ad-
dresses a bit that is already set to 1, that bit is not changed.
Querying the filter for set membership of a given message
x is similar to the programming process. Given message x,
k hash values are generated using the same hash functions
used to program the filter. The bits in the m-bit long vec-
tor at the locations corresponding to the k hash values are
checked. If at least one of the k bits is 0, then the message
is declared to be a non-member of the set. If all the bits are
found to be 1, then the message is said to belong to the set
with a certain probability. If all the k bits are found to be
1 and x is not a member of X, then it is said to be a false
positive. This ambiguity in membership comes from the fact
that the k bits in the m-bit vector can be set by any of the n
members of X. Thus, finding a bit set to 1 does not neces-

sarily imply that it was set by the particular message being
queried. However, finding a 0 bit certainly implies that the
the message does not belong to the set, since if it were a
member then all k-bits would have been set to 1 when the
Bloom filter was programmed.

Now we look at the step-by-step derivation of the false
positive probability (i.e., for a message that is not pro-
grammed, we find that all k bits that it hashes to are 1).
The probability that a random bit of the m-bit vector is set
to 1 by a hash function is simply 1

m
. The probability that it

is not set is 1− 1
m

. The probability that it is not set by any

of the n members of X is (1 − 1
m

)n. Since each of the mes-

sages sets k bits in the vector, it becomes (1− 1
m

)nk. Hence,

the probability that this bit is found to be 1 is 1−(1− 1
m

)nk.
For a message to be detected as a possible member of the
set, all k bit locations generated by the hash functions need
to be 1. The probability that this happens, f , is given by

f =

(

1 −

(

1 −
1

m

)nk
)k

(1)

for large values of m the above equation reduces to

f ≈
(

1 − e
−nk

m

)k

(2)

Since this probability is independent of the input message,
it is termed the false positive probability. The false positive
probability can be reduced by choosing appropriate values
for m and k for a given size of the member set, n. It is clear
that the size of the bit-vector, m, needs to be quite large
compared to the size of the message set, n. For a given ra-
tio of m

n
, the false positive probability can be reduced by

increasing the number of hash functions, k. In the opti-
mal case, when false positive probability is minimized with
respect to k, we get the following relationship

k =
m

n
ln 2 (3)

The false positive probability at this optimal point is given
by

f =

(

1

2

)k

(4)

It should be noted that if the false positive probability is to
be fixed, then the size of the filter, m, needs to scale linearly
with the size of the message set, n.

3.2 Counting Bloom Filters
One property of Bloom filters is that it is not possible to

delete a message stored in the filter. Deleting a particular
entry requires that the corresponding k hashed bits in the
bit vector be set to zero. This could disturb other messages
programmed into the filter which hash to any of these bits.
In order to solve this problem, the idea of the Counting
Bloom Filters was proposed in [8]. A Counting Bloom Filter
maintains a vector of counters corresponding to each bit in
the bit-vector. Whenever a message is added to or deleted
from the filter, the counters corresponding to the k hash
values are incremented or decremented, respectively. When
a counter changes from zero to one, the corresponding bit
in the bit-vector is set. When a counter changes from one
to zero, the corresponding bit in the bit-vector is cleared.

4. OUR APPROACH
The performance bottleneck in algorithmic Longest Prefix

Matching techniques is typically the number of dependent
memory accesses required per lookup. Due to the contin-
ued scaling of semiconductor technology, logic resources are
fast and plentiful. Current ASICs (Application Specific In-
tegrated Circuits) operate at clock frequencies over 1 GHz,
are capable of massively parallel computation, and support
embedded SRAMs as large as 8Mb. While logic operations
and accesses to embedded memory are not “free”, we show
that the amount of parallelism and embedded memory em-
ployed by our system are well within the capabilities of mod-
ern ASIC technology. Given that current ASICs posses an
order of magnitude speed advantage to commodity mem-
ory devices, approximately ten clock cycles are available for
logic operations and embedded memory accesses per “off-
chip” memory access. As previously mentioned, commodity
SRAM devices are capable of performing 333M random ac-
cesses per second while state-of-the-art TCAMs are capable
of 100M lookups per second. While the performance ratio
may not remain constant, SRAMs will always provide faster
accesses than TCAMs which suffer from more capacitive
loading due to the massive parallelism inherent in TCAM
architecture.

Our approach seeks to leverage advances in modern hard-
ware technology along with the efficiency of Bloom filters to
perform longest prefix matching using a custom logic device
with a modest amount of embedded SRAM and a commod-
ity “off-chip” SRAM device. Note that a commodity DRAM
(Dynamic Random Access Memory) device could also be
used, further reducing cost and power consumption but in-
creasing the “off-chip” memory access period. We show
that by properly dimensioning the amount and allocation
of embedded memory for Bloom filters, the average number
of “off-chip” memory accesses per lookup approaches one;
hence, lookup throughput scales directly with the memory
device access period. We also provide system configurations
that limit worst-case lookup time.

4.1 Basic Configuration
A basic configuration of our approach is shown in Fig-

ure 1. We begin by grouping the database of prefixes into
sets according to prefix length. The system employs a set
of W counting Bloom filters where W is the length of input
addresses, and associates one filter with each unique prefix
length. Each filter is “programmed” with the associated set
of prefixes according to the previously described procedure.
It is important to note that while the bit-vectors associated
with each Bloom filter are stored in embedded memory, the
counters associated with each filter are maintained by a sep-
arate control processor responsible for managing route up-
dates. Separate control processors with ample memory are
common features of high-performance routers.

A hash table is also constructed for each distinct prefix
length. Each hash table is initialized with the set of corre-
sponding prefixes, where each hash entry is a [prefix, next
hop] pair. While we assume the result of a match is the
next hop for the packet, more elaborate information may be
associated with each prefix if so desired. The set of hash
tables is stored off-chip in a separate memory device; we
will assume it is a large, high-speed SRAM for the remain-
der of the paper. The problem of constructing hash tables
to minimize collisions with reasonable amounts of memory

B(1) B(2) B(3)

Bloom filters

B(W)

1 2 3 W

Hash Table Manager

IP address Route Updates

Update Interface

Off−chip Hash Tables

C(1) C(2) C(3) C(W)

counters
Bloom filter

Priority Encoder

Hash Table Interface

Match Vector

Next Hop

Prefix Next Hop

Figure 1: Basic configuration of Longest Prefix

Matching using Bloom filters.

is well-studied. For the purpose of our discussion, we as-
sume that probing a hash table stored in off-chip memory
requires one memory access [21]; hence, our primary goal
will be to minimize the number of hash probes per lookup.
A search proceeds as follows. The input IP address is used
to probe the set of W Bloom filters in parallel. One-bit
prefix of the address is used to probe the filter associated
with length one prefixes, two-bit prefix of the address is
used to probe the filter associated with length two prefixes,
etc. Each filter simply indicates match or no match. By
examining the outputs of all filters, we compose a vector
of potentially matching prefix lengths for the given address,
which we will refer to as the match vector. Consider an IPv4
example where the input address produces matches in the
Bloom filters associated with prefix lengths 8, 17, 23, and
30; the resulting match vector would be {8,17,23,30}. Re-
member that Bloom filters may produce false positives, but
never produce false negatives; therefore, if a matching prefix
exists in the database, it will be represented in the match
vector. Note that the number of unique prefix lengths in the
prefix database, Wdist, may be less than W . In this case, the
Bloom filters representing empty sets will never contribute
a match to the match vector, valid or false positive.

The search proceeds by probing the hash tables associ-
ated with the prefix lengths represented in the match vector
in order of longest prefix to shortest. The search continues
until a match is found or the vector is exhausted. We now
establish the relationship between the false positive proba-
bility of each Bloom filter and the expected number of hash
probes per lookup for our system.

4.2 Effect of False Positives
We now show the relationship between false positive prob-

ability and its effect on the throughput of the system. We

measure the throughput of the system as a function of the
average number of hash probes per lookups, Eexp. The
worst-case performance for the basic configuration of our
system is Wdist hash probes per lookup. We later show how
the worst case can be limited to two hash probes and one ar-
ray access per lookup by trading off some memory efficiency.
Our goal is to optimize average performance and bound the
worst case such that our system provides equal or better
performance than TCAM based solutions under all traffic
conditions using commodity memory technology.

The number of hash probes required to determine the cor-
rect prefix length for an IP address is determined by the
number of matching Bloom filters. For an address which
matches a prefix of length l, we first examine any prefix
lengths greater than l represented in the match vector. For
the basic configuration of the system, we assume that all
Bloom filters share the same false positive probability, f .
We later show how this can be achieved by selecting ap-
propriate values for m for each filter. Let Bl represent the
number of Bloom filters for the prefixes of length greater
than l. The probability that exactly i filters associated with
prefix lengths greater than l will generate false positives is
given by

Pl = (Bl

i)f i(1 − f)Bl−i (5)

For each value of i, we would require i additional hash
probes. Hence, the expected number of additional hash
probes required when matching a length l prefix is

El =

Bl
∑

i=1

i(
Bl

i)f i(1 − f)Bl−i (6)

which is the mean for a binomial distribution with Bl ele-
ments and a probability of success f . Hence,

El = Blf (7)

The equation above shows that the expected number of ad-
ditional hash probes for the prefixes of a particular length is
equal to the number of Bloom filters for the longer prefixes
times the false positive probability (which is the same for all
the filters). Let B be the total number of Bloom filters in
the system for a given configuration. The worst case value
of El, which we denote as Eadd, can be expressed as

Eadd = Bf (8)

This is the maximum number of additional hash probes per
lookup, independent of input address. Since these are the
expected additional probes due to the false positives, the
total number of expected hash probes per lookup for any
input address is

Eexp = Eadd + 1 = Bf + 1 (9)

where the additional one probe accounts for the probe at the
matching prefix length. Note that there is the possibility
that an IP address creates false positive matches in all the
filters in the system. In this case, the number of required
hash probes is

Eworst = B + 1 (10)

Thus, while Equation 9 gives the expected number of hash
probes for a longest prefix match, Equation 10 provides the
maximum number of hash probes for a worst case lookup.
Since both values depend on B, the number of filters in

the system, reducing B is important for limiting the worst
case. Note that for the basic configuration the value of B
is simply Wdist. The remainder of this paper addresses the
issues of filter dimensioning, design trade-offs, and bounding
the worst case.

5. CONFIGURATION & OPTIMIZATION
In this section, we seek to develop a system configura-

tion that provides high performance independent of prefix
database characteristics and input address patterns. The
design goal is to architect a search engine that achieves an
average of one hash probe per lookup, bounds the worst
case search, and utilizes a small amount of embedded mem-
ory. Several variables affect system performance and re-
source utilization:

•N , the target amount of prefixes supported by the sys-
tem

•M , the total amount of embedded memory available
for Bloom filters

•Wdist, the number of unique prefix lengths supported
by the system

•mi, the size of each Bloom filter
•ki, the number of hash functions computed in each
Bloom filter

•ni, the number of prefixes stored in each Bloom filter

For clarity, we will use the case of IPv4 throughout the
following sections. Implications for IPv6 will be discussed
in Section 7. IPv4 addresses are 32-bits long; therefore,
W = 32 and Wdist depends on the characteristics of the
database. Given that current IPv4 BGP tables are in excess
of 100,000 entries, we use N = 200, 000, unless otherwise
noted, to illustrate the viability of our approach for future
use. For all of our analysis, we set the number of hash
functions per filter such that the false positive probability
f is a minimum for a filter of length m. The feasibility of
designing a system with selectable values of k is discussed
in Section 8.

We have established a basic intuition for system perfor-
mance assuming that each individual Bloom filter has the
same false positive f . We also note that as long as the false
positive probability is kept the same for all the Bloom fil-
ters, the system performance is independent of the prefix
distribution. Let fi be the false positive probability of the
ith Bloom filter. Given that the filter is allocated mi bits of
memory, stores ni prefixes, and performs ki = mi

ni
ln 2 hash

functions, the expression for fi becomes,

fi = f =

(

1

2

)

(

mi

ni

)

ln 2

∀i ∈ [1 . . . 32] (11)

This implies that

mi

ni
=

mi+1

ni+1
=

∑

mi
∑

ni
=

M

N
∀i ∈ [1 . . . 31] (12)

Therefore, the false positive probability fi for a given filter
i may be expressed as

fi = f =

(

1

2

)(M

N
) ln 2

(13)

Based on the preceding analysis, the expected number of
hash probes per lookup depends only on the total amount

of memory resources, M , and the total number of supported
prefixes, N . It is important to note that this is independent
of the number of unique prefix lengths and the distribution
of prefixes among the prefix lengths.

5.1 Asymmetric Bloom Filters
The preceding analysis implies that memory be propor-

tionally allocated to each Bloom filter based on its share
of the total number of prefixes. Given a static, uniform
distribution of prefixes, each Bloom filter would simply be
allocated m = M

B
bits of memory. Examination of real IP

forwarding tables reveals that the distribution of prefixes is
not uniform over the set of prefix lengths. Routing proto-
cols also distribute periodic updates; hence, forwarding ta-
bles are not static. We collected 15 snapshots of IPv4 BGP
tables from [1] and gathered statistics on prefix length distri-
butions. As expected, the prefix distributions for the IPv4
tables demonstrated common trends such as large numbers
of 24-bit prefixes and few prefixes of length less than 8-bits.
An average prefix distribution for all of the tables we col-
lected is shown in Figure 2.

0

10

20

30

40

50

60

5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 p

re
fix

es

Prefix length

Figure 2: Average prefix length distribution for

IPv4 BGP table snapshots.

If we use a static system configured for uniformly dis-
tributed prefix lengths to search a database with non-uniform
prefix length distribution, some filters are “over-allocated”
memory while others are “under-allocated”; thus, the false
positive probabilities for the Bloom filters are no longer
equal. Clearly, we need to proportionally allocate the amount
of embedded memory per filter based on its current share of
the total prefixes while adjusting the number of hash func-
tions to maintain minimal false positive probability. We re-
fer to this configuration as “asymmetric Bloom filters” and
describe a device architecture capable of supporting it in
Section 8. Using Equation 9 for the case of IPv4, the ex-
pected number of hash probes per lookup, Eexp, may be
expressed as

Eexp = 32 ×

(

1

2

)M ln 2
N

+ 1 (14)

Given the feasibility of asymmetric Bloom filters, we plot
the expected number of hash probes per lookup, Eexp, ver-
sus total embedded memory size M for various values of N
in Figure 3. With a modest 2Mb embedded memory, the

expected number of hash probes per lookup is less than two
for 250,000 prefixes. We assert that such a system is also
memory efficient as it only requires 8 bits of embedded mem-
ory per prefix. Doubling the size of the embedded memory
to 4Mb provides near optimal average performance of one
hash probe per lookup. Using Equation 10, the worst case
number of dependent memory accesses is simply 33. Note
that the term for the access for the matching prefix may be
omitted, as the default route can be stored internally; hence,
the worst case number of dependent memory accesses is 32.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 1.5 2 2.5 3 3.5 4

E
xp

ec
te

d

of
 h

as
h

pr
ob

es
 p

er
 lo

ok
up

Size of embedded memory (MBits)

100000 prefixes
150000 prefixes
200000 prefixes
250000 prefixes

Figure 3: Expected number of hash probes per

lookup, Eexp, versus total embedded memory size,

M , for various values of total prefixes, N , using

a basic configuration for IPv4 with 32 asymmetric

Bloom filters.

5.2 Direct Lookup Array
The preceding analysis showed how asymmetric Bloom fil-

ters can achieve near optimal average performance for large
numbers of prefixes with a modest amount of embedded
memory. We now examine ways to bound the worst case
number of hash probes without significantly affecting aver-
age performance. We observe from the distribution statis-
tics that sets associated with the first few prefix lengths are
typically empty and the first few non-empty sets hold few
prefixes as shown in Figure 2. This suggests that utilizing
a direct lookup array for the first a prefix lengths is an ef-
ficient way to represent shorter prefixes while reducing the
number of Bloom filters. For every prefix length we repre-
sent in the direct lookup array, the number of worst case
hash probes is reduced by one. Use of a direct lookup ar-
ray also reduces the amount of embedded memory required
to achieve optimal average performance, as the number of
prefixes represented by Bloom filters is decreased.

We now clarify what we mean by a direct lookup array. An
example of a direct lookup array for the first a = 3 prefixes
is shown in Figure 4. We begin by storing the prefixes of
length ≤ a in a binary trie. We then perform Controlled
Prefix Expansion (CPE) for a stride length equal to a [20].
The next hop associated with each leaf at level a is written
to the array slot addressed by the bits labeling the path from
the root to the leaf. The structure is searched by using the
first a bits of the IP destination address to index into the
array. For example, an address with initial bits 101 would
result in a next hop of 4. Note that this data structure

3

0 1

0 1

0 10 1100

0 1

1

1 1 2 2 4 5

1
000
001
010
011
100
101

111
110 5

4

2

3
2

1

3

2

4

1

10

00

0

0

5

1

Direct Lookup Array

Address Trie

CPE Trie

Input Address = 101...

Figure 4: Example of direct lookup array for the

first three prefix lengths.

requires 2a × NHlen bits of memory where NHlen is the
number of bits required to represent the next hop.

For the purpose of a realistic analysis, we select a = 20
resulting in a direct lookup array with 1M slots. For a 256
port router where the next hop corresponds to the output
port, 8-bits are required to represent the next hop value and
the direct lookup array requires 1MB of memory. Use of a
direct lookup array for the first 20 prefix lengths leaves prefix
lengths 21 . . . 32 to Bloom filters; hence, the expression for
the expected number of hash probes per lookup becomes

Eexp = 12 ×

(

1

2

) M ln 2
N−N[0:20]

+ 1 (15)

where N[0:20] is the sum of the prefixes with lengths [0 : 20].
On average, the N[0:20] prefixes constituted 24.6% of the to-
tal prefixes in the sample IPv4 BGP tables; therefore, 75.4%
of the total prefixes N are represented in the Bloom filters.
Given this distribution of prefixes, the expected number of
hash probes per lookup versus total embedded memory size
for various values of N is shown in Figure 5. The expected
number of hash probes per lookup for databases contain-
ing 250,000 prefixes is less than two when using a small
1Mb embedded memory. Doubling the size of the mem-
ory to 2Mb reduces the expected number of hash probes
per lookup to less than 1.1 for 250,000 prefix databases.
While the amount of memory required to achieve good av-
erage performance has decreased to only 4 bits per prefix,
the worst case hash probes per lookup is still large. Using
Equation 10, the worst case number of dependent memory
accesses becomes Eworst = (32 − 20) + 1 = 13. For an
IPv4 database containing the maximum of 32 unique pre-
fix lengths, the worst case is 13 dependent memory accesses
per lookup. A high-performance implementation option is to
make the direct lookup array the final stage in a pipelined
search architecture. IP destination addresses which reach
this stage with a null next hop value would use the next
hop retrieved from the direct lookup array. A pipelined ar-
chitecture does require a dedicated memory bank or port
for the direct lookup array. The following section describes
additional steps to further improve the worst case.

5.3 Reducing the Number of Filters
We can reduce the number of remaining Bloom filters

by limiting the number of distinct prefix lengths via fur-
ther use of Controlled Prefix Expansion (CPE). We would
like to limit the worst case hash probes to as few as possi-
ble without prohibitively large embedded memory require-

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

1 1.5 2 2.5 3 3.5 4

E
xp

ec
te

d

of
 h

as
h

pr
ob

es
 p

er
 lo

ok
up

Size of embedded memory (MBits)

100000 prefixes
150000 prefixes
200000 prefixes
250000 prefixes

Figure 5: Expected number of hash probes per

lookup, Eexp, versus total embedded memory size,

M , for various values of total prefixes, N , using a

direct lookup array for prefix lengths 1 . . . 20 and 12

Bloom filters for prefix lengths 21 . . . 32

ments. Clearly, the appropriate choice of CPE strides de-
pends on the prefix distribution. As illustrated in the av-
erage distribution of IPv4 prefixes shown in Figure 2, we
observe in all of our sample databases that there is a sig-
nificant concentration of prefixes from lengths 21 to 24. On
average, 75.2% of the N prefixes fall in the range of 21 to 24.
Likewise, we observe in all of our sample databases that pre-
fixes in the 25 to 32 range are extremely sparse. Specifically,
0.2% of the N prefixes fall in the range 25 to 32. (Remember
that 24.6% of the prefixes fall in the range of 1 to 20.)

Based on these observations, we chose to divide the pre-
fixes not covered by the direct lookup array into 2 groups, G1

and G2 corresponding to prefix lengths 21− 24 and 25− 32,
respectively. Each group is expanded out to the upper limit
of the group so that G1 contains only length 24 prefixes and
G2 contains only length 32 prefixes. Let N24 be the number
of prefixes in G1 after expansion and let N32 be the number
of prefixes in G2 after expansion. Using CPE increases the
number of prefixes in each group by an “expansion factor”
factor α24 and α32, respectively. We observed an average
value of 1.8 for α24 in our sample databases, and an average
value of 49.9 for α32. Such a large value of α32 is tolerable
due to the small number of prefixes in G2.

Use of this technique results in two Bloom filters and a
direct lookup array, bounding the worst case lookup to two
hash probes and an array lookup. The expression for the
expected number of hash probes per lookup becomes

Eexp = 2 ×

(

1

2

) M ln 2
α24N24+α32N32

+ 1 (16)

Using the observed average distribution of prefixes and ob-
served average values of α24 and α32, the expected number
of hash probes per lookup versus total embedded memory M
for various values of N is shown in Figure 6. The expected
number of hash probes per lookup for databases containing
250,000 prefixes is less than 1.6 when using a small 1Mb em-
bedded memory. Doubling the size of the memory to 2Mb
reduces the expected number of hash probes per lookup to
less than 1.2 for 250,000 prefix databases. The use of CPE

to reduce the number of Bloom filters provides for a max-
imum of two hash probes and one array access per lookup
while maintaining near optimal average performance with
modest use of embedded memory resources.

1

1.1

1.2

1.3

1.4

1.5

1.6

1 1.5 2 2.5 3 3.5 4

E
xp

ec
te

d

of
 h

as
h

pr
ob

es
 p

er
 lo

ok
up

Size of embedded memory (MBits)

100000 prefixes
150000 prefixes
200000 prefixes
250000 prefixes

Figure 6: Expected number of hash probes per

lookup, Eexp, versus total embedded memory size,

M , for various values of total prefixes, N , using a di-

rect lookup array for prefix lengths 1 . . . 20 and two

Bloom filters for prefix lengths 21 . . . 24 and 25 . . . 32

6. PERFORMANCE SIMULATIONS
In the discussion so far we have described three system

configurations, each offering an improvement over the ear-
lier in terms of worst case performance. In this section, we
present simulation results for each configuration using for-
warding tables constructed from real IPv4 BGP tables. We
will refer to each configuration as follows:

•Scheme 1 : This scheme is the basic configuration
which uses asymmetric Bloom filters for all prefix lengths
as described in Section 5.1.

•Scheme 2 : This scheme uses a direct lookup array for
prefix lengths [0 . . . 20] and asymmetric Bloom filters
for prefix lengths [21 . . . 32] as described in Section 5.2.

•Scheme 3 : This scheme uses a direct lookup array
for prefix lengths [0 . . . 20] and two asymmetric Bloom
filters for CPE prefix lengths 24 and 32 which rep-
resent prefix lengths [21 . . . 24] and [25 . . . 32], respec-
tively. This configuration is described in Section 5.3.

For all schemes we set M = 2Mb and adjusted mi for each
asymmetric Bloom filter according to the distribution of
prefixes of the database under test. We collected 15 IPv4
BGP tables from [1]. For each combination of database and
system configuration, we computed the theoretical value of
Eexp using Equation 14, Equation 15, and Equation 16.

A simulation was run for every combination of database
and system configuration. The ANSI C function rand() was
used to generate hash values for the Bloom filters as well
as the prefix hash tables. The collisions in the prefix hash
tables were around 0.08% which is negligibally small. In
order to investigate the effects of input addresses on sys-
tem performance, we used various traffic patterns varying
from completely random addresses to only addresses with a
valid prefix in the database under test. In the latter case,

the IP addresses were generated in proportion to the pre-
fix distribution; thus, IP addresses corresponding to a 24-
bit prefix in the database dominated the input traffic. One
million IP addresses were applied for each test run. Input
traffic patterns with completely randomly generated IP ad-
dresses generated no false positives in any of our tests. The
false positives increased as the traffic pattern contained more
IP addresses corresponding to the prefixes in the database.
Maximum false positives were observed when the traffic pat-
tern consisted of only the IP addresses corresponding to the
prefixes in the database; hence, the following results corre-
spond to this input traffic pattern. The average number of
hash probes per lookup from the test runs with each of the
databases on all three system configurations, along with the
corresponding theoretical values, are shown in Table 1. The
maximum number of memory accesses (hash probes and di-
rect lookup) per lookup was recorded for each test run of
all the schemes. While the theoretical worst case memory
accesses per lookup for Scheme 1 and Scheme 2 are 32 and
13, respectively, the worst observed lookups required less
than four memory accesses in all test runs. For scheme 3, in
most of test runs, the worst observed lookups required three
memory accesses.

Using Scheme 3, the average number of hash probes per
lookup over all test databases is found to be 1.003 which
corresponds to a lookup rate of about 332 million lookups
per second with a commodity SRAM device operating at
333MHz. This is a speedup of 3.3X over state-of-the-art
TCAM-based solutions. At the same time, the scheme has
a worst case performance of 2 hash probes and one array
access per lookup. Assuming that the array is stored in the
same memory device as the tables, worst case performance
is 110 million lookups per second, which exceeds current
TCAM performance.

Note that the values of the expected hash probes per
lookup as shown by the simulations generally agree with the
values predicted by the equations. We now provide a direct
comparison between theoretical performance and observed
performance. To see the effect of total embedded memory
resources, M , for Bloom filters, we simulated Scheme 3 with
database 1 with N = 116189 prefixes for various values of
M between 500kb and 4Mb. Figure 7 shows theoretical and
observed values for the average number of hash probes per
lookup for each value of M . Simulation results show slightly
better performance than the corresponding theoretical val-
ues. This improvement in the performance can be attributed
to the fact that the distribution of input addresses has been
matched to the distribution of prefixes in the database un-
der test. Since length 24 prefixes dominate real databases,
arriving packets are more likely to match the second Bloom
filter and less likely to require an array access.

7. IPV6 PERFORMANCE
We have shown that the number of dependent memory

accesses per lookup can be held constant given that mem-
ory resources scale linearly with database size. Given this
characteristic of our algorithm and the memory efficiency
demonstrated for IPv4, we assert that our technique is suit-
able for high-speed IPv6 route lookups. The primary issue
for IPv6 scalability of our technique is not lookup perfor-
mance, but memory usage. In order for our technique to
easily scale to IPv6, the number of unique prefix lengths in
IPv6 databases must be manageable.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0.5 1 1.5 2 2.5 3 3.5 4

E
xp

ec
te

d

of
 h

as
h

pr
ob

es
 p

er
 lo

ok
up

Size of embedded memory (Mbits)

Theoretical
Simulation

Figure 7: Average number of hash probes per

lookup for Scheme 3 programmed with database 1,

N = 116, 819, for various embedded memory sizes, M .

In order to assess the current state of IPv6 tables, we col-
lected five IPv6 BGP table snapshots from several sites [2].
Since the tables are relatively small, we computed a com-
bined distribution of prefix lengths. Figure 8 shows the com-
bined distribution for a total of 1,550 entries. A significant
result is that the total number of unique prefix lengths in
the combined distribution is 14, less than half of the number
for the IPv4 tables we studied. We now investigate IPv6 ad-
dress architecture and deployment policies to gain a sense
of whether or not the number of unique prefix lengths is
expected to grow significantly.

0

100

200

300

400

500

600

700

20 40 60 80 100 120

N
um

ne
r

of
 p

re
fix

es

Prefix Length

Figure 8: Combined prefix length distribution for

IPv6 BGP table snapshots.

7.1 Address Architecture
The addressing architecture for IPv6 is detailed in RFC

3513 [11]. In terms of the number of prefix lengths in for-
warding tables, the important address type is the global
unicast address which may be aggregated. RFC 3513 states
that IPv6 unicast addresses may be aggregated with arbi-
trary prefix lengths like IPv4 addresses under CIDR. While
this provides extensive flexibility, we do not foresee that this
flexibility necessarily results in an explosion of unique prefix

Table 1: Observed average number of hash probes per lookup for 15 IPv4 BGP tables on various system

configurations dimensioned with M = 2Mb.

Scheme 1 Scheme 2 Scheme 3
Database Prefixes Theoretical Observed Theoretical Observed Theoretical Observed
1 116,819 1.008567 1.008047 1.000226 1.000950 1.005404 1.003227
2 101,707 1.002524 1.005545 1.000025 1.000777 1.002246 1.001573
3 102,135 1.002626 1.005826 1.000026 1.000793 1.002298 1.001684
4 104,968 1.003385 1.006840 1.000089 1.000734 1.004443 1.003020
5 110,678 1.005428 1.004978 1.000100 1.000687 1.003104 1.000651
6 116,757 1.008529 1.006792 1.000231 1.000797 1.004334 1.000831
7 117,058 1.008712 1.007347 1.000237 1.000854 1.008014 1.004946
8 119,326 1.010183 1.009998 1.000297 1.001173 1.012303 1.007333
9 119,503 1.010305 1.009138 1.000303 1.001079 1.008529 1.005397
10 120,082 1.010712 1.009560 1.000329 1.001099 1.016904 1.010076
11 117,211 1.008806 1.007218 1.000239 1.000819 1.004494 1.002730
12 117,062 1.008714 1.006885 1.000235 1.000803 1.004439 1.000837
13 117,346 1.008889 1.006843 1.000244 1.000844 1.004515 1.000835
14 117,322 1.008874 1.008430 1.000240 1.001117 1.004525 1.003111
15 117,199 1.008798 1.007415 1.000239 1.000956 1.004526 1.002730
Average 114,344 1.007670 1.007390 1.000204 1.000898 1.006005 1.003265

lengths. The global unicast address format has three fields:
a global routing prefix, a subnet ID, and an interface ID. All
global unicast addresses, other than those that begin with
000, must have a 64-bit interface ID in the Modified EUI-64
format. These identifiers may be of global or local scope;
however, we are only interested in the structure they im-
pose on routing databases. In such cases, the global routing
prefix and subnet ID fields must consume a total of 64 bits.

Global unicast addresses that begin with 000 do not have
any restrictions on interface ID size; however, these ad-
dresses are intended for special purposes such as embed-
ded IPv4 addresses. Embedded IPv4 addresses provide a
mechanism for tunneling IPv6 packets over IPv4 routing in-
frastructure. We anticipate that this special class of global
unicast addresses will not contribute many unique prefix
lengths to IPv6 routing tables.

7.2 Address Allocation & Assignment
In a June 26, 2002 memo titled, “IPv6 Address Alloca-

tion and Assignment Policy” the Internet Assigned Numbers
Authority (IANA) announced initial policies governing the
distribution or “licensing” of IPv6 address space [12]. One
of its stated goals is to distribute address space in a hierar-
chical manner so as to “permit the aggregation of routing
information by ISPs, and to limit the expansion of Inter-
net routing tables”. To that end, the distribution process
is also hierarchical. IANA has made initial distributions of
/16 address blocks to existing Regional Internet Registries
(RIRs). The RIRs are responsible for allocating address
blocks to National Internet Registries (NIRs) and Local In-
ternet Registries (LIRs). The LIRs and NIRs are responsible
for assigning addresses and address blocks to end users and
Internet Service Providers (ISPs).

The minimum allocation of address space to Internet Reg-
istries is in units of /32 blocks. IRs must meet several cri-
teria in order to receive an address allocation, including a
plan to provide IPv6 connectivity by assigning /48 address
blocks. During the assignment process /64 blocks are as-
signed when only one subnet ID is required and /128 ad-

dresses when only one device interface is required. While it
is not clear how much aggregation will occur due to ISPs as-
signing multiple /48 blocks, the allocation and assignment
policy does provide significant structure. If these policies
are followed, we anticipate that IPv6 routing tables will not
contain significantly more unique prefix lengths than current
IPv4 tables.

We assert that our longest prefix matching approach is
a viable mechanism for IPv6 routing lookups. Due to the
longer “strides” between hierarchical boundaries of IPv6 ad-
dresses, use of Controlled Prefix Expansion (CPE) to reduce
the number of Bloom filters may not be practical. In this
case, a suitable pipelined architecture may be employed to
limit the worst case memory accesses.

8. IMPLEMENTATION CONSIDERATIONS
We now provide a brief discussion of relevant implemen-

tation issues when targeting our approach to hardware. The
two most important issues to address are: supporting vari-
able prefix length distributions and supporting multiple hash
probes to the embedded memory.

8.1 Variable Prefix Length Distributions
From previous discussions, it is clear that Bloom filters

which are designed to suit a particular prefix length distri-
bution tend to perform better. However, an ASIC design op-
timized for a particular prefix length distribution, will have
sub-optimal performance if the distribution varies drasti-
cally. Note that this can happen even if the new distribution
requires the same aggregate embedded memory resources as
before. Thus in spite of the available embedded memory
resources, this inflexibility in allocating resources to differ-
ent Bloom filters can lead to poor system performance. The
ability to support a lookup table of certain size, irrespective
of the prefix length distribution is a desirable feature of this
system.

Instead of building distribution dependent memories of
customized size, we propose building a number of small
fixed-size Bloom filters called mini-Bloom filters. Let the

Program

Query

IP

mini−Bloom filtersTri−state Bus

7

Primary Hashing

6

1000

8

5

4

3

2

1

Set 2

Set 1

Set 3

Set N

Figure 9: Mini-Bloom filters allow system to adapt

to prefix distribution. Dashed line shows program-

ming path for a prefix of length 2. Solid line illus-

trates query path for input IP address.

dimensions of a mini-Bloom filter be an m′-bit long vector
with a capacity of n′ prefixes. The false positive probability
of the mini-Bloom filter is

f ′ =

(

1

2

)(m
′

n′
)ln2

(17)

Instead of allocating a fixed amount of memory to each of the
Bloom filters, we now proportionally allocate multiple mini-
Bloom filters according to the prefix distribution. In other
words, we allocate on-chip resources to individual Bloom
filters in units of mini-Bloom filters instead of bits. While
building the database, we uniformly distribute the prefixes
of a particular length across the set of mini-Bloom filters al-
located to it, storing each prefix in only one mini-Bloom fil-
ter. We achieve this uniform random distribution of prefixes
within a set of mini-Bloom filters by calculating a primary
hash over the prefix. The prefix is stored in the mini-Bloom
filter pointed to by this primary hash value, within the set,
as illustrated by the dashed line in Figure 9.

In the query process, a given IP address is dispatched to
all sets of mini-Bloom filters for distinct prefix lengths on a
tri-state bus. The same primary hash function is calculated
on the IP address to find out which one of the mini-Bloom
filters within the corresponding set should be probed with
the given prefix. This mechanism ensures that an input IP
address probes only one mini-Bloom filter in the set associ-
ated with a particular prefix length as shown by the solid
lines in Figure 9.

Now we analyze the implications of this modification. Since
the prefix is hashed or probed in only one of the mini-Bloom
filters in each set, the aggregate false positive probability of
a particular set is the same as the false positive probability
of an individual mini-Bloom filter. Hence, the false pos-
itive probability of the new system remains unchanged if
the average memory bits per prefix in the mini-Bloom fil-
ter is the same as the average memory bits per prefix in
the original scheme. The importance of this scheme is that

single homogeneous memory

m bits

H1 H2 H3 H4 H5 H6 H7 H8

Figure 10a: A Bloom filter with single memory vec-

tor with k = 8

m/2 bits m/2 bits

Memory segment Memory segment

H1 H2 H3 H4 H5 H6 H7 H8

Figure 10b: Two Bloom Filters of length m/2 with

k = 4, combined to realize a m-bit long Bloom filter

with k = 8

the allocation of the mini-Bloom filters for different prefix
lengths can be changed unlike in the case of hardwired mem-
ory. The tables which indicate the prefix length set and its
corresponding mini-Bloom filters can be maintained on-chip
with reasonable hardware resources. The resource distribu-
tion among different sets can be reconfigured by updating
these tables. This flexibility makes this design independent
of prefix length distribution.

8.2 Multi-port embedded memories
The number of hash functions k, is essentially the lookup

capacity of the memory storing a Bloom filter. Thus, k = 6
implies that 6 random locations must be accessed in the
time alloted for a Bloom filter query. In the case of single
cycle Bloom filter queries, on-chip memories need to support
at least k reading ports. We assert that fabrication of 6
to 8 read ports for an on-chip Random Access Memory is
attainable with today’s embedded memory technology [6].

For designs with values of k higher than what can be real-
ized by technology, a single memory with the desired lookups
is realized by employing multiple smaller memories, with
fewer ports. For instance, if the technology limits the num-
ber of ports on a single memory to 4, then 2 such smaller
memories are required to achieve a lookup capacity of 8 as
shown in Figure 10b. The basic Bloom filter allows any
hash function to map to any bit in the vector. It is possible
that for some member, more than 4 hash functions map to
the same memory segment, thereby exceeding the lookup
capacity of the memory. This problem can be solved by re-
stricting the range of each hash function to a given memory.
This avoids collision among hash functions across different
memory segments.

In general, if h is the maximum lookup capacity of a RAM
as limited by the technology, then k/h such memories of size

m
(k/h)

can be combined to realize the desired capacity of m

bits and k hash functions. When only h hash functions
are allowed to map to a single memory, the false positive
probability can be expressed as

f ′ = [1 − (1 −
1
m

(k/h)

)hn](k/h)h ≈ [1 − e−nk/m]k (18)

Comparing equation 18 with equation 2, we see that restrict-
ing the number of hash functions mapping to a particular
memory, does not affect the false positive probability pro-
vided the memories are sufficiently large.

9. CONCLUSIONS
We have introduced a Longest Prefix Matching (LPM)

algorithm that employs Bloom filters to efficiently narrow
the scope of the search. In order to optimize average per-
formance, we introduce asymmetric Bloom filters which al-
locate memory resources according to prefix distribution
and provide viable means for their implementation. We
show that via the use of a direct lookup array and use
of Controlled Prefix Expansion (CPE), worst case perfor-
mance is limited to two hash probes and one array access
per lookup. Performance analysis and simulations show that
average performance approaches one hash probe per lookup
with modest embedded memory resources, less than 8 bits
per prefix. We provided evidence for the future viability of
our approach for IPv6 route lookups.

If implemented in current semiconductor technology and
coupled with a commodity SRAM device operating at 333
MHz, our algorithm could achieve average performance of
over 300 million lookups per second and worst case perfor-
mance of over 100 million lookups per second. In compari-
son, state-of-the-art TCAM-based solutions for LPM pro-
vide 100 million lookups per second, consume 150 times
more power per bit of storage than SRAM, and cost ap-
proximately 30 times as much per bit of storage than SRAM.
While the cost of TCAMs may decrease and power-saving
features may emerge, we assert that SRAM technologies will
always provide faster access times and lower power consump-
tion due to the massive parallelism inherent in TCAM archi-
tectures. As a result, algorithms such as ours that employ
commodity RAM devices and achieve comparable or better
performance will continue to provide an attractive alterna-
tive to TCAM-based solutions.

10. ACKNOWLEDGMENTS
We would like to thank Dr. John Lockwood, Dr. Jonathan

Turner and Dr. Roger Chamberlain for their support. We
would also like to thank Ramaprabhu Janakiraman for in-
sightful discussions on Bloom filters. Finally, we would like
to thank the anonymous reviewers and our shepherd, Dr.
Craig Partridge, for their thoughtful suggestions.

11. REFERENCES
[1] BGP Table Data. http://bgp.potaroo.net/,

February 2003.

[2] IPv6 Operational Report. http://net-stats.ipv6.-
tilab.com/bgp/bgp-table-snapshot.txt/, February
2003.

[3] B. H. Bloom. Space/Time Trade-offs in Hash Coding
with Allowable Errors. Communications of the ACM,
13(7):422–426, July 1970.

[4] A. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. In Proceedings
of 40th Annual Allerton Conference, October 2002.

[5] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink.
Small Forwarding Tables for Fast Routing Lookups. In
ACM Sigcomm, 1997.

[6] B. Dipert. Special Purpose SRAMs smooth the ride.
EDN, Jun 1999.

[7] W. N. Eatherton. Hardware-Based Internet Protocol
Prefix Lookups. thesis, Washington University in St.
Louis, 1998. Available at
http://www.arl.wustl.edu/.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder.
Summary cache: A scalable wide-area web cache
sharing protocol. IEEE/ACM Transactions on
Networking, 8(3):281–293, June 2000.

[9] S. Fuller, T. Li, J. Yu, and K. Varadhan. Classless
inter-domain routing (CIDR): an address assignment
and aggregation strategy. RFC 1519, September 1993.

[10] P. Gupta, S. Lin, and N. McKeown. Routing Lookups
in Hardware at Memory Access Speeds. In IEEE
Infocom, 1998.

[11] R. Hinden and S. Deering. Internet Version 6 (IPv6)
Addressing Architecture. RFC 3513, April 2003.

[12] IANA. IPv6 Address Allocation and Assignment
Policy. http://www.iana.org/ipaddress/ipv6-
allocation-policy-26jun02, June
2002.

[13] B. Lampson, V. Srinivasan, and G. Varghese. IP
Lookups Using Multiway and Multicolumn Search.
IEEE/ACM Transactions on Networking,
7(3):324–334, 1999.

[14] A. J. McAulay and P. Francis. Fast Routing Table
Lookup Using CAMs. In IEEE Infocom, 1993.

[15] Micron Technology Inc. 36Mb DDR SIO SRAM
2-Word Burst. Datasheet, December 2002.

[16] Micron Technology Inc. Harmony TCAM 1Mb and
2Mb. Datasheet, January 2003.

[17] R. K. Montoye. Apparatus for Storing “Don’t Care”
in a Content Addressable Memory Cell. United States
Patent 5,319,590, June 1994. HaL Computer Systems,
Inc.

[18] SiberCore Technologies Inc. SiberCAM Ultra-18M
SCT1842. Product Brief, 2002.

[19] K. Sklower. A tree-based routing table for Berkeley
Unix. Technical report, University of California,
Berkeley, 1993.

[20] V. Srinivasan and G. Varghese. Faster IP Lookups
using Controlled Prefix Expansion. In SIGMETRICS,
1998.

[21] M. Waldvogel, G. Varghese, J. Turner, and
B. Plattner. Scalable high speed IP routing table
lookups. In Proceedings of ACM SIGCOMM ’97,
pages 25–36, September 1997.

