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Abstract

Stunting or reduced linear growth is very prevalent in low-income countries. Recent studies

have demonstrated a causal relationship between alterations in the gut microbiome and

moderate or severe acute malnutrition in children in these countries. However, there have

been no primary longitudinal studies comparing the intestinal microbiota of persistently

stunted children to that of non-stunted children in the same community. In this pilot study,

we characterized gut microbial community composition and diversity of the fecal microbiota

of 10 children with low birth weight and persistent stunting (cases) and 10 children with nor-

mal birth weight and no stunting (controls) from a birth cohort every 3 months up to 2 years

of age in a slum community in south India. There was an increase in diversity indices (P

<0.0001) with increasing age in all children. However, there were no differences in diversity

indices or in the rates of their increase with increasing age between cases and controls. The

percent relative abundance of the Bacteroidetes phylum was higher in stunted compared to

control children at 12 months of age (P = 0.043). There was an increase in the relative abun-

dance of this phylum with increasing age in all children (P = 0.0380) with no difference in the

rate of increase between cases and controls. There was a decrease in the relative abun-

dance of Proteobacteria (P = 0.0004) and Actinobacteria (P = 0.0489) with increasing age

in cases. The microbiota of control children was enriched in probiotic species Bifidobacter-

ium longum and Lactobacillus mucosae, whereas that of stunted children was enriched in

inflammogenic taxa including those in the Desulfovibrio genus and Campylobacterales

order. Larger, longitudinal studies on the compositional and functional maturation of the

microbiome in children are needed.
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Introduction

Malnutrition is a major cause of morbidity and mortality in children in low and middle-income

countries [1]. Undernutrition is estimated to cause 3.1 million deaths annually or almost half of

all child deaths (45%) in 2011 [1]. Children who survive often suffer from long-term conse-

quences including growth and cognitive impairment [2–4]. Childhood malnutrition is part of a

cycle of recurrent infections, impaired immunity, and worsening malnutrition, compounded by

food insecurity and, likely, host genetic factors [5, 6]. Recently, alterations in the intestinal micro-

biome have been recognized as part of this cycle (reviewed in [7]). Elegant studies of children in

Malawi [8, 9] and Bangladesh [10] have shown that moderate or severe acute malnutrition is

causally linked to the gut microbiome and is associated with persistent immaturity of the gut

microbiota. Secondary analysis of the data from two of these studies identified changes in the gut

microbiota in severely stunted compared to stunted children [11]. A previous study from India

reported changes in the gut microbiota of children of varying nutritional status including stunting

[12]. However, there have been no primary longitudinal studies comparing the intestinal micro-

biota of persistently stunted children to that of non-stunted children in the same community.

Stunting or low height-for-age, the most common form of malnutrition, is very prevalent in

resource-limited areas of the world and is considered the main indicator of childhood undernu-

trition [1]. Globally, over one quarter of children (165 million) under the age of 5 were stunted in

2011 and stunting contributes to over a million deaths in children in this age group [1, 13]. Most

stunting occurs in the first 1000 days of life, which includes the time from conception to the end

of the first two years of life [1]. The etiology of stunting is poorly understood. Several factors such

as intrauterine growth retardation, neuroendocrine and hormonal factors, frequent diarrheal and

other infections in early childhood, environmental enteric dysfunction, environmental toxins

and host genetic factors are all implicated (reviewed in [6, 14–16]). Stunting is associated with

low birth weight (LBW,< 2500 grams, [17]) [18–21] and is also associated with recurrent infec-

tions with infectious diarrhea the most important determinant [1, 22].

The largest number of stunted children in the world live in southern Asia [13]. In India,

48% of children under the age of 5 were estimated to be stunted in 2005–6 [23]. India had the

highest numbers of LBW deliveries (7.5 million) globally in 2010 [24]. A longitudinal birth

cohort study of children conducted between 2002 and 2006 in an urban slum community in

Vellore, south India, found that 61% of children were stunted by the age of 3 years [19], with

LBW significantly associated with stunting at 3 years of age (OR 3.63, 95% CI 1.36–9.70).

Recently, we completed a similar longitudinal birth cohort study in the same urban slum commu-

nity in Vellore, India. In order to determine if there is an association between stunting and changes

in the intestinal microbiota over time, we conducted a pilot longitudinal study of gut microbial com-

munities in 10 children in the cohort with persistent stunting (cases) and compared them to that of

10 children with no stunting (controls), from 3 to 24 months of age. The aims of this study were to

determine the effect of increasing age on the composition and diversity of the gut microbiota of all

children and to determine if there were differences in the microbiota of cases compared to controls.

Our hypothesis was that increasing age from birth to 24 months would have a significant impact on

the composition and diversity of the gut microbiota in all children and that overall there would be

differences in the gut microbial community composition between the cases and controls.

Materials and Methods

Study design and subjects

Data and stool samples from children enrolled in a birth cohort study designed to investigate

immune responses to cryptosporidiosis from birth to 3 years of age in an urban slum
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community of Vellore, India were used for this study. The details of the study area and popula-

tion, cohort recruitment and follow up of the parent study have been previously described [25].

Briefly, the study was conducted in four contiguous semi-urban slums with an area of ~ 2.2 sq

Km and a population of 43,000 (2010 census) in the town of Vellore in the state of Tamil Nadu

in India. Most people in the area are of a low socioeconomic status and live in homes consisting

of brick walls with tile or cement roofs. The roads are paved but are lined with open drains.

Water is supplied by the municipality to communal taps at intervals of 2–28 days depending

on the season. Water is stored in wide-mouthed plastic or steel vessels inside the home and is

not generally treated or boiled before use. The diet consists mainly of rice, lentils and vegeta-

bles. Although most families are not vegetarian, meat is not eaten daily, and the major protein

sources are milk, eggs and lentils.

Four hundred and ninety seven children were enrolled in the parent study and were visited

twice a week by trained field workers to document diarrhea and other morbidities. Of the 497

children 420 (84.5%) completed 2 years of follow up. Weight and length/height were measured

monthly as described [25] and nutritional status defined by height-for-age (HAZ), weight-for-

height (WHZ) and weight-for-age (WAZ) scores, using the 2006 WHO child growth standards

as a reference [26]. Children were classified as stunted, wasted or underweight if their HAZ,

WHZ or WAZ scores were greater than 2 standard deviations below the median of the WHO

reference standard. Inclusion criteria for the parent study were 1) children born to families

planning to stay in the study area for 3 years; 2) families willing to provide informed consent,

participate in the study and have study personnel visit at home. Exclusion criteria were 1) chil-

dren born to temporary residents of the area (those not planning to stay in the area for at least

3 years); 2) children with gross congenital anomalies including cardiovascular, renal or hepatic

disease; 2) children with birth weight less than 1500 grams; 3) children with syndromic or sero-

logical evidence of HIV infection. Written informed consent was obtained from the parents or

guardians of the children and approval obtained from the Christian Medical College and Tufts

Health Sciences Institutional Review Boards for the parent study. Consent included the use of

stored samples and data for future studies.

For the pilot study, data and stool samples from 2 groups of children in the cohort, 10 cases

and 10 controls, were analyzed every 3 months from 3 to 24 months of age for a total of 8 time

points and 160 samples. Persistent stunting was defined as an HAZ score greater than 2 SD below

the median on at least 6 of 8 3-monthly time points. Severe stunting was defined as an HAZ score

greater than 3SD below the median. Inclusion criteria for the cases were 1) low birth weight

(<2500 grams), 2) persistent stunting and 3) at least one episode of diarrhea from birth to 24

months of age. Inclusion criteria for the controls were 1) normal birth weight; 2) no stunting at

any of the 3-monthly time points and 3) no episodes of diarrhea from birth to 24 months of age.

Stool DNA extraction and 16S rRNA gene amplicon generation and
sequencing

Stool samples were transported to the laboratory on ice and frozen in aliquots at -80°C within

24 hours of collection. Overall community composition and diversity as well as relative taxon

abundance were not shown to be significantly influenced by storage temperature or storage

duration [27]. There was no difference in storage temperature or duration between cases and

controls. DNA was extracted as described [28] using two successive rounds of bead beating

with 0.1 mm zirconium–silica beads (Biospec Products, Bartlesville, OK, USA) followed by

extraction with a QIAamp DNA Stool Minikit (Qiagen, Germantown, MD). The V4 region of

the 16S rRNA gene was PCR amplified based on previously described protocols [29]. Briefly,

amplicons were generated using V4 forward primer 515F5’ GTGCCAGCMGCCGCGGTAA

Intestinal Microbiota in Stunted Indian Children

PLOS ONE | DOI:10.1371/journal.pone.0155405 May 26, 2016 3 / 17



and reverse primer 806R3’ GGACTACHVGGGTWTCTAAT,’ each attached to the appropri-

ate Illumina adapter sequences. The reverse primer contained a unique 12 base Golay barcode

sequence. PCR amplifications were performed in triplicate using a HotStarTaq Master Mix kit

(Qiagen) and the following PCR conditions: 95°C for 2 minutes, 20 cycles of 94°C for 30 sec-

onds, 52°C for 45 seconds, 65°C for 5 minutes and extension at 65°C for 15 minutes. A negative

control was run on each PCR reaction plate: reactions yielding no amplicons or those in which

the negative controls were positive were repeated. PCR products were purified using a QIA-

quick PCR Purification Kit (Qiagen). The DNA concentration of amplicons was determined

using a Quant-iT assay (Invitrogen, Carlsbad, CA). Amplicons were then pooled in equimolar

concentrations and purified using Agencourt Ampure XP beads (Beckman-Coulter, Beverly,

MA). Purified, pooled amplicons were subjected to paired-end (150 x 150bp) sequencing on an

Illumina MiSeq according to standard Illumina protocols at the Genome Research Laboratory

of the Virginia Bioinformatics Institute at Virginia Tech University. Paired-end reads of 150 bp

in length in each direction were generated with an approximately 46 bp overlap when

combined.

Computational and statistical analyses

Computational analyses were performed using QIIME Version 1.8 (http://www.qiime.org)

[30]. Statistical analyses were performed in R (http://www.r-project.org/). Quality filtering was

performed using default settings in QIIME. Reads were assigned to operational taxonomy units

(OTUs) based on 97% identity using the closed-reference OTU algorithm (pick_closed_refer-

ence_otus.py) with taxonomy assigned using the Greengenes predefined taxonomy map [31].

Reads that did not match a reference sequence were discarded. Alpha diversity, defined as

diversity within a given community that is characterized using the total number of species (spe-

cies richness), the relative abundances of the species (species evenness), or indices that combine

these two dimensions [32] including Shannon Diversity, Equitability, Number of Observed

OTUs, Chao and Phlyogenetic Diversity (PD) were computed in QIIME. Beta diversity,

defined as partitioning of diversity among communities which is characterized using the num-

ber of species shared between communitieswas determined by principal coordinates analysis

(PCoA) of weighted and unweighted UniFrac distances in QIIME and differences were deter-

mined using a 2-sample t-test with 1000 Monte Carlo permutations and Bonferroni

corrections.

The Linear Discriminant Analysis Effect Size (LEfSe) algorithm was used to identify differ-

entially abundant taxa using default parameters http://huttenhower.sph.harvard.edu/galaxy/)

[33]. Since this was an exploratory study, corrections for multiple testing were not performed

[34].

To estimate the age-specific change in outcomes and the degree of change at a group level,

accounting for potential serial autocorrelation in the repeated measurements, the separate lin-

ear mixed effects models were fitted to individual trajectories. Each model described outcomes

as a function of time with birth weight and gender as covariates and age in days as a random

variable using the lmer-function of the lme4 R package. Based on the model results the

3-monthly rate of change for each outcome along with lower and upper limits of their 95%

Confidence Intervals (CI) were estimated.

Results

Sociodemographic, clinical and nutritional characteristics

There were no significant differences in gender, gestational age, socioeconomic status, age of

weaning or number of children who were exclusively breast fed for 6 months, between the case
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and control groups (Table 1). All children were breast-fed, though for varying periods of time.

None of the children in either group were born pre-term and none were born by C-section.

Based on the inclusion criteria, control children had significantly higher birth weights than

cases and did not experience any diarrheal episodes in the first 24 months of life. All case chil-

dren experienced at least one episode of diarrhea with a total of 66 episodes and an average of

6.6 episodes/child over the first 24 months of age (S1 Fig). One episode of diarrhea was due to

Cryptosporidium. All other episodes of diarrhea were of unknown etiology.

All 10 cases and 6 of the 10 controls were treated with antibiotics mainly for diarrhea or

respiratory illness (S1 Fig). The most commonly used antibiotic was sulfamethoxazole/trimeth-

oprim. Amoxicillin, cefixime, cephalexin, norfloxacin and metronidazole were also used. The

case children were treated with antibiotics for a total of 33 times for diarrhea and 48 times for

other conditions with an average of 8.1 episodes of antibiotic use per child during the first 24

months of age (Table 1 and S1 Fig). Since none of the controls had diarrhea, they were not

treated with antibiotics for that condition; however, 6 of 10 control children received antibiot-

ics for other conditions for a total of 19 times with an average of 1.9 episodes of antibiotic use

per child during the first 24 months of life (Table 1 and S1 Fig).

The mean height and weight gain with 95% CI for children in both groups over the first 24

months of age are shown in Fig 1A and 1B. Control children had significantly greater weights

and heights at each 3-monthly time point than case children (S1A Table). However, it should

be noted that the heights and weights of the control children were also lower than the WHO

standards for the region (not shown). The mean HAZ and WHZ scores with 95% CI are shown

in Fig 1C and 1D. Although the average HAZ, WAZ and WHZ scores of control children at

any of the time points were all below 0, they were significantly greater than those of the cases at

each of the 3-monthly time points (S1B Table). Based on the inclusion criteria, none of the con-

trols were stunted at any time point whereas all case children were persistently stunted (S1 Fig,

Table 1. Baseline socio-demographic and clinical data in cases and controls.

Parameter Controls Cases P

Gender, male (%) 3/10 (30%) 3/10 (30%) 1.003

Gestational age in wks, median (IQR)1 40 (39.7–40.8) 37.8 (36.8–40.2) 0.194

Birth weight in Kg, median (IQR) 2.9 (2.7–3.3) 2.1 (1.9–2.3) 0.00024

Socioeconomic status2

Low 6/10 (60%) 6/10 (60%) 1.003

Middle 4/10 (40%) 4/10 (40%) 1.003

Age of weaning in months 3.8 (1.8–5.6) 3.3 (1.4–5.2) 0.7623

Exclusive breast feeding for 6 mths 1/10 (10%) 2/10 (20%) 1.003

Exclusive breast feeding for 3 mths 5/10 (50%) 4/10 (40%) 0.53

No. with diarrhea from 0 to 24 mths 0/10 (0%) 10/10 (100%) <0.00013

No. of diarrheal episodes from 0 to 24 mths 0 66 -

No. treated with antibiotics from 0 to 24 mths 0/10 (0%) 9/10 (90%) <0.00013

No. of episodes of antibiotic use from 0 to 24 mths 19 81 0.014

No. with diarrhea from 0 to 3 mths 0/10 (0%) 3/10 (30%) 0.21053

No. of diarrheal episodes from 0 to 3 mths 0 8 -

No. treated with antibiotics from 0 to 3 mths 1/10 (10%) 4/10 (40%) 0.30344

No. of episodes of antibiotic use from 0 to 3 mths 1 6 0.094

1information missing for one subject
2assessed using a 5 point scale modified from the Kuppuswamy scale
3Fisher’s exact test
4Mann-Whitney test. Statistically significant P values (P <0.05) are in bold type

doi:10.1371/journal.pone.0155405.t001
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S1B Table). One case was stunted at birth; the other 9 were not. However, by 3 months, 9 case

children were stunted (4 of them severely). By 24 months, 9 case children remained stunted (5

severely). The most growth faltering occurred in the first 3 months of age in cases. Based on

the inclusion criteria, none of the controls had diarrhea whereas 3 of the cases had diarrhea

during the first 3 months of age (Table 1). There were no significant differences among cases

and controls in the number of children who were exclusively breast fed for 3 months or in the

number of children who were treated with antibiotics or in the total number of episodes of

antibiotic use during this time (Table 1).

Intestinal microbiota

Sequencing of the V4 region of the 16S rRNA gene yielded a total of 5,928,140 sequences, with

a sequencing depth of 20,000 to 75,000 (mean = 37,000 and median = 34,100) reads per sample.

For comparative analysis, sequence numbers were normalized by rarefaction to 20,000, the

sequence count of the sample with the smallest number of sequences. We analyzed these

sequences to assess stool microbial community composition and diversity from control and

case children from 3 to 24 months of age.

To determine the effect of increasing age on the alpha diversity of the gut microbiota of case

and control children, we used a linear mixed effects model, adjusted for gender and birth

weight. Fig 2 shows a steady increase in all 5 alpha diversity indices (Observed OTUs, Chao,

Shannon, Equitability, Phylogenetic Diversity (PD) in all children with increasing age. Using

model estimation of the change in diversity indices associated with 3 months of age we found that

Fig 1. Growth trajectories in cases and controls: Mean height, weight, HAZ andWHZ scores and corresponding 95% confidence intervals (CI)
were plotted over time from birth to 24 months of age. HAZ, Height for Age, WHZ, Weight for Height, UCI, Upper Confidence Interval, LCI, Lower
Confidence Interval.

doi:10.1371/journal.pone.0155405.g001
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the increase in diversity was highly significant for all children as well as those in the case and con-

trol groups separately for all diversity indices examined (P<0.0001). Although the rates of increase

(shown as relative risk in Table 2) for all diversity indexes were greater in cases compared to con-

trols, the incremental increases for individual indices were not significant between the groups.

S2 Fig shows the effect of increasing age on the PD index (which measures the sum of the branch

length of all the branches on a phylogenetic tree) of the microbiota of individual children in both

groups in relation to diarrheal episodes, antibiotic use and age of weaning. There was considerable

variation in the rate of increase in PD between both groups and no clear pattern could be identified

between the groups. There were no significant differences in alpha diversity (within sample diver-

sity) indices (Observed OTUs, Chao, Shannon, Equitability and Phylogenetic Diversity) between

case and control children at each of the 3-monthly time points up to 24 months of age (S2 Table).

We analyzed beta diversity (between sample diversity) of microbial communities in all chil-

dren by unsupervised clustering using principal coordinates analysis (PCoA) of UniFrac dis-

tance matrices [35] at each 3-monthly time point. There was a significant increase in UniFrac

distance in cases compared to controls (P = 0.01) at the 12-month time point, but not at other

time points (S3 Fig).

The most abundant taxa at the phylum level in both groups overall were Firmicutes (38.6%),

Proteobacteria (25.89%), Actinobacteria (17.5%), Bacteroidetes (13.8%) and Verrucomicrobia

(2.6%) (Fig 3A). The relative abundance of Bacteroidetes was significantly higher in cases at 12

Fig 2. Alpha diversity indices in cases and controls: Alpha diversity indices (Chao, Equitability, observed OTUs, Shannon and Phylogenetic
Diversity (PD) were computed in QIIME. regression model showing the increase in individual diversity indices over time from 3 to 24 months of age.

doi:10.1371/journal.pone.0155405.g002
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Table 2. Age related effect on alpha diversity indices*.

All 3 RR Months UCI LCI P

Chao1 0.1258 0.1624 0.0891 <0.0001

Observed OTUs 0.1298 0.1681 0.0915 <0.0001

Shannon 0.0609 0.0840 0.0377 <0.0001

Equitability 0.0376 0.0552 0.0200 <0.0001

Phylogenetic Diversity 0.1141 0.1455 0.0827 <0.0001

Controls

Chao1 0.1255 0.1597 0.0912 <0.0001

Observed OTUs 0.1295 0.1646 0.0945 <0.0001

Shannon 0.0606 0.0785 0.0428 <0.0001

Equitability 0.0375 0.0506 0.0243 <0.0001

Phylogenetic Diversity 0.1139 0.1428 0.0850 <0.0001

Cases

Chao1 0.1381 0.1769 0.0994 <0.0001

Observed OTUs 0.1400 0.1811 0.0988 <0.0001

Shannon 0.0729 0.1007 0.0451 <0.0001

Equitability 0.0476 0.0693 0.0258 <0.0001

Phylogenetic Diversity 0.1241 0.1555 0.0927 <0.0001

*Analyzed using a linear mixed effects regression model, constructed for each index and adjusted for birth weight and gender. RR, relative risk; UCI,

upper confidence interval; LCI, lower confidence interval. Statistically significant P values (P <0.05) are in bold type. The regression coefficients

associated with age are expressed as relative risks (RR), or the degree of change in each index that occurred over a 3-month period. To illustrate the

degree of uncertainty, the estimates of RR are accompanied by values of the lower and upper confidence intervals (LCI and UCI, respectively). For each

model we also provide information related to statistical significance (p-value) for the estimates with respect to a hypothesis that detected associations

likely are not by chance. For example, interpretation of the first row of results can be read as follows: The Chao1 diversity index is likely to increase

significantly by 0.1258 within the 3 month time interval.

doi:10.1371/journal.pone.0155405.t002

Fig 3. Relative abundance of major phyla in cases and controls. a: Average relative abundance of major phyla at each 3 monthly time point. b: inear
regression model showing the change in relative abundance of each major phylum over time from 3 to 24 months of age.

doi:10.1371/journal.pone.0155405.g003
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(P = 0.043) and approaching significance at 24 (P = 0.0524) months of age compared to controls

(S2 Table). However, there were no significant differences in the relative abundance of any of the

other phyla between cases and controls at each of the 3-monthly time points. We used a linear

mixed effects model, adjusted for gender and birth weight to determine the effect of increasing

age on the relative abundance of the major phyla (Fig 3B). Using model estimation of the change

in relative abundance, we found that the relative abundance of Bacteroidetes significantly

increased over time for all children combined (P = 0.0380) as well as controls (P = 0.0258) and

cases (P<0.0001) separately (Table 3). The decrease in relative abundance of Proteobacteria

(P = 0.0004) and Actinobacteria (P = 0.0489) with increasing age was significant only in the

cases, with a trend towards a significant decrease in that of Proteobacteria in all children

(P = 0.0613), and in controls (P = 0.0768). There was no significant change in the relative abun-

dance of Firmicutes with increasing age in either group, though there was a trend towards a sig-

nificant increase in cases (P = 0.0546).

Overall the most abundant genera were Bifidobacterium (14.85%), Streptococcus (10.92%),

Prevotella (6.65%), Bacteroides (6.05%), Lactobacillus (3.03%), Veillonella (2.69%), Akkerman-

sia (2.65%),Megasphaera (1.79%), Eubacterium (1.20%) and Haemophilus (1.13%) (S4 Fig).

To determine whether any taxa at different taxonomic levels were enriched or depleted in

the control and case groups, we used the LEfSe algorithm, which identifies genomic features

characterizing the differences between two or more biological conditions [33]. Since children

in both groups were the same age at each time point, we analyzed all data for each group using

LEfSe. Taxa that were enriched in the controls (and thus depleted in the cases) included Bifido-

bacterium longum, Bifidobacterium pseudolongum and Lactobacillus mucosae species and the

Clostridiaceae family (Fig 4A and 4B). Conversely, taxa enriched in the cases (and depleted in

the controls) included Prevotella stercorea, Prevotella copri species, Desulfovibrio and Cateni-

bacterium genera and Campylobacterales order. We used the linear mixed effects model to

determine if there was an effect of increasing age on the relative abundance of taxa that were

Table 3. Age-related effect on the relative abundance of major phyla*.

3 RR Month UCI LCI P

All

Actinobacteria -7.97E-03 6.23E-03 -2.23E-02 0.2694

Bacteroidetes 1.62E-02 3.17E-02 7.43E-04 0.0380

Firmicutes 1.51E-03 1.79E-02 -1.49E-02 0.8550

Proteobacteria -1.71E-02 9.95E-04 -3.52E-02 0.0613

Controls

Actinobacteria -7.89E-03 4.26-E03 -2.00E-02 0.1987

Bacteroidetes 1.60E-02 3.03E-02 1.79E-03 0.0258

Firmicutes 1.63E-03 1.96E-02 -1.64E-02 0.8574

Proteobacteria -1.69E-02 2.01E-03 -3.58E-02 0.0768

Cases

Actinobacteria -1.61E-02 8.45E-05 -3.23E-02 0.0489

Bacteroidetes 3.31E-02 4.94E-02 1.67E-02 <0.0001

Firmicutes 1.75E-02 3.56E-02 -5.26E-04 0.0546

Proteobacteria -3.39E-02 -1.49E-02 -5.29E-02 0.0004

*Analyzed using a linear mixed effects model, adjusted for birth weight and gender. Please see footnote to Table 2 for explanation of results. RR, relative

risk; UCI, upper confidence interval; LCI, lower confidence interval. Statistically significant P values (P <0.05) are in bold type and those approaching

statistical significance are in italics.

doi:10.1371/journal.pone.0155405.t003
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enriched or depleted in each group. There was a significant decrease in the relative abundance

of Bifidobacterium longum (P = 0.0007) and Bifidobacterium pseudolongum (P = 0.0161) and a

significant increase in that of Clostridiaceae (P = 0.0093), Eubacterium and Eubacterium

biforme with increasing age in both controls (P = 0.0497 for both) and cases (P = 0.0047 for

both) and in that of Clostridiaceae (P = 0.0150) in cases.

Discussion

In this longitudinal study we investigated the composition and diversity of gut microbial com-

munities in persistently stunted children in a birth cohort compared to non-stunted children

in the same cohort, living in the same community. We found that there were age-related

changes in the composition and diversity of the gut microbiota of all children, with differences

in the relative abundance with increasing age in specific taxa between persistently stunted and

non-stunted children. The gut microbiota of stunted children was enriched in inflammogenic

taxa whereas that of non-stunted children was enriched in probiotic bacterial species.

Previous studies (including an earlier birth cohort study of children from the same site

where the current study was conducted [19]) have found that low birth weight is a risk factor

for stunting [18–21]. Stunting is also associated with recurrent diarrheal infections [1, 22]. In

the present study, among the 420 children who completed 2 years of follow up, only 27 chil-

dren (6.42%) did not have any episode of diarrhea and only 15 (3.57%) children did not have

any episode of diarrhea and were not stunted on any of the 8 3-monthly time points. The

Fig 4. Differentially abundant taxa between cases and controls. a: Linear Discriminant Analysis Effect Size (LEfSe) cladogram of differentially
abundant taxa in cases and controls [phylum (p), class (c), order (o), family (f), genera (g), species (s)]. b: Linear Discriminant Analysis (LDA) scores of
differentially abundant taxa in cases and controls. The LDA score indicates the effect size and ranking of each differentially abundant taxon.

doi:10.1371/journal.pone.0155405.g004
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control group was selected from among these children and therefore represents a very small

subpopulation that is not representative of the community. However, we felt that a control

group from the same community, with similar dietary practices and environmental and

hygiene conditions was better than a control group of healthy children from outside the

community.

Low birth weight and at least one episode of diarrhea were inclusion criteria for the case

group in the current study. All children in this group had one or more episodes of diarrhea and

all of them were treated with antibiotics for diarrhea or other conditions. Six children in the

control group were treated with antibiotics for conditions other than diarrhea. Although most

antibiotic use occurred after 6 months of age, most case children were stunted by this age.

Recent studies in the same birth cohort of children as in the present study found that exposure

to antibiotics early in life were associated with increased rates of diarrhea in early childhood

[36], but that there were no significant associations between antibiotic use and growth faltering

[37]. Diarrheal infections and antibiotic use, both of which are very common in India [38, 39]

are known to significantly alter the composition and diversity of the gut microbiota [40–42].

However, it is not possible to separate out the possible effects of diarrhea and antibiotic use

from those of stunting on the gut microbiota of children in this study.

Breast-feeding including the duration of exclusive breast-feeding, cessation of breast-feed-

ing, age of weaning and diet are also known to impact the gut microbiota [43–46]. In our

study, all children were breast-fed and there were no significant differences in the number of

children who were exclusively breast fed for 3 months or for 6 months or the age of weaning

between stunted and non-stunted children. We were therefore not able to identify an associa-

tion between breast-feeding and the gut microbiota in stunted or control children.

Most of the growth faltering in the cases occurred in the first 3 months of life. There were

no significant differences in rates of exclusive breast feeding, diarrheal episodes or antibiotic

use between the cases and controls during this time. In addition, there were no differences in

the composition or diversity of the fecal microbiota between the groups, suggesting that early

stunting in this community may not be associated with changes in the microbiota and that

other factors such as maternal nutrition or intrauterine growth may play a role.

Several studies have reported on the composition and diversity of the gut microbiota of

infants and young children [8, 44, 47–50]. Although the methods (next generation sequencing,

microarray, real time PCR), sequencing platforms (Roche 454, Illumina MiSeq or HiSeq), V

regions targeted for amplicon generation (V4, V3-V5, V4-V5), health status (healthy, malnour-

ished, with enteric infections), age range (0 to 6 years), geographic location (USA, Italy, Swe-

den, Malawi Burkina Faso, Bangladesh, India) and breast-feeding, weaning and dietary

practices of the children studied have varied, making comparisons difficult, it is universally

agreed that the microbiota of young children is different from that of adults, varying consider-

ably with increasing age and reaching adult levels of maturity by 1 to 3 years.

As in previous studies which examined the impact of increasing age on the gut microbiota

[10, 44, 48, 49], our study shows that there was a significant increase in alpha diversity with

increasing age in all children in both groups. However, whereas alpha diversity plateaued,

reaching adult levels by one year of age in children in Sweden [44], in our study, alpha diversity

continued to rise till 2 years of age. Yatsunenko et al also showed that alpha diversity continued

to increase till 3 years of age in Malawian, Amerindian and US children although the micro-

biota of US children was the least diverse [49].

In our study, we found that overall Firmicutes and Proteobacteria were the most abundant

phyla, followed by Actinobacteria and Bacteroidetes. Surprisingly, this pattern of relative abun-

dance is similar to that reported in children from the United States [47, 48] and Italy [46]

where Proteobacteria and Firmicutes predominated. In contrast, Bacteroidetes and
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Actinobacteria were the predominant phyla in Burkina Faso [46], Firmicutes and Bacteroidetes

in Sweden [44] and Actinobacteria and Firmicutes in Canada [51].

Using the LEfSe algorithm, we identified specific taxa that were enriched or depleted in the

microbiota of children in each group. The taxa enriched in the control children included the

probiotic species Bifidobacteria longum, which are associated with healthy gut microbiota of

breast-fed infants [52, 53] as well as Lactobacillus mucosae, another potential probiotic species

[54]. The decrease in the relative abundance of B. longum and B. pseudolongum with increasing

age in all children is consistent with decreasing rates of breastfeeding, since these species use

milk oligosaccharides as substrates [55]. The studies in Bangladesh [50] and Malawi [9] both

found that Bifidobacterium longum and Faecalibacterium prausnitzii were among the most

age-discriminatory taxa in healthy infants and children in these countries. Both these species

were identified in cases and controls in our study. B. longum was enriched in controls com-

pared to cases, but there was no difference in the relative abundance of F. prausnitzii between

children in each group. The relative abundance of B. longum decreased (Table 4), whereas that

of F. prausnitzii increased with increasing age in all children (RR = 1.63E-03 UCI = 2.90E-03,

LCI = 3.55E-04, P = 0.0113, see footnote to Table 2 for explanation).

Taxa enriched in stunted (case) children included inflammogenic genera such as Desulfovi-

brio which are enriched in patients with inflammatory bowel disease [56] as well as the Desul-

fovibrionaceae family which contains the sulfite-reducing pathobiont, Bilophila wadsworthia

that is associated with the microbiota of children with Kwashiorkor [8] and with a pro-inflam-

matory TH 1 immune response and colitis in IL-10-deficient mice [57]. The microbiota of

stunted children was also enriched in the Campylobacteriales order, which contain the entero-

pathogenic Campylobacter spp. [58] and in the Catenibacterium genus which belongs to the

Erysipelotrichaceae family, which we [59] and others [60] have previously shown to be

enriched in the microbiota of patients with chronic HIV infection.

Table 4. Age-related effect on the relative abundance of differentially abundant taxa*.

All 3 RR Months UCI LCI P

s_Bifidobacterium longum (A) -1.96E-02 -8.14E-03 -3.10E-02 0.0007

s_Bifidobacterium pseudolongum (A) -2.01E-04 -3.58E-05 -3.67E-04 0.0161

o_I025, f_Rs_045 (TM7) 1.49E-03 3.02E-03 -3.99E-05 0.0538

g_Catenibacterium (F) 2.30E-03 4.62E-03 -3.07E-05 0.0507

f_Clostridiaceae (F) 4.99E-03 8.78E-03 1.19E-03 0.0093

Controls

s_Bifidobacterium longum (A) -1.96E-02 -8.47E-03 -3.07E-02 0.0005

s_Bifidobacterium pseudolongum (A) -2.01E-04 -2.62E-05 -3.76E-04 0.0228

g_Eubacterium, s_Eubacterium biforme (F) 2.32E-03 4.65E-03 -2.02E-05 0.0497

Cases

s_Bifidobacterium longum (A) -1.94E-02 -7.15E-03 -3.16E-02 0.0017

s_Bifidobacterium pseudolongum (A) -2.02E-04 -4.47E-05 -3.60E-04 0.0110

g_Eubacterium, s_Eubacterium biforme (F) 5.56E-03 9.45E-03 1.66E-03 0.0047

g_Catenibacterium (F) 2.53E-03 4.55E-03 5.10E-04 0.0131

f_Clostridiaceae (F) 3.09E-03 5.61E-03 5.75E-04 0.0150

*identified by LEfSe at all time points combined. Analyzed using a linear mixed effect model adjusted for birth weight and gender. Please see footnote to

Table 2 for explanation of results. Taxa whose relative abundance decreased over time are indicated with a negative sign. RR, relative risk, UCI, upper

confidence interval, LCI, lower confidence interval. p, phylum; o, order, c, class, f, family, g, genus, s, species; Phyla to which specific taxa belong are

indicated in brackets; A, Actinobateria, F, Firmicutes. Statistically significant P values (P <0.05) are in bold type and those approaching statistical

significance are in italics.

doi:10.1371/journal.pone.0155405.t004
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Gough et al performed a secondary analysis [11] of previously published data on the gut

microbiome in children with SAM fromMalawi [8] and Bangladesh [10]. Whereas our study

compared the gut microbiota of stunted (cases) to non-stunted (controls) children, Gough et al

compared severely stunted (HAZ� − 3SD, cases) to stunted (HAZ> − 3SD but� − 2SD, con-

trols) children. Although, the most abundant phyla and genera in all three countries were simi-

lar, there were differences in the relative abundance of specific taxa between stunted and non-

stunted children in India and between stunted and severely stunted children in Malawi and

Bangladesh. For example, in the Malawi cohort, the relative abundance of Prevotella, Bacter-

oides, Eubacterium and Blautia was decreased in severely stunted, vs. stunted children whereas

in the Bangladesh cohort, Lactobacillus, Olsenella, Dorea and Bautia were decreased in severely

stunted, vs. stunted children.

More recently, Blanton et al showed that there is a causal relationship between immaturity

of the gut microbiota and stunting and underweight [9] in children in the Malawi study [10] as

there was with severe acute malnutrition in the Bangladesh study [50]. Secondary analysis of

the gut microbiota of stunted children in Malawi and Bangladesh by Gough et al indicated that

an increase in the relative abundance of Acidaminococcus was associated with lower future lin-

ear growth [11]. The study by Blanton et al found that Ruminococcus gnavus and Clostridium

symbiosum from the microbiota of healthy children in Malawi promoted growth in mice trans-

planted with microbiota from undernourished children [9]. Our study was not designed to

answer the same questions as in these studies. However, although Ruminococcus gnavus was

present in both cases and controls, we were not able to find a differential abundance of this spe-

cies between stunted and non-stunted children. Acidaminococcus was present only in the

cases, but not in the controls and Clostridium symbiosum was not identified in either cases or

controls, suggesting that there may be regional differences in the prevalence or abundance of

these taxa.

The strengths of our pilot study are 1) the longitudinal design which enabled us to deter-

mine the effect of increasing age on the composition and diversity of the gut microbiota and to

combine data from different ages to identify differentially abundant taxa between cases and

controls 2) the conduct of the study in a well-defined community where there are no major dif-

ferences in socioeconomic status, environmental factors such as water source or diet. The main

weakness is the small sample size, which, although similar to the sample sizes (ranging from 6

to 10 in cases and controls) in the study by Gough et al [11], did not allow us to account for

confounding factors such as antibiotic use, which occurred in both cases and controls. Never-

theless, we found significant differences in the gut microbiota of stunted compared to non-

stunted children. Larger, longitudinal studies including metagenomic and metabolomic

approaches to determine the compositional and functional maturation of the microbiome in

children in this or other birth cohorts as well as animal studies are needed to design targeted

interventions to prevent or treat this form of malnutrition.

Supporting Information

S1 Fig. Heatmap of stunting, underweight, wasting, and episodes of diarrhea and antibiotic

use in cases and controls.N, no; Y, yes.

(TIF)

S2 Fig. Increase in Phylogenetic Diversity (PD) index with increasing age in individual case

and control children in relation to age of weaning, diarrheal episodes and antibiotic use.

Color code: dark green circles = PD of controls at each time point; red circles = PD of cases at

each time point. Light green squares = age at weaning; blue triangles = diarrheal episodes that
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