
Longitude: Centralized Privacy-Preserving
Computation of Users’ Proximity

Sergio Mascetti, Claudio Bettini, and Dario Freni

Università degli Studi di Milano
DICo - EveryWare Lab

Abstract. A “friend finder” is a Location Based Service (LBS) that
informs users about the presence of participants in a geographical area.
In particular, one of the functionalities of this kind of application, re-
veals the users that are in proximity. Several implementations of the
friend finder service already exist but, to the best of our knowledge,
none of them provides a satisfactory technique to protect users’ privacy.
While several techniques have been proposed to protect users’ privacy
for other types of spatial queries, these techniques are not appropriate
for range queries over moving objects, like those used in friend find-
ers. Solutions based on cryptography in decentralized architectures have
been proposed, but we show that a centralized service has several advan-
tages in terms of communication costs, in addition to support current
business models. In this paper, we propose a privacy-aware centralized
solution based on an efficient three-party secure computation protocol,
named Longitude. The protocol allows a user to know if any of her con-
tacts is close-by without revealing any location information to the service
provider. The protocol also ensures that user-defined minimum privacy
requirements with respect to the location information revealed to other
buddies are satisfied. Finally, we present an extensive experimental work
that shows the applicability of the proposed technique and the advan-
tages over alternative proposals.

1 Introduction

Location-aware social networks are social network applications in which the geo-
graphical position of participants can be used to enable new services. The ability
to access social network applications through mobile devices and the availability
of precise positioning technologies are likely to make this new generation of so-
cial networks very popular. As in many social networks, each user is part of one
or more groups of users, called friends or buddies. Among the enabled services,
proximity services alert a user when one of her buddies is in the vicinity, possi-
bly enacting other activities like the visualization on a map of the approximate
position, or starting a communication session. These services, often called friend
finder, are currently available on the Internet, with specific client-side software
or plugin to be installed on mobile devices1. From a data management point
1 Examples are Google Latitude, Loopt, iPoki.

of view, a proximity service involves the computation of a sequence of range
queries over a set of moving entities issued by a moving user, where the range is
a distance threshold value decided by the user.

Currently available services are based on a centralized architecture in which
location updates are acquired from mobile devices2 by a location server in the
service provider (SP) infrastructure; proximity is computed based on the ac-
quired locations. These services are not currently offered by mobile phone oper-
ators, that usually have approximate location information about their users from
the network infrastructure. Indeed, in this paper we assume that the SP is an
untrusted entity that has no location information about users except the one ac-
quired through the service itself. We also consider “proximity” a user-dependent
concept: User A defines a distance threshold δA, and considers any buddy B as
being in proximity if the following condition holds:

dist(loc(A), loc(B)) ≤ δA (1)

where dist(loc(A), loc(B)) denotes the Euclidean distance between the reported
locations of A and B. Optimization strategies for location updates and proximity
computations have been proposed [1], but they are not the focus of this paper.

The problem we are considering is to offer such a service, in an analogous
centralized architecture, while providing formal guarantees to each user about
her location privacy. The launch of friend finder services on the Internet has
indeed generated a lot of concerns by the potential users about the release of
precise location data, that in current systems can be easily associated with the
user identities, as demonstrated by privacy research in LBS [2, 4]. There are
actually two different concerns: the first is related to the location data disclosed
to the SP. Indeed, many users do not have complete trust in the SP, and they
are also concerned about their location data being possibly accessed later on
SP data stores by untrusted parties. Hence, the first privacy requirement we
aim to satisfy is not to reveal any location information to the SP. The second
concern regards the location data disclosed to the buddies: a user may wish
not to provide the exact location to her buddies, although she may be willing
to reveal if she is in proximity. In general, the level of location privacy can be
represented by the uncertainty that an external entity has about the position of
the user, and this uncertainty can be formally represented as a geographic area in
which no point can be ruled out as a possible position of the user. In principle,
each user should be able to express her privacy preferences by specifying for
each other user (or class of users perceived as adversaries) a partition of the
geographical space defining the minimal uncertainty regions that she wants to
be guaranteed. For example, Alice specifies that Bob should never be able to
find out the specific building where Alice is within the campus, i.e., the entire
campus area is a minimal uncertainty region. Current services have very limited
support to fine tune the location privacy with respect to buddies.

2 While a variety of positioning technologies and communication infrastructure can be
used, here we assume GPS-enabled devices with always on 3G data connections.

Considering the related research literature, the available privacy preserv-
ing solutions for location based services are not straightforwardly applicable to
this problem, since they are either focused on guaranteeing the anonymity of
requests or limited to k-NN (Nearest Neighbor) queries or range queries over
static resources. At the time of writing, we are aware of only a few proposals for
privacy-aware proximity detection [6, 7, 5].

The benefits and vulnerabilities of applying distance preserving transforma-
tions have been investigated in privacy preserving data mining [3]. In the specific
topic of privacy-aware proximity services, distance preserving transformations
have been used to hide the user positions to the SP [6]. However, this specific
solution seems to be subject to vulnerabilities, since the SP acquires information
on the exact distance between two buddies and hence the SP can exclude some
places as their possible locations. On the contrary, Longitude does not preserve
the exact distance but, instead, it preserves what we call modular distance that
prevents the disclosure of any location information to the SP.

The release of location information to the SP is also avoided in the three
protocols proposed in [7]. They are based on a two-party secure computation
exploiting public key cryptography. The solutions suggest a decentralized archi-
tecture, and each user does have to contact every buddy each time she needs
to know which ones are in proximity; this can result in high communication
costs for large number of buddies. In our approach we take advantage of the
presence of the SP to significantly reduce the communication costs of a user. An
experimental comparison in terms of service precision and communication cost
with the algorithm named Pierre3 is shown in Section 4. An important concep-
tual difference from both of these papers, is that we more formally consider the
privacy with respect to buddies, through the definition and enforcement of user-
defined minimal uncertainty regions. In their approach, the location information
revealed to buddies only depends on the proximity threshold used in the queries,
while in our case it also depends on the minimal uncertainty region defined by
each user. This leads to two advantages: an explicit privacy guarantee of the
protocol regarding buddies, and a better quality of service as it will be clearer
from the details of the protocol.

Finally, in our previous work on this topic [5] we presented an obfuscation-
based solution in which the SP is allowed to acquire user location information,
but only limited to a user-defined precision. The SP-Filtering procedure pro-
posed in [5] provides an approximate answer to the proximity problem exploiting
spatial granularities, and may also be used as a pre-processing step of Longitude,
as well as of the algorithms in [7].

Longitude is based on a three-party secure computation involving only com-
munication between each buddy and the server. Each time a user location is sent
to the SP, it is first generalized to a two-dimensional area A whose dimension
depends on the user privacy requirement with respect to buddies. Our solution
considers a mapping from the two-dimensional space in which users move into

3 This has been selected since it is the algorithm implemented by the authors in the
NearbyFriend service.

a toroidal space. A solid transformation is applied to the projection of A in the
toroidal space and the result is then sent to the SP. Each user shares a (possibly
different) secret with each of her buddies that determines the solid transforma-
tion. The SP computes proximity in the toroidal space and communicates the
result to the participating buddies, which can then compute the proximity in the
two-dimensional space. In order to avoid correlations in time, the above trans-
formation changes at each run. The knowledge of the distance in the toroidal
space does not disclose to the SP any location information about the buddies.

The contributions of this paper can be summarized as follows:

– We design a protocol enabling a service to compute users’ proximity in a
centralized architecture, without the service provider acquiring any location
information;

– We allow each user to specify minimum privacy requirements with respect
to the location data released to other buddies, and show the correctness of
the protocol with respect to these privacy requirements;

– We experimentally evaluate precision and performance of the proposed pro-
tocol by using a realistic simulation of user movements. We also experi-
mentally compare our solution with the only available implementation of a
privacy-preserving friend finder.

The main goal of this paper is to illustrate an innovative technique for
privacy-aware proximity computation and not to illustrate all the technical de-
tails of the protocol. Despite extensions can be applied to deal with more involved
scenarios, the basic protocol we describe does not assume particularly powerful
adversaries. For example, our aim is not to contrast complex cryptanalytic at-
tacks, and we assume that potential adversaries could only acquire the messages
exchanged as part of the protocol, without a-priori knowledge about particular
distributions of individuals or spatio-temporal trajectories.

The rest of the paper is organized as follows. In Section 2 we illustrate the
Longitude protocol, and in Section 3 its formal properties are analyzed. In Sec-
tion 4 we report experimental results, and in Section 5 we conclude the paper
pointing out some interesting future work.

2 Privacy Preserving Proximity Computation

In this section we first describe how buddies can specify their privacy require-
ments, and then illustrate the Longitude protocol.

2.1 Minimum Privacy Requirements

We assume that each user A can specify her minimum privacy requirements with
respect to other buddies by defining a particular grid GA partitioning the spatial
domain, such that each cell cA of the grid represents a minimum uncertainty
region for A. Cells can either be shaped as squares or rectangles, and all the
cells within a grid are required to have the same shape and the same dimension.

We conservatively assume that the minimum privacy requirement defined by a
user is public and hence that it is possibly known by the SP or by the other
buddies.

The two extreme cases in which a user requires no privacy protection, and
maximum privacy protection can be naturally modeled. For example, if a user
A does not want her privacy to be protected with respect to other buddies (in
this case A can tolerate other buddies to know her location at the maximum
available precision) then A will set GA to the finest grid (the one having as cells
the basic elements, or pixels, of the spatial domain). Similarly, if A wants to
impose the maximum privacy protection, then A sets GA to the grid having a
single cell covering the entire spatial domain.

The first privacy requirement identified in Section 1 regarding the information
released to the SP can be formalized by considering this maximum protection
grid as a protection against the SP. This requirement would be clearly violated
if locations are sent to the SP; but the second requirement, regarding buddies
would be easily violated as well. Indeed, suppose A has a buddy B who sets
a value of δB in a way such that the circular region of radius δB (centered at
B’s location) is properly contained in a cell of GA. Then, if A happens to enter
that circular region, the SP will notify B, and A’s minimum privacy requirement
would be violated.

2.2 The Longitude Protocol

For the sake of simplicity, the protocol will be illustrated considering a user A
issuing a proximity request with respect to a single buddy B, but the extension
to multiple buddies is trivial, and the experiments in Section 4 consider a large
number of buddies. The main steps of the Longitude protocol are the following:
each time A wants to check whetherB is in proximity, A runs the encryptLocation
procedure to encrypt the cell cA of GA where A is located and sends it to the
SP. Referring to the intuitive protocol description given in introduction, the
encryption is equivalent to project cA in the toroidal space, and then apply the
solid transformation. Upon receiving the request, the SP sends a message to B
requiring a location update. B runs the encryptLocation procedure to encrypt
the cell cB of GB where B is located and sends the result to the SP. Note that
B uses the same key as A, generated from their common secret. The encryption
function is designed in such a way that the SP, upon receiving a request from
A and an answer from B with cells encrypted with the same key, can compute,
through the computeProximity procedure, the distance in the toroidal space,
which we call modular distance. The SP compares the modular distance with the
proximity threshold and sends the result as a boolean value to the requester A
that computes whether B is in proximity or not through the procedure getResult.

The encryption function is such that, if A sends her location cell to the SP
using the same encryption key in different instants and while being in different
cells, and the SP is aware of this, he can possibly learn some information about
the movement of A, and hence about her location. For this reason, A changes
the encryption key each time she communicates her location cell to the SP.

The following is a simple protocol to achieve this, but many optimizations and
different solutions can be devised without affecting the main results of this paper.
We assume A and B share a secret K; the actual key used to encrypt the location
information is composed by a pair of integers generated with a pseudo-random
number generator (PRNG) with seed K. An integer i, locally stored by A, is
incremented at each proximity request, and it is used to select the generated
keys with index 2i and 2i+ 1. Its value is also included in the proximity request,
since the locations of other buddies will need to be encrypted with a key selected
according to i.

2.3 The encryptLocation Procedure

The procedure is schematically illustrated as Procedure 1. It is used to issue
requests for proximity as well as to send responses to location requests by the
SP. The inputs are the location l of the user running the procedure, the grid G
chosen to protect the privacy of the user, the seed K, the parameter lastIndex
that takes the value of i (i.e., the index of the last key generated by the PRNG
by the user running the procedure), and the optional parameter newIndex that
is only defined when the procedure is used to respond to a proximity request
issued by another buddy; In this case, the value of newIndex is the index of the
key used by the issuing buddy. If the procedure is used to issue a request for
proximity, the index is incremented. If the procedure is used to send a response
to a location request, it first checks if the index used by the buddy issuing
the request has ever been used. If this is the case, using the same index again
could compromise the user’s privacy and the procedure simply terminates, hence
ignoring the request incoming from the SP. Otherwise, the key with this index
is generated with the PRNG.

The next three steps consist in defining the encryption key ki as the pair
of integers kx and ky generated with the PRNG. Then, the cell c in which the
user is located is encrypted using the function E with parameter ki. Finally, the
result is sent to the SP together with the value of i that is also stored on the
client for the next run of the procedure.

Before describing the encryption function, we first introduce some notation.
In our approach we assume that users are moving in a two-dimensional space
W which consists in a rectangular grid of sizex × sizey points. For each point
p ∈ W , we denote with px and py the projection of p on the x and y axis,
respectively.

The encryption function E we propose is based on a “modular translation”.
The idea is to apply, to each point of c, a translation followed by a modulus
operation in such a way that no point is moved outside W . For example, if
a point is moved by the translation right above the top boundary of W , the
modulus operation moves it right above the bottom boundary of W and hence
still within W (see Figure 1(a)).

The translation shift value is represented by α = 〈αx, αy〉 which is computed
from the key ki = 〈kx, ky〉 as follows: αx = kx mod sizex, αy = ky mod sizey.

Procedure 1 encryptLocation
Input: a location l, a grid G, the seed K, the value lastIndex, the optional value
newIndex.
Procedure:

1: if (issuing request for proximity) then
2: i = lastIndex+ 1
3: else {responding to a proximity request}
4: if (newIndex ≤ lastIndex) then return
5: i = newIndex
6: end if
7: kx is the 2i-th number generated by the PRNG with seed K
8: ky is the (2i+ 1)-th number generated by the PRNG with seed K
9: ki = 〈kx, ky〉

10: c is the cell of G that contains the location l
11: c′ = Eki(c)
12: send 〈i, c′〉 to the SP.
13: store i {for the next execution}

The encryption function Eki
is then specified as:

Eki(cA) =
⋃

p∈cA

〈(px + αx)mod sizex, (py + αy)mod sizey〉

In practice, c′A = Eki(cA) is computed by applying a transformation to each
point of cA. On the x axis, the transformation consists in shifting the point by
αx and then in applying the module sizex. On the y axis the transformation is
analogous. It is worth noting that, depending on α and cA, Eki

(cA) could be
a set of contiguous points (see Figure 1(b)) as well as a set of non-contiguous
points (see Figure 1(c))

(a) Translation of a
point

(b) Contiguous points (c) Non-contiguous
points

Fig. 1. Examples of modular translations of a point and of a cell. Eki(c) represented
in gray.

2.4 The computeProximity Procedure

The computeProximity procedure (see Procedure 2) is run by the SP when it
receives two locations encrypted with the same key.

Procedure 2 computeProximity
Input: 〈i, c′A〉 received from A, which issued a proximity request, and 〈i, c′B〉 received
from B, which is responding to the request.
Procedure:

1: dist = mmd(c′A, c
′
B) {minimum modular distance}

2: send the boolean value (dist ≤ δA) to A

The first step of the procedure consists in computing the “minimum modular
distance” between c′A and c′B as follows:

mmd(c′A, c
′
B) = min

p∈c′
A,p′∈c′

B

modDist(p, p′)

where modDist is the modular distance between p and p′. Intuitively, the mod-
ular distance is the Euclidean distance computed as if W were “circular” on
both axis. For example, consider two points p and p′ (see Figure 2(a)), with the
same horizontal position such that p is close to the top boundary of W and p′ is
close to the bottom boundary. The Euclidean distance of the two points is about
sizey, while the modular distance is close to zero. The same holds for the other
axis (see Figure 2(b)) and also for the combination of the two axis (see Figure
2(c)). Formally, given two points p and p′, ∆x = |px − p′x| and ∆y = |py − p′y|,
the modular distance is defined as:

modDist(p, p′) = min(
√

(∆x)2 + (∆y)2,
√

(sizex −∆x)2 + (∆y)2,√
(∆x)2 + (sizey −∆y)2,

√
(sizex −∆x)2 + (sizey −∆y)2)

The final step of computeProximity consists in comparing the minimum mod-
ular distance between c′A and c′B with δA, the proximity threshold of A. The
boolean value of this comparison is sent to A.

2.5 The getResult Procedure

In the getResult procedure (see Procedure 3) user A, which is running the proce-
dure, decides whether B is in proximity or not. This result is obtained considering
the boolean value received from the SP and the relative position of the cell cA,
where A is located, with respect to a region called “certainty region” of A. This
region, denoted by CRA, is the set of points of W that are farther than δA from
the boundaries of W (see Figure 3).

The correctness of the result computed by the getResult, as well as the ap-
proximation introduced by the protocol and its safety are discussed in Section
3.

(a) On the vertical axis (b) On the horizontal
axis

(c) On both axis

Fig. 2. Examples of modular distance

Fig. 3. Example of the certainty region CRA

3 Analysis of the Longitude Protocol

In this section we first discuss the safety of the Longitude protocol with respect
to privacy protection and then we analyze its correctness and the approximation
it introduces. We first introduce a formal proposition that will be used in the
protocol analysis.

Proposition 1. Given two cells cA and cB and a key ki, the encryption function
E is such that:

mmd(cA, cB) = mmd(Eki
(cA), Eki

(cB))

Proposition 1 intuitively states that the encryption function E presented in
Section 2.3 does not alter the minimum modular distance between cA and cB .

3.1 Safety

We first analyze the privacy that the Longitude protocol provides to a user with
respect to another buddy and with respect to the SP under the assumptions that
the SP and the buddies do not collude. Then, we discuss the location information
that is disclosed in case collusion occurs.

During the execution of the protocol the only message that A receives con-
taining information related to the location of a buddy B is the boolean value
received from the SP as a response to A’s request for the proximity of B. When

Procedure 3 getResult
Input: The boolean value res received from the SP, the cell c where the user running
the procedure is located, the certainty region CR of the user running the protocol, the
user B which responded to the proximity request.
Procedure:

1: if (res = True AND c ⊆ CR) then
2: B is in proximity
3: else
4: B is not in proximity
5: end if

A receives True from the SP (i.e., mmd(c′A, c
′
B) ≤ δA), due to Proposition 1,

A learns that B is located in a cell cB of GB such that mmd(cA, cB) ≤ δA.
Since A knows cA and GB , she can compute the set of cells where B is possibly
located. Formally, A cannot exclude B is located in any cell c of GB such that
mmd(cA, c) ≤ δA. Analogously, when A receives False from the SP A cannot ex-
clude B is located in any cell c of GB such that mmd(cA, c) > δA. Consequently,
the minimum privacy requirement of B with respect to A are guaranteed.

For what concerns the privacy protection with respect to the SP, it is easily
seen from the protocol that the SP only learns the minimum modular distance
between c′A and c′B and hence, due to Proposition 1, the minimum modular dis-
tance between cA and cB . Since this knowledge does not disclose any information
about the location of A and B, we can conclude that Longitude guarantees that
the SP does not acquire any information about the location of the buddies.

We now turn to consider collusion. If a user B considers all buddies as un-
trusted, he will probably use the same (coarse) grid for everybody. In this case,
even if buddies collude, the minimum privacy requirements are guaranteed. How-
ever, if user B has different degrees of trust on her buddies (hence using different
grids), and these buddies collude, the location of B could be discovered with high
precision by intersecting the location information about B acquired by the col-
luding buddies. This can be easily avoided by imposing the following constraint
on the relationship among the spatial grids used as privacy preferences: cells
from different grids never partially overlap. In this case, the location of B is
never disclosed with a precision higher than the finest grid among those defined
for the colluding buddies. In other words, the minimum privacy requirement
defined for the most trusted buddy among the colluding ones is guaranteed.
Collusion with the SP is not likely in the service model we are considering, since
the SP is considered untrusted, while a certain degree of trust is assumed among
the participating buddies that indeed share a secret. In the worst case in which
the trust model is broken by a buddy A of B colluding with the SP, the SP
can obtain and share with A the cell cB where B is located each time B sends
this information encrypted with the secret seed K shared with A. Note that the
minimum privacy requirement with respect to A is guaranteed, and that the SP
can only obtain the same location information about B available to A.

3.2 Service Precision

We now discuss the correctness of Longitude in terms of the service precision it
provides. If A receives False from the SP then, according to the computeProx-
imity procedure, mmd(c′A, c

′
B) > δA. Due to Proposition 1, this means that

mmd(cA, cB) > δA. Since mmd(cA, cB) is a lower bound to the real distance
between A and B, it is guaranteed that B is not in proximity of A. Vice versa,
if A receives True, it is not possible for A to conclude that B is in proximity,
since two forms of approximation are introduced. We now explain the reason for
these approximations, and our choice for the conditions under which the protocol
declares B’s proximity; we will show in Section 4 through extensive experiments
the impact these approximations have in practice.

One form of approximation, which we call the modular-shift error is due to
the fact that the encryption function does not preserve the distance. Indeed, as
shown in Figure 4(a), it can happen that, while c′A is close to c′B , cA is far from cB .
This would imply that, when the SP sends True to A (i.e., mmd(c′A, c

′
B) ≤ δA)

A does not actually know whether B is in proximity or not. However, it is easily
seen that when cA is in the certainty region CRA, mmd(cA, cB) is equal to the
minimum distance between cA and cB . In this case A can exclude the modular-
shift error. Consequently, A knows that minDist(cA, cB) ≤ δA and considers B
as in proximity whenever True is returned by the SP, and cA is contained in
CRA (lines 1-2 of the getResult procedure). If True is returned but cA is not
contained in CRA, then A cannot conclude that B is in proximity. As we shall
see in our experimental results, this case is very rare and, as a practical and
efficient solution, procedure getResult returns in this particular case B as not
being in proximity. Clearly, this leads to some possible false negative responses.
A technical solution to avoid this approximation at some extra cost is to apply
a P2P protocol between A and B, whenever this case arises [5].

(a) modular-shift error (b) Cell approximation

Fig. 4. Two forms of approximation introduced by the Longitude Protocol.

The second form of approximation, which we call cell approximation, is due
to the fact that B may not be in proximity of A even if minDist(cA, cB) ≤ δA.

Figure 4(b) shows an example of this situation. The consequence of cell approx-
imation is that, even if A knows that minDist(cA, cB) ≤ δA, she cannot be sure
whether dist(loc(A), loc(B)) ≤ δA. Nevertheless, in this case A assumes B to
be in proximity. This can lead to some false positive cases. In our experimen-
tal evaluation we show that for many practically useful grids GA and GB , cell
approximation only minimally affects quality of service.

4 Experimental Evaluation

We performed an extensive experimental evaluation of our solution and we com-
pared it with the Pierre protocol proposed in [7]. In our tests we evaluated the
service precision, measured as the percentage of correct answers given by the
protocol, the privacy, measured in terms of the size of the region in which an
adversary cannot exclude any of the points as a possible location of a user, and
the system costs, in terms of communication and computational costs.

Experimental setting. For the tests, we used an artificial dataset of user move-
ments which was obtained using the MilanoByNight simulation4. We carefully
tuned the simulator in order to reflect a typical deployment scenario of a friend
finder service, i.e. 100, 000 potential users of this service moving from their homes
to entertainment places on the road network of Milan during a weekend night.
All the test results shown in this section are obtained as average values com-
puted over 1, 000 users, each of them using the service during the 4 hours of the
simulation. Locations are sampled every 2 minutes. The total size of the map
is 215 km2 and the average density is 465 users/km2. Our techniques were im-
plemented in Java, and tests were performed on a 64-bit Windows Server 2003
machine with 2, 4Ghz Intel Core 2 Quad processor and 4GB of shared RAM.

To represent different levels of privacy, we considered eleven different levels
of grids. A grid of level 0 consists of 1024×1024 cells having a square shape with
an edge of about 15 meters. The grid covers the whole map. Grids of level l are
obtained by grouping together 2l cells of the level 0 grid on each dimension. For
example, the grids of level 2 are obtained by grouping together 4× 4 cells of the
level 0 grid, starting from the cell positioned at the lower left corner. The grid
of level 10 contains only one cell covering the entire map.

For the sake of simplicity, in our tests we assume that all the users share
the same parameters. In particular, in each test we fix a single value of δ (the
proximity threshold) and GA for all the users. Table 1 shows the most relevant
parameters of our experimental evaluation. Default values are denoted in bold.

Evaluation of service precision. Figure 5(a) shows the service precision for dif-
ferent levels of GA using our protocol. It can be observed that for small values
of GA the percentage of correct answers is close to 100%. In particular, using
our parameters, the service precision is always above 95% when the size of a cell
of GA is less than 1 km2.
4 http://everywarelab.dico.unimi.it/lbs-datasim

Table 1. Parameter values

Parameter Values

δ 125m, 250m, 500m, 1000m

Level of GA grid 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Average number 10, 20, 30, 40, 50,
of buddies 60, 70, 80, 90, 100

95

96

97

98

99

100

0 1 2 3 4 5 6

P
re

ci
si

o
n

(%
)

Level of GA

(a) Percentage of correct answers

80

90

100

400 800 1200 1600 2000

P
re

ci
si

o
n

(%
)

Proximity threshold (m)

Longitude
Pierre

(b) Service precision with differ-
ent δ

Fig. 5. Service precision

In Figure 5(b) we compare the service precision of the Pierre protocol and
Longitude for different proximity thresholds. The idea of the Pierre protocol is
that the plane is divided into a grid of cells, where the edge of a cell is equal to
the proximity threshold δA requested by the issuing user A. After a two-party
secure computation between A and another user B, A obtains to know whether
B is located in the same grid cell or in one of the adjacent ones. The Pierre
protocol is subject to a form of approximation similar to the cell approximation.
However, in the case of the Pierre protocol, the approximation depends on the
value of δA. Consequently, as shown in Figure 5(b), the precision of the Pierre
protocol decreases for large values of the proximity threshold. In contrast, the
precision of the Longitude protocol is not significantly affected by the proximity
threshold.

Evaluation of privacy. Although the minimum privacy requirement is always
guaranteed, using Longitude, it is desirable for a user to obtain as much privacy
as possible. We measure the privacy as the size of the uncertainty region, i.e.
the size of the region in which an adversary cannot exclude any of the points as
possible location of a user. The larger this region is, the better. Figure 6(a) shows
the privacy obtained by a user A for different levels of GA with respect to another
user B when the SP notifies B that A is in proximity. We can observe that
Longitude always achieves more privacy than the minimum required. Even when
using a GA equal to zero, which is the minimum possible privacy requirement, the
average area of uncertainty is around 0.85 km2. This is approximately the area
of the circle centered in B’s location and having radius equal to the proximity
threshold.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5

A
re

a
(k

m
2
)

Level of GA grid

Longitude
min. priv. requirement

(a) Evaluation of privacy

0

0.05

0.1

0.15

0.2

10 20 30 40 50 60 70 80 90 100

co
m

p
u
ta

ti
o
n

ti
m

e
(m

s)

number of buddies

(b) Client-side computation time

0

10000

20000

30000

40000

50000

60000

10 20 30 40 50 60 70 80 90 100

#
o
f

m
es

sa
g
es
×

u
se

r

number of buddies

Longitude
Pierre

(c) Average number of sent/received
messages

Fig. 6. Evaluation of privacy and of performance

Evaluation of system costs. To evaluate the computational costs, we analyze
the computation time needed when a user updates her location, both on the
client and the server sides. The main parameter affecting this cost is the number
of buddies. In Figure 6(b) we can observe that, as expected, the computation
time grows linearly with the number of buddies. It should be observed that the
computation time is around 0.1 milliseconds with 100 buddies on the desktop
machine we used in our tests. We are confident that the computational cost
remains sustainable also on high-end mobile devices.

We also measured the server-side computation time and we observed that it
grows linearly with the number of buddies and that, even when a user has 100
buddies, the server side computation time is less than 0.3ms.

The metrics we considered to evaluate the communication costs is the total
number of messages exchanged by each user (see Figure 6(c)). It can be observed
that the number of messages sent by the Pierre and the Longitude protocols
grows linearly with the number of buddies. However, the number of messages
required by the Pierre protocol is almost double with respect to Longitude. This
is due to the fact that, given n the number of buddies, 2n messages are needed
to a user when issuing a proximity query using Pierre, and other 2n messages
are needed to that user to reply to the proximity requests issued by all the
buddies. On the contrary, when using Longitude, only 2 messages are needed by

a user when issuing a proximity query, and other 2n messages are still needed to
communicate the encrypted locations requested by the SP for all the buddies.

5 Conclusion and Future Work

We believe that the Longitude protocol presented and validated in this paper
can be a technical solution for users that would like to enjoy proximity services,
but do not necessarily trust the service providers or the security of their infras-
tructure, as well as for those that want to have more control on the information
released to buddies.

The solution proposed in this paper is based on a centralized architecture
that enables optimizations that are not possible with a P2P solution. Some
optimizations have already been proposed, in centralized architecture, to enhance
the system performance at the cost of revealing some location information to the
SP (e.g., the SP-Filtering protocol, presented in [5]). The centralized architecture
can be also exploited to provide other forms of optimization that do not reveal
any location information to the SP. One form of optimization is based of the
following idea: if the users in a set form a clique (i.e., for each pair of users in the
set, the two users are buddies), then a single “group key” can be used, instead of a
key for each pair of buddies. This can significantly reduce the number of locations
that need to be sent to the SP, hence reducing computation and communication
cost. We leave as a future work the evaluation of the performance improvement
obtained with this optimization.

Several other issues deserve further investigation. The specification of privacy
preferences in terms of spatial granularities requires a study of a user interface
that should be at the same time intuitive and effective in graphically showing
the uncertainty regions. From a technical point of view, several details need a
deeper investigation, including the choice of an adequate PRNG, the refinement
of the protocol to provide protection against sophisticated cryptanalysis, as well
as time constraints on successive runs of the protocol to prevent attacks based on
historical correlation. Another direction we are considering is the extension of our
architecture to a hybrid architecture in which the Longitude protocol is coupled
with P2P algorithms to improve service precision in particular situations.

Acknowledgments

The authors would like to thank the reviewers for their very helpful comments.
This work was partially supported by Italian MIUR under grants PRIN-2007F9437X
and InterLink II04C0EC1D, and by the National Science Foundation under grant
CNS-0716567.

References

1. Arnon Amir, Alon Efrat, Jussi Myllymaki, Lingeshwaran Palaniappan, and Kevin
Wampler. Buddy tracking - efficient proximity detection among mobile friends.
Pervasive and Mobile Computing, 3(5):489–511, 2007.

2. Panos Kalnis, Gabriel Ghinita, Kyriakos Mouratidis, and Dimitris Papadias. Pre-
venting location-based identity inference in anonymous spatial queries. IEEE Trans-
actions on Knowledge and Data Engineering, 19(12):1719–1733, 2007.

3. Kun Liu, Chris Giannella, and Hillol Kargupta. An attacker’s view of distance pre-
serving maps for privacy preserving data mining. In Proc. of 10th European Con-
ference on Principles and Practice of Knowledge Discovery in Databases (PKDD),
volume LNCS 4213, pages 297–308. Springer, 2006.

4. Sergio Mascetti, Claudio Bettini, Dario Freni, and X. Sean Wang. Spatial general-
ization algorithms for LBS privacy preservation. Journal of Location Based Services,
2(1):179–207, 2008.

5. Sergio Mascetti, Claudio Bettini, Dario Freni, X. Sean Wang, and Sushil Jajodia.
Privacy-aware proximity based services. In Proc. of the 10th International Confer-
ence on Mobile Data Management, pages 31–40. IEEE Computer Society, 2009.

6. Peter Ruppel, Georg Treu, Axel Küpper, and Claudia Linnhoff-Popien. Anonymous
user tracking for location-based community services. In Proc. of the Second Inter-
national Workshop on Location- and Context-Awareness, volume LNCS 3987, pages
116–133. Springer, 2006.

7. Ge Zhong, Ian Goldberg, and Urs Hengartner. Louis, lester and pierre: Three pro-
tocols for location privacy. In Privacy Enhancing Technologies, volume LNCS 4776,
pages 62–76. Springer, 2007.

