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Ion acoustic waves are found to be susceptible to at least two distinct decay processes. Which
process dominates depends on parameters. In the cases examined, the decay channel where daughter
modes propagate parallel to the mother mode is found to dominate at larger amplitudes, while the
decay channel where the daughter modes propagate at angles to the mother mode dominates at
smaller amplitudes. Both decay processes may occur simultaneously and with onset thresholds
below those suggested by fluid theory, resulting in the eventual multi-dimensional collapse of the
mother mode to a turbulent state.

Ion acoustic waves (IAWs) in plasma are susceptible
to decay processes. With weak or absent damping[1],
an IAW can decay to daughter IAWs. Using simulation
techniques novel in the study of IAWs, we find IAWs are
unstable via at least two distinct decay mechanisms, with
a threshold for instability far below fluid theory and a de-
cay mode growth rate significantly faster than fluid the-
ory. Which decay process dominates in the linear phase
of instability is dependent on parameters. We find that
other properties of IAW decay, such as the direction of
propagation of the dominant decay modes, do not con-
form to existing theory.

IAWs may be excited by a variety of mechanisms un-
der controlled laboratory experiments and during iner-
tial confinement fusion (ICF) experiments. In typical
ICF designs, laser light must propagate through high-
gain plasma and overlap with multiple crossing laser
beams. Understanding the onset and saturation of stim-
ulated Brillouin scattering (SBS) and crossed-beam en-
ergy transfer[2, 3] mediated by IAWs is vital to designing
successful experiments and avoiding optics damage[4, 5].
Ongoing efforts to model laser-plasma interaction in ICF
experiments[6] with linear plasma wave descriptions re-
quire clamps on IAW amplitudes, suggesting IAW nonlin-
earity. Experimentally, IAW decay has been correlated
with SBS saturation[7] and off-axis decay modes have
been observed[8].

In the following, we demonstrate for the first time the
decay of IAWs to daughter modes via multiple distinct
channels using a fully-kinetic numerical treatment. Such
a treatment is necessary to describe correctly the im-
pact of particle trapping on the evolution of the IAWs,
including nonlinear wave couplings, dampings, and fre-
quencies. Our collisionless and noiseless (to machine
precision) Vlasov simulations are 2D+2V (two configura-
tion space + two velocity space dimensions). The results
obtained reveal a picture of IAW decay that is quali-
tatively different from previous 2D numerical[9–13] and

theoretical[12–14] treatments where the electrons were
not treated as kinetic, reveal decay processes not cap-
tured by fully kinetic 1D simulations[15–18], and allow
measurement of linear growth rates not possible in pre-
vious fully kinetic 2D/3D simulations[19] due to discrete
particle noise.

Our results show two clearly distinct IAW decay chan-
nels, with daughter waves characterized by differing wave
numbers k = (k‖, k⊥), where subscripts indicated orien-
tation relative to the mother wave: i) Daughter waves
with k⊥ = 0 and a growth rate that peaks at k‖ = k1/2,
where k(1,0) = (k1, 0) is the wave number of the mother
wave. This resonant three-wave process is known as two-
ion wave decay (TID)[20]. ii) Daughter waves with a
growth rate that peaks at |k⊥| > 0 and k‖ = k1, which
we refer to here as off-axis instability (OAI). In the fol-
lowing, modes are distinguished by a subscript l (not
necessary an integer) that indicates a quantity relative
to the mother mode, e.g., kl = lk1 and k(l,m) = (kl, km).

This Letter is organized as follows: First, we briefly
describe our numerical method. Next, we use a single
case to illustrate the various processes taking place dur-
ing IAW decay. Afterwards, the scaling of the decay pro-
cesses are discussed.

In order to study IAW decay, we use the Vlasov code
LOKI[21–23], which employs 4th-order-accurate, con-
servative, finite difference algorithms in 2D+2V space,
with variables time t, space r = (x, y), and velocity
v = (vx, vy). The plasma is periodic in both spatial
dimensions (directions x̂ and ŷ). Both electrons (e) and
ions (i) are described using continuum representations
of their respective distribution functions fj = fj(t, r,v)
where j = e, i. fj is initialized as a spatially homogeneous
2D Maxwellian, fj0 = fj0(v) = [1/(2πv2tj)] exp[−v2/2],
with initial temperature Tj and thermal velocity vtj =√
Tj/mj , where mj is the mass of species j. The meshes

are uniform, with spacings for each species no coarser
than ∆x = 0.44λDe , ∆y = 3.1λDe , ∆vx = 0.21vtj ,
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∆vy = 0.25vtj , while the time step ∆t of the ex-
plicit scheme satisfies a Courant-Friedrichs-Lewy condi-
tion (typically, ∆t ∼ 0.04/ωpe, where ωpe is the electron
plasma frequency). The velocity domain of fj is trun-
cated such that vx,y ∈ [−8vtj , 8vtj ], or, in the case of
the positive vx boundary for the ions, whatever is neces-
sary to comfortably contain the phase velocity plus the
ion trapping half-width (up to ∼20vti). A characteristic
velocity boundary condition is applied[22]. The compu-
tational burden of the simulations presented here is sig-
nificant: owing to the 4D phase space and the need to
resolve electron kinetic physics over a timescale dictated
by the ions, our largest simulations shown here required
∼1×109 mesh points and ∼2×106 time steps (equivalent
to a duration ∼105/ωpe). Convergence of our numerical
results was checked by various numerical resolution stud-
ies and further by increasing the order of the numerical
scheme from 4 to 6.

We present first a single illustrative example of an
IAW through excitation, BGK-like[24] propagation, and
then decay into a turbulent spectrum of daughter modes
through multiple channels. The minimum set of dimen-
sionless parameters needed to describe linear IAWs is
ZTe/Ti, Zme/mi, and kλDe , where λDe is the electron
Debye length. For numerical efficiency, the plasma is cho-
sen here to be fully ionized hydrogen (charge Z = 1). We
use a physical mass ratio such that Zmi/me = 1836, and
here select ZTe/Ti = 8 and k1λDe = 0.4 (effective param-
eters typical of those in, e.g., ICF experiments). A plane
wave with frequency ω ≈ ωL

1 = 0.469ωpi and wave num-
ber k = (k1, 0) is excited parallel to x̂ in a system with
length Lx = 8λ1 ≈ 126λDe by a spatially and temporally
sinusoidal driver resonant with the linear mother IAW,
where the wave length λ is given by λ = 2π/k. ωpi is the
ion plasma frequency and the superscript L denotes a lin-
ear mode frequency; NL (used later) denotes the actual
(amplitude-dependent) nonlinear mode frequency. The
system is chosen to be of width Ly = 38.4λ1 ≈ 600λDe.

The electrostatic energy UES of the system increases
while the wave is driven, as shown in Fig. 1(a); the driver
field ED is applied to the electrons and ramped up to
eλDeED/Te = 0.0175 and down to zero across the gray
region. After the driver is switched off at ωpit ≈ 200,
UES is nearly constant apart from fast-timescale oscilla-
tions due to trapped ions exchanging energy with the
wave. The wave continues in a BGK-like state until
ωpit ∼ 1.35 × 103, at which point UES crashes and does
not recover. Snapshots of the electric potential energy Φ
are shown in Figs. 1(b-e). After the driver is switched off
but before the crash in UES , the envelope amplitude of
Φ is |eφ/Te| ∼ 0.15.

In Fig. 1(b), the wave is still in an approximately plane
λ1-periodic state, although multiple nonlinear effects are
present. Particle trapping (both electrons and ions) re-
sults in a modified (qualitatively flattened) distribution
function in the region of velocity space resonant with

v1 = ω1/k1 (this resonance half-width is given analyti-
cally by vtr,j/vtj = 2

√
Zjeφ/Tj). This modification re-

sults in a nonlinear frequency shift away from ωL
1 that is

negative in this case[25–27] (quantified later), reduced or
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FIG. 1. ZTe/Ti = 8, kλDe = 0.4, Zme/mi = 1/1836 (H
plasma). (a) Evolution of the electrostatic (UES), electron
kinetic (Ke) and ion kinetic (Ki) energies. The driven (un-
driven) period is colored gray (white). (b-e) Snapshots of
the IAW potential Φ before, during, and after the crash in
electrostatic energy. The half-harmonic (λ = 2λ1) is the
dominant mode during the crash. The distribution func-
tions fe,i in (f-k) are snapshots shown as deviations from
Maxwellian fM

e,i, taken before (f,h,j) and after (g,i,k) the crash
in UES at times indicated by the leftmost and rightmost red
dashed lines in (a), respectively. Shown are: (f,g) ∆f̃e =

(vte/ne0)
∫

(〈fe〉y − fe0) dvy; (h,i) ∆f̃i = (vti/ni0)
∫

(〈fi〉y −
fi0) dvy; and (j,k) ∆f̃i = (v2ti/ni0)(〈fi〉x,y − fi0). 〈. . . 〉a in-
dicates an averaging over the dimension(s) a. White dashed
lines in (f-k) indicate the measured nonlinear phase velocity
v1 = ω1/k1 of the fundamental mode, while black dashed
lines show analytic estimates of the species trapping widths,
v1 ± vtr,j .
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completely eliminated Landau damping[1], and harmonic
generation (wave steepening) producing l = 2, 3, . . .
modes larger than predicted by fluid theory[17, 27], which
also contribute to the nonlinear frequency.

In Fig. 1(c), the decay modes have grown to the point
that the periodicity of the wave has changed from λ1
to ∼λ1/2: the so-called half-harmonic [l = 1/2, k =
(k1/2, 0)] of the l = 1 mode is briefly dominant, hav-
ing grown faster than all other decay modes (discussed
quantitatively later). Despite there still being a domi-
nant IAW mode, UES has already begun to decrease at
this point, which we attribute to wave-particle effects,
such as the loss of previously trapped particles from the
wave and the work done by the wave as the distribution
functions respond to the changing wave potential. Ac-
counting for the k-dependent sloshing energy of the elec-
trons and ions as the spectrum evolves does not explain
the loss of UES (see, e.g., Refs. 14, 16, or 18).

In Figs. 1(d) and 1(e), the IAW mode spectrum be-
comes increasingly turbulent, and modes with |k⊥| > 0
are significant. The resulting transverse modulation
of the potential gives rise to wave front bowing, the
negative nonlinear frequency shift causing a retarda-
tion of higher-amplitude phase fronts, and perhaps self-
focusing[19, 22, 28]. UES tends to zero, similar to the
behavior seen in 1D systems[17], with dwindling soliton-
like localized wave packets.

The oscillations in electrostatic energy UES reflect an
exchange primarily with trapped particles; the resultant
oscillation in electron and ion kinetic energies, Ke and
Ki, is shown in Fig. 1(a), as well as the total energy (qui-
escent kinetic energies have been subtracted). After the
onset of turbulence, electrostatic energy is lost primarily
to the ions. The distribution functions are altered signif-
icantly by the transition to a turbulent state. The loss of
periodicity in fe and fi is readily apparent in Figs. 1(f-i),
where snapshots of fj are taken pre- and post-turbulence
at the times indicated in Figs. 1(a) (leftmost and right-
most red vertical dashed lines, respectively). Particles
are released from λ1-periodic orbits along vx [the sepa-
ratrix between passing and trapped trajectories is evi-
dent in Figs. 1(f) and 1(h)] and the distribution becomes
washed-out after the onset of turbulence. The growth of
OAI modes also acts to smear fj along vy: fi averaged
over space is shown in Figs. 1(j) and 1(k) at the same
pre- and post-turbulent times, exhibiting a clear trans-
verse acceleration of trapped ions.

The evolution of the Fourier modes corresponding to
the mother and fastest-growing daughter modes driven
by TID and OAI are shown in Fig. 2(a) for the case
shown in Fig. 1. The linear decay mode growth rates
γ(kx, ky) [measured by taking exponential fits, as in the
black dashed line in Fig. 2(a)] are shown in Fig. 2(b)
and accompanying real frequencies in Fig. 2(c). We
observe two distinct instabilities of the initially near-
monochromatic (l = 1 mode) IAW: a purely longitudinal

instability known as TID[20] for which γ = γ(kx, 0), and
transverse modulational-type instability referred to here
as OAI where γ = γ(kx, |ky| > 0). A spatially 1D system
that permits spatial variation along only the direction of
propagation of the mother wave recovers the same lin-
ear TID growth rate as the 2D system shown here in
Fig. 2(d), but does not permit OAI (this was confirmed
by comparing 1D and 2D simulations). As in related
1D studies[17, 29], Bloch-Floquet type eigenmodes are
present [i.e., γ(kx, 0) is symmetric about kn over the in-
terval ([n− 1/2]k1, [n+ 1/2]k1), where n = 1, 2, . . . , with
period k1], conforming to the linear stability analysis of
periodic waves by Goldman[30].

The hallmark of TID is a decay mode growth rate that
peaks at the half-harmonic. This decay channel is dom-
inant in this example of IAW decay, and is responsible
for the transition from a system dominated by the l = 1
mode shown in Fig. 1(b) to a system dominated by the
l = 1/2 mode shown in Fig. 1(c). The growth rate in
simulations exceeds estimates from fluid theory[20] by a
factor of ∼3 in this case[17].

While slower in this case than TID, the OAI growth
rate is still significant and peaks at kxλDe = k1λDe = 0.4
and kyλDe ∼ 0.1, although varying weakly with kx. Sim-
ilarly to TID, the OAI occurring for modes with growth
rates γ(k1, ky) measured here and shown in Fig. 2(e) may
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FIG. 2. Fourier space analysis of the case presented in Fig. 1.
(a) Fourier mode evolution of the mother and fastest-growing
daughter modes corresponding to TID and OAI. (b) Linear
(pre-turbulence) growth rates γ = γ(kx, ky). (c) Mode fre-
quencies ω = ω(kx, ky). (d) TID growth rate, γ = γ(kx, 0).
(e) Slices showing γ for various fixed kx. Arrows indicate
identical modes in (d) and (e).
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be recovered in a simpler system that is large in the
transverse direction and only a single wavelength long
(Lx = λ1). Such a system does not support TID. How-
ever, in the systems considered here that are both large in
the transverse direction and many wave lengths long, we
observe the growth of modes with k = (kx 6= k1, |ky| > 0)
that can not be observed in simplified systems.

All decay modes in the linear phase of growth have
frequencies ω ≈ (kx/k1)ω1, as seen in Fig. 2(c). Decay
mode frequencies appear to be independent of ky. The
mode frequency was calculated by taking the time deriva-
tive of the phase of the complex mode amplitude after a
2D Fourier transform in space, here averaged over the in-
terval ωpit = [1× 103, 1.3× 103]; this method is more ap-
proximate than the Hilbert transform method[27] used to
extract ωNL

1 , the nonlinear mother mode frequency, but
adequate to determine the overall behavior of ω(kx, ky).

The scaling of γ with |φ1|, the potential of the mode
k = (k1, 0), is shown in Fig. 3(a), generated by exciting
mother IAWs of various amplitudes and measuring γ in
each case. For these parameters (ZTe/Ti = 8, Zme/mi =
1/1836, k1λDe = 0.4), TID (vertical cross points) is the
dominant decay mechanism for |eφ1/Te| & 0.025, as is
the case in Fig. 1 where |eφ1/Te| ≈ 0.15. For OAI, γ is
consistently greatest at kx = k1 (diamond points), and
scales similarly with |φ1| for all kx. At |eφ1/Te| ≈ 0.025,
γ is similar across all decay channels. For |eφ1/Te| .
0.025, TID is slower than OAI and at |eφ1/Te| = 0.011
TID is below threshold and does not occur.

The TID daughter modes share identical phase veloc-
ities to the mother mode due to the one-dimensional na-
ture of the three-wave decay, matching conditions for
frequency and wave number, and the acoustic disper-
sion of IAWs. The trapping-induced flattening of the
distribution function caused by the mother mode there-
fore suppresses Landau damping of the daughter modes
also. Neglecting trapping, a threshold for TID based on
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FIG. 3. Analysis of cases with the same parameters as
Fig. 1 but varying mother wave amplitudes (horizontal axis).
(a) Scaling of γ with |φ1| for TID and OAI. The gray hori-
zontal line indicates the linear Landau damping rate of the
l = 1/2 mode, ν1/2. (b) The scaling of ky for the fastest grow-
ing mode for OAI with |φ1| (left vertical axis) and the scaling
of the nonlinear frequency shift ∆ωNL

1 = ωNL
1 −ωL

1 with |φ1|
(right vertical axis).

a linear Landau damping rate of the l = 1/2 mode[20]
ν1/2 = 0.043ωL

1/2 suggests a TID amplitude threshold φtr1
of |eφtr1 /Te| ≈ 0.09. A threshold arising from the non-
linear scaling of ω with k from the fluid theory of IAWs
suggests[17] |eφtr1 /Te| ≈ 0.04. Such descriptions of TID
are clearly insufficient, as observed previously[17]. We
have not observed a threshold for OAI at kx = k1.

In Fig. 3(b), the scaling of ky with |φ1| for the fastest-
growing OAI mode, k = k(1,max) = (k1, k

max
y ), is shown

(left vertical axis). The sidebands of OAI move further in
|ky| from the mother IAW as |φ1| is increased. The scal-
ing of the nonlinear frequency shift ∆ωNL

1 = ωNL
1 − ωL

1

with |φ1| is also shown in Fig. 3(b) (right vertical axis). In
this case, the opposing electron and ion contributions to
the trapping-induced nonlinear frequency shift expected
from nonlinear analysis[27] almost cancel, and indeed the
overall shift is small until |eφ1/Te| & 0.1.

Previous attempts[12–14] at deriving a multi-
dimensional theory of IAW decay have not included
explicit electron kinetic effects, although Ref. [14]
permitted an arbitrary frequency shift that could be
taken to include an electron contribution. None of
these substantial works appears to capture the decay
properties observed here, such as the consistent presence
of TID and OAI, and the relatively weak dependence of
the growth rate of OAI modes on kx/k1. One can write
down a Schrödinger-type equation for IAWs describing
transverse instability similar to that studied in Ref. 31
for longitudinal instability (see, e.g., Ref. 32). Such a
model is based on the total frequency shift of the mother
mode, ∆ωNL

1 . With IAWs, it is possible to measure
∆ωNL

1 ' 0 for finite |φ1| due to the opposite signs of the
contributions from electrons and ions. Indeed, this is the
case in Fig 3 for |eφ1/Te| . 0.025, and yet a transverse
instability is observed.

Perhaps a more likely candidate for an off-axis instabil-
ity mechanism is an ion-driven trapped particle instabil-
ity (TPI) akin to that observed in the longitudinal direc-
tion unambiguously in electron plasma waves (EPWs)
in 1D[29, 33] (we emphasize ion-driven, since the elec-
tron bounce frequency is very large compared to the IAW
frequency, preventing resonance), which may also drive
a transverse filamentation-like TPI in EPWs[32]. Our
attempts to derive a TPI growth rate for IAWs analyti-
cally have not yielded results that agree with simulations.
However, this and similar models of trapped particle in-
stabilities typically assume i) that the initial state of the
IAW can be considered mono-chromatic, while in actu-
ality |φ2|/|φ1| ∼ 0.35 for |eφ/Te| = 0.15, ii) that the
trapped particles reside at the bottom of the potential
well of the wave and have a single frequency, which for
IAWs tends to be a rather poor approximation[27], and
iii) that all trapping effects can be described perturba-
tively, which for the range of wave amplitudes studied
here, may not be the case.

In conclusion, we find ion acoustic waves exhibit at
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least two distinct and competing decay processes. While
a single decay process might lead to the initial break-up
of the wave either transversely or longitudinally, once a
nonlinear state is reached, breakup in both directions is
typical. Which decay process dominates initially is de-
pendent on parameters. Thresholds for instability do not
agree with estimates based on linear (quiescent plasma)
damping rates, and instability growth rates do not con-
form to existing theories.
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