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Nonminimum-phase zeros, that is, closed-right-half-plane (CRHP) zeros, affect both the open-loop
and closed-loop behavior of continuous-time linear systems in undesirable ways [1]. For example, an asymp-
totically stable linear system with an odd number of positive zeros experiences initial undershoot to a step
input (see “Initial Undershoot”). Moreover, under the rules of root locus, zeros in the open-right-half-plane
(ORHP) attract closed-loop poles, which limits the controller gain and thus the performance of the closed-
loop system. In LQG theory, closed-loop poles are attracted to the reflected locations of the open-loop
ORHP zeros in the high-control-authority (that is, cheap-control) limit, thus constraining the achievable

closed-loop bandwidth [2, p. 289].

Given the critical role of nonminimum-phase zeros, it is useful to identify physical characteristics
that give rise to them. Although spatial separation between sensors and actuators is often postulated as
a source of nonminimum-phase zeros, analysis of the transfer functions between separated masses in a
serially connected structure shows that this is not necessarily the case [3]. On the other hand, noncolocation

in rotational motion typically gives rise to nonminimum-phase zeros [4].



Aside from zero locations, the number of zeros determines the relative degree of the system, which
impacts the asymptotic, that is, high-frequency, phase of the transfer function. The relative degree of an
asymptotically stable transfer function also plays a role in the initial slope of the step response. This rela-
tionship is apparent from the initial value theorem applied to the derivative of the output. When the initial
slope of the output is zero, higher order derivatives of the initial response, which determine the initial cur-
vature of the output, can be evaluated to detect the possibility of initial undershoot. The sign of the first
nonzero derivative of the output relative to the sign of the dc gain determines whether or not the step re-
sponse exhibits initial undershoot. The number of derivatives that must be evaluated in order to determine

the sign of the first nonzero derivative is equal to the relative degree of the system.

In aircraft dynamics, the IACR of an aircraft is the point on the aircraft that has zero instantaneous
acceleration. For an aircraft that is perturbed from steady horizontal flight by an elevator step deflection, the
IACR is the point at which the elevator-to-vertical-velocity transfer function and the elevator-to-horizontal-
velocity transfer function each have a zero that vanishes. These vanishing zeros play an important role
in the aircraft’s instantaneous response. As shown in [5, p. 314], the IACR for an F-16 is about 6 feet
forward of the center of mass. As an accelerometer is moved forward from the tail to the IACR, a real
nonminimum-phase zero moves toward oo, where it vanishes. As the accelerometer moves past the IACR,
the zero “reappears” at —oo and moves toward zero as a minimum-phase zero. Thus, an accelerometer
measurement at each point along the aircraft between the tail and the IACR exhibits initial undershoot. This

phenomenon plays a role in the literature on aircraft dynamics and control [5]-[14].

In the present article, we demonstrate the relationship between vanishing zeros and the response of
the aircraft at the IACR. The IACR of a rigid body is related to, but distinct from, the center of rotation.
See “Center of Rotation and Center of Percussion”, which discusses the motion of a bar-like rigid body in
response to an impact. A bar-like rigid body possesses a point, called the center of percussion, with the
property that an impulsive force at this location leads to identically zero translational velocity at another
point on the body, called the center of rotation. Another related notion is the instantaneous velocity center

of rotation (IVCR), which is discussed in “Instantaneous Velocity Center of Rotation.”



The goal of this article is to explain and demonstrate the relationship between vanishing zeros and the
response of the aircraft at its IACR. To demonstrate this relationship, we consider both the vertical velocity
response and the horizontal velocity response of the aircraft to a step elevator deflection. In particular, we
show that, at the IACR, the relative degree of the linearized transfer function from elevator deflection to
vertical velocity (and thus to altitude) increases by at least 1, and the relative degree of the linearized trans-
fer function from elevator deflection to horizontal velocity increases by at least 1. Moreover, we provide
conditions under which the zeros that vanish at the IACR are nonminimum phase. Furthermore, we charac-
terize the relationship between these vanishing zeros and the potential for initial undershoot in the aircraft’s
step response. For a business jet example, we show that each point on the aircraft that is aft of the IACR
experiences initial undershoot in both vertical and horizontal velocity, whereas each point forward of the

IACR does not experience initial velocity undershoot in either the vertical or horizontal directions.

To provide a reasonably self-contained development of the relevant transfer functions, we begin with
the nonlinear equations of motion, show how these equations incorporate aerodynamic effects in terms of
stability derivatives, and then arrive at the transfer functions for the linearized motion. This development
provides an introduction to aircraft dynamics that may be useful to readers who have not had the benefit of

a course on flight dynamics. For further details on aircraft dynamics, see [5, 16, 17].

Aircraft Kinematics

The Earth frame Fg, whose orthogonal axes are labeled ?g, jg, and l%E, is assumed to be an inertial
frame, that is, a frame with respect to which Newton’s second law is valid [18]. A hat denotes a dimension-
less unit-length physical vector. The origin O of the Earth frame is any convenient point on the Earth. The
axes g and Jg are horizontal, while the axis l%E points downward; we assume the Earth is flat. The aircraft
frame F s, whose axes are labeled iac, jac, is fixed to the aircraft. The center of mass and frame vectors

iac and kac are shown in Figure 1. The aircraft is assumed to be a three-dimensional rigid body.

In longitudinal flight, the aircraft moves in an inertially nonrotating vertical plane by translating

along 2pc and l%AC and by rotating about jac. The direction of jac is thus fixed with respect to Fi. For



convenience, we assume that jac = jg. The velocity and acceleration of the aircraft along jac are thus
identically zero for longitudinal flight, as are the roll and yaw components of the angular velocity of the
aircraft relative to the Earth frame. The sign of the pitch angle ©, which is the angle from ig to ac, is
determined by the right hand rule with the thumb pointing along jac and with the fingers curled around

Jac. For example, the pitch angle ©, shown in Figure 1, is negative.

Let p denote a point in the 2 ac-kac plane. The position of p relative to Og, can be written as

JEEN

T b/Oos = TphiE + vk, (1)

where a harpoon denotes a physical vector. The position of p relative to c is given by

N

p/c = Tp/Oac T TOxc/c = Tp/Oac — Te/Oacs 2

N RN

s
which can be written as
T p/e = tiac + nkac,

where ¢ > 0 indicates that p is forward of c, that is, toward the nose, and ¢ < 0 denotes that p is aft of c, that

is, toward the tail. Resolving T inF Ac yields

p/c

P/e| A
n

The distance between the aircraft center of mass ¢ and the point p is given by

|?p/c| =V 2+ 772'

The orientation matrix, that is, the direction cosine matrix, of F ¢ relative to Fg corresponding to

the pitch angle O is

cos® 0 —sin®
0 1 0
sin® 0 cos®

1>

Oac/E



Therefore,

cos® 0 sin®

On/ac = Oac/r = o 1 0 |- (4)
—sin® 0 cos®
Hence, using (3) we have
Tojel, = Op/ac Tore,
fcos© + nsin©
- 0 : &)
—{sin© + ncos ©

Since, in longitudinal flight, the aircraft rotates about jac, the angular velocity of F o relative to Fg
and resolved in F'ao is given by
P 0
w = =1 6]. 6
WAC/E| Q © (6)
R 0

Note that Q = © and that P and R are identically zero. Resolving w Ac/E in Fg, we have

(N

w =0 w =
AC/E|, B/AC WAC/E|,

o O o

In order to change the frame with respect to which the physical vector 7 is differentiated, we use the

transport theorem, which is given by

8%

Be
T + wp/A X T, (8)

where a labeled dot over a physical vector denotes the frame derivative with respect to the indicated frame.
Ae

In particular, if © = 115 + x2ja + x3ka, then & = £12p + T2)a + T3ka. Hence,
Ee ACe ACe
WAC/E = W AC/E T WAC/E X WAC/E = W AC/E: )



and thus it follows from (6), (7), and (9) that

ACe
W AC/E

Ee
= WAC/E
AC

ACe
= W AC/E
E

Ee
= WAC/E
E

AC

|
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Let ;C /Og/E and EC /op,/E denote the velocity and acceleration of c relative to Og with respect to Fg,
respectively, and let ﬁp /og/E and Ep /0p/E denote the velocity and acceleration of p relative to O with

respect to Fg, respectively, that is,

Ee
N A —
Ve/Og/E = T ¢/Og»
Eee
N A
Ac/Og/E = T ¢/Og>
and
Ee
N é JEEN
Up/Og/E = T p/Og>
Eee

4p/Og/E = T p/Og -

We resolve v /o, in Fac as

U U
vejose| = | V| =] 0 | (10)
W W

and note that V' is identically zero for longitudinal flight.

Next, it follows from (2) that

RN

Tp/Og = Tp/c + Tc/Op>

which implies that

Ee Ee Ee

Up/Og/E = T p/Og = T p/c + Tc/Og = Vp/c/E + Vc/Og/Es (11)
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where
Ee
JEEN A N N RN

Up/c/E = Tpjc= WAC/E X Tp/ec- (12)

Next, it follows from (4)—(7) and (10)—(12) that

Uosou/ely = Vojos/e|, + (Sacm X Tare) |,

cos® 0 sin® U

0 fcos© + nsin©
= 0 1 0 0 |+] 6| x 0
0

—sin® 0 cos® w —£sin® + ncos©
Uph
= 0 )
where
Uph 2 (cos ©)U + (sin ®)W — £(sin ©)O + 1(cos ©)O, (13)
Upy 2 —(sin ©®)U + (cos ©)W — £(cos ©)O — n(sin ©)O. (14)

Next, it follows from (8) and (10) that

Ee
e/Op/m o 0 c/Op /B

Ag. AC B B

= (v ¢/og/E T WAC/E X Vc/Og/E)

AC

U 0 U

=0 |+]6|x]| o0
W 0 w
U+ ow

= 0 . (15)
| W —-eu




Differentiating the transport theorem (8) yields

Ae

=~
Aee Be Ae Ae
T = X + wp/aA XT + wp/AX T

=z +wB/AX x—l—wB/A Xx + Wp/A X (:I: +WB/A><93>
Bee Be  Be N N ~
= x —|—2wB/A>< T —|—wB/A xm—l—wB/Ax <wB/A><x>, (16)

which is the double transport theorem. Note that

Eee Eee FEee
ap/0p/E= T p/Og = T pjc T T ¢/Op = Gp/c/E T Qc/Og/Es (17)
where
N EL.
Up/c/E= T p/c- (13)

Now, using (15)—(18), we have

[N RN

a = a + a ‘
p/OE/E‘AC lf>/C/E‘AC c/Og/E AC

Ag\.. — A_C\. A_C\. —_ —_ RN AN
= ( T pje T 2WAC/EX T pjct W AC/E X Tpje + WAC/E X (wAC/E X Tp/c>>

AC
+ EC/OE/E‘AC
ACe
= v AC/B| X ?p/c ach aAC/E‘Ac . (SAC/E)AC x ?p/c AC> + EC/OE/E‘AC
AC
0 0 0 0 ¢ U+ 6w
=lO|x|o|+] 6 ]|X O x]0 + 0
|0 n 0 0 n W —0uU
02+ U+ WO + O
= 0 . (19)
16V - U6 — 2




Aircraft Dynamics

To apply Newton’s second law for translational acceleration, we view Ox as an unforced particle [18]

and all forces as acting at the aircraft’s center of mass. We thus have

Maejopm=mg + Fa+ Fr, (20)

RN

where m is the mass of the aircraft, ? = gkg is the acceleration due to gravity, F'a is the aerodynamic

force, and F'r is the engine thrust force. Resolving (20) in F'a¢ yields

m Gojopm|  =m 9|, + Fa ot Fr - @1
where
—gsin ©
9, =0acmal =] o | @)
gcos©

under longitudinal flight.

NN

Next, the aerodynamic force F'p is given by
Fa = —Diw — Dsjw — Lkw,

where 2w, jw, and l%w are the axes of the wind frame, which is a velocity-dependent frame defined such
that 7y is aligned with ?C /0g/E» and where D, Dy, and L denote the magnitudes of the drag, side drag, and

lift forces, respectively. For simplicity, we assume Dy = 0, and thus

The stability frame Fg with axes ig, jg, and kg is obtained by rotating the wind frame through the sideslip



angle (3, which is the angle from the ¢ AC-kAC plane to aj /0g/E- Resolving F'4 in the stability frame yields

[ cosff sinfg 0 -D
FA = | —sinf cosf 0 0
’ |0 0 1 —L
-—Dcosﬁ
= | —Dsing
. L

-

Furthermore, resolving F'4 in the aircraft frame yields

cosae 0 —sina —Dcos 8
Fa = 0 1 0 —Dsin
AC
sinaa 0 cosa —L

—D(cos B) cosa + Lsina
= —Dsin 8 )

—D(cos ) sinaw — Lcos «

where « is the angle of attack of the aircraft, that is, the angle from g to 2pc. Since we consider only

longitudinal flight, it follows that (3 is identically zero, and thus

—Dcosa+ Lsina

Fa = 0 . (23)
AC
—Dsina — Lcos«
For the thrust force, we have
cos®p 0 sin®p Fr
Fr = 0 1 0 0
AC
—sin®tr 0 cosPr 0
Frcos®p
= 0 ; (24)
—FT sin (I)T
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where Frp = |F'7| is the engine force magnitude and ® is the angle from 25¢ to the engine force direction.

We assume that the component of the engine thrust in the direction jac is zero.

Now, substituting (15), (22), (23), and (24) into (21) yields the surge and plunge equations

m(U+W@) = —mgsin® — Dcosa + Lsina + Fr cos O, 25)
m(W—U@):mgcos@—Dsina—Lcosa—FTsin@T. (26)
The sway equation for 1% plays no role in longitudinal flight.

Note that the differential equations (25) and (26) involve the variables U, W, ©, and «. To eliminate

W from (25) and (26), we derive a relationship among W, U, and «.. Resolving ?C /og/E In Fg yields

—

U
Uc/oE/ESZ 01,
0

where U 2 VU2 + W2 Likewise, resolving v, /0w E in Fac yields

cosa 0 —sina

U
V¢/Og/E N 0 1 0 0
sinae 0 cosa 0

U cos «

0 27

Usina

It follows from (10) and (27) that

U U cos a
0 = 0

w U sin
Hence,

= tan .

<=

(28)
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For longitudinal flight, U is nonzero. Thus, it follows from (28) that
W = Utana, 29)
which implies
W = Utana + U(sec? a)d. (30)
Finally, substituting (29) and (30) into (25) and (26) yields

m(U + U(tana)©) = —mgsin© — D cosa + Lsina + Fr cos &, 31)

m (U tan o + U(SeC2 )i — U@) =mgcos©® — Dsina — L cosa — Fpsin @p. (32)

Next, the rotational momentum equation for the aircraft about its center of mass is given by Euler’s

equation
— AQe N — N —
I'acje w ac/E +wac/e X L ac/ewac/e = Macyes (33)

where the physical inertia matrix is defined by

— AN RN 2_> RN _/
IAC/C = /AC ‘Tdm/c‘ U-— Tdm/cT dm/c dm, (34)
?dm /c 1s the position of a mass element relative to c, ()" denotes a physical covector [6, p. 269], and the

N
physical identity matrix U is defined by

AN " N " N ~ ~

U =iaciac +Jaciac + kackac: (35)
Note that the integral in (34) is evaluated over the aircraft body. In (34) and (35), (-)* denotes the cross-
product operator, and the notation 5? for vectors z and 5 denotes a second-order tensor, which operates

SN AA, — — [EELNGN -
on a vector z according to (ry )z = zy 2z = (y - z)z. Finally, M sc/. denotes the total thrust and

aerodynamic moment acting on the aircraft relative to c.

%
Next, resolving [ z¢/. in Fac yields

Ia:x _Ixy _I:L‘z
N
Iacrel =| Ly Ly —Ip. | (36)

AC
_Iacz _Iyz Izz

12



where

L, = / (y? + 2%) dm,
AC

Imy—/ xy dm,
AC

and likewise for the remaining entries. Assuming that 7 Ac-kac is a plane of symmetry of the aircraft, it

follows that

Thus, (36) becomes

Now resolving Euler’s equation (33) in the aircraft frame, that is,

- AQe - - - —
I'ac/e w AC + (wAC/E X IAC/CWAC/E> = Macje|
yields
0 0 0 © 0 Lac
1,,0 |+ 0 0 0 1,,0 | = | Mac |-
0 -0 0 0 0 Nac
= A T . o .
where M ac/c = [ Lac Mac Nac | - The pitch equation is thus given by
AC

1,0 = Mac. (37)

13



Linearizing the Equations of Motion

In steady horizontal longitudinal flight, the aircraft is assumed to fly at constant velocity U = U,
constant angle of attack &« = «, and constant pitch angle © = O, with ?C /o E aligned with ig. To
simplify the aerodynamic analysis, we choose F o¢ so that ©¢ = 0. This choice is universally made in the
literature; see, for example, [17, p. 67]. Since the steady flight-path angle is zero, this choice of F ¢ implies
that the steady angle of attack « is zero. Linearizing the surge, plunge, and pitch equations (31), (32), and
(37) about (Up, cvg, O¢) using the first-order approximations U ~ Uy + u, o = ap + dc, and © =~ O + 6,
where og = O = 0, and dividing the linearized equations by the mass m and inertia I, to solve for the

linear and angular acceleration, yields

= —g0+ fa, + fr,, (38)
Uodc = Upq + fa., (39)
4 = mac, (40)
0=q, (41)

where

A
ng; = Xuou + Xaoéa + X5505€’
A
fo = XTuoua
A .
fa, = Zugu + Zogda + Zay 00 + Zgyq + Zseyde,

A .
mac = Myou + Magda + Ma,0c + Mgoq + Mse,0€ + Mr, u+ Mr, da,

and de denotes the elevator perturbation from its trim deflection. Note that f4, and fa are the perturbations
of F'p in the direction of 75 and ];:A(j, respectively. Furthermore, fr, is the perturbation of F'r in the
direction of 2A¢, and mac is the perturbation of Mac. The stability parameters X, Xoy, Xseg» XTuO,
Zugs Lags Légs Lays Legs Mugs Mag, Mag, Mgy, Mseqs MTuO ,and MTao are combinations of aerodynamic
parameters and stability derivatives, which are defined in Table 1 and Table 2, respectively. The stability

parameters are defined in Table 3.

14



It follows from (38)—(41) that the linearized surge, plunge, and pitch-rate equations are given by

U= (Xuy + X1,,) u+ Xagba — g0 + Xse, e, 42)
Ugdce = Zygt 4 Zagdor + (Uy + Zyo)q + Zaw0dt + Zse, e, (43)
q= (Muy, + Mr, ) u+ (May + Mr,, ) 6o + Myyq + Mg, 0 + Mse,de. (44)

Laplace Transform Analysis

Taking the Laplace transform of (42), (43), and (44), and assuming that the initial conditions of the

perturbations (u, da, 0) are zero yields

s — (Xup + X1,,) —Xa, g a(s) X
A s(Uo — Zeay) = Zag —(Uo + Zgy)s Sa(s) | = | Zsey | 0€(9),
_<Mu0 + MT"O) _(MdOS + MO&() + MTD‘O) 32 — MQOS 9(8) M(Seo

where hat in this context denotes the Laplace transform of a scalar function of time. The transfer functions

from 6é(s) to G(s), 6a(s), and 0(s) are thus given by

Ga/éé(s) (;Lé((i))
A 5a
Gsasoe(s) | = 53((5))
f(s)
Gé/éé(s) i aé(ss)
- q-1
s — (Xyo + XTuO) —Xo, g Xseo
= —Zy, S(UO - Zdo) — Zay _(UO + ZQU)S Zse,
—(My, + M —(Mggs + Moy + Mz, ) 8% — My,s Miseq
i ( uo Tuo) & ap Tag qo i
Consequently,
A,s3 + Bys? + Cys + Dy,
C(s) = 45
Giyse(s) Es* +Fs3+Gs2+ Hs+ I’ (45)
Ays® + Bys? + Cys + Dy,
< sa(s) = 46
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A982 + Bys + Cy

S (s) = 4
Coy5els) Es*+ Fs®+Gs2+ Hs+ 1’ “7)

where the coefficients of (45), (46), and (47) are defined in tables 4 and 5. Note that the relative degree of

(47) is 2. For details, see “Markov Parameters and Relative Degree”.

Next, we find the transfer function from the elevator perturbation to the vertical velocity perturbation.

It follows from (14) and (29) that
Vpy = —(sin ©)U + (cos ©)U (tan ) — £(cos ©)O — n(sin ©)O. (48)
Letting vp,y,, denote the vertical velocity in steady horizontal longitudinal flight, it follows from (48) that
Upv, = 0.

Linearizing (48) about (Up, g, ©) using the first-order approximations vy, ~ Upy, + dvpy, U = Uy + u,

a = da, and © = 0 yields
Vpy, + 0vpy = —(sin0)(Up + u) + (cos 0)(Up + u)(tan dor) — £(cos 0)0 — 1(sin )0,

where dvpy is the first-order approximation of the vertical velocity perturbation. Neglecting products of

perturbation variables, and approximating cos f = 1, sin f = 6, and tan da =~ d« yields
Svpy = Updor — Upf — £0. (49)

Next, taking the Laplace transform of (49) and assuming that the initial conditions of the perturbations

(u,da, 0) are zero yields
Sipy (s) = Ugdé(s) — (Up + £5)0(s). (50)

It follows from (46), (47), and (50) that the transfer function from 0é(s) to 60y (s) is given by

Ays® + Bys? + Cys + Dy

Gé@pv/ﬁé(s) = ES4+F83+G82 —|—HS—|—I’ (51)

where the numerator coefficients are defined in Table 4 and the denominator coefficients are defined in Table

5.
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Next, to find the transfer function from the elevator perturbation to the horizontal velocity perturba-

tion, it follows from (13) and (29) that
vpn = (cos ©)U 4+ (sin ©)(tan a)U — £(sin ©)O 4+ n(cos ©)O. (52)
Letting vy}, denote the horizontal velocity in steady horizontal longitudinal flight, it follows from (52) that
Uph, = Uo-

Linearizing (52) about (Up, cg, ©p) using the first-order approximations vpy, & vph, + 6vpn, U =~ Up + u,

a = da, and © = 0 yields
Uph, + 6vpn = (cos 0)(Up + u) + (sin ) (Up + u)(tan da) — £(sin 0)0 + 1(cos 6)0,

where dvyy, is the first-order approximation of the horizontal velocity perturbation. Neglecting products of

perturbation variables, and approximating cos f ~ 1, sin § ~ 6, and tan da ~ d« yields
Ovpn = u + 779. (53)

Next, taking the Laplace transform of (53) and assuming that the initial conditions of the perturbations

(u, dav, B) are zero yields
§pn(s) = a(s) + nsf(s). (54)

It follows from (45), (47), and (54) that the transfer function from ¢é(s) to 60, (s) is given by

Ah83 + Bh$2 + Cps + Dy,

G 06(8) = Es*+ Fs3+Gs2+ Hs+ I’ (53)

where the numerator coefficients are defined in Table 4, and the denominator coefficients are defined in

Table 5.
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Instantaneous Velocity Center of Rotation

The point prycr is an instantaneous velocity center of rotation (IVCR) of the aircraft at time ¢ if
prvcr is fixed relative to the aircraft, and, at time ¢, the angular velocity of the aircraft relative to F'g is not
zero and the velocity of prycr relative to Oac with respect to Fg is zero. For details, see “Instantaneous
Velocity Center of Rotation”. For longitudinal flight, it follows from (S11) that the location of the unique

prvcr whose coordinate along jac is zero, if it exists, is given by

N

—AYEp/On WAC/E- (56)

— ]_ N N
Tprver/c = = 5 WAC/E X Vc/Op/E + — )
|WAC/E\ \WAC/E’

Note that the second term in (56) is zero since the jac component of prycr is zero. Thus, (56) can be

written as
— 1 N N
Tprver/c = = 5 WAC/E X Ve/OR/E
|WAC/E\
1 - A .
= @[@JAC x (Uiac + Wkac)]
W U i
= ——1IAC — —FKAC-.
C) C)
Therefore,
l1ver
T prver/c AC = 0 ) 57
NIVCR
where
0 AW U tan o
IVCR = —— = - ,
C) C)
and
A U
C - — .
MVCR 5

Since G)o = 0, it follows that {1vcr and nrycr are infinite for steady flight, and thus no IVCR exists in

steady flight.
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Next, for the elevator step deflection de(t) = €1(t — ty), where ¢ # 0, we approximate {1ycg and

MVCR at tar using the first-order approximations U ~ Uy + u, o = dav, and © = 6. Thus,

bver(t]) =

mver(ty) ~

(Uo + u(ty)) (tandal(td))
0(t7)
U + u(tg)
0(tg)

I

I

where it follows from the initial value theorem that

0(tg)

aty)

u(ty)

= lim s6(s)

S— 00
. €
- Jim 69
lim E(A982 + Bgs + Cg)
s—oo st + Fs3 +Gs?2 + Hs+ 1

=0,

= lim 5[5@(8) - 9@3)]

S5—00

im 8(14983 + 3952 + Cps)
i
s—oo Fst 4+ Fs3 +Gs?2 + Hs+ 1

:O’

= sllglo soa(s)

. 9
= lim SG(sa/aé(«S);

£(An83 + Bos® + Cus + D)

e Est4+ Fs3+Gs?2+Hs+1
:0’

= Jim s

. £
= lim SGu/dé(S);

. e(Ays® + Bys® + Cys + D,)
s—oo Bst 4+ Fs34+Gs2 4+ Hs+ 1
=0.

19

(58)

(59)

(60)

(61)

(62)

(63)



Thus it follows from (58)—(63) that

Uy tan o
élVCR(ta_) ~ — =
o(tg)
Uy
nver(ty) & —=
0(ty)

Therefore, no IVCR exists for an elevator step deflection.

)

Instantaneous Acceleration Center of Rotation

The point pracr is an instantaneous acceleration center of rotation (IACR) of the aircraft at time ¢ if
pracr is fixed relative to the aircraft, and, at time £, the acceleration of pyacg relative to O ac with respect
to F'g is zero. For details, see “Instantaneous Acceleration Center of Rotation”. It follows from (3) that the

location of the unique pracr whose coordinate along jac is zero, if it exists, has the form

l1ACR
T = . 64
TPIACR/C AC 0 ( )
THACR

It thus follows from (19) and the definition of the IACR that

—~liacrO? + U + WO + miacr©

JEEN

@ pracr/Og/E AC = 0 =0,
—liacr® + W — UO — miacr©?
which implies
We?d+U6e?-Ue6 +Wwe
gIACR = 64 i 62 ) (65)
_ —UO*+ WO+ Wee — U6 66
TMACR = 94 _ é2 . ( )
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Alternatively, using (S25) yields

Be
. - B -
- _|wac/el acjop/mt Wac/E X acjop/E
T piacr/c = Be

|wac/el* +1 wac/e 2

Be
_ 62OLC/OE/E+ WAC/E X Ac/Og/E
04 + 62 '
Therefore,
. : . : We3+UO2-U06+Wé
X U+WwWe 0 U+We ST 62
. B o . _
Poscn/e| y = G515 62 0 +1 6 | x 0 = 0
W —-U® 0 W _ U U WO WOH-UE
04402

which agrees with (64), (65), and (66).

Next, it follows from (29), (30), (65), and (66) that

U(tana)©? +UO? — UOO + (Utana + U (sec? oz)o'z) 6

biacr = 01 + 62 ’ 67
—U©3 + (Utana + U (sec? a)d) 0%+ U(tana)0O — UO
THACR = @4 + éQ (68)

Since 90 = 0 and é)o = 0, it follows that ¢1pocr and nracr are infinite for steady flight.

Next, for the elevator step deflection de(t) = €1(t — ty), where € # 0, we approximate {1acr and
MACR at tar using the first-order approximations U =~ Uy + u, @ =~ da, and © = 6. Thus,
1 ([
62(0%) + 64(0F)
+ [a(td) (tanda(td)) + [Uo + u(td)] (sec? Sa(t]))da(td)] O(t)
— [Uo + a0 ) | (69)
1 ([
62(0%) + 64(0F)
+ [a(ty) (tan da(ty)) + [Uo + u(t))(sec? Sa(td))oa(td)] 0%(t)

— [Uo +u(t )8 ()) (70)

liacr(tg) = U + u(t§)] (tan da(t)60° (t5) +a(tg)0*(t5)

U + ulty)] (tan e (t5))0(tg)b(tg ) — a(tg)o(tg)

macr(tg) ~
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where the initial value theorem implies that

Sa(ty) = lim s[sda(s) — da(td)]

5—+00
1S

= lim 32G5d/6é(3);
. e(Anst + Bas® + Cas® + Dy)
s—oo Fst+ Fs3 4+ Gs?2+ Hs+ 1

cAq
_ 71
T (71)
B(ig) = Tim s[s%0(s) — s0(t5) — 0(t7)]
. 3 g
= lim 964505
g e(Ags* + Bys® + Cys?)
s—oo Fst + Fs3 + Gs2+ Hs + 1
€A9
_ <40 72
Pl (72)
alty) = lim s[si(s) — u(ty)]
— Tim 20 () E
= lim s"Goayse(s)
. e(Ayst + Bys® + Cys? + Dys)
= lim
soo Fst4+ Fs34+Gs24+ Hs+ 1
cA,
= . 73
z (73)
It thus follows from (60)—(63), (69)—(73), and the expressions given in Table 4 that
UpA,
liacr(ty) ~ il (74)
6
_ UOZ(SG()
ZseoMeay + Msey(Up — Zay)
and
Ay
macr(ty) ~ 1 (75)
0

B Xseo(Uo — Zgy)
Zseo My + Mseo(Up — Zay)
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Initial Slope and Quadratic Curvature of the Vertical and Horizontal
Velocity Perturbations at the IACR

The vertical velocity perturbation Svpy () and the initial slope d7py(t7) of the vertical velocity

perturbation at p due to the elevator step deflection de(t) = e1(t — (), where £ # 0, are given by

(1) = lim 50 ()

. g
= lim SGéﬁpv/éé(S);

I e(Ays3 + Bys? + Cys + Dy)
= lim

smoo Bst+ Fs3 4+ Gs?2+ Hs+ 1
— O’

and

opy(ty ) = slggo 5[s00pv(s) — Svpy(ty )]

— lim 2 (8
= lim s°Geq,, /5e(s)

e(Ays* + Bys® 4+ Cys? 4 Dys)

:sli:}lo Es'+ Fs3+Gs2+ Hs+ 1
- 5EV. (76)
Next, it follows from the expression for A, given in Table 4 that
Ay = —lAg + UpA,. 77
Therefore, A, = 0 if and only if
0= UZ:“. (78)

Hence, it follows from (76) that 07y, (tar ) = 0 if and only if ¢ satisfies (78). For details, see “The Initial

Curvature Theorem and Unit-Step Response”.

Similarly, the horizontal velocity perturbation dvpp (¢ ) at p due to the elevator step deflection de(t) =
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el(t — to), where £ # 0, is given by

() = lim sy (s

. &
= slglolo SG&@ph/zsé(S);

I E(Ah83 + Bh52 + Cps + Dh)
= 11m

s—oo Bst+ Fs3+Gs2+ Hs+ 1
=0,

while the initial slope 51')ph(t§ ) of the horizontal velocity perturbation is given by

Otpn(tg) = lim s[sd0pn(s) — dvpn(tg)]
= Slggo 52G5ﬁph/5é(8)§
e(Aps* + Bys® + Ops? + Dys)
it Es*+ Fs3+Gs2+ Hs+ 1
. EAh
=5

Next, it follows from the expression for Ay given in Table 4 that
Ay = ﬁAe + Ay

Therefore, A, = 0 if and only if

_ A

Hence, it follows from (79) that <Sz';ph(t0+ ) = 0 if and only if 7 satisfies (81).

(719)

(80)

C29)

Next, it follows from (74) and (75) that pracr satisfies both (78) and (81). Therefore, A, = 0 and

Ay = 0if and only if (¢,7) = (f1acr, macr)- Thus, evaluating (76) and (79) at the IACR (¢1oCR, IACR)

for the elevator step deflection de(t) = e1(t — to), where € # 0, yields 6o,y (t5) = 0 and §vpn(td) = 0.

Therefore, at the IACR, the initial slopes of the vertical and horizontal velocity perturbations are zero.

Since Ay = 0 at the IACR, it follows that the transfer function G, /5é(s) at the IACR becomes

_ Bys? + Cys + Dy,
 Es* 4+ Fs3+Gs2+ Hs+ I’

G560 /56(8)
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Next, at the IACR, it follows from the expression for By given in Table 4 that

B, = —liacrBy — UpAg + Uy B,

ew:
- (&

+ Ag — Ba> Uy.

Consequently, if By # 0, then the relative degree of G, /s¢(s) increases from 1 to 2, and thus one of the

zeros of Gis; /5¢(s) vanishes at the IACR.

Similarly, at the IACR, A, = 0. Thus, if By, # 0, then the relative degree of G, /s¢(s) increases
from 1 to 2, and thus one of the zeros of G&;ph /5¢(s) vanishes at the IACR. The vanishing zeros are a
consequence of the fact that the initial slope of the vertical velocity perturbation and the horizontal velocity
perturbation are zero at the IACR. Note that /;acr and nacr depend on the speed Uy and the stability

derivatives Zse,, Zeag> Xsey» May, and Mse,. Vanishing zeros are discussed in [19].

Initial Undershoot of the Vertical Velocity for an Elevator Deflection

Let G(s) 2 Sfo(f(s) be a strictly proper transfer function with relative degree d > 0, where r > 0 and
a(s) is asymptotically stable. Let y(¢) denote the response of G to the step command 1(¢ — to). Then initial
undershoot occurs at time g if the step response initially moves in the direction opposite to its asymptotic

direction, that is,

y @ )y (o0) < 0. (82)

To determine whether the vertical velocity perturbation dv, (t) to the elevator step deflection de(t) =
el(t — to) exhibits initial undershoot, we investigate (82) with G(s) = G4, /5¢(s), v = 0, and y(t) =
dvpy(1).
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First, the asymptotic direction of the step response is given by the sign of

dvpy(00) = lgr(l) 5600py ()

. €
= lim SG(Sﬁpv/éé(s>;

e(Ays® + Bys? + Cys + Dy)
im
50 Bst + Fs3 +Gs2+ Hs+ 1
eDy

== (83)

It follows from Table 4 and Table 5 that jv,, (o) does not depend on the location of p, that is, the value of
(¢,m).
Next, the initial direction of the step response is given by the sign of
SuiD(tg) = lim s[s00(s) — s ovpy (t) — -+ — du{E D (tg))]

S§—00

= lim s 50, (s)

S§— 00
g
= lim s Gss  sa(s)=
P vav/ée( )S

_ g Ays3 + Bys? 4+ Cys + Dy,
N Est4+ Fs3+Gs?2+ Hs+ 1

e if d=1, (thatis, A, #0)

By if d=2, (thatis, A, =0,B, #0)

= (84)
€y if d=3, (thatis, A, =B, =0,C, #0)

D if d=4. (thatis, A, =B, =C, =0,D, #0)

Thus, for d = 1, §v,y (t) exhibits initial undershoot if and only if 87y (5 )Svpy (00) = % < 0;ford = 2,

vpy(t) exhibits initial undershoot if and only if iy (¢ )dvpy (00) = L52% < 0; for d = 3, dupy (t) exhibits

initial undershoot if and only if 51)1():3,) (td)ovpy (00) = % < 0. Furthermore, for d = 4, dvp,y(t) does not

exhibit initial undershoot since 6@5& (td)ovpy(00) = % > 0;

The following results follow from (78), (82), (83), and (84) along with Proposition S1.

Proposition 1 Assume that ¢ does not satisfy (78). Then the following statements hold:
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(i) The relative degree of Gisg, /5¢(s) is 1, and thus Ay # 0.

(ii) dvpy(t) exhibits initial undershoot if and only if AE? v < 0.

(iii) dvpy(t) exhibits initial undershoot if and only if G55, /5¢(s) has either exactly one or exactly three real

nonminimum-phase zeros.

Proposition 2 Assume that £ satisfies (78) and By, # 0. Then the following statements hold:

(i) The relative degree of Gisg, /5¢(s) is 2, and thus Ay = 0.

(ii) dvpy(t) exhibits initial undershoot if and only if BYE? v < 0.

(iii) dvpy(t) exhibits initial undershoot if and only if G's;, /5¢(s) has exactly one real nonminimum-phase

ZEero.

Following the same procedure for o7y () yields identical results, that is, 07y () exhibits initial

undershoot if and only if dvpy () exhibits initial undershoot.
Initial Undershoot of the Horizontal velocity for an Elevator Step Deflection

To determine whether the horizontal velocity perturbation vy, (t) to the elevator step deflection
de(t) = el(t — to) exhibits initial undershoot, we investigate (82) with G(s) = Gs;, se(s), 7 = 0,
and y(t) = dvpn(?).

First, the asymptotic direction of the step response is given by the sign of
dvpn(00) = lg% 50Upn(S)

::iygés(?daph/aé(s)z

E(Ah83 +Bh82 +ChS+Dh)
oS0 Est + Fs® + Qs + Hs+ 1
o EDh
=

(85)
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It follows from Table 4 and Table 5 that Jv,p(c0) does not depend on the location of p, that is, the value of
(¢,m).

Next, the initial direction of the step response is given by the sign of

Sus (1) = lim s[s"0opn(s) — 8™ dvpn () — - — du ™ ()]

= lim s¥§,,(s)

Ede o]
1 d+lo~y (N E
= lim s G,y /56(8) S

N 8Sd Ah83 + BhS2 + ChS + Dh
- Est4+ Fs3+Gs?2+Hs+1

Auif d=1, (that is, Ay #0)

o if d=2, (thatis, A, =0,B, #0)

= (86)
<hif d=3, (thatis A, =B, =0,Cp #0)
Do if d=4. (that is, A, = By = Cy =0, Dy, # 0)
Thus, for d = 1, §vpy(t) exhibits initial undershoot if and only if §0p, (td )dvpn(o0) = A}‘E?h < 0; for

d = 2, dv,p(t) exhibits initial undershoot if and only if §tipy, (5 )dvpn(00) = % < 0; for d = 3, dvpn(t)

exhibits initial undershoot if and only if 511&3 (t3)ovpn(c0) = % < 0. Furthermore, for d = 4, dvp (%)

2
does not exhibit initial undershoot since 51}1(:;) (td)dvpn(00) = % > 0.

The following results follow from (81), (82), (85), and (86) along with Proposition S1.

Proposition 4 Assume that 77 does not satisfy (81). Then the following statements hold:

(i) The relative degree of Gy, s¢(s) is 1, and thus Ay, # 0.
(i) dvpn(t) exhibits initial undershoot if and only if 22 < 0.
(iii) dvpn(t) exhibits initial undershoot if and only if G(;@ph /5é(s) has either exactly one or exactly three

real nonminimum-phase zeros.
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Proposition 5 Assume that 7 satisfies (81) and By, # 0. Then the following statements hold:

(i) The relative degree of Gy, /s¢(s) is 2, and thus Aj, = 0.
(ii) dvpn(t) exhibits initial undershoot if and only if ZbPu < 0.

(iii) dvpp(t) exhibits initial undershoot if and only if G /s¢(s) has exactly one real nonminimum-phase

ZEro.

The following result is a special case of Proposition 2 and 5, where we consider the response at the IACR.

Proposition 6 Assume that (¢,77) = ({1acr, macr), By # 0, and By, # 0. Then the following

statements hold:

(i) The relative degrees of Gy, s¢(s) and Gy, /s¢(s) are 2. Thus, Ay = 0 and Ay, = 0.
(ii) dvpy(t) exhibits initial undershoot if and only if % < 0.

(iii) dvpn(t) exhibits initial undershoot if and only if Zu2n < 0.

(iv) dvpy(t) exhibits initial undershoot if and only if Gy, /5¢(s) has exactly one real nonminimum-phase

ZEero.

(v) dvpn(t) has initial undershoot if and only if Gs; . /s52(s) has exactly one real nonminimum-phase zero.
p ph/

Business Jet Example

To illustrate the instantaneous acceleration center of rotation, the initial slope of the vertical velocity
and horizontal velocity, and vanishing zeros, we consider a business jet in cruise whose numerical data are

given in Table 6 [17, p. 330].
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For all expressions below, the units of £ and 7 are feet. Using the data given in Table 6 as well as the
expressions given in Table 4 and (45), (46), (47), and (51), the transfer functions from 0é(s) to a(s), d&(s),
and (s) are

Gorsals) = —378.85s5% + 2.72¢5s + 2.40eb
i/oe 675.99(s* + 2.01s3 + 8.0552 + 0.0855 + 0.068)
Cer (s} — 42.20s® + 11939.02s% + 88.5773s + 79.30
o/ae(8) = 675.99(s* + 2.01s3 + 8.0552 + 0.085s + 0.068)’
G (s) = —11930.17s% — 7652.065 — 78.52 _
0/se 675.99(s4 + 2.01s% + 8.0552 + 0.085s + 0.068)

ft/(s-rad),

Furthermore, the transfer functions from 0é(s) to 00, and dvpy are

(42.15 + 17.650)s3 + (23854.0 + 11.3¢)s% + (7740.6 + 0.1¢)s + 157.2

o o(s) = fi/(s-rad). (87

s /6¢(5) sT+2.015% + 8.055% + 0.0855 + 0.068 (s-rad),  (87)
17.6505% + (11.325) — 0.56)s% — (402.4 — 0.1217)s — 355.0

Gso rsa(s) = — fi/(s-rad). 88

s /62(5) 5T+ 2.015% + 8.0552 + 0.0855 + 0.068 (s-rad) (88)

Next, with Uy = 675.12 ft/s, A, = —42.20 1/s, A, =0 m/s2, E =675.99 1/s, ¢ = 1 deg-s = 0.017 rad-s,
and Ap = 11930.17 1/32, it follows from (74) and (75) that
(675.12)(42.20)

~ — ft = —2. 1fi
fiacr 11930.07 ¢ 38811t
0
N ft=0ft.
MACR ~ — {73577 1t = 01t

Next, using (87), the initial vertical velocity slope response due the 1-deg elevator deflection de(t) =

(0.017)1(t — t) is given by
SOy (td) = 42.15 + 17.65¢.

It follows that, at £ = {1acRr, 0Upy(td) = 0, and the number of zeros of the transfer function Gy /56(8)

decreases from three to two.

Likewise, using (88), the initial horizontal velocity slope response due to the 1-deg step elevator

deflection de(t) = (0.017)1(t — tJ) is given by

SOpn(td) = 17.657.
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It follows that n = miacr , d0pn(ty) = 0, and the number of zeros of the transfer function G,y /56(8)

decreases from three to two.

To demonstrate the initial vertical velocity perturbation dvp, and initial horizontal velocity perturba-
tion dvp,y, forward and aft of the IACR, we simulate v, and dvp,;, with the 1-deg step elevator deflection
Se(t) = (0.017)1(t — tJ) for several values of ¢ and 7. Figure 2 shows that, for ¢ = —20 ft, duvp,, experi-
ences initial undershoot, whereas, for = 20 ft, vy, experiences initial undershoot, as defined in [1] and
“Initial Undershoot”. This initial undershoot is a consequence of the fact that, for all £ < ¢1acR, the transfer
function G's;,, /56 (s) has one nonminimum-phase zero; for all ) > niacr the transfer function Gy, /56(5)
has one nonminimum-phase zero. On the other hand, for all ¢ > ¢15cR, the initial slope 51’1pv(0+) is in the
direction of the asymptotic vertical velocity; for all < nracr., the initial slope d0,, (07) is in the direction
of the asymptotic horizontal velocity. Finally, for all £ = /;scg, the initial slope 60, (07) is zero; for all
1 = MiAcR. the initial slope §0p,,(07) is zero. Note that at the IACR, the initial slopes of both d9p, (07) and
d0py (07) are zero, as a consequence of the definition of the IACR. Simulations over a longer time interval

are shown in Figure 3.

Next, we apply the Routh test to determine the locations of the poles and zeros of (87); for details,
see “Routh Test for Third- and Fourth-Order Polynomials”. Note that following the same procedure for
the horizontal velocity perturbation transfer function (88) yields the similar results. Thus, we analyze the
vertical velocity perturbation transfer function (87) as an example. Writing the denominator of (87) as p(s),

where p(s) = st + a3s® + azs? + ais + ag is defined by
p(s) = s* +2.015% + 8.055% 4+ 0.085s + 0.068,
it follows that
aiasasz — a0a§ — a% = 1.2353 [1/s5] > 0.

Consequently, all of the poles of G's;, /s¢ are in the open left half plane (OLHP).

To determine the zeros of the transfer function from the elevator deflection dé(s) to the vertical

velocity perturbation 69y, (s), we apply the Routh test to the numerator of (87). Defining the polynomial
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q(s) = s> + ass® + a1s + ag by

A 5 1773074 84.13¢ ,  57535.6 + 0.8608¢ n 1168.6
= s s
313.3 + 131.2¢ 313.3 4+ 131.2¢ 313.3 +131.2¢°

q(s)

it follows that

57535.6 + 0.8608¢\ [ 177307 + 84.13¢ 1168.6
ai1as? — apgp = _
19270 313.3 + 131.2¢ 313.3 + 131.2¢ 313.3 + 131.2¢

g9(0)
- ft/ 8
(313.3 + 131.20)(0.110 + 0.27) (89)

where g() 2 02 4 457.360 + 0.8 ft2. For { > l1aCR, it follows that 313.3 + 131.2¢, 0.11¢ + 0.27, and
g(£) are positive, and thus (89) is positive. Therefore, for all ¢ > ¢15cR, all of the roots of ¢(s) are in the
OLHP. On the other hand, for all £ < {1acr, one zero of Gs;,, /s¢(s) is in the ORHP and two zeros are in
the OLHP. This result follows from the first row of the Routh table, where one sign change appears. Figure
4 shows that a real zero approaches oo as ¢ increases toward ¢15cRr, Whereas a real zero approaches —oo as
¢ decreases toward ¢1pcr. This zero thus vanishes at the IACR. For ¢ € [—25,25] ft, Figure 5 shows the

locations of the two remaining zeros of G, | /s5¢(8), which are real and do not vanish at the TACR.

For the horizontal velocity perturbation dvpy,, Figure 6(a) shows that, as 7 increases toward 71AcR.,
one zero approaches —oo, one zero approaches oo, and the remaining zero approaches 0.88 rad/s . Figure
6(b) shows that, as n decreases toward nyacRr, one zero approaches —oo, one zero approaches oo, and the

remaining zero approaches 0.88 rad/s. Consequently, two zeros of G(;f,ph /s5¢(s) vanish at the IACR.

Conclusions

In this article, we used Laplace techniques to analyze the response of an aircraft to an elevator step
deflection. We showed that the aircraft’s initial response to an elevator step command is characterized by the
instantaneous acceleration center of rotation, which is the point along the aircraft at which the acceleration of
the aircraft is zero. This point, which depends on the inertia and aerodynamics of the aircraft, is determined
by deriving the linearized longitudinal equations of motion and evaluating the location of the instantaneous

acceleration center of rotation to first order. The initial vertical velocity and horizontal velocity response
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requires an increase in relative degree of the associated transfer functions at the instantaneous acceleration
center of rotation. This increase in relative degree requires that zeros must vanish at the instantaneous

acceleration center of rotation.
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Figure 1: Aircraft and Earth frames. The aircraft frame is fixed to the aircraft, while the Earth frame is
assumed to be an inertial frame. The signed quantities ¢ and 7 are determined by the location of the point p
at which the output is defined relative to the center of mass c. The pitch angle ©, as shown, is positive, as

determined by the right hand rule about the axis jac = Jg, which is not shown but which is directed out of

the page.
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Figure 2: The responses of the vertical velocity perturbation dv,y (¢) and the horizontal velocity perturbation
dvpn(t) of a typical business jet to the 1-deg step elevator deflection de(t) = 0.0171(t —to) at tg = 0 based
on the aircraft parameters given in [17]. In (a) and (b), for all £ < fjacr = —2.388 ft and n € R, where
l1acR is the component along kac of the location of the IACR, the transfer function G4, /5¢(5) has one
positive zero. For £ = {1acr and all € R, the initial slope of the vertical velocity perturbation is zero, that
is, the vertical acceleration at t;{ is zero. In (c) and (d), for all £ € R and n > nracr = 0 ft, where niacr
is the component along 25¢ of the location of the IACR, the transfer function G(;@ph /56(3) has one positive
zero. For all ¢ € R and = n1acR, the initial slope of the horizontal velocity perturbation is zero, that is,
the horizontal acceleration at tar is zero, which indicates that (¢,n) = (¢1acr, M1acr) is the location of the
TACR. This point is characterized by the vanishing zero, which, because of the increase in relative degree,
yields zero initial slopes in both directions 75c and k Ac. Figure 3 shows the same simulations over a longer

time interval. 37
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1000

approach nonzero constants, and both acceleration perturbations approach zero.

1500

Figure 3: The responses of the vertical velocity perturbation dvy, (), the vertical acceleration perturbation
dvpy (), the horizontal velocity perturbation dvpp, (t), and the horizontal acceleration perturbation dvp,p, (t) of
a typical business jet to the 1-deg step elevator deflection Se(t) = 0.0171(t — t) at ty = 0 based on the
aircraft parameters given in [17]. Note that, for all values of (¢, 7), the poles in (87) and (88) are close to
the imaginary axis. Thus, dvpy (t), 60py(t), dvpn(t), and 67,1, (t) reach their steady states values slowly. As
shown in Figure 2, the initial curvatures of dvp,y(t) and vy (t) are different for different values of (¢, 7).

However, for all values of (¢,7), the vertical velocity perturbation and the horizontal velocity perturbation
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Figure 4: The real zero of a business jet based on data given in [17]. This plot shows the location of one of
the real zeros of the numerator of the transfer function Gs; /5é( s) from the elevator input de to the vertical
velocity dvpy of the aircraft at p as a function of the component ¢ along the direction k ac of the location
of p. Note that negative values of ¢ correspond to locations of p aft of the aircraft’s center of mass, that is,
toward the tail of the aircraft. The asymptotic values of the real zero are 1.349 x 10~ rad/s as £ approaches

—00, and —1.366 x 10~ rad/s as ¢ approaches cc. Figure 5 shows the locations of the remaining real zeros.
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Figure 5: Zeros of the transfer function Gy, /5¢(s). For £ € [—25, 25] ft, these plots show the locations of

the two remaining zeros of Gs;,, /5é(s), which are real and do not vanish at the IACR.
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Figure 6: Zeros of the transfer function Gy; , /5¢(5). (a) shows the locations of the zeros of Gy, /56(5)
for each location of p along I%Ac parameterized by n € [—25 ft, 0.1 ft], where niacr = O ft. The diamonds
denote the zeros for n = —25 ft. The zero denoted by crosses approaches —oo as 7 increases toward NraAcR;
one of the zeros denoted by circles approaches 0.88 rad/s as 7 increases toward nracr, while the remaining
zero approaches oo rad/s as 1 increases toward n1acr. (b) shows the locations of the zeros of G(;@ph /5é(3)
for each location of p along k Ac parameterized by n € [0.1 ft, 25 ft], where nracr = 0 ft. The stars denote
the zeros for n = 25ft. One of the zeros denoted by circles approaches joo rad/s as 1 decreases toward
MACR, While the remaining zero approaches —joco rad/s on the real axis as 1 decreases toward niacr. The
zero denoted by crosses approaches 0.88 rad/s as nﬂecreases toward nacr. Consequently, two zeros of

Gso,,/6¢(s) vanish at the IACR.



S wing area

b wing tip-to-tip distance

c wing mean chord
P air density
Vac aircraft speed

pa | dynamic pressure 3pV3

Table 1: Aerodynamic parameters. These parameters characterize the basic features of the aircraft for steady

longitudinal flight.
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Cr, o
Ch =
CL(u,q,r,da,dc,de) | Cr, —I-ULOC'Luou—I-ﬁCLqu-i- %C’Lmr
+CLa050z + QLl}ocho Oc + CLseO de
Cp(u,q,r,6a,6d,0¢) | Cp, + g-Cp,,t+ 5t=Cp, q + 5=Cp,, T
+Cp,,6a+ Cp,, 6é + Cp,, de
oCy,
T o]
Cr,, %
0/ 10
0
Cr o)),
ClLa, 5|,
oC
o ZEIN
Cp., 2KCr,Cr,,
Cpy, 2KCr,Cr,,
Cp,, 2KCr,CL.
Cp, 2KCr,Cr.,
Cpe, 2KCp,CL,,
Cps, 2KC1,CL,,
c, Ay
Cao —Cp,
0Cy
Co o)),

Table 2: Stability derivatives. The aerodynamic parameters are given in Table 1. These lift, drag, force, and
moment derivatives model the aerodynamic forces and moments applied to the aircraft due to perturbations

away from steady longitudinal flight. This table is based on Table 6.1 of [16].
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Stability parameter Definition Units
Xuo _ijOUf (2Cp, + Cp,,) 1/sec
Xy, %(26@;0 + Cry,, ) 1/sec
Xao pigS(CLO — Cpyy,) ft /sec?-rad
Xseo p‘igs Dsey ft /sec?-rad
Zug —fson (2Cr, + CrL,,) 1/sec
Zay %(CL% —Chy) ft /sec?-rad
Zey —2‘2550 La, ft /sec-rad
m gfgng Lag ft /sec-rad
Zseq pigs Lse ft /sec?-rad
My, ?2255(207”0 + Cinyy) rad /ft-sec
Mr,, ]IJSSSEQCTmO + Crmy,) 1/ft-sec
M, p(}f;jé Mag 1/sec?
Mr,, p(}(;;% Ty 1/sec?
Mg, 12?2552 Mag 1/sec
My, % Mao 1/sec
Mse, p‘}‘;fé Mseq 1/sec?

Table 3: Stability parameters. These parameters are functions of the aircraft parameters and stability deriva-

tives given in Table 2. This table is based on Table 6.3 of [16].
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Au Xéeo(UO - Zdo)

B, —Xseo (Uo — Zay) Mgy + Zay + May(Uo + Zgy) + ZseyXao)
Cu Xseo [MayZay — (Magy + M, ) (Uo + Zy,)]
—Zseo (Mg + Xaog M| + Mse, [Xao(Uo + Zg,) — (Uo — Zay )9

Dy —ZseoMagg + Msey Zang

Ag Zseq

B, XseoZug + Zseo [— Mgy — (Xug + X1,))] + Mseo(Uo + Zy,)

Ca | Xseo [(Uo + Zgy)(Muy + M) — Mgy Zug| + ZseoMyy(Xuy + X1,,,)
—Mse, (Uo + Zgo)(Xuy + X1,,,)

D Zsey(Muyy + M, )9 — Msey Zuy9

Ay Mseo(Uo — Zay) + ZseoMay

By Xseo [ZuoMe + (Uo = Zay)(Muy + Mr, )]

+Zseq [(May + Mr,) — May(Xuy + X1,,)]
+Msey [~ Zag — (Uo = Zao)(Xug + X1,,)]
Chp Xseo [(May + M) Zug — Zag(Mug + Mr,)]
+Mseo [ Zog(Xup + X1,y) — XooZug]
+Zseo [—(May + M, ) (Xus + X1,,) + Xap (M, + My, )]

A, —lAg + UpAq

B, —(By — UpAg + UpB,
Cy —LCy — UygBg + UyC,,
D, —UpCy + Uy Dy,
Ap nAp + Ay

By nBg + By

Ch nCo + Cy

Dy, D,

Table 4: Transfer function numerator coefficients. These coefficients appear in the transfer functions from

the elevator deflection §é(s) to @(s), 0é&(s), 6(s), dpn(s), and d0py(s).

45



E Uy — Zs,

F _(UO - Zdo)(Xuo - XTuO + MQU) - ZOéo - Mdo(UO + ZQO)

G (XUO - XTuO) [MQO(UO - Zdo) + Zay — Mdo(UO + ZQO)] + MQOZao

—ZugXag — (Moco + MTQO)(UO + ZQO)

H g [ZUOMQO + (Muo + MTuO)(UO — Zs, )]
+(My, + MTuO) [_Xao(UO + Z(Io)] + Zuy Xy Mg,

+(XUO + XTuO) [(Mao + MTaO)(UO + ZCIO) - M(IOZCYO}

I g [(Mao + MTQO)ZUO - Zao (MUO + MTuo)]

Table 5: Transfer function denominator coefficients. These coefficients appear in the transfer functions from

the elevator deflection §é(s) to @(s), 0&(s), 6(s), d0pn(s), and d0py(s).
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Stability parameter Value Units
(CH) 0.0000 rad
Uo 400.0000 kt
Xug —0.0074 1/s
Xt,, 0.0000 1/s
Xoo 8.9782 | ft-rad/s?
Xseo 0.0000 | ft-rad/s?
Zug 0.1390 1/s
Zao —445.7224 | ft-rad/s?
Zg, —0.8705 | ft-rad/s
Zgo —1.8598 | ft-rad/s
Zseq —42.1968 | ft-rad/s?
M, 0.0011 rad/ft-s
Mr,, —0.0002 1/ft-s
Ma, —7.4416 1/s?
Mr,, 0.0000 1/s?
My, —0.4062 1/s
My, —0.9397 1/s
M, —~17.6737 1/s?

Table 6: Stability parameter values. These data for a business jet are given in [17, p. 330].
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Sidebar 1
Center of Rotation and Center of Percussion

Consider the free rigid body shown in Figure S1, with concentrated masses my, .. ., m, at distances

of {1, ..., £y, respectively, from the point Op, which is the origin of the body-fixed frame Fy. The frame F o

is assumed to be an inertial frame. Consider a force F' that impacts the structure at point P and perpendicular

to the body, and assume that R is the point on the body at which the velocity ?R /04 /A Of Rrelative to Op

with respect to F 5 is identically zero following the impact. The point R is the center of rotation relative

to P; equivalently, P is the center of percussion relative to R. Let ¢ and /p denote the distances from the

upper end of the body to R and P, respectively. The distance £. from the upper end of the body to the center

of mass c is given by

gc _ Z?:l miei’

Mtotal

A .
where Mmyotal = Z?:l m; is the total mass of the body.

Next, the velocity ?R /04 /A Of Rrelative to O with respect to Fa can be written as

- As
UR/OA/A = T R/Ox
Aeas
= TR/c + T c/Oa
R Be R R
= Vc/Op/A T TR/c T WB/A X TR/c

RN

= Vc/Op/A T WB/A X TR/c;

(S

(52)

where ?C /04 /A 1 the velocity of ¢ relative to O with respect to Fa, SB /A is the angular velocity of Fp

Be

relative to F 4, and ?R /c 18 the position of R relative to ¢. Note that ?R /e = 0 since R and c are fixed in the
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body. These vectors can be resolved in F'g as

UR/Os/A = URJA,
UC/OA/A = ijav
WB/A = wka,

TR = (lr — Le)ia.

Thus, (S2) implies that

0 0 0 KR - EC
vr | = | ve | | O | X 0 )
0 0 w 0
that is,
VR = Ve + (IR — lo)w. (S3)

Next, viewing O as an unforced particle, Newton’s second law implies
N Ae
F = myotal ?C/OA/Av
N Ae
where F' = Fyd(t)jp. Thus, since 5C/OA/A = DA, it follows that

F[)(S(t) = mtotalﬁc (t) (S4)

Next, the moment Mp . on P about ¢ due to F' is given by

N R Ae
MP/C =Tpjc X F=1 WB/A

n
A . . . .. .
where I. = Z m;(4; — EC)Q is the moment of inertia of the body relative to c. The position of P relative to
i=1
cis givenby rp/. = (¢p — £¢)ia. Therefore,

Ip — L 0 0
0 X F()(s(t) =1 0 )
0 0 w(t)



that is,

Fo(tp — £)d(t) = Lo (). (S5)

Using (S4) and (S5), and differentiating (S3), it follows that

() = (2 + - 0 =D 5,

Mtotal 1.

Since R is the center of rotation, we have, for all ¢ > 0,

vr(t) = ( L r=f)ie - EC)) Fy=0.

Myotal IC
Therefore,
1 n (b — Le)(lp — £c) _o.
Mtotal I,
It follows that
1
IR ="l — - (S6)

mtotal(gP - gc) .

Consequently, if the force impacts the body at the center of percussion P located at /p, then the

translational velocity vy at the center of rotation located at /g given by (S6) is identically zero.
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Figure S1: A free rigid body with nonuniform concentrated masses my, ..., m, at distances of ¢y, ..., £,

from the upper end Op of the structure. The point R is the center of rotation relative to P, while the point P

is the center of percussion relative to R.
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Sidebar 2
Instantaneous Velocity Center of Rotation

Let B be a rigid body with body-fixed frame Fg, let F 4 be a frame with origin O 4, and let SB /A be
the angular velocity of Fg relative to F's. A point p that is fixed relative to B is an instantaneous velocity
center of rotation (IVCR) of B at time ¢ if SB/A (t) # 0 and gp/OA/A (t) = 0 [S1, pp. 147-149], [S2, pp.

49-52]. The motion of B can be viewed as instantaneously rotating about p. See Figure S2.

Let q be a point that is fixed relative to B. It follows from the definition of an IVCR and the transport

theorem that p is an IVCR of B if and only if GB /A # 0 and

RN

Up/Oa/A = SB/A X ?p/q + ?q/oA/A = 0. (S7)

Resolving v /0, /A, wB/a>and 7,4 in Fp as

A N A

U= VUq/Oa/A B’ W= Wp/A B’ r (S8)

(S7) can be rewritten as
wXr4+v=0. (S9)

Note that the existence of an IVCR depends on the existence of a solution to (S9). Since w™ is singular, (S9)

has either zero or infinitely many solutions. Let R denote range.

Fact S1. The following statements hold:

i) If v ¢ R(w™), then B has no IVCR.
ii) If v € R(w™), then B has infinitely many IVCRs.
iii) Suppose v € R(w™). Then p is an IVCR if and only if there exists o € R such that

r=oWw— —swX. (S10)
|wl?

Note that lf;}\B/A . E\q/OA/A = CUT’U = _wT(

w><7") = 0. Hence, if ;B/A . ?q/OA/A = 0, then B has
no IVCR. This situation occurs, for example, in bullet flight, where the translational velocity is parallel to

its angular velocity.

52



Fact S2. p is an IVCR of B if and only if p satisfies the following conditions:

i) Wi/a " Vajou/a = 0.
ii)u_J\B/AX ? (‘_J\B/AXE\q/OA/A> =0.

p/d “'JB/A|2

In this case,

N RN

- 1 WB/A " Tp/q

Tp/q wB/Ax 'Uq/OA/A+

lwp/al? lwp/al?

Proof Assume that p is an IVCR of B. Then it follows from (S7) that

NN - RN N

WB/A * Vq/Op/A = WB/A - (_WB/A X ?p/q> =0,

which proves 7). To prove ii), it follows from (S7) that

—_ RN 1 —_ —_ —_ —_ —_
WR/A X (Tp/c wp/A X Uc/oA/A) = WBJ/A X Tp/ct Vc/Op/A = 0.

lwr/al?

Hence, i7) holds.

Conversely, it follows from i) that there exists o € R such that ?p /q= =

azB/A. Using 7) and i1), it follows that
Up/Oa/A = Up/a/A T Vq/Os/A

RN

= VUp/q/B T WB/A X Tp/qt Vq/0s/A

~ N N ~ N
= wp/A X ( = WB/A X Vq/O,/A +0éwB/A> T Vq/0a/A

‘WB/AP

= —Uq/0a/A T Vg/0a/A

=0.

To show (S11), assume p is an IVCR of B. It follows from (S7) that

RN

WB/A X Vpjoa/a = WB/a X (WB/A X Tpq + Vqj0a/a) =0,

53

wB/A.

lwp/al?

(S11)

WB/A X Vq/Opa/At



which implies that

(aB/A ’ ?p/q)aB/A - ‘SB/A‘Q?p/q + aB/A X gq/OA/A =0. (S12)

Hence, solving for ?p /q 0 (S12) yields (S11). ]
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v

Oa i
Figure S2: Instantaneous velocity center of rotation. B is a rigid body. The point q, which is fixed relative
to B. Fp is a frame with origin Oy, E\B /A 1s the angular velocity of Fp relative to Fa, and it is assumed
that GB /A # 0. The point p, which is fixed relative to B, has the property that, at time ¢, the velocity of p

relative to O with respect to the frame F 5 is zero. Thus B is instantaneously rotating about p.

55



Sidebar 3
Instantaneous Acceleration Center of Rotation

Let B be a rigid body with body-fixed frame Fg, let F 4 be a frame with origin O 4, and let 53 /A be
the angular velocity of Fp relative to F 5. A point p that is fixed relative to B is an instantaneous acceleration

center of rotation (IACR) at time ¢ if gp/OA/A(t) = 0 [S1, pp. 150-155], [S3, pp. 336-338].

To characterize this property, let q be a point fixed relative to the rigid body B. It follows from the
definition of an IACR and the transport theorem that p is an IACR if and only if

Be

(p/0s/A = WB/A x?p/q+§B/A X (;B/A X ?p/q) +Eq/OA/A =0. (S13)

Resolving ay/0, /A, wB/a»and r/, in Fp as

Be
N — N — VAR N —
= QAq/0p/A|_» W= WB/A|_ s W= WB/A| » T= Tp/q|_> (S14)
B B B
(S13) can be rewritten as
W+ r+a=0. (S15)

Note that there exists an IACR if and only if there exists r satisfying (S15). Furthermore, (S15) can yield

zero, one, or infinitely many IACRs.

Note that the determinant of &> + w*? is given by

Be Be Be

. 2 — — NN
det (0* +w™") = (wp/a- wpa)® — (wWp/a - wp/a)(Wp/a - Wp/A)
. Be
= —|wp/al’| wp/a [*sin®6, (S16)
where
AN B_\.
0 2 cos ™ WB/A—:.B/A (S17)

‘WB/AH WB/A |
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Be
Fact S3. There exists a unique IACR if and only if #/7 is not an integer, SB /A # 0, and SB /a7 0.

Proof Suppose (S15) has a unique solution. Therefore, w> + w? is nonsingular, and thus the deter-

minant of &% + w*? is nonzero. Hence, it follows from (S16) that
2 — E.
det (W™ +w*7) = —|oJB/A|2\ WB/A |>sin? 6 # 0,

Be
which implies that § /7 is not an integer, aB/A #0, SB/A £ 0, and SB/A# 0.

Be
Conversely, since #/7 is not an integer, BB /A # 0, and SB /a7 0, it follows from (S16) that
Be
det (W™ + w™ 2) =— @B/A\2| GB/A 2 sin% @ # 0, which implies that (S15) has a unique solution. O

Be
Fact S4. Assume GB/A =0, aB/A# 0, and E\q/OA/A # 0. Then p is an IACR if and only if p

satisfies the following conditions:

Be
l) wB/A -aq/OA/A = 0.

Be Be
.. N — 1 — —_
i) wg/a X | Tp/q — e WB/A Xaq/0/A | = 0.

|wp/al?
In this case, p satisfies
Be
Be - - Be
Tp/l= e WB/A Xaq/OA/A"i_iB. WB/A - (S18)
\ WB/A |2 \ WB/A 2

Proof Assume p is an IACR. Since SB /A = 0, it follows from (S13) that

Be

- - RN

Be Be
WB/A "Aq/Op/A =WB/A " <_ WB/A XTpjq— WB/A X (WB/A X Tp/q)>

Be Be
= T WB/A | WB/A XTp/q

=0,
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which proves 7). To prove ii), it follows from (S13) that

Be

Be Be
— — 1 [N — — —
WB/A X | Tpj/q = e WB/A XQq/Os/A | = WB/A XTp/q T Gq/0p/Aa = 0.

| WB/A 2

Hence, i7) holds.

Conversely, it follows from 47) that there exists o € R such that
- 1B IR Be
Tp/a= e WB/A XAq/0p/A T QX WB/A - (S19)

\ WB/A |2

Using 4) and (S19), it follows that

Aee
Ap/Oa/A = T p/Oa
Aee Aee
=T plet T c/os
Bee Be Be

=7 pjq T2WB/AX T pjq + WBJA X T pjq T wi/a X (WB/A X Tp/q) + Gqjo,/A

Be 1 Be Be

= WB/A X | TgeT WB/A XAq/op/A T O WB/A | T Qg/0,/A
’ WB/A 2

Be

wB/A‘aq/OA/AA N N
- Be WB/A ~ Gq/0s/A T Qq/Ox/A

| WB/A 2

= 0.

To show (S18), assume p is an IACR. It follows from (S13) that

Be Be Be
WB/A X Up/Os/A =WB/A X (“B/A XTp/q T wWB/a X (WB/A X Tp/q) + aQ/OA/A> =0,

which implies that

Be Be Be Be Be

(wB/A “Tp/q) wB/A —(WB/A * WB/A)T p/qt WB/A XEq/OA/A =0. (520)

JEEN
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Hence, solving for 7/, in (S20) yields (S18). O
]33 —_ —_—
Fact S5. Assume wp/p = 0, wp/a # 0, and aq/0,/a # 0. Then p is an IACR if and only if p

satisfies the following conditions:

i) WB/A -+ Gq/o,/a = 0.

L - Qq/0p /A
i) wp/a X | 74/q — — = 0.
/ p/d |wB/A|2

In this case,

N Aq/Oa /A WR/AT N

Tp/a = = A/2 + 4 S/QWB/A- (S21)
|°JB/A| ’WB/A’
Be

Proof Assume p is an IACR. Since QB /a= 0, it follows from (S13) that

Be
— — —

WB/A Qg0 /A = WB/A - <— WB/A XTp/q — WA X (Wp/a X ?p/q)>

N JEEN

= —wp/a - (wB/A x (wpya Tp/q)>

=0,

which proves 7). To prove ii), it follows from (S13) that

Be
a/Oa/A \ _ B/A XTp/q — WB/A X (WB/A X Tp/q)
WB/AX | Tp/a™ 7= | TWB/AXTp/q =~ WB/AX =
lwi)Al lws/Al

wp/a X (WB/A X T p/q)

= wp/A X Tp/q+wB/Ax — 5
lws/Al

= WB/A X Tp/q — WB/A X T'p/q

=0. (S22)

Hence, i7) holds.
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Conversely, it follows from i7) that there exists & € R such that

JEEN

Fofa = L2 4 awp . (523)
lwr/Al
Using ¢) and (S23), it follows that

N A_o\o
Ap/Oa/A = T p/Oa

Al. Al.

=T p/qT T q/0a
B:o Be Be

=T pjq F2WB/AX Tp/q+ WBJA XTp/q +wB/A X (WB/A X Tp/q) + Gq/0,/a

@q/0a/A

— 5 +awB/A) + aq/OA/A
’wB/A’

= wp/a X (SB/A x (

—

= T 0q/0s/A T Gq/0/A
= 0.
To show (S21), assume p is an IACR. It follows from (S13) that

Be
WB/A XTpjq T wp/a X (WB/A X T'p/q) T Gq/0, /A

= wp/a X (WB/A X Tp/q) + aq/0x/A

= (SB/A ‘ Tp/q)SB/A - ("_J\B/A ‘ 5B/A)rlo/q + EQ/OA/A
=0. (S24)
Solving for ?p/q in (S24) yields (S21). ]
Be N
Fact S6. Assume wp/s = 0 and wg,s = 0. Then every point p that is fixed relative to B is an IACR

if and only if

RN

aq/0n/A = 0.

Proof Assume p is an IACR, it follows from (S13) that
BA' —_ —_ —_ —_ RN
0=wp/a X7p/q+w/a X (WB/A X Tp/q) + @q/0,/A

JEEN

= aq/oA/A.
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Conversely,

Aee
@p/Oa/A = T p/Oa
Aee Aee
=T p/at T q/0a
Bee Be Be

=T pjq T2WB/AX Tp/q+ WB/A XTp/q+ wB/A X (WB/A X Tp/q) + Gq/0,/a

RN

= Gq/0a/A
=0. g
Be A Be N
Fact S7. Assume wp/a and wp/ 4 are colinear, and let k = %. Then p is an IACR if and
WB/A
only if p satisfies the following conditions:
l) WB/A . aq/OA/A =0.
Be
L — w 2q +w xa .
ii) wp/a and 7,y — [wp/al”aa/0p/a :.B/A 2a/9A/2 gre colinear.
\313/A|4+|;;B/A|2
In this case, p satisfies
Be Be
—~ |wpjalfaqouat wB/a Xaq0,/a | lwp/al® (WA Tpq) HE WB/A T 25
T'p/a = Be + Be wp/a- (525)
lwp/al* + ] wp/a |2 lwp/al* + [ wpya |?

Proof Assume p is an IACR. It follows from (S13) that aB JA 201 /0a/A = 0, which proves i). To

prove i), note that p is an IACR, it follows from (S13) that

Be
0=wp/a XTpjq+wp/a X (WB/A X Tp/q) + Gq/04/a
Be
= WB/A XTp/q + (WB/A * Tp/q)wWB/A — (WB/A - WB/A) T p/q T Gq/OA/A- (S26)
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Be
Next, the cross product of SB /A and (S26) can be expressed as

Be Be
0=wp/a X (WB/A X7 p/q+ (WB/A - Tp/q)ws/a = (WB/A - WB/A) Tp/q + aq/oA/A)

Be Be Be Be Be

= (Wi/A "Tp/a) WB/A —| WB/A °Tp/q — [wB/alP(WB/A X T p/q)+ WB/A X Gq/0,/A-

Be
It follows from (S26) that SB /A x?p /q 18 given by

Be
N N N N

WB/A X T pjq = —(WB/A - Tp/a)WB/A + (WB/A - WB/A) Tp/q = Gq/0a/A-

Substituting (S28) into (S27) yields

Be Be Be
0= (wp/A Tp/q) W/a —| @B/ |27 pjq + |wB/al*(WB/a - T p/g)wB/a

. . . . Be .

— |wp/al T pjq + lwp/al® aq/o,/at WB/A X aq/0,/A
Be . N - . Be -

= [k wp/a Tp/q+ (WB/a - Tp/)]wn/a + |w/al* Gqjon/at WB/A X aq/0,/A
Be - R
— (| WB/A |2 + |WB/A|4)Tp/q'

Hence, i7) holds.

Conversely, it follows from 47) that there exists o € R such that

Be
T |wi/al® agjon/at W/a Xag/0,/a
p/qa — Be
lwp/alt + ] wpya 2

Be

+ « SB/A .
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Using 4) and 1), EP/OA/A is given by

Aee
Gp/Op/A = T p/Oa

Aee Aee
=T p/qt T q/04

Bee Be Be
= T p/q T2WB/AX T pjq + WB/A XTpjq T wWp/a X (WB/A X Tp/q) + Gqjoa/a

Be
o |wB/AlZaq/0,/AF WB/A X Aq/0,/A ol
wp/al* + 1 wpya 2
Be
—\ 2A —\ —\

—~ —~ |WB/al® @q/0, /AT WB/A XAqop/A  — -

+wp/a X | WwB/A X Be + awp/A + Aq/0p/A

lwp/al* + | wp/a 2
= T 0q/Ox/A T Qq/Op/A
=0.

Finally, (S29) implies (S25). O
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Sidebar 4
The Initial Curvature Theorem and the Unit-Step Response

Initial Slope Theorem Let ¢(s) denote the Laplace transform of y(¢). Then the initial slope of

y(t) is given by

y/(0%) 2 Tim /() = lim s[si(s) —y(0°)].
t—0t+ 5§—00
To illustrate the initial slope theorem, we consider the unit-step response of the asymptotically stable,
strictly proper transfer function G with relative degree d > 1. The unit-step response has the initial value

y(0T) 2 lim, g+ y(t) = lims_,00 5(G(s)2) = G(c0) = 0. The initial slope of y(¢) is thus given by

S

Y (0%) = lim s%j(s) = lim sG(s).

S§—00 §—00

Consequently, if d = 1, then y/(0T) # 0, whereas, if d > 2, then 3/ (0") = 0. These results are illustrated

in Figure S3 and Figure S4.

Initial Curvature Theorem Let ¢(s) denote the Laplace transform of the output y(¢). Then, the

initial curvature of y(t) is given by

Do) 2 lim o@D () = Lim g
y@(07) = lim 5 ¥(t) = lim s"g(s),

where (9 denotes the dth derivative of y, and d is the relative degree of G(s).

Let us consider the unit-step response of the asymptotically stable, strictly proper transfer function G

with relative degree d > 1, where

_ Bn—as" "+ Br_g_1"" T+ 4 By
S+ op1s" 4+ ag '

G(s)
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The initial curvature of the unit step response is thus given by

y@(0") = lim s*15(s)

S§—00

» 1
= lim s G(s)-

§—00 S

= lim s'G(s)

S—00

Bn-d, ©=d.

Therefore, the initial curvature of the unit step response depends on the sign of the dth derivative y(@ (0%) =

/and-
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Unit Step Response y(t)

(s-2)?

Figure S3: The unit step response of the asymptotically stable transfer function G(s) = G (32)(553)

with

relative degree d = 1. The initial slope /(0™) of the unit step response is 1.

66



= i
3
c
3
3
o 4
Q.
(0]
n
.“é‘
o)
3
Figure S4: The unit step response of the asymptotically stable transfer function G(s) = ﬁ, whose

relative degree is 3. The initial slope y'(0") of the unit step response is 0, whereas the initial curvature

y”(07) of the unit step response is 1.
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Sidebar 5
Initial Undershoot

Initial undershoot occurs when the step response of a transfer function initially moves in the direction

opposite to the direction of its asymptotic value.

Let G(s) 2 ) be a strictly proper transfer function with relative degree d > 0, where > 0 and

sTa(s)
a(s) is asymptotically stable. Let y(t) be the unit-step response of G. Then initial undershoot occurs at

t=0if
y @0y (c0) <0,

where (4 (0) 2 lim,_,o+%?(¢) and y" (c0) 2 lim,_,o+%(") (t). The unit-step response has the initial

curvature
: . N . 1 B(0)
@ (ot = (d)(4) = d — d+1 Iy
yon) = tglél+y () = sh—glos(s §(s) = Jim s (G(S)s) ~ a(oo)’
as well as the asymptotic curvature
) (00) 2 1 ) (4) — Tim <(r+1) 1. B0)
y"(00) = limyocy™ (1) = limy s (G(s) 1) = -

The initial direction of the step response depends on the sign of the product of the initial curvature y(%) (01)

and the asymptotic curvature y(r) (00). The following result is discussed in [3].

A . . .
Proposition S1 Let G = j{gjs) be a strictly proper transfer function, where » > 0 and «f(s) is

asymptotically stable. Then the unit step response has initial undershoot if and only if G(s) has an odd

number of positive zeros.

As an example, consider the transfer function G(s) = — ( (s—1)(s—2)(s—3)

S (42 (513) (5D The unit impulse

response exhibits initial undershoot with three direction reversals due to the three positive zeros, as shown

in Figure S5.
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Unit Impulse Response y(t)

-0.05

-0.1

. (s—1)(s—2)(s—3)
s(s+1)(s+2)(s+3)(s+4) "

response of this system exhibits initial undershoot with three direction reversals due to the three positive

Figure S5: Unit impulse response of the transfer function G(s) = The impulse

ZE108.
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Sidebar 6
Markov Parameters and Relative Degree

Consider

whose Laplace form is given by

Then,

where

G(s) 2 C(sI — A)"'B + D.

Expanding G(s) in a Laurent series about infinity yields

5 o (S30)
We now consider G / 5:(8) given by (47). Using (S30), we obtain
Slggo sGé/éé(s) = CB,

We can now write (42)—(44) in state space form with elevator-deflection input and setting X, = 0, Zg,

=0,
and Mg, = 0 for convenience yields
U [ Xy + XTuO Xag Xqo —g U Xseg
. . Zug Zag Uo+Zaq Zseq
[JJe’ _ (et _ To To Ty 0 oo i To Se. (S31)
q My, + MTuO Mo, + MTao Mg, 0 q Mse,
0 0 1 0 0
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where

X(Seo
A = A
p=| Y% |, C=|loo0 0 1]
M560
- O =
Note that
CB=0

Since D = 0 and C'B = 0, it follows from (S30) that

lim s°G(s) = CAB,

(832)
5§—00
where we consider
U Xuo + XTuo Xao XQO -9
. Zu Za Uo+Z.
/I é oa — 700 TOO OUo “ 0
My, + MTuO Mo, + MTao MQO 0
0] | 0 0 1 0
which is given by (S31). Therefore,
A
. 2 o i
Slgglos Ge/éé(s) =5 (S33)

where Ay is the coefficient of s? in the numerator of (47). From (S32) and (S33) it follows that Ag/E =

CAB = Mse, for X4y = 0, Zs, = 0, and M, = 0. It thus follows that the numerator of Gé/éé(s) in (47)
is of second order.

71



Sidebar 7
Routh Test for Third- and Fourth-Order Polynomials

All three roots of the cubic polynomial of p(s) = s34+ a2s? + a5 + ag are in the open left half plane

if and only if
ag,ai,az >0
and
ap < aias.
All four roots of the quartic polynomial p(s) = s* + ags® + azs% + a1s + ag are in the OLHP if and
only if
ap, a1, az,a3 >0
and

aoag + a% < aiazas3.
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