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Nonminimum-phase zeros, that is, closed-right-half-plane (CRHP) zeros, affect both the open-loop

and closed-loop behavior of continuous-time linear systems in undesirable ways [1]. For example, an asymp-

totically stable linear system with an odd number of positive zeros experiences initial undershoot to a step

input (see “Initial Undershoot”). Moreover, under the rules of root locus, zeros in the open-right-half-plane

(ORHP) attract closed-loop poles, which limits the controller gain and thus the performance of the closed-

loop system. In LQG theory, closed-loop poles are attracted to the reflected locations of the open-loop

ORHP zeros in the high-control-authority (that is, cheap-control) limit, thus constraining the achievable

closed-loop bandwidth [2, p. 289].

Given the critical role of nonminimum-phase zeros, it is useful to identify physical characteristics

that give rise to them. Although spatial separation between sensors and actuators is often postulated as

a source of nonminimum-phase zeros, analysis of the transfer functions between separated masses in a

serially connected structure shows that this is not necessarily the case [3]. On the other hand, noncolocation

in rotational motion typically gives rise to nonminimum-phase zeros [4].
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Aside from zero locations, the number of zeros determines the relative degree of the system, which

impacts the asymptotic, that is, high-frequency, phase of the transfer function. The relative degree of an

asymptotically stable transfer function also plays a role in the initial slope of the step response. This rela-

tionship is apparent from the initial value theorem applied to the derivative of the output. When the initial

slope of the output is zero, higher order derivatives of the initial response, which determine the initial cur-

vature of the output, can be evaluated to detect the possibility of initial undershoot. The sign of the first

nonzero derivative of the output relative to the sign of the dc gain determines whether or not the step re-

sponse exhibits initial undershoot. The number of derivatives that must be evaluated in order to determine

the sign of the first nonzero derivative is equal to the relative degree of the system.

In aircraft dynamics, the IACR of an aircraft is the point on the aircraft that has zero instantaneous

acceleration. For an aircraft that is perturbed from steady horizontal flight by an elevator step deflection, the

IACR is the point at which the elevator-to-vertical-velocity transfer function and the elevator-to-horizontal-

velocity transfer function each have a zero that vanishes. These vanishing zeros play an important role

in the aircraft’s instantaneous response. As shown in [5, p. 314], the IACR for an F-16 is about 6 feet

forward of the center of mass. As an accelerometer is moved forward from the tail to the IACR, a real

nonminimum-phase zero moves toward ∞, where it vanishes. As the accelerometer moves past the IACR,

the zero “reappears” at −∞ and moves toward zero as a minimum-phase zero. Thus, an accelerometer

measurement at each point along the aircraft between the tail and the IACR exhibits initial undershoot. This

phenomenon plays a role in the literature on aircraft dynamics and control [5]-[14].

In the present article, we demonstrate the relationship between vanishing zeros and the response of

the aircraft at the IACR. The IACR of a rigid body is related to, but distinct from, the center of rotation.

See “Center of Rotation and Center of Percussion”, which discusses the motion of a bar-like rigid body in

response to an impact. A bar-like rigid body possesses a point, called the center of percussion, with the

property that an impulsive force at this location leads to identically zero translational velocity at another

point on the body, called the center of rotation. Another related notion is the instantaneous velocity center

of rotation (IVCR), which is discussed in “Instantaneous Velocity Center of Rotation.”
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The goal of this article is to explain and demonstrate the relationship between vanishing zeros and the

response of the aircraft at its IACR. To demonstrate this relationship, we consider both the vertical velocity

response and the horizontal velocity response of the aircraft to a step elevator deflection. In particular, we

show that, at the IACR, the relative degree of the linearized transfer function from elevator deflection to

vertical velocity (and thus to altitude) increases by at least 1, and the relative degree of the linearized trans-

fer function from elevator deflection to horizontal velocity increases by at least 1. Moreover, we provide

conditions under which the zeros that vanish at the IACR are nonminimum phase. Furthermore, we charac-

terize the relationship between these vanishing zeros and the potential for initial undershoot in the aircraft’s

step response. For a business jet example, we show that each point on the aircraft that is aft of the IACR

experiences initial undershoot in both vertical and horizontal velocity, whereas each point forward of the

IACR does not experience initial velocity undershoot in either the vertical or horizontal directions.

To provide a reasonably self-contained development of the relevant transfer functions, we begin with

the nonlinear equations of motion, show how these equations incorporate aerodynamic effects in terms of

stability derivatives, and then arrive at the transfer functions for the linearized motion. This development

provides an introduction to aircraft dynamics that may be useful to readers who have not had the benefit of

a course on flight dynamics. For further details on aircraft dynamics, see [5, 16, 17].

Aircraft Kinematics

The Earth frame FE, whose orthogonal axes are labeled ı̂E, ȷ̂E, and k̂E, is assumed to be an inertial

frame, that is, a frame with respect to which Newton’s second law is valid [18]. A hat denotes a dimension-

less unit-length physical vector. The origin OE of the Earth frame is any convenient point on the Earth. The

axes ı̂E and ȷ̂E are horizontal, while the axis k̂E points downward; we assume the Earth is flat. The aircraft

frame FAC, whose axes are labeled ı̂AC, ȷ̂AC, is fixed to the aircraft. The center of mass and frame vectors

ı̂AC and k̂AC are shown in Figure 1. The aircraft is assumed to be a three-dimensional rigid body.

In longitudinal flight, the aircraft moves in an inertially nonrotating vertical plane by translating

along ı̂AC and k̂AC and by rotating about ȷ̂AC. The direction of ȷ̂AC is thus fixed with respect to FE. For
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convenience, we assume that ȷ̂AC = ȷ̂E. The velocity and acceleration of the aircraft along ȷ̂AC are thus

identically zero for longitudinal flight, as are the roll and yaw components of the angular velocity of the

aircraft relative to the Earth frame. The sign of the pitch angle Θ, which is the angle from ı̂E to ı̂AC, is

determined by the right hand rule with the thumb pointing along ȷ̂AC and with the fingers curled around

ȷ̂AC. For example, the pitch angle Θ, shown in Figure 1, is negative.

Let p denote a point in the ı̂AC-k̂AC plane. The position of p relative to OE can be written as

⇀
r p/OE

= rphı̂E + rpvk̂E, (1)

where a harpoon denotes a physical vector. The position of p relative to c is given by

⇀
r p/c =

⇀
r p/OAC

+
⇀
rOAC/c =

⇀
r p/OAC

− ⇀
r c/OAC

, (2)

which can be written as

⇀
r p/c = ℓı̂AC + ηk̂AC,

where ℓ > 0 indicates that p is forward of c, that is, toward the nose, and ℓ < 0 denotes that p is aft of c, that

is, toward the tail. Resolving
⇀
r p/c in FAC yields

⇀
r p/c

∣
∣
∣
AC

=








ℓ

0

η







. (3)

The distance between the aircraft center of mass c and the point p is given by

|⇀r p/c| =
√

ℓ2 + η2.

The orientation matrix, that is, the direction cosine matrix, of FAC relative to FE corresponding to

the pitch angle Θ is

OAC/E
△
=








cosΘ 0 − sinΘ

0 1 0

sinΘ 0 cosΘ







.
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Therefore,

OE/AC = O
T
AC/E =








cosΘ 0 sinΘ

0 1 0

− sinΘ 0 cosΘ







. (4)

Hence, using (3) we have

⇀
r p/c

∣
∣
∣
E
= OE/AC

⇀
r p/c

∣
∣
∣
AC

=








ℓ cosΘ + η sinΘ

0

−ℓ sinΘ + η cosΘ







. (5)

Since, in longitudinal flight, the aircraft rotates about ȷ̂AC, the angular velocity of FAC relative to FE

and resolved in FAC is given by

⇀
ωAC/E

∣
∣
∣
AC

=








P

Q

R







=








0

Θ̇

0







. (6)

Note that Q = Θ̇ and that P and R are identically zero. Resolving
⇀
ωAC/E in FE, we have

⇀
ωAC/E

∣
∣
∣
E
= OE/AC

⇀
ωAC/E

∣
∣
∣
AC

=








0

Θ̇

0







. (7)

In order to change the frame with respect to which the physical vector
⇀
x is differentiated, we use the

transport theorem, which is given by

A•
⇀
x =

B•
⇀
x +

⇀
ωB/A × ⇀

x, (8)

where a labeled dot over a physical vector denotes the frame derivative with respect to the indicated frame.

In particular, if
⇀
x = x1ı̂A + x2ȷ̂A + x3k̂A, then

A•
⇀
x= ẋ1ı̂A + ẋ2ȷ̂A + ẋ3k̂A. Hence,

E•
⇀
ωAC/E =

AC•
⇀
ω AC/E +

⇀
ωAC/E × ⇀

ωAC/E =
AC•
⇀
ω AC/E, (9)
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and thus it follows from (6), (7), and (9) that

AC•
⇀
ω AC/E

∣
∣
∣
∣
∣
AC

=
E•
⇀
ωAC/E

∣
∣
∣
∣
∣
E

=
AC•
⇀
ω AC/E

∣
∣
∣
∣
∣
E

=
E•
⇀
ωAC/E

∣
∣
∣
∣
∣
AC

=








0

Θ̈

0







.

Let
⇀
v c/OE/E and

⇀
a c/OE/E denote the velocity and acceleration of c relative to OE with respect to FE,

respectively, and let
⇀
v p/OE/E and

⇀
ap/OE/E denote the velocity and acceleration of p relative to OE with

respect to FE, respectively, that is,

⇀
v c/OE/E

△
=

E•
⇀
r c/OE

,

⇀
a c/OE/E

△
=

E••
⇀
r c/OE

,

and

⇀
v p/OE/E

△
=

E•
⇀
r p/OE

,

⇀
ap/OE/E

△
=

E••
⇀
r p/OE

.

We resolve
⇀
v c/OE/E in FAC as

⇀
v c/OE/E

∣
∣
∣
AC

=








U

V

W







=








U

0

W







, (10)

and note that V is identically zero for longitudinal flight.

Next, it follows from (2) that

⇀
r p/OE

=
⇀
r p/c +

⇀
r c/OE

,

which implies that

⇀
v p/OE/E =

E•
⇀
r p/OE

=
E•
⇀
r p/c +

E•
⇀
r c/OE

=
⇀
v p/c/E +

⇀
v c/OE/E, (11)
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where

⇀
v p/c/E

△
=

E•
⇀
r p/c=

⇀
ωAC/E × ⇀

r p/c. (12)

Next, it follows from (4)–(7) and (10)–(12) that

⇀
v p/OE/E

∣
∣
∣
E

=
⇀
v c/OE/E

∣
∣
∣
E
+
(
⇀
ωAC/E × ⇀

r p/c

)∣
∣
∣
E

=








cosΘ 0 sinΘ

0 1 0

− sinΘ 0 cosΘ















U

0

W







+








0

Θ̇

0







×








ℓ cosΘ + η sinΘ

0

−ℓ sinΘ + η cosΘ








=








vph

0

vpv







,

where

vph
△
= (cosΘ)U + (sinΘ)W − ℓ(sinΘ)Θ̇ + η(cosΘ)Θ̇, (13)

vpv
△
= −(sinΘ)U + (cosΘ)W − ℓ(cosΘ)Θ̇− η(sinΘ)Θ̇. (14)

Next, it follows from (8) and (10) that

⇀
a c/OE/E

∣
∣
∣
AC

=
E•
⇀
v c/OE/E

∣
∣
∣
∣
∣
AC

= (
AC•
⇀
v c/OE/E +

⇀
ωAC/E × ⇀

v c/OE/E)

∣
∣
∣
∣
∣
AC

=








U̇

0

Ẇ







+








0

Θ̇

0







×








U

0

W








=








U̇ + Θ̇W

0

Ẇ − Θ̇U







. (15)
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Differentiating the transport theorem (8) yields

A••
⇀
x =

A•
︷︸︸︷

B•
⇀
x +

A•
⇀
ω B/A ×⇀

x +
⇀
ωB/A×

A•
⇀
x

=
B••
⇀
x +

⇀
ωB/A×

B•
⇀
x +

A•
⇀
ω B/A ×⇀

x +
⇀
ωB/A ×

(
B•
⇀
x +

⇀
ωB/A × ⇀

x

)

=
B••
⇀
x +2

⇀
ωB/A×

B•
⇀
x +

B•
⇀
ω B/A ×⇀

x +
⇀
ωB/A ×

(
⇀
ωB/A × ⇀

x
)

, (16)

which is the double transport theorem. Note that

⇀
ap/OE/E

△
=

E••
⇀
r p/OE

=
E••
⇀
r p/c +

E••
⇀
r c/OE

=
⇀
ap/c/E +

⇀
a c/OE/E, (17)

where

⇀
ap/c/E

△
=

E••
⇀
r p/c . (18)

Now, using (15)–(18), we have

⇀
ap/OE/E

∣
∣
∣
AC

=
⇀
ap/c/E

∣
∣
∣
AC

+
⇀
a c/OE/E

∣
∣
∣
AC

=

(
AC••
⇀
r p/c + 2

⇀
ωAC/E×

AC•
⇀
r p/c +

AC•
⇀
ω AC/E ×⇀

r p/c +
⇀
ωAC/E ×

(
⇀
ωAC/E × ⇀

r p/c

)
)∣
∣
∣
∣
∣
AC

+
⇀
a c/OE/E

∣
∣
∣
AC

=
AC•
⇀
ω AC/E

∣
∣
∣
∣
∣
AC

× ⇀
r p/c

∣
∣
∣
AC

+
⇀
ωAC/E

∣
∣
∣
AC

×
(
⇀
ωAC/E

∣
∣
∣
AC

× ⇀
r p/c

∣
∣
∣
AC

)

+
⇀
a c/OE/E

∣
∣
∣
AC

=








0

Θ̈

0







×








ℓ

0

η







+








0

Θ̇

0







×















0

Θ̇

0







×








ℓ

0

η















+








U̇ + Θ̇W

0

Ẇ − Θ̇U








=








−ℓΘ̇2 + U̇ +W Θ̇ + ηΘ̈

0

−ℓΘ̈ + Ẇ − UΘ̇− ηΘ̇2







. (19)
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Aircraft Dynamics

To apply Newton’s second law for translational acceleration, we view OE as an unforced particle [18]

and all forces as acting at the aircraft’s center of mass. We thus have

m
⇀
a c/OE/E = m

⇀
g +

⇀
FA +

⇀
FT, (20)

where m is the mass of the aircraft,
⇀
g = gk̂E is the acceleration due to gravity,

⇀
FA is the aerodynamic

force, and
⇀
FT is the engine thrust force. Resolving (20) in FAC yields

m
⇀
a c/OE/E

∣
∣
∣
AC

= m
⇀
g
∣
∣
∣
AC

+
⇀
FA

∣
∣
∣
∣
AC

+
⇀
FT

∣
∣
∣
∣
AC

, (21)

where

⇀
g
∣
∣
∣
AC

= OAC/E
⇀
g
∣
∣
∣
E
=








−g sinΘ

0

g cosΘ







, (22)

under longitudinal flight.

Next, the aerodynamic force
⇀
FA is given by

⇀
FA = −Dı̂W −Dsȷ̂W − Lk̂W,

where ı̂W, ȷ̂W, and k̂W are the axes of the wind frame, which is a velocity-dependent frame defined such

that ı̂W is aligned with
⇀
v c/OE/E, and where D, Ds, and L denote the magnitudes of the drag, side drag, and

lift forces, respectively. For simplicity, we assume Ds = 0, and thus

⇀
FA

∣
∣
∣
∣
W

=








−D

0

−L







.

The stability frame FS with axes ı̂S, ȷ̂S, and k̂S is obtained by rotating the wind frame through the sideslip
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angle β, which is the angle from the ı̂AC-k̂AC plane to
⇀
v c/OE/E. Resolving

⇀
FA in the stability frame yields

⇀
FA

∣
∣
∣
∣
S

=








cosβ sinβ 0

− sinβ cosβ 0

0 0 1















−D

0

−L








=








−D cosβ

−D sinβ

−L







.

Furthermore, resolving
⇀
FA in the aircraft frame yields

⇀
FA

∣
∣
∣
∣
AC

=








cosα 0 − sinα

0 1 0

sinα 0 cosα















−D cosβ

−D sinβ

−L








=








−D(cosβ) cosα+ L sinα

−D sinβ

−D(cosβ) sinα− L cosα







,

where α is the angle of attack of the aircraft, that is, the angle from ı̂S to ı̂AC. Since we consider only

longitudinal flight, it follows that β is identically zero, and thus

⇀
FA

∣
∣
∣
∣
AC

=








−D cosα+ L sinα

0

−D sinα− L cosα







. (23)

For the thrust force, we have

⇀
FT

∣
∣
∣
∣
AC

=








cosΦT 0 sinΦT

0 1 0

− sinΦT 0 cosΦT















FT

0

0








=








FT cosΦT

0

−FT sinΦT







, (24)
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where FT
△
= |

⇀
FT| is the engine force magnitude and ΦT is the angle from ı̂AC to the engine force direction.

We assume that the component of the engine thrust in the direction ȷ̂AC is zero.

Now, substituting (15), (22), (23), and (24) into (21) yields the surge and plunge equations

m(U̇ +W Θ̇) = −mg sinΘ−D cosα+ L sinα+ FT cosΦT, (25)

m(Ẇ − UΘ̇) = mg cosΘ−D sinα− L cosα− FT sinΦT. (26)

The sway equation for V̇ plays no role in longitudinal flight.

Note that the differential equations (25) and (26) involve the variables U , W , Θ, and α. To eliminate

W from (25) and (26), we derive a relationship among W , U , and α. Resolving
⇀
v c/OE/E in FS yields

⇀
v c/OE/E

∣
∣
∣
S
=








U

0

0







,

where U
△
=

√
U2 +W 2. Likewise, resolving

⇀
v c/OE/E in FAC yields

⇀
v c/OE/E

∣
∣
∣
AC

=








cosα 0 − sinα

0 1 0

sinα 0 cosα















U

0

0








=








U cosα

0

U sinα







. (27)

It follows from (10) and (27) that







U

0

W







=








U cosα

0

U sinα







.

Hence,

W

U
= tanα. (28)
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For longitudinal flight, U is nonzero. Thus, it follows from (28) that

W = U tanα, (29)

which implies

Ẇ = U̇ tanα+ U(sec2 α)α̇. (30)

Finally, substituting (29) and (30) into (25) and (26) yields

m(U̇ + U(tanα)Θ̇) = −mg sinΘ−D cosα+ L sinα+ FT cosΦT, (31)

m
(

U̇ tanα+ U(sec2 α)α̇− UΘ̇
)

= mg cosΘ−D sinα− L cosα− FT sinΦT. (32)

Next, the rotational momentum equation for the aircraft about its center of mass is given by Euler’s

equation

→
I AC/c

AC•
⇀
ω AC/E +

⇀
ωAC/E ×

→
I AC/c

⇀
ωAC/E =

⇀
MAC/c, (33)

where the physical inertia matrix is defined by

→
I AC/c

△
=

∫

AC
|⇀r dm/c|2

→
U − ⇀

r dm/c
⇀
r

′

dm/c dm, (34)

⇀
r dm/c is the position of a mass element relative to c, (·)′ denotes a physical covector [6, p. 269], and the

physical identity matrix
→
U is defined by

→
U

△
= ı̂ACı̂

′

AC + ȷ̂ACȷ̂
′

AC + k̂ACk̂
′

AC. (35)

Note that the integral in (34) is evaluated over the aircraft body. In (34) and (35), (·)× denotes the cross-

product operator, and the notation
⇀
x
⇀
y

′

for vectors
⇀
x and

⇀
y denotes a second-order tensor, which operates

on a vector
⇀
z according to (

⇀
x
⇀
y

′

)
⇀
z =

⇀
x
⇀
y

′⇀
z = (

⇀
y · ⇀z )⇀x . Finally,

⇀
MAC/c denotes the total thrust and

aerodynamic moment acting on the aircraft relative to c.

Next, resolving
→
I AC/c in FAC yields

→
I AC/c

∣
∣
∣
∣
AC

=








Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz







, (36)
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where

Ixx =

∫

AC
(y2 + z2) dm,

Ixy =

∫

AC
xy dm,

and likewise for the remaining entries. Assuming that ı̂AC-k̂AC is a plane of symmetry of the aircraft, it

follows that

Ixy = Iyz = 0.

Thus, (36) becomes

→
I AC/c

∣
∣
∣
∣
AC

=








Ixx 0 −Ixz

0 Iyy 0

−Ixz 0 Izz







.

Now resolving Euler’s equation (33) in the aircraft frame, that is,

(
→
I AC/c

AC•
⇀
ω AC

)∣
∣
∣
∣
∣
AC

+

(
⇀
ωAC/E ×

→
I AC/c

⇀
ωAC/E

)∣
∣
∣
∣
AC

=
⇀
MAC/c

∣
∣
∣
∣
AC

,

yields








0

IyyΘ̈

0







+








0 0 Θ̇

0 0 0

−Θ̇ 0 0















0

IyyΘ̇

0







=








LAC

MAC

NAC







,

where
⇀
MAC/c

∣
∣
∣
∣
AC

△
=
[

LAC MAC NAC

]T
. The pitch equation is thus given by

IyyΘ̈ = MAC. (37)
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Linearizing the Equations of Motion

In steady horizontal longitudinal flight, the aircraft is assumed to fly at constant velocity U = U0,

constant angle of attack α = α0, and constant pitch angle Θ = Θ0, with
⇀
v c/OE/E aligned with ı̂E. To

simplify the aerodynamic analysis, we choose FAC so that Θ0 = 0. This choice is universally made in the

literature; see, for example, [17, p. 67]. Since the steady flight-path angle is zero, this choice of FAC implies

that the steady angle of attack α0 is zero. Linearizing the surge, plunge, and pitch equations (31), (32), and

(37) about (U0, α0,Θ0) using the first-order approximations U ≈ U0 + u, α ≈ α0 + δα, and Θ ≈ Θ0 + θ,

where α0 = Θ0 = 0, and dividing the linearized equations by the mass m and inertia Iyy to solve for the

linear and angular acceleration, yields

u̇ = −gθ + fAx + fTx , (38)

U0δα̇ = U0q + fAz , (39)

q̇ = mAC, (40)

θ̇ = q, (41)

where

fAx

△
= Xu0

u+Xα0
δα+Xδe0δe,

fTx

△
= XTu0

u,

fAz

△
= Zu0

u+ Zα0
δα+ Zα̇0

δα̇+ Zq0q + Zδe0δe,

mAC
△
= Mu0

u+Mα0
δα+Mα̇0

δα̇+Mq0q +Mδe0δe+MTu0
u+MTα0

δα,

and δe denotes the elevator perturbation from its trim deflection. Note that fAx and fAz are the perturbations

of
⇀
FA in the direction of ı̂AC and k̂AC, respectively. Furthermore, fTx is the perturbation of

⇀
FT in the

direction of ı̂AC, and mAC is the perturbation of MAC. The stability parameters Xu0
, Xα0

, Xδe0 , XTu0
,

Zu0
, Zα0

, Zα̇0
, Zq0 , Zδe0 , Mu0

, Mα0
, Mα̇0

, Mq0 , Mδe0 , MTu0
, and MTα0

are combinations of aerodynamic

parameters and stability derivatives, which are defined in Table 1 and Table 2, respectively. The stability

parameters are defined in Table 3.
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It follows from (38)–(41) that the linearized surge, plunge, and pitch-rate equations are given by

u̇ =
(
Xu0

+XTu0

)
u+Xα0

δα− gθ +Xδe0δe, (42)

U0δα̇ = Zu0
u+ Zα0

δα+ (U0 + Zq0)q + Zα̇0
δα̇+ Zδe0δe, (43)

q̇ =
(
Mu0

+MTu0

)
u+

(
Mα0

+MTα0

)
δα+Mq0q +Mα̇0

δα̇+Mδe0δe. (44)

Laplace Transform Analysis

Taking the Laplace transform of (42), (43), and (44), and assuming that the initial conditions of the

perturbations (u, δα, θ) are zero yields










s− (Xu0
+XTu0

) −Xα0
g

−Zu0
s(U0 − Zα̇0

)− Zα0
−(U0 + Zq0)s

−(Mu0
+MTu0

) −(Mα̇0
s+Mα0

+MTα0
) s2 −Mq0s

















û(s)

δα̂(s)

θ̂(s)







=








Xδe0

Zδe0

Mδe0







δê(s),

where hat in this context denotes the Laplace transform of a scalar function of time. The transfer functions

from δê(s) to û(s), δα̂(s), and θ̂(s) are thus given by








Gû/δê(s)

Gδα̂/δê(s)

Gθ̂/δê(s)








△
=








û(s)
δê(s)

δα̂(s)
δê(s)

θ̂(s)
δê(s)








=










s− (Xu0
+XTu0

) −Xα0
g

−Zu0
s(U0 − Zα̇0

)− Zα0
−(U0 + Zq0)s

−(Mu0
+MTu0

) −(Mα̇0
s+Mα0

+MTα0
) s2 −Mq0s










−1







Xδe0

Zδe0

Mδe0







.

Consequently,

Gû/δê(s) =
Aus

3 +Bus
2 + Cus+Du

Es4 + Fs3 +Gs2 +Hs+ I
, (45)

Gδα̂/δê(s) =
Aαs

3 +Bαs
2 + Cαs+Dα

Es4 + Fs3 +Gs2 +Hs+ I
, (46)

15



Gθ̂/δê(s) =
Aθs

2 +Bθs+ Cθ

Es4 + Fs3 +Gs2 +Hs+ I
, (47)

where the coefficients of (45), (46), and (47) are defined in tables 4 and 5. Note that the relative degree of

(47) is 2. For details, see “Markov Parameters and Relative Degree”.

Next, we find the transfer function from the elevator perturbation to the vertical velocity perturbation.

It follows from (14) and (29) that

vpv = −(sinΘ)U + (cosΘ)U(tanα)− ℓ(cosΘ)Θ̇− η(sinΘ)Θ̇. (48)

Letting vpv0 denote the vertical velocity in steady horizontal longitudinal flight, it follows from (48) that

vpv0 = 0.

Linearizing (48) about (U0, α0,Θ0) using the first-order approximations vpv ≈ vpv0 + δvpv, U ≈ U0 + u,

α ≈ δα, and Θ ≈ θ yields

vpv0 + δvpv = −(sin θ)(U0 + u) + (cos θ)(U0 + u)(tan δα)− ℓ(cos θ)θ̇ − η(sin θ)θ̇,

where δvpv is the first-order approximation of the vertical velocity perturbation. Neglecting products of

perturbation variables, and approximating cos θ ≈ 1, sin θ ≈ θ, and tan δα ≈ δα yields

δvpv = U0δα− U0θ − ℓθ̇. (49)

Next, taking the Laplace transform of (49) and assuming that the initial conditions of the perturbations

(u, δα, θ) are zero yields

δv̂pv(s) = U0δα̂(s)− (U0 + ℓs)θ̂(s). (50)

It follows from (46), (47), and (50) that the transfer function from δê(s) to δv̂pv(s) is given by

Gδv̂pv/δê(s) =
Avs

3 +Bvs
2 + Cvs+Dv

Es4 + Fs3 +Gs2 +Hs+ I
, (51)

where the numerator coefficients are defined in Table 4 and the denominator coefficients are defined in Table

5.
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Next, to find the transfer function from the elevator perturbation to the horizontal velocity perturba-

tion, it follows from (13) and (29) that

vph = (cosΘ)U + (sinΘ)(tanα)U − ℓ(sinΘ)Θ̇ + η(cosΘ)Θ̇. (52)

Letting vph0 denote the horizontal velocity in steady horizontal longitudinal flight, it follows from (52) that

vph0 = U0.

Linearizing (52) about (U0, α0,Θ0) using the first-order approximations vph ≈ vph0 + δvph, U ≈ U0 + u,

α ≈ δα, and Θ ≈ θ yields

vph0 + δvph = (cos θ)(U0 + u) + (sin θ)(U0 + u)(tan δα)− ℓ(sin θ)θ̇ + η(cos θ)θ̇,

where δvph is the first-order approximation of the horizontal velocity perturbation. Neglecting products of

perturbation variables, and approximating cos θ ≈ 1, sin θ ≈ θ, and tan δα ≈ δα yields

δvph = u+ ηθ̇. (53)

Next, taking the Laplace transform of (53) and assuming that the initial conditions of the perturbations

(u, δα, θ) are zero yields

δv̂ph(s) = û(s) + ηsθ̂(s). (54)

It follows from (45), (47), and (54) that the transfer function from δê(s) to δv̂ph(s) is given by

Gδv̂ph/δê(s) =
Ahs

3 +Bhs
2 + Chs+Dh

Es4 + Fs3 +Gs2 +Hs+ I
, (55)

where the numerator coefficients are defined in Table 4, and the denominator coefficients are defined in

Table 5.
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Instantaneous Velocity Center of Rotation

The point pIVCR is an instantaneous velocity center of rotation (IVCR) of the aircraft at time t0 if

pIVCR is fixed relative to the aircraft, and, at time t0, the angular velocity of the aircraft relative to FE is not

zero and the velocity of pIVCR relative to OAC with respect to FE is zero. For details, see “Instantaneous

Velocity Center of Rotation”. For longitudinal flight, it follows from (S11) that the location of the unique

pIVCR whose coordinate along ȷ̂AC is zero, if it exists, is given by

⇀
r pIVCR/c =

1

|⇀ωAC/E|2
⇀
ωAC/E × ⇀

v c/OE/E +

⇀
ωAC/E · ⇀r p/OE

|⇀ωAC/E|2
⇀
ωAC/E. (56)

Note that the second term in (56) is zero since the ȷ̂AC component of pIVCR is zero. Thus, (56) can be

written as

⇀
r pIVCR/c =

1

|⇀ωAC/E|2
⇀
ωAC/E × ⇀

v c/OE/E

=
1

Θ̇2
[Θ̇ȷ̂AC × (Uı̂AC +Wk̂AC)]

=
W

Θ̇
ı̂AC − U

Θ̇
k̂AC.

Therefore,

⇀
r pIVCR/c

∣
∣
∣
AC

=








ℓIVCR

0

ηIVCR







, (57)

where

ℓIVCR
△
=

W

Θ̇
=

U tanα

Θ̇
,

and

ηIVCR
△
= −U

Θ̇
.

Since Θ̇0 = 0, it follows that ℓIVCR and ηIVCR are infinite for steady flight, and thus no IVCR exists in

steady flight.
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Next, for the elevator step deflection δe(t) = ε1(t − t0), where ε ̸= 0, we approximate ℓIVCR and

ηIVCR at t+0 using the first-order approximations U ≈ U0 + u, α ≈ δα, and Θ ≈ θ. Thus,

ℓIVCR(t
+
0 ) ≈

(U0 + u(t+0 ))(tan δα(t
+
0 ))

θ̇(t+0 )
, (58)

ηIVCR(t
+
0 ) ≈ −U0 + u(t+0 )

θ̇(t+0 )
, (59)

where it follows from the initial value theorem that

θ(t+0 ) = lim
s→∞

sθ̂(s)

= lim
s→∞

sGθ̂/δê(s)
ε

s

= lim
s→∞

ε(Aθs
2 +Bθs+ Cθ)

Es4 + Fs3 +Gs2 +Hs+ I

= 0, (60)

θ̇(t+0 ) = lim
s→∞

s[sθ̂(s)− θ(t+0 )]

= lim
s→∞

s2Gθ̂/δê(s)
ε

s

= lim
s→∞

ε(Aθs
3 +Bθs

2 + Cθs)

Es4 + Fs3 +Gs2 +Hs+ I

= 0, (61)

δα(t+0 ) = lim
s→∞

sδα̂(s)

= lim
s→∞

sGδα̂/δê(s)
ε

s

= lim
s→∞

ε(Aαs
3 +Bαs

2 + Cαs+Dα)

Es4 + Fs3 +Gs2 +Hs+ I

= 0, (62)

u(t+0 ) = lim
s→∞

sû(s)

= lim
s→∞

sGû/δê(s)
ε

s

= lim
s→∞

ε(Aus
3 +Bus

2 + Cus+Du)

Es4 + Fs3 +Gs2 +Hs+ I

= 0. (63)

19



Thus it follows from (58)–(63) that

ℓIVCR(t
+
0 ) ≈

U0 tanα0

θ̇(t+0 )
= ∞,

ηIVCR(t
+
0 ) ≈ − U0

θ̇(t+0 )
= ∞.

Therefore, no IVCR exists for an elevator step deflection.

Instantaneous Acceleration Center of Rotation

The point pIACR is an instantaneous acceleration center of rotation (IACR) of the aircraft at time t0 if

pIACR is fixed relative to the aircraft, and, at time t0, the acceleration of pIACR relative to OAC with respect

to FE is zero. For details, see “Instantaneous Acceleration Center of Rotation”. It follows from (3) that the

location of the unique pIACR whose coordinate along ȷ̂AC is zero, if it exists, has the form

⇀
r pIACR/c

∣
∣
∣
AC

=








ℓIACR

0

ηIACR







. (64)

It thus follows from (19) and the definition of the IACR that

⇀
apIACR/OE/E

∣
∣
∣
AC

=








−ℓIACRΘ̇
2 + U̇ +W Θ̇ + ηIACRΘ̈

0

−ℓIACRΘ̈ + Ẇ − UΘ̇− ηIACRΘ̇
2







= 0,

which implies

ℓIACR =
W Θ̇3 + U̇Θ̇2 − UΘ̇Θ̈ + Ẇ Θ̈

Θ̇4 + Θ̈2
, (65)

ηIACR =
−UΘ̇3 + Ẇ Θ̇2 +W Θ̇Θ̈− U̇Θ̈

Θ̇4 − Θ̈2
. (66)

20



Alternatively, using (S25) yields

⇀
r pIACR/c =

|⇀ωAC/E|2
⇀
a c/OE/E+

B•
⇀
ω AC/E ×⇀

a c/OE/E

|⇀ωAC/E|4 + |
B•
⇀
ω AC/E |2

=
Θ̇2⇀a c/OE/E+

B•
⇀
ω AC/E ×⇀

a c/OE/E

Θ̇4 + Θ̈2
.

Therefore,

⇀
r pIACR/c

∣
∣
∣
AC

=
1

Θ̇4 + Θ̈2







Θ̇2








U̇ +W Θ̇

0

Ẇ − UΘ̇







+








0

Θ̈

0







×








U̇ +W Θ̇

0

Ẇ − UΘ̇















=








W Θ̇3+U̇Θ̇2−UΘ̇Θ̈+Ẇ Θ̈
Θ̇4+Θ̈2

0

−UΘ̇3+Ẇ Θ̇2+W Θ̇Θ̈−U̇Θ̈
Θ̇4+Θ̈2







,

which agrees with (64), (65), and (66).

Next, it follows from (29), (30), (65), and (66) that

ℓIACR =
U(tanα)Θ̇3 + U̇Θ̇2 − UΘ̇Θ̈ +

(

U̇ tanα+ U(sec2 α)α̇
)

Θ̈

Θ̇4 + Θ̈2
, (67)

ηIACR =
−UΘ̇3 +

(

U̇ tanα+ U(sec2 α)α̇
)

Θ̇2 + U(tanα)Θ̇Θ̈− U̇Θ̈

Θ̇4 + Θ̈2
. (68)

Since Θ̇0 = 0 and Θ̈0 = 0, it follows that ℓIACR and ηIACR are infinite for steady flight.

Next, for the elevator step deflection δe(t) = ε1(t − t0), where ε ̸= 0, we approximate ℓIACR and

ηIACR at t+0 using the first-order approximations U ≈ U0 + u, α ≈ δα, and Θ ≈ θ. Thus,

ℓIACR(t
+
0 ) ≈

1

θ̈2(0+) + θ̇4(0+)

(

[U0 + u(t+0 )](tan δα(t
+
0 ))θ̇

3(t+0 ) + u̇(t+0 )θ̇
2(t+0 )

+
[
u̇(t+0 )(tan δα(t

+
0 )) + [U0 + u(t+0 )](sec

2 δα(t+0 ))δα̇(t
+
0 )
]
θ̈(t+0 )

− [U0 + u̇(t+0 )]θ̇(t
+
0 )θ̈(t

+
0 )
)

, (69)

ηIACR(t
+
0 ) ≈

1

θ̈2(0+) + θ̇4(0+)

(

[U0 + u(t+0 )](tan δα(t
+
0 ))θ̇(t

+
0 )θ̈(t

+
0 )− u̇(t+0 )θ̈(t

+
0 )

+
[
u̇(t+0 )(tan δα(t

+
0 )) + [U0 + u(t+0 )](sec

2 δα(t+0 ))δα̇(t
+
0 )
]
θ̇2(t+0 )

− [U0 + u(t+0 )]θ̇
3(t+0 )

)

, (70)
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where the initial value theorem implies that

δα̇(t+0 ) = lim
s→∞

s[sδα̂(s)− δα(t+0 )]

= lim
s→∞

s2Gδα̂/δê(s)
ε

s

= lim
s→∞

ε(Aαs
4 +Bαs

3 + Cαs
2 +Dα)

Es4 + Fs3 +Gs2 +Hs+ I

=
εAα

E
, (71)

θ̈(t+0 ) = lim
s→∞

s[s2θ̂(s)− sθ(t+0 )− θ̇(t+0 )]

= lim
s→∞

s3Gθ̂/δê(s)
ε

s

= lim
s→∞

ε(Aθs
4 +Bθs

3 + Cθs
2)

Es4 + Fs3 +Gs2 +Hs+ I

=
εAθ

E
, (72)

u̇(t+0 ) = lim
s→∞

s[sû(s)− u(t+0 )]

= lim
s→∞

s2Gδû/δê(s)
ε

s

= lim
s→∞

ε(Aus
4 +Bus

3 + Cus
2 +Dus)

Es4 + Fs3 +Gs2 +Hs+ I

=
εAu

E
. (73)

It thus follows from (60)–(63), (69)–(73), and the expressions given in Table 4 that

ℓIACR(t
+
0 ) ≈

U0Aα

Aθ
(74)

=
U0Zδe0

Zδe0Mα̇0
+Mδe0(U0 − Zα̇0

)

and

ηIACR(t
+
0 ) ≈ −Au

Aθ
(75)

= − Xδe0(U0 − Zα̇0
)

Zδe0Mα̇0
+Mδe0(U0 − Zα̇0

)
.
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Initial Slope and Quadratic Curvature of the Vertical and Horizontal

Velocity Perturbations at the IACR

The vertical velocity perturbation δvpv(t
+
0 ) and the initial slope δv̇pv(t

+
0 ) of the vertical velocity

perturbation at p due to the elevator step deflection δe(t) = ε1(t− t0), where ε ̸= 0, are given by

δvpv(t
+
0 ) = lim

s→∞
sδv̂pv(s)

= lim
s→∞

sGδv̂pv/δê(s)
ε

s

= lim
s→∞

ε(Avs
3 +Bvs

2 + Cvs+Dv)

Es4 + Fs3 +Gs2 +Hs+ I

= 0,

and

δv̇pv(t
+
0 ) = lim

s→∞
s[sδv̂pv(s)− δvpv(t

+
0 )]

= lim
s→∞

s2Gδv̂pv/δê(s)
ε

s

= lim
s→∞

ε(Avs
4 +Bvs

3 + Cvs
2 +Dvs)

Es4 + Fs3 +Gs2 +Hs+ I

=
εAv

E
. (76)

Next, it follows from the expression for Av given in Table 4 that

Av = −ℓAθ + U0Aα. (77)

Therefore, Av = 0 if and only if

ℓ =
U0Aα

Aθ
. (78)

Hence, it follows from (76) that δv̇pv(t
+
0 ) = 0 if and only if ℓ satisfies (78). For details, see “The Initial

Curvature Theorem and Unit-Step Response”.

Similarly, the horizontal velocity perturbation δvph(t
+
0 ) at p due to the elevator step deflection δe(t) =
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ε1(t− t0), where ε ̸= 0, is given by

δvph(t
+
0 ) = lim

s→∞
sδv̂ph(s)

= lim
s→∞

sGδv̂ph/δê(s)
ε

s

= lim
s→∞

ε(Ahs
3 +Bhs

2 + Chs+Dh)

Es4 + Fs3 +Gs2 +Hs+ I

= 0,

while the initial slope δv̇ph(t
+
0 ) of the horizontal velocity perturbation is given by

δv̇ph(t
+
0 ) = lim

s→∞
s[sδv̂ph(s)− δvph(t

+
0 )]

= lim
s→∞

s2Gδv̂ph/δê(s)
ε

s

= lim
s→∞

ε(Ahs
4 +Bhs

3 + Chs
2 +Dhs)

Es4 + Fs3 +Gs2 +Hs+ I

=
εAh

E
. (79)

Next, it follows from the expression for Ah given in Table 4 that

Ah = ηAθ +Au. (80)

Therefore, Ah = 0 if and only if

η = −Au

Aθ
. (81)

Hence, it follows from (79) that δv̇ph(t
+
0 ) = 0 if and only if η satisfies (81).

Next, it follows from (74) and (75) that pIACR satisfies both (78) and (81). Therefore, Av = 0 and

Ah = 0 if and only if (ℓ, η) = (ℓIACR, ηIACR). Thus, evaluating (76) and (79) at the IACR (ℓIACR, ηIACR)

for the elevator step deflection δe(t) = ε1(t − t0), where ε ̸= 0, yields δv̇pv(t
+
0 ) = 0 and δv̇ph(t

+
0 ) = 0.

Therefore, at the IACR, the initial slopes of the vertical and horizontal velocity perturbations are zero.

Since Av = 0 at the IACR, it follows that the transfer function Gδv̂pv/δê(s) at the IACR becomes

Gδv̂pv/δê(s) =
Bvs

2 + Cvs+Dv

Es4 + Fs3 +Gs2 +Hs+ I
.
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Next, at the IACR, it follows from the expression for Bv given in Table 4 that

Bv = −ℓIACRBθ − U0Aθ + U0Bα

= −
(
AαBθ

Aθ
+Aθ −Bα

)

U0.

Consequently, if Bv ̸= 0, then the relative degree of Gδv̂pv/δê(s) increases from 1 to 2, and thus one of the

zeros of Gδv̂pv/δê(s) vanishes at the IACR.

Similarly, at the IACR, Ah = 0. Thus, if Bh ̸= 0, then the relative degree of Gδv̂ph/δê(s) increases

from 1 to 2, and thus one of the zeros of Gδv̂ph/δê(s) vanishes at the IACR. The vanishing zeros are a

consequence of the fact that the initial slope of the vertical velocity perturbation and the horizontal velocity

perturbation are zero at the IACR. Note that ℓIACR and ηIACR depend on the speed U0 and the stability

derivatives Zδe0 , Zα̇0
, Xδe0 , Mα̇0

, and Mδe0 . Vanishing zeros are discussed in [19].

Initial Undershoot of the Vertical Velocity for an Elevator Deflection

Let G(s)
△
= β(s)

srα(s) be a strictly proper transfer function with relative degree d > 0, where r ≥ 0 and

α(s) is asymptotically stable. Let y(t) denote the response of G to the step command 1(t− t0). Then initial

undershoot occurs at time t0 if the step response initially moves in the direction opposite to its asymptotic

direction, that is,

y(d)(t+0 )y
(r)(∞) < 0. (82)

To determine whether the vertical velocity perturbation δvpv(t) to the elevator step deflection δe(t) =

ε1(t − t0) exhibits initial undershoot, we investigate (82) with G(s) = Gδv̂pv/δê(s), r = 0, and y(t) =

δvpv(t).

25



First, the asymptotic direction of the step response is given by the sign of

δvpv(∞) = lim
s→0

sδv̂pv(s)

= lim
s→0

sGδv̂pv/δê(s)
ε

s

= lim
s→0

ε(Avs
3 +Bvs

2 + Cvs+Dv)

Es4 + Fs3 +Gs2 +Hs+ I

=
εDv

I
. (83)

It follows from Table 4 and Table 5 that δvpv(∞) does not depend on the location of p, that is, the value of

(ℓ, η).

Next, the initial direction of the step response is given by the sign of

δv(d)pv (t
+
0 ) = lim

s→∞
s[sdδv̂pv(s)− sd−1δvpv(t

+
0 )− · · · − δv(d−1)

pv (t+0 )]

= lim
s→∞

sd+1δv̂pv(s)

= lim
s→∞

sd+1Gδv̂pv/δê(s)
ε

s

= εsd
(

Avs
3 +Bvs

2 + Cvs+Dv

Es4 + Fs3 +Gs2 +Hs+ I

)

=







εAv

E , if d = 1, (that is, Av ̸= 0)

εBv

E , if d = 2, (that is, Av = 0, Bv ̸= 0)

εCv

E , if d = 3, (that is, Av = Bv = 0, Cv ̸= 0)

εDv

E , if d = 4. (that is, Av = Bv = Cv = 0, Dv ̸= 0)

(84)

Thus, for d = 1, δvpv(t) exhibits initial undershoot if and only if δv̇pv(t
+
0 )δvpv(∞) = AvDv

EI < 0; for d = 2,

δvpv(t) exhibits initial undershoot if and only if δv̈pv(t
+
0 )δvpv(∞) = BvDv

EI < 0; for d = 3, δvpv(t) exhibits

initial undershoot if and only if δv
(3)
pv (t

+
0 )δvpv(∞) = CvDv

EI < 0. Furthermore, for d = 4, δvpv(t) does not

exhibit initial undershoot since δv
(4)
pv (t

+
0 )δvpv(∞) = D2

v

EI ≥ 0;

The following results follow from (78), (82), (83), and (84) along with Proposition S1.

Proposition 1 Assume that ℓ does not satisfy (78). Then the following statements hold:
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(i) The relative degree of Gδv̂pv/δê(s) is 1, and thus Av ̸= 0.

(ii) δvpv(t) exhibits initial undershoot if and only if AvDv

EI < 0.

(iii) δvpv(t) exhibits initial undershoot if and only if Gδv̂pv/δê(s) has either exactly one or exactly three real

nonminimum-phase zeros.

Proposition 2 Assume that ℓ satisfies (78) and Bv ̸= 0. Then the following statements hold:

(i) The relative degree of Gδv̂pv/δê(s) is 2, and thus Av = 0.

(ii) δvpv(t) exhibits initial undershoot if and only if BvDv

EI < 0.

(iii) δvpv(t) exhibits initial undershoot if and only if Gδv̂pv/δê(s) has exactly one real nonminimum-phase

zero.

Following the same procedure for δrpv(t) yields identical results, that is, δrpv(t) exhibits initial

undershoot if and only if δvpv(t) exhibits initial undershoot.

Initial Undershoot of the Horizontal velocity for an Elevator Step Deflection

To determine whether the horizontal velocity perturbation δvph(t) to the elevator step deflection

δe(t) = ε1(t − t0) exhibits initial undershoot, we investigate (82) with G(s) = Gδv̂ph/δê(s), r = 0,

and y(t) = δvph(t).

First, the asymptotic direction of the step response is given by the sign of

δvph(∞) = lim
s→0

sδv̂ph(s)

= lim
s→0

sGδv̂ph/δê(s)
ε

s

= lim
s→0

ε(Ahs
3 +Bhs

2 + Chs+Dh)

Es4 + Fs3 +Gs2 +Hs+ I

=
εDh

I
. (85)

27



It follows from Table 4 and Table 5 that δvph(∞) does not depend on the location of p, that is, the value of

(ℓ, η).

Next, the initial direction of the step response is given by the sign of

δv
(d)
ph (t

+
0 ) = lim

s→∞
s[sdδv̂ph(s)− sd−1δvph(t

+
0 )− · · · − δv

(d−1)
ph (t+0 )]

= lim
s→∞

sd+1δv̂ph(s)

= lim
s→∞

sd+1Gδv̂ph/δê(s)
ε

s

= εsd
(

Ahs
3 +Bhs

2 + Chs+Dh

Es4 + Fs3 +Gs2 +Hs+ I

)

=







εAh

E , if d = 1, (that is, Ah ̸= 0)

εBh

E , if d = 2, (that is, Ah = 0, Bh ̸= 0)

εCh

E , if d = 3, (that is Ah = Bh = 0, Ch ̸= 0)

εDh

E , if d = 4. (that is, Ah = Bh = Ch = 0, Dh ̸= 0)

(86)

Thus, for d = 1, δvph(t) exhibits initial undershoot if and only if δv̇ph(t
+
0 )δvph(∞) = AhDh

EI < 0; for

d = 2, δvph(t) exhibits initial undershoot if and only if δv̈ph(t
+
0 )δvph(∞) = BhDh

EI < 0; for d = 3, δvph(t)

exhibits initial undershoot if and only if δv
(3)
ph (t

+
0 )δvph(∞) = ChDh

EI < 0. Furthermore, for d = 4, δvph(t)

does not exhibit initial undershoot since δv
(4)
ph (t

+
0 )δvph(∞) =

D2
h

EI ≥ 0.

The following results follow from (81), (82), (85), and (86) along with Proposition S1.

Proposition 4 Assume that η does not satisfy (81). Then the following statements hold:

(i) The relative degree of Gδv̂ph/δê(s) is 1, and thus Ah ̸= 0.

(ii) δvph(t) exhibits initial undershoot if and only if AhDh

EI < 0.

(iii) δvph(t) exhibits initial undershoot if and only if Gδv̂ph/δê(s) has either exactly one or exactly three

real nonminimum-phase zeros.
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Proposition 5 Assume that η satisfies (81) and Bh ̸= 0. Then the following statements hold:

(i) The relative degree of Gδv̂ph/δê(s) is 2, and thus Ah = 0.

(ii) δvph(t) exhibits initial undershoot if and only if BhDh

Eh < 0.

(iii) δvph(t) exhibits initial undershoot if and only if Gδv̂ph/δê(s) has exactly one real nonminimum-phase

zero.

The following result is a special case of Proposition 2 and 5, where we consider the response at the IACR.

Proposition 6 Assume that (ℓ, η) = (ℓIACR, ηIACR), Bv ̸= 0, and Bh ̸= 0. Then the following

statements hold:

(i) The relative degrees of Gδv̂pv/δê(s) and Gδv̂ph/δê(s) are 2. Thus, Av = 0 and Ah = 0.

(ii) δvpv(t) exhibits initial undershoot if and only if BvDv

EI < 0.

(iii) δvph(t) exhibits initial undershoot if and only if BhDh

EI < 0.

(iv) δvpv(t) exhibits initial undershoot if and only if Gδv̂pv/δê(s) has exactly one real nonminimum-phase

zero.

(v) δvph(t) has initial undershoot if and only if Gδv̂ph/δê(s) has exactly one real nonminimum-phase zero.

Business Jet Example

To illustrate the instantaneous acceleration center of rotation, the initial slope of the vertical velocity

and horizontal velocity, and vanishing zeros, we consider a business jet in cruise whose numerical data are

given in Table 6 [17, p. 330].
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For all expressions below, the units of ℓ and η are feet. Using the data given in Table 6 as well as the

expressions given in Table 4 and (45), (46), (47), and (51), the transfer functions from δê(s) to û(s), δα̂(s),

and θ̂(s) are

Gû/δê(s) =
−378.85s2 + 2.72e5s+ 2.40e5

675.99(s4 + 2.01s3 + 8.05s2 + 0.085s+ 0.068)
ft/(s-rad),

Gδα̂/δê(s) =
42.20s3 + 11939.02s2 + 88.5773s+ 79.30

675.99(s4 + 2.01s3 + 8.05s2 + 0.085s+ 0.068)
,

Gθ̂/δê(s) =
−11930.17s2 − 7652.06s− 78.52

675.99(s4 + 2.01s3 + 8.05s2 + 0.085s+ 0.068)
.

Furthermore, the transfer functions from δê(s) to δv̂pv and δv̂ph are

Gδv̂pv/δê(s) =
(42.15 + 17.65ℓ)s3 + (23854.0 + 11.3ℓ)s2 + (7740.6 + 0.1ℓ)s+ 157.2

s4 + 2.01s3 + 8.05s2 + 0.085s+ 0.068
ft/(s-rad), (87)

Gδv̂ph/δê(s) = −17.65ηs3 + (11.32η − 0.56)s2 − (402.4− 0.12η)s− 355.0

s4 + 2.01s3 + 8.05s2 + 0.085s+ 0.068
ft/(s-rad). (88)

Next, with U0 = 675.12 ft/s, Aα = −42.20 1/s, Au = 0 m/s2, E = 675.99 1/s, ε = 1 deg-s = 0.017 rad-s,

and Aθ = 11930.17 1/s2, it follows from (74) and (75) that

ℓIACR ≈ −(675.12)(42.20)

11930.17
ft = −2.3881 ft,

ηIACR ≈ − 0

11930.17
ft = 0 ft.

Next, using (87), the initial vertical velocity slope response due the 1-deg elevator deflection δe(t) =

(0.017)1(t− t+0 ) is given by

δv̇pv(t
+
0 ) = 42.15 + 17.65ℓ.

It follows that, at ℓ = ℓIACR, δv̇pv(t
+
0 ) = 0, and the number of zeros of the transfer function Gδv̂pv/δê(s)

decreases from three to two.

Likewise, using (88), the initial horizontal velocity slope response due to the 1-deg step elevator

deflection δe(t) = (0.017)1(t− t+0 ) is given by

δv̇ph(t
+
0 ) = 17.65η.
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It follows that η = ηIACR , δv̇ph(t
+
0 ) = 0, and the number of zeros of the transfer function Gδv̂ph/δê(s)

decreases from three to two.

To demonstrate the initial vertical velocity perturbation δvpv and initial horizontal velocity perturba-

tion δvph forward and aft of the IACR, we simulate δvpv and δvph with the 1-deg step elevator deflection

δe(t) = (0.017)1(t − t+0 ) for several values of ℓ and η. Figure 2 shows that, for ℓ = −20 ft, δvpv experi-

ences initial undershoot, whereas, for η = 20 ft, δvph experiences initial undershoot, as defined in [1] and

“Initial Undershoot”. This initial undershoot is a consequence of the fact that, for all ℓ < ℓIACR, the transfer

function Gδv̂pv/δê(s) has one nonminimum-phase zero; for all η > ηIACR, the transfer function Gδv̂ph/δê(s)

has one nonminimum-phase zero. On the other hand, for all ℓ > ℓIACR, the initial slope δv̇pv(0
+) is in the

direction of the asymptotic vertical velocity; for all η < ηIACR, the initial slope δv̇ph(0
+) is in the direction

of the asymptotic horizontal velocity. Finally, for all ℓ = ℓIACR, the initial slope δv̇pv(0
+) is zero; for all

η = ηIACR, the initial slope δv̇ph(0
+) is zero. Note that at the IACR, the initial slopes of both δv̇pv(0

+) and

δv̇pv(0
+) are zero, as a consequence of the definition of the IACR. Simulations over a longer time interval

are shown in Figure 3.

Next, we apply the Routh test to determine the locations of the poles and zeros of (87); for details,

see “Routh Test for Third- and Fourth-Order Polynomials”. Note that following the same procedure for

the horizontal velocity perturbation transfer function (88) yields the similar results. Thus, we analyze the

vertical velocity perturbation transfer function (87) as an example. Writing the denominator of (87) as p(s),

where p(s) = s4 + a3s
3 + a2s

2 + a1s+ a0 is defined by

p(s) = s4 + 2.01s3 + 8.05s2 + 0.085s+ 0.068,

it follows that

a1a2a3 − a0a
2
3 − a21 = 1.2353 [1/s6] > 0.

Consequently, all of the poles of Gδv̂pv/δê are in the open left half plane (OLHP).

To determine the zeros of the transfer function from the elevator deflection δê(s) to the vertical

velocity perturbation δv̂pv(s), we apply the Routh test to the numerator of (87). Defining the polynomial
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q(s) = s3 + a2s
2 + a1s+ a0 by

q(s)
△
= s3 +

177307 + 84.13ℓ

313.3 + 131.2ℓ
s2 +

57535.6 + 0.8608ℓ

313.3 + 131.2ℓ
s+

1168.6

313.3 + 131.2ℓ
,

it follows that

a1a2 − a0 =

(
57535.6 + 0.8608ℓ

313.3 + 131.2ℓ

)(
177307 + 84.13ℓ

313.3 + 131.2ℓ

)

− 1168.6

313.3 + 131.2ℓ

=
g(ℓ)

(313.3 + 131.2ℓ)(0.11ℓ+ 0.27)
ft/s, (89)

where g(ℓ)
△
= ℓ2 + 457.36ℓ+ 0.88 ft2. For ℓ > ℓIACR, it follows that 313.3 + 131.2ℓ, 0.11ℓ+ 0.27, and

g(ℓ) are positive, and thus (89) is positive. Therefore, for all ℓ > ℓIACR, all of the roots of q(s) are in the

OLHP. On the other hand, for all ℓ < ℓIACR, one zero of Gδv̂pv/δê(s) is in the ORHP and two zeros are in

the OLHP. This result follows from the first row of the Routh table, where one sign change appears. Figure

4 shows that a real zero approaches ∞ as ℓ increases toward ℓIACR, whereas a real zero approaches −∞ as

ℓ decreases toward ℓIACR. This zero thus vanishes at the IACR. For ℓ ∈ [−25, 25] ft, Figure 5 shows the

locations of the two remaining zeros of Gδv̂pv/δê(s), which are real and do not vanish at the IACR.

For the horizontal velocity perturbation δvph, Figure 6(a) shows that, as η increases toward ηIACR,

one zero approaches −∞, one zero approaches ∞, and the remaining zero approaches 0.88 rad/s . Figure

6(b) shows that, as η decreases toward ηIACR, one zero approaches −∞, one zero approaches ∞, and the

remaining zero approaches 0.88 rad/s. Consequently, two zeros of Gδv̂ph/δê(s) vanish at the IACR.

Conclusions

In this article, we used Laplace techniques to analyze the response of an aircraft to an elevator step

deflection. We showed that the aircraft’s initial response to an elevator step command is characterized by the

instantaneous acceleration center of rotation, which is the point along the aircraft at which the acceleration of

the aircraft is zero. This point, which depends on the inertia and aerodynamics of the aircraft, is determined

by deriving the linearized longitudinal equations of motion and evaluating the location of the instantaneous

acceleration center of rotation to first order. The initial vertical velocity and horizontal velocity response
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requires an increase in relative degree of the associated transfer functions at the instantaneous acceleration

center of rotation. This increase in relative degree requires that zeros must vanish at the instantaneous

acceleration center of rotation.
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Figure 1: Aircraft and Earth frames. The aircraft frame is fixed to the aircraft, while the Earth frame is

assumed to be an inertial frame. The signed quantities ℓ and η are determined by the location of the point p

at which the output is defined relative to the center of mass c. The pitch angle Θ, as shown, is positive, as

determined by the right hand rule about the axis ȷ̂AC = ȷ̂E, which is not shown but which is directed out of

the page.

36



0 0.01 0.02 0.03 0.04 0.05
−0.5

0

0.5

1

 

 

(a) Time (s)

V
e

rt
ic

a
l 
V

e
lo

c
it
y
 P

e
rt

u
rb

a
ti
o

n
 (

ft
/s

) ℓ = 20 ft, η ∈ R

ℓ = −2.388 ft, η ∈ R

ℓ = −20 ft, η ∈ R

0 0.01 0.02 0.03 0.04 0.05
−10

−5

0

5

10

15

20

25

30

 

 

(b) Time (s)

V
e

rt
ic

a
l 
A

c
c
e

le
ra

ti
o

n
 P

e
rt

u
rb

a
ti
o

n
 (

ft
/s

2
)

ℓ = 20 ft, η ∈ R

ℓ = −2.388 ft, η ∈ R

ℓ = −20 ft, η ∈ R

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

(c) Time (s)

H
o

ri
z
o

n
ta

l 
V

e
lo

c
it
y
 P

e
rt

u
rb

a
ti
o

n
 (

ft
/s

)

η = 20 ft, ℓ ∈ R

η = 0, ℓ ∈ R

η = −20 ft, ℓ ∈ R

0 0.5 1 1.5
−10

−5

0

5

10

 

 

(d) Time (s)

H
o

ri
z
o

n
ta

l 
A

c
c
e

le
ra

ti
o

n
 P

e
rt

u
rb

a
ti
o

n
 (

ft
/s

2
)

η = 20 ft, ℓ ∈ R

η = 0, ℓ ∈ R

η = −20 ft, ℓ ∈ R

Figure 2: The responses of the vertical velocity perturbation δvpv(t) and the horizontal velocity perturbation

δvph(t) of a typical business jet to the 1-deg step elevator deflection δe(t) = 0.0171(t− t0) at t0 = 0 based

on the aircraft parameters given in [17]. In (a) and (b), for all ℓ < ℓIACR = −2.388 ft and η ∈ R, where

ℓIACR is the component along k̂AC of the location of the IACR, the transfer function Gδv̂pv/δê(s) has one

positive zero. For ℓ = ℓIACR and all η ∈ R, the initial slope of the vertical velocity perturbation is zero, that

is, the vertical acceleration at t+0 is zero. In (c) and (d), for all ℓ ∈ R and η > ηIACR = 0 ft, where ηIACR

is the component along ı̂AC of the location of the IACR, the transfer function Gδv̂ph/δê(s) has one positive

zero. For all ℓ ∈ R and η = ηIACR, the initial slope of the horizontal velocity perturbation is zero, that is,

the horizontal acceleration at t+0 is zero, which indicates that (ℓ, η) = (ℓIACR, ηIACR) is the location of the

IACR. This point is characterized by the vanishing zero, which, because of the increase in relative degree,

yields zero initial slopes in both directions ı̂AC and k̂AC. Figure 3 shows the same simulations over a longer

time interval.
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Figure 3: The responses of the vertical velocity perturbation δvpv(t), the vertical acceleration perturbation

δv̇pv(t), the horizontal velocity perturbation δvph(t), and the horizontal acceleration perturbation δv̇ph(t) of

a typical business jet to the 1-deg step elevator deflection δe(t) = 0.0171(t − t+0 ) at t0 = 0 based on the

aircraft parameters given in [17]. Note that, for all values of (ℓ, η), the poles in (87) and (88) are close to

the imaginary axis. Thus, δvpv(t), δv̇pv(t), δvph(t), and δv̇ph(t) reach their steady states values slowly. As

shown in Figure 2, the initial curvatures of δvpv(t) and δvph(t) are different for different values of (ℓ, η).

However, for all values of (ℓ, η), the vertical velocity perturbation and the horizontal velocity perturbation

approach nonzero constants, and both acceleration perturbations approach zero.
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Figure 4: The real zero of a business jet based on data given in [17]. This plot shows the location of one of

the real zeros of the numerator of the transfer function Gδv̂pv/δê(s) from the elevator input δe to the vertical

velocity δvpv of the aircraft at p as a function of the component ℓ along the direction k̂AC of the location

of p. Note that negative values of ℓ correspond to locations of p aft of the aircraft’s center of mass, that is,

toward the tail of the aircraft. The asymptotic values of the real zero are 1.349× 10−4 rad/s as ℓ approaches

−∞, and −1.366×10−4 rad/s as ℓ approaches ∞. Figure 5 shows the locations of the remaining real zeros.
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Figure 5: Zeros of the transfer function Gδv̂pv/δê(s). For ℓ ∈ [−25, 25] ft, these plots show the locations of

the two remaining zeros of Gδv̂pv/δê(s), which are real and do not vanish at the IACR.
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Figure 6: Zeros of the transfer function Gδv̂ph/δê(s). (a) shows the locations of the zeros of Gδv̂ph/δê(s)

for each location of p along k̂AC parameterized by η ∈ [−25 ft, 0.1 ft], where ηIACR = 0 ft. The diamonds

denote the zeros for η = −25 ft. The zero denoted by crosses approaches −∞ as η increases toward ηIACR;

one of the zeros denoted by circles approaches 0.88 rad/s as η increases toward ηIACR, while the remaining

zero approaches ∞ rad/s as η increases toward ηIACR. (b) shows the locations of the zeros of Gδv̂ph/δê(s)

for each location of p along k̂AC parameterized by η ∈ [0.1 ft, 25 ft], where ηIACR = 0 ft. The stars denote

the zeros for η = 25 ft. One of the zeros denoted by circles approaches ȷ∞ rad/s as η decreases toward

ηIACR, while the remaining zero approaches −ȷ∞ rad/s on the real axis as η decreases toward ηIACR. The

zero denoted by crosses approaches 0.88 rad/s as η decreases toward ηIACR. Consequently, two zeros of

Gδv̂ph/δê(s) vanish at the IACR.
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S wing area

b wing tip-to-tip distance

c̄ wing mean chord

ρ air density

VAC aircraft speed

pd dynamic pressure 1
2ρV

2
AC

Table 1: Aerodynamic parameters. These parameters characterize the basic features of the aircraft for steady

longitudinal flight.
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CL
L

pdS

CD
D
pdS

CL(u, q, r, δα, δα̇, δe) CL0
+ 1

U0
CLu0

u+ c̄
2U0

CLq0
q + b

2U0
CLr0

r

+CLα0
δα+ c̄

2U0
CLα̇0

δα̇+ CLδe0
δe

CD(u, q, r, δα, δα̇, δe) CD0
+ 1

U0
CDu0

u+ c̄
2U0

CDq0
q + b

2U0
CDr0

r

+CDα0
δα+ CDα̇0

δα̇+ CDδe0
δe

CLu0

∂CL

∂
(

u
U0

)

∣
∣
∣
∣
∣
0

CLq0

∂CL

∂
(

cq
2U0

)

∣
∣
∣
∣
∣
0

CLr0

∂CL

∂
(

br
2U0

)

∣
∣
∣
∣
∣
0

CLα0

∂CL
∂δα

∣
∣
∣
0

CLα̇0

∂CL

∂
(

c̄δα̇
2U0

)

∣
∣
∣
∣
∣
0

CDu0
2KCL0

CLu0

CDq0
2KCL0

CLq0

CDr0
2KCL0

CLr0

CDα0
2KCL0

CLα0

CDα̇0
2KCL0

CLα̇0

CDδe0
2KCL0

CLδe0

Cy
FAy

pdS

Cx0
−CD0

Cxu0

∂Cx

∂
(

u
U0

)

∣
∣
∣
∣
∣
0

Table 2: Stability derivatives. The aerodynamic parameters are given in Table 1. These lift, drag, force, and

moment derivatives model the aerodynamic forces and moments applied to the aircraft due to perturbations

away from steady longitudinal flight. This table is based on Table 6.1 of [16].
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Stability parameter Definition Units

Xu0
−pd0S

mU0
(2CD0

+ CDu0
) 1/sec

XTu0

pd0S

mU0
(2CTx0

+ CTxu0
) 1/sec

Xα0

pd0S

m (CL0
− CDδα0

) ft/sec2-rad

Xδe0
pd0S

m CDδe0
ft/sec2-rad

Zu0
−pd0S

mU0
(2CL0

+ CLu0
) 1/sec

Zα0

pd0S

m (CLα0
− CD0

) ft/sec2-rad

Zα̇0
−pd0Sc̄

2mU0
CLα̇0

ft/sec-rad

Zq0
pd0Sc̄

2mU0
CLq0

ft/sec-rad

Zδe0
pd0S

m CLδe0
ft/sec2-rad

Mu0

pd0Sc̄

IyyU0
(2Cm0

+ Cmu0
) rad/ft-sec

MTu0

pd0Sc̄

IyyU0
(2CTm0

+ CTmu0
) 1/ft-sec

Mα0

pd0Sc̄

Iyy
Cmα0

1/sec2

MTα0

pd0Sc̄

Iyy
CTmα0

1/sec2

Mα̇0

pd0Sc̄
2

2IyyU0
Cmα̇0

1/sec

Mq0
pd0Sc̄

2

2IyyU0
Cmq0

1/sec

Mδe0
pd0Sc̄

Iyy
Cmδe0

1/sec2

Table 3: Stability parameters. These parameters are functions of the aircraft parameters and stability deriva-

tives given in Table 2. This table is based on Table 6.3 of [16].
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Au Xδe0(U0 − Zα̇0
)

Bu −Xδe0 [(U0 − Zα̇0
)Mq0 + Zα0

+Mα̇0
(U0 + Zq0) + Zδe0Xα0

]

Cu Xδe0

[
Mq0Zα0

− (Mα0
+MTα0

)(U0 + Zq0)
]

−Zδe0 [Mα̇0
g +Xα0

Mq0 ] +Mδe0 [Xα̇0
(U0 + Zq0)− (U0 − Zα̇0

)g]

Du −Zδe0Mα0
g +Mδe0Zα0

g

Aα Zδe0

Bα Xδe0Zu0
+ Zδe0

[
−Mq0 − (Xu0

+XTu0
)
]
+Mδe0(U0 + Zq0)

Cα Xδe0

[
(U0 + Zq0)(Mu0

+MTu0
)−Mq0Zu0

]
+ Zδe0Mq0(Xu0

+XTu0
)

−Mδe0(U0 + Zq0)(Xu0
+XTu0

)

Dα Zδe0(Mu0
+MTu0

)g −Mδe0Zu0
g

Aθ Mδe0(U0 − Zα̇0
) + Zδe0Mα̇0

Bθ Xδe0

[
Zu0

Mα̇0
+ (U0 − Zα̇0

)(Mu0
+MTu0

)
]

+Zδe0

[
(Mα0

+MTα0
)−Mα̇0

(Xu0
+XTu0

)
]

+Mδe0

[
−Zα0

− (U0 − Zα̇0
)(Xu0

+XTu0
)
]

Cθ Xδe0

[
(Mα0

+MTα0
)Zu0

− Zα0
(Mu0

+MTu0
)
]

+Mδe0

[
Zα0

(Xu0
+XTu0

)−Xα0
Zu0

]

+Zδe0

[
−(Mα0

+MTα0
)(Xu0

+XTu0
) +Xα0

(Mu0
+MTu0

)
]

Av −ℓAθ + U0Aα

Bv −ℓBθ − U0Aθ + U0Bα

Cv −ℓCθ − U0Bθ + U0Cα

Dv −U0Cθ + U0Dα

Ah ηAθ +Au

Bh ηBθ +Bu

Ch ηCθ + Cu

Dh Du

Table 4: Transfer function numerator coefficients. These coefficients appear in the transfer functions from

the elevator deflection δê(s) to û(s), δα̂(s), θ̂(s), δv̂ph(s), and δv̂pv(s).
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E U0 − Zα̇0

F −(U0 − Zα̇0
)(Xu0

−XTu0
+Mq0)− Zα0

−Mα̇0
(U0 + Zq0)

G (Xu0
−XTu0

) [Mq0(U0 − Zα̇0
) + Zα0

−Mα̇0
(U0 + Zq0)] +Mq0Zα0

−Zu0
Xα0

− (Mα0
+MTα0

)(U0 + Zq0)

H g
[
Zu0

Mα̇0
+ (Mu0

+MTu0
)(U0 − Zα̇0

)
]

+(Mu0
+MTu0

) [−Xα0
(U0 + Zq0)] + Zu0

Xα0
Mq0

+(Xu0
+XTu0

)
[
(Mα0

+MTα0
)(U0 + Zq0)−Mq0Zα0

]

I g
[
(Mα0

+MTα0
)Zu0

− Zα0
(Mu0

+MTu0
)
]

Table 5: Transfer function denominator coefficients. These coefficients appear in the transfer functions from

the elevator deflection δê(s) to û(s), δα̂(s), θ̂(s), δv̂ph(s), and δv̂pv(s).
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Stability parameter Value Units

Θ0 0.0000 rad

U0 400.0000 kt

Xu0
−0.0074 1/s

XTu0
0.0000 1/s

Xα0
8.9782 ft-rad/s2

Xδe0 0.0000 ft-rad/s2

Zu0
0.1390 1/s

Zα0
−445.7224 ft-rad/s2

Zα̇0
−0.8705 ft-rad/s

Zq0 −1.8598 ft-rad/s

Zδe0 −42.1968 ft-rad/s2

Mu0
0.0011 rad/ft-s

MTu0
−0.0002 1/ft-s

Mα0
−7.4416 1/s2

MTα0
0.0000 1/s2

Mα̇0
−0.4062 1/s

Mq0 −0.9397 1/s

Mδe0 −17.6737 1/s2

Table 6: Stability parameter values. These data for a business jet are given in [17, p. 330].
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Sidebar 1

Center of Rotation and Center of Percussion

Consider the free rigid body shown in Figure S1, with concentrated masses m1, . . ., mn at distances

of ℓ1, . . ., ℓn, respectively, from the point OB, which is the origin of the body-fixed frame FB. The frame FA

is assumed to be an inertial frame. Consider a force
⇀
F that impacts the structure at point P and perpendicular

to the body, and assume that R is the point on the body at which the velocity
⇀
vR/OA/A of R relative to OA

with respect to FA is identically zero following the impact. The point R is the center of rotation relative

to P; equivalently, P is the center of percussion relative to R. Let ℓR and ℓP denote the distances from the

upper end of the body to R and P, respectively. The distance ℓc from the upper end of the body to the center

of mass c is given by

ℓc =

∑n
i=1miℓi
mtotal

, (S1)

where mtotal
△
=
∑n

i=1mi is the total mass of the body.

Next, the velocity
⇀
vR/OA/A of R relative to OA with respect to FA can be written as

⇀
vR/OA/A =

A•
⇀
r R/OA

=
A•
⇀
r R/c +

A•
⇀
r c/OA

=
⇀
v c/OA/A +

B•
⇀
r R/c +

⇀
ωB/A × ⇀

r R/c

=
⇀
v c/OA/A +

⇀
ωB/A × ⇀

r R/c, (S2)

where
⇀
v c/OA/A is the velocity of c relative to OA with respect to FA,

⇀
ωB/A is the angular velocity of FB

relative to FA, and
⇀
r R/c is the position of R relative to c. Note that

B•
⇀
r R/c= 0 since R and c are fixed in the
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body. These vectors can be resolved in FB as

⇀
vR/OA/A = vRȷ̂A,

⇀
v c/OA/A = vcȷ̂a,

⇀
ωB/A = ωk̂A,

⇀
r R/c = (ℓR − ℓc)̂ıA.

Thus, (S2) implies that







0

vR

0







=








0

vc

0







+








0

0

ω







×








ℓR − ℓc

0

0







,

that is,

vR = vc + (ℓR − ℓc)ω. (S3)

Next, viewing OA as an unforced particle, Newton’s second law implies

⇀
F = mtotal

A•
⇀
v c/OA/A,

where
⇀
F = F0δ(t)ȷ̂B. Thus, since

A•
⇀
v c/OA/A = v̇cȷ̂A, it follows that

F0δ(t) = mtotalv̇c(t). (S4)

Next, the moment
⇀
MP/c on P about c due to

⇀
F is given by

⇀
MP/c =

⇀
r P/c ×

⇀
F = Ic

A•
⇀
ω B/A,

where Ic
△
=

n∑

i=1

mi(ℓi − ℓc)
2 is the moment of inertia of the body relative to c. The position of P relative to

c is given by
⇀
r P/c = (ℓP − ℓc)̂ıA. Therefore,








ℓP − ℓc

0

0







×








0

F0δ(t)

0







= Ic








0

0

ω̇(t)







,
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that is,

F0(ℓP − ℓc)δ(t) = Icω̇(t). (S5)

Using (S4) and (S5), and differentiating (S3), it follows that

v̇R(t) =

(
F0

mtotal
+ (ℓR − ℓc)

F0(ℓP − ℓc))

Ic

)

δ(t).

Since R is the center of rotation, we have, for all t ≥ 0,

vR(t) =

(
1

mtotal
+

(ℓR − ℓc)(ℓP − ℓc)

Ic

)

F0 = 0.

Therefore,

1

mtotal
+

(ℓR − ℓc)(ℓP − ℓc)

Ic
= 0.

It follows that

ℓR = ℓc −
Ic

mtotal(ℓP − ℓc)
. (S6)

Consequently, if the force impacts the body at the center of percussion P located at ℓP, then the

translational velocity vR at the center of rotation located at ℓR given by (S6) is identically zero.
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Figure S1: A free rigid body with nonuniform concentrated masses m1, . . ., mn at distances of ℓ1, . . ., ℓn

from the upper end OB of the structure. The point R is the center of rotation relative to P, while the point P

is the center of percussion relative to R.
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Sidebar 2

Instantaneous Velocity Center of Rotation

Let B be a rigid body with body-fixed frame FB, let FA be a frame with origin OA, and let
⇀
ωB/A be

the angular velocity of FB relative to FA. A point p that is fixed relative to B is an instantaneous velocity

center of rotation (IVCR) of B at time t if
⇀
ωB/A(t) ̸= 0 and

⇀
v p/OA/A(t) = 0 [S1, pp. 147-149], [S2, pp.

49-52]. The motion of B can be viewed as instantaneously rotating about p. See Figure S2.

Let q be a point that is fixed relative to B. It follows from the definition of an IVCR and the transport

theorem that p is an IVCR of B if and only if
⇀
ωB/A ̸= 0 and

⇀
v p/OA/A =

⇀
ωB/A × ⇀

r p/q +
⇀
v q/OA/A = 0. (S7)

Resolving
⇀
v q/OA/A,

⇀
ωB/A, and

⇀
r p/q in FB as

v
△
=

⇀
v q/OA/A

∣
∣
∣
B
, ω

△
=

⇀
ωB/A

∣
∣
∣
B
, r

△
=

⇀
r p/q

∣
∣
∣
B
, (S8)

(S7) can be rewritten as

ω×r + v = 0. (S9)

Note that the existence of an IVCR depends on the existence of a solution to (S9). Since ω× is singular, (S9)

has either zero or infinitely many solutions. Let R denote range.

Fact S1. The following statements hold:

i) If v /∈ R(ω×), then B has no IVCR.

ii) If v ∈ R(ω×), then B has infinitely many IVCRs.

iii) Suppose v ∈ R(ω×). Then p is an IVCR if and only if there exists α ∈ R such that

r = αω − 1

|ω|2ω×v. (S10)

Note that if
⇀
ωB/A ·⇀v q/OA/A = ωTv = −ωT(ω×r) = 0. Hence, if

⇀
ωB/A ·⇀v q/OA/A ̸= 0, then B has

no IVCR. This situation occurs, for example, in bullet flight, where the translational velocity is parallel to

its angular velocity.
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Fact S2. p is an IVCR of B if and only if p satisfies the following conditions:

i)
⇀
ωB/A · ⇀v q/OA/A = 0.

ii)
⇀
ωB/A ×

(
⇀
r p/q − 1

|
⇀
ωB/A|2

⇀
ωB/A × ⇀

v q/OA/A

)

= 0.

In this case,

⇀
r p/q =

1

|⇀ωB/A|2
⇀
ωB/A × ⇀

v q/OA/A +

⇀
ωB/A · ⇀r p/q

|⇀ωB/A|2
⇀
ωB/A. (S11)

Proof Assume that p is an IVCR of B. Then it follows from (S7) that

⇀
ωB/A · ⇀v q/OA/A =

⇀
ωB/A ·

(

−⇀
ωB/A × ⇀

r p/q

)

= 0,

which proves i). To prove ii), it follows from (S7) that

⇀
ωB/A ×

(

⇀
r p/c −

1

|⇀ωB/A|2
⇀
ωB/A × ⇀

v c/OA/A

)

=
⇀
ωB/A × ⇀

r p/c +
⇀
v c/OA/A = 0.

Hence, ii) holds.

Conversely, it follows from ii) that there exists α ∈ R such that
⇀
r p/q = 1

|
⇀
ωB/A|2

⇀
ωB/A × ⇀

v q/OA/A +

α
⇀
ωB/A. Using i) and ii), it follows that

⇀
v p/OA/A =

⇀
v p/q/A +

⇀
v q/OA/A

=
⇀
v p/q/B +

⇀
ωB/A × ⇀

r p/q +
⇀
v q/OA/A

=
⇀
ωB/A ×

(

1

|⇀ωB/A|2
⇀
ωB/A × ⇀

v q/OA/A + α
⇀
ωB/A

)

+
⇀
v q/OA/A

= −⇀
v q/OA/A +

⇀
v q/OA/A

= 0.

To show (S11), assume p is an IVCR of B. It follows from (S7) that

⇀
ωB/A × ⇀

v p/OA/A =
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q +
⇀
v q/OA/A) = 0,
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which implies that

(
⇀
ωB/A · ⇀r p/q)

⇀
ωB/A − |⇀ωB/A|2

⇀
r p/q +

⇀
ωB/A × ⇀

v q/OA/A = 0. (S12)

Hence, solving for
⇀
r p/q in (S12) yields (S11).
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Figure S2: Instantaneous velocity center of rotation. B is a rigid body. The point q, which is fixed relative

to B. FA is a frame with origin OA,
⇀
ωB/A is the angular velocity of FB relative to FA, and it is assumed

that
⇀
ωB/A ̸= 0. The point p, which is fixed relative to B, has the property that, at time t, the velocity of p

relative to OA with respect to the frame FA is zero. Thus B is instantaneously rotating about p.
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Sidebar 3

Instantaneous Acceleration Center of Rotation

Let B be a rigid body with body-fixed frame FB, let FA be a frame with origin OA, and let
⇀
ωB/A be

the angular velocity of FB relative to FA. A point p that is fixed relative to B is an instantaneous acceleration

center of rotation (IACR) at time t if
⇀
ap/OA/A(t) = 0 [S1, pp. 150-155], [S3, pp. 336-338].

To characterize this property, let q be a point fixed relative to the rigid body B. It follows from the

definition of an IACR and the transport theorem that p is an IACR if and only if

⇀
ap/OA/A =

B•
⇀
ω B/A ×⇀

r p/q +
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q) +
⇀
a q/OA/A = 0. (S13)

Resolving
⇀
a q/OA/A,

⇀
ωB/A, and

⇀
r p/q in FB as

a
△
=

⇀
a q/OA/A

∣
∣
∣
B
, ω

△
=

⇀
ωB/A

∣
∣
∣
B
, ω̇

△
=

B•
⇀
ω B/A

∣
∣
∣
∣
∣
B

, r
△
=

⇀
r p/q

∣
∣
∣
B
, (S14)

(S13) can be rewritten as

(ω̇× + ω×2
)r + a = 0. (S15)

Note that there exists an IACR if and only if there exists r satisfying (S15). Furthermore, (S15) can yield

zero, one, or infinitely many IACRs.

Note that the determinant of ω̇× + ω×2
is given by

det (ω̇× + ω×2
) = (

⇀
ωB/A·

B•
⇀
ω B/A)

2 − (
⇀
ωB/A · ⇀ωB/A)(

B•
⇀
ω B/A ·

B•
⇀
ω B/A)

= −|⇀ωB/A|2|
B•
⇀
ω B/A |2 sin2 θ, (S16)

where

θ
△
= cos−1

⇀
ωB/A

B•
⇀
ω B/A

|⇀ωB/A||
B•
⇀
ω B/A |

. (S17)
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Fact S3. There exists a unique IACR if and only if θ/π is not an integer,
⇀
ωB/A ̸= 0, and

B•
⇀
ω B/A ̸= 0.

Proof Suppose (S15) has a unique solution. Therefore, ω̇× + ω×2
is nonsingular, and thus the deter-

minant of ω̇× + ω×2
is nonzero. Hence, it follows from (S16) that

det (ω̇× + ω×2
) = −|⇀ωB/A|2|

B•
⇀
ω B/A |2 sin2 θ ̸= 0,

which implies that θ/π is not an integer,
⇀
ωB/A ̸= 0,

⇀
ωB/A ̸= 0, and

B•
⇀
ω B/A ̸= 0.

Conversely, since θ/π is not an integer,
⇀
ωB/A ̸= 0, and

B•
⇀
ω B/A ̸= 0, it follows from (S16) that

det (ω̇× + ω×2
) = −|⇀ωB/A|2|

B•
⇀
ω B/A |2 sin2 θ ̸= 0, which implies that (S15) has a unique solution.

Fact S4. Assume
⇀
ωB/A = 0,

B•
⇀
ω B/A ̸= 0, and

⇀
a q/OA/A ̸= 0. Then p is an IACR if and only if p

satisfies the following conditions:

i)

B•
⇀
ω B/A ·⇀a q/OA/A = 0.

ii)

B•
⇀
ω B/A ×




⇀
r p/q − 1

|
B•

⇀
ω B/A|2

B•
⇀
ω B/A ×⇀

a q/OA/A



 = 0.

In this case, p satisfies

⇀
r p/1 =

1

|
B•
⇀
ω B/A |2

B•
⇀
ω B/A ×⇀

a q/OA/A +

B•
⇀
ω B/A ·⇀r p/q

|
B•
⇀
ω B/A |2

B•
⇀
ω B/A . (S18)

Proof Assume p is an IACR. Since
⇀
ωB/A = 0, it follows from (S13) that

B•
⇀
ω B/A ·⇀a q/OA/A =

B•
⇀
ω B/A ·

(

−
B•
⇀
ω B/A ×⇀

r p/q −
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q)

)

= −
B•
⇀
ω B/A ·

(
B•
⇀
ω B/A ×⇀

r p/q

)

= 0,
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which proves i). To prove ii), it follows from (S13) that

B•
⇀
ω B/A ×







⇀
r p/q −

1

|
B•
⇀
ω B/A |2

B•
⇀
ω B/A ×⇀

a q/OA/A







=
B•
⇀
ω B/A ×⇀

r p/q +
⇀
a q/OA/A = 0.

Hence, ii) holds.

Conversely, it follows from ii) that there exists α ∈ R such that

⇀
r p/q =

1

|
B•
⇀
ω B/A |2

B•
⇀
ω B/A ×⇀

a q/OA/A + α
B•
⇀
ω B/A . (S19)

Using i) and (S19), it follows that

⇀
ap/OA/A =

A••
⇀
r p/OA

=
A••
⇀
r p/c +

A••
⇀
r c/OA

=
B••
⇀
r p/q +2

⇀
ωB/A×

B•
⇀
r p/q +

B•
⇀
ω B/A ×⇀

r p/q +
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q) +
⇀
a q/OA/A

=
B•
⇀
ω B/A ×







1

|
B•
⇀
ω B/A |2

B•
⇀
ω B/A ×⇀

a q/OA/A + α
B•
⇀
ω B/A







+
⇀
a q/OA/A

=

B•
⇀
ω B/A · ⇀a q/OA/A

|
B•
⇀
ω B/A |2

B•
⇀
ω B/A − ⇀

a q/OA/A +
⇀
a q/OA/A

= 0.

To show (S18), assume p is an IACR. It follows from (S13) that

B•
⇀
ω B/A ×⇀

ap/OA/A =
B•
⇀
ω B/A ×

(
B•
⇀
ω B/A ×⇀

r p/q +
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q) +
⇀
a q/OA/A

)

= 0,

which implies that

(
B•
⇀
ω B/A ·⇀r p/q)

B•
⇀
ω B/A −(

B•
⇀
ω B/A ·

B•
⇀
ω B/A)

⇀
r p/q+

B•
⇀
ω B/A ×⇀

a q/OA/A = 0. (S20)
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Hence, solving for
⇀
r p/q in (S20) yields (S18).

Fact S5. Assume

B•
⇀
ω B/A= 0,

⇀
ωB/A ̸= 0, and

⇀
a q/OA/A ̸= 0. Then p is an IACR if and only if p

satisfies the following conditions:

i)
⇀
ωB/A · ⇀a q/OA/A = 0.

ii)
⇀
ωB/A ×

(
⇀
r p/q −

⇀
a q/OA/A

|
⇀
ωB/A|2

)

= 0.

In this case,

⇀
r p/q =

⇀
a q/OA/A

|⇀ωB/A|2
+

⇀
ωB/A · ⇀r p/q

|⇀ωB/A|2
⇀
ωB/A. (S21)

Proof Assume p is an IACR. Since

B•
⇀
ω B/A= 0, it follows from (S13) that

⇀
ωB/A · ⇀a q/OA/A =

⇀
ωB/A ·

(

−
B•
⇀
ω B/A ×⇀

r p/q −
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q)

)

= −⇀
ωB/A ·

(
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q)
)

= 0,

which proves i). To prove ii), it follows from (S13) that

⇀
ωB/A ×

(

⇀
r p/q −

⇀
a q/OA/A

|⇀ωB/A|2

)

=
⇀
ωB/A × ⇀

r p/q −
⇀
ωB/A ×

−
B•
⇀
ω B/A ×⇀

r p/q −
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q)

|⇀ωB/A|2

=
⇀
ωB/A × ⇀

r p/q +
⇀
ωB/A ×

⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q)

|⇀ωB/A|2

=
⇀
ωB/A × ⇀

r p/q −
⇀
ωB/A × ⇀

r p/q

= 0. (S22)

Hence, ii) holds.
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Conversely, it follows from ii) that there exists α ∈ R such that

⇀
r p/q =

⇀
a q/OA/A

|⇀ωB/A|2
+ α

⇀
ωB/A. (S23)

Using i) and (S23), it follows that

⇀
ap/OA/A =

A••
⇀
r p/OA

=
A••
⇀
r p/q +

A••
⇀
r q/OA

=
B••
⇀
r p/q +2

⇀
ωB/A×

B•
⇀
r p/q +

B•
⇀
ω B/A ×⇀

r p/q +
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q) +
⇀
a q/OA/A

=
⇀
ωB/A ×

(

⇀
ωB/A × (

⇀
a q/OA/A

|⇀ωB/A|2
+ α

⇀
ωB/A)

)

+
⇀
a q/OA/A

= −⇀
a q/OA/A +

⇀
a q/OA/A

= 0.

To show (S21), assume p is an IACR. It follows from (S13) that

B•
⇀
ω B/A ×⇀

r p/q +
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q) +
⇀
a q/OA/A

=
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q) +
⇀
a q/OA/A

= (
⇀
ωB/A · ⇀r p/q)

⇀
ωB/A − (

⇀
ωB/A · ⇀ωB/A)

⇀
r p/q +

⇀
a q/OA/A

= 0. (S24)

Solving for
⇀
r p/q in (S24) yields (S21).

Fact S6. Assume

B•
⇀
ω B/A= 0 and

⇀
ωB/A = 0. Then every point p that is fixed relative to B is an IACR

if and only if

⇀
a q/OA/A = 0.

Proof Assume p is an IACR, it follows from (S13) that

0 =
B•
⇀
ω B/A ×⇀

r p/q +
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q) +
⇀
a q/OA/A

=
⇀
a q/OA/A.
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Conversely,

⇀
ap/OA/A =

A••
⇀
r p/OA

=
A••
⇀
r p/q +

A••
⇀
r q/OA

=
B••
⇀
r p/q +2

⇀
ωB/A×

B•
⇀
r p/q +

B•
⇀
ω B/A ×⇀

r p/q +
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q) +
⇀
a q/OA/A

=
⇀
a q/OA/A

= 0. �

Fact S7. Assume

B•
⇀
ω B/A and

⇀
ωB/A are colinear, and let κ

△
=

B•

⇀
ω B/A·

⇀
ωB/A

|
⇀
ωB/A|2

. Then p is an IACR if and

only if p satisfies the following conditions:

i)
⇀
ωB/A · ⇀a q/OA/A = 0.

ii)
⇀
ωB/A and

⇀
r p/q −

|
⇀
ωB/A|2

⇀
a q/OA/A+

B•

⇀
ω B/A×

⇀
a q/OA/A

|
⇀
ωB/A|4+|

B•

⇀
ω B/A|2

are colinear.

In this case, p satisfies

⇀
r p/q =

|⇀ωB/A|2
⇀
a q/OA/A+

B•
⇀
ω B/A ×⇀

a q/OA/A

|⇀ωB/A|4 + |
B•
⇀
ω B/A |2

+
|⇀ωB/A|2(

⇀
ωB/A · ⇀r p/q) + κ

B•
⇀
ω B/A ·⇀r p/q

|⇀ωB/A|4 + |
B•
⇀
ω B/A |2

⇀
ωB/A. (S25)

Proof Assume p is an IACR. It follows from (S13) that
⇀
ωB/A · ⇀a q/OA/A = 0, which proves i). To

prove ii), note that p is an IACR, it follows from (S13) that

0 =
B•
⇀
ω B/A ×⇀

r p/q +
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q) +
⇀
a q/OA/A

=
B•
⇀
ω B/A ×⇀

r p/q + (
⇀
ωB/A · ⇀r p/q)

⇀
ωB/A − (

⇀
ωB/A · ⇀ωB/A)

⇀
r p/q +

⇀
a q/OA/A. (S26)
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Next, the cross product of

B•
⇀
ω B/A and (S26) can be expressed as

0 =
B•
⇀
ω B/A ×

(
B•
⇀
ω B/A ×⇀

r p/q + (
⇀
ωB/A · ⇀r p/q)

⇀
ωB/A − (

⇀
ωB/A · ⇀ωB/A)

⇀
r p/q +

⇀
a q/OA/A

)

= (
B•
⇀
ω B/A ·⇀r p/q)

B•
⇀
ω B/A −|

B•
⇀
ω B/A |2⇀r p/q − |⇀ωB/A|2(

B•
⇀
ω B/A ×⇀

r p/q)+
B•
⇀
ω B/A ×⇀

a q/OA/A. (S27)

It follows from (S26) that

B•
⇀
ω B/A ×⇀

r p/q is given by

B•
⇀
ω B/A ×⇀

r p/q = −(
⇀
ωB/A · ⇀r p/q)

⇀
ωB/A + (

⇀
ωB/A · ⇀ωB/A)

⇀
r p/q −

⇀
a q/OA/A. (S28)

Substituting (S28) into (S27) yields

0 = (
B•
⇀
ω B/A ·⇀r p/q)

B•
⇀
ω B/A −|

B•
⇀
ω B/A |2⇀r p/q + |⇀ωB/A|2(

⇀
ωB/A · ⇀r p/q)

⇀
ωB/A

− |⇀ωB/A|4
⇀
r p/q + |⇀ωB/A|2

⇀
a q/OA/A+

B•
⇀
ω B/A ×⇀

a q/OA/A

= [κ
B•
⇀
ω B/A ·⇀r p/q + (

⇀
ωB/A · ⇀r p/q)]

⇀
ωB/A + |⇀ωB/A|2

⇀
a q/OA/A+

B•
⇀
ω B/A ×⇀

a q/OA/A

− (|
B•
⇀
ω B/A |2 + |⇀ωB/A|4)

⇀
r p/q. (S29)

Hence, ii) holds.

Conversely, it follows from ii) that there exists α ∈ R such that

⇀
r p/q =

|⇀ωB/A|2
⇀
a q/OA/A+

B•
⇀
ω B/A ×⇀

a q/OA/A

|⇀ωB/A|4 + |
B•
⇀
ω B/A |2

+ α
B•
⇀
ω B/A .
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Using i) and ii),
⇀
ap/OA/A is given by

⇀
ap/OA/A =

A••
⇀
r p/OA

=
A••
⇀
r p/q +

A••
⇀
r q/OA

=
B••
⇀
r p/q +2

⇀
ωB/A×

B•
⇀
r p/q +

B•
⇀
ω B/A ×⇀

r p/q +
⇀
ωB/A × (

⇀
ωB/A × ⇀

r p/q) +
⇀
a q/OA/A

=
B•
⇀
ω B/A ×







|⇀ωB/A|2
⇀
a q/OA/A+

B•
⇀
ω B/A ×⇀

a q/OA/A

|⇀ωB/A|4 + |
B•
⇀
ω B/A |2

+ α
⇀
ωB/A







+
⇀
ωB/A ×







⇀
ωB/A ×







|⇀ωB/A|2
⇀
a q/OA/A+

B•
⇀
ω B/A ×⇀

a q/OA/A

|⇀ωB/A|4 + |
B•
⇀
ω B/A |2

+ α
⇀
ωB/A













+
⇀
a q/OA/A

= −⇀
a q/OA/A +

⇀
a q/OA/A

= 0.

Finally, (S29) implies (S25).
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Sidebar 4

The Initial Curvature Theorem and the Unit-Step Response

Initial Slope Theorem Let ŷ(s) denote the Laplace transform of y(t). Then the initial slope of

y(t) is given by

y′(0+)
△
= lim

t→0+
y′(t) = lim

s→∞
s[sŷ(s)− y(0+)].

To illustrate the initial slope theorem, we consider the unit-step response of the asymptotically stable,

strictly proper transfer function G with relative degree d ≥ 1. The unit-step response has the initial value

y(0+)
△
= limt→0+ y(t) = lims→∞ s(G(s)1s ) = G(∞) = 0. The initial slope of y(t) is thus given by

y′(0+) = lim
s→∞

s2ŷ(s) = lim
s→∞

sG(s).

Consequently, if d = 1, then y′(0+) ̸= 0, whereas, if d ≥ 2, then y′(0+) = 0. These results are illustrated

in Figure S3 and Figure S4.

Initial Curvature Theorem Let ŷ(s) denote the Laplace transform of the output y(t). Then, the

initial curvature of y(t) is given by

y(d)(0+)
△
= lim

t→0+
y(d)(t) = lim

s→∞
sd+1ŷ(s),

where y(d) denotes the dth derivative of y, and d is the relative degree of G(s).

Let us consider the unit-step response of the asymptotically stable, strictly proper transfer function G

with relative degree d ≥ 1, where

G(s) =
βn−ds

n−d + βn−d−1s
n−d−1 + · · ·+ β0

sn + αn−1sn−1 + · · ·+ α0
.
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The initial curvature of the unit step response is thus given by

y(i)(0+) = lim
s→∞

si+1ŷ(s)

= lim
s→∞

si+1G(s)
1

s

= lim
s→∞

siG(s)

=







0, i = 1, . . . , d− 1,

βn−d, i = d.

Therefore, the initial curvature of the unit step response depends on the sign of the dth derivative y(d)(0+) =

βn−d.
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Figure S3: The unit step response of the asymptotically stable transfer function G(s) = (s−2)2

(s+1)(s+2)(s+3) with

relative degree d = 1. The initial slope y′(0+) of the unit step response is 1.
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Figure S4: The unit step response of the asymptotically stable transfer function G(s) = s−3
(s+5)4

, whose

relative degree is 3. The initial slope y′(0+) of the unit step response is 0, whereas the initial curvature

y′′(0+) of the unit step response is 1.
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Sidebar 5

Initial Undershoot

Initial undershoot occurs when the step response of a transfer function initially moves in the direction

opposite to the direction of its asymptotic value.

Let G(s)
△
= β(s)

srα(s) be a strictly proper transfer function with relative degree d > 0, where r ≥ 0 and

α(s) is asymptotically stable. Let y(t) be the unit-step response of G. Then initial undershoot occurs at

t = 0 if

y(d)(0+)y(r)(∞) < 0,

where y(d)(0+)
△
= limt→0+y

(d)(t) and y(r)(∞)
△
= limt→0+y

(r)(t). The unit-step response has the initial

curvature

y(d)(0+) = lim
t→0+

y(d)(t) = lim
s→∞

s(sdŷ(s)) = lim
s→∞

sd+1(G(s)
1

s
) =

β(∞)

α(∞)
,

as well as the asymptotic curvature

y(r)(∞)
△
= limt→∞y(r)(t) = lim

s→0
s(r+1)(G(s)

1

s
) =

β(0)

α(0)
.

The initial direction of the step response depends on the sign of the product of the initial curvature y(d)(0+)

and the asymptotic curvature y(r)(∞). The following result is discussed in [3].

Proposition S1 Let G
△
= β(s)

srα(s) be a strictly proper transfer function, where r ≥ 0 and α(s) is

asymptotically stable. Then the unit step response has initial undershoot if and only if G(s) has an odd

number of positive zeros.

As an example, consider the transfer function G(s) = − (s−1)(s−2)(s−3)
s(s+1)(s+2)(s+3)(s+4) . The unit impulse

response exhibits initial undershoot with three direction reversals due to the three positive zeros, as shown

in Figure S5.
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Figure S5: Unit impulse response of the transfer function G(s) = − (s−1)(s−2)(s−3)
s(s+1)(s+2)(s+3)(s+4) . The impulse

response of this system exhibits initial undershoot with three direction reversals due to the three positive

zeros.
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Sidebar 6

Markov Parameters and Relative Degree

Consider

ẋ(t) = Ãx(t) + B̃u(t),

ẏ(t) = C̃x(t) + D̃u(t),

whose Laplace form is given by

sx̂(s)− x(0) = Ãx̂(s) + B̃û(s),

ŷ(s) = C̃x̂(s) + D̃û(s).

Then,

ŷ(s) = C̃(sI − Ã)−1x(0) + [C̃(sI − Ã)−1B̃ + D̃]û(s),

where

G(s)
△
= C̃(sI − Ã)−1B̃ + D̃.

Expanding G(s) in a Laurent series about infinity yields

G(s) =
1

s
C̃

(

I − 1

s
Ã

)−1

B̃ + D̃

= D̃ +
1

s
C̃B̃ +

1

s2
C̃ÃB̃ + · · · . (S30)

We now consider Gθ̂/δê(s) given by (47). Using (S30), we obtain

lim
s→∞

sGθ̂/δê(s) = C̃B̃,

We can now write (42)–(44) in state space form with elevator-deflection input and setting Xα̇0
= 0, Zα̇0

= 0,

and Mα̇0
= 0 for convenience yields







u̇

δα̇

q̇

θ̇






=







u̇

δα̇

q̇

θ̇






=







Xu0
+XTu0

Xα0
Xq0 −g

Zu0

U0

Zα0

U0

U0+Zq0
U0

0

Mu0
+MTu0

Mα0
+MTα0

Mq0 0

0 0 1 0













u

δα

q

θ






+







Xδe0
Zδe0
U0

Mδe0

0






δe. (S31)
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where

B̃
△
=











Xδe0

Zδe0
U0

Mδe0

0











, C̃
△
=
[

0 0 0 1
]

.

Note that

C̃B̃ = 0.

Since D̃ = 0 and C̃B̃ = 0, it follows from (S30) that

lim
s→∞

s2G(s) = C̃ÃB̃, (S32)

where we consider

Ã
△
=











u̇

δα̇

q̇

θ̇











=











Xu0
+XTu0

Xα0
Xq0 −g

Zu0
U0

Zα0

U0

U0+Zq0
U0

0

Mu0
+MTu0

Mα0
+MTα0

Mq0 0

0 0 1 0











,

which is given by (S31). Therefore,

lim
s→∞

s2Gθ̂/δê(s) =
Aθ

E
, (S33)

where Aθ is the coefficient of s2 in the numerator of (47). From (S32) and (S33) it follows that Aθ/E =

C̃ÃB̃ = Mδe0 for Xα̇0
= 0, Zα̇0

= 0, and Mα̇0
= 0. It thus follows that the numerator of Gθ̂/δê(s) in (47)

is of second order.
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Sidebar 7

Routh Test for Third- and Fourth-Order Polynomials

All three roots of the cubic polynomial of p(s) = s3 + a2s
2 + a1s+ a0 are in the open left half plane

if and only if

a0, a1, a2 > 0

and

a0 < a1a2.

All four roots of the quartic polynomial p(s) = s4 + a3s
3 + a2s

2 + a1s+ a0 are in the OLHP if and

only if

a0, a1, a2, a3 > 0

and

a0a
2
3 + a21 < a1a2a3.
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