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IMPORTANCE Plasma phosphorylated tau at threonine 181 (p-tau181) has been proposed as an

easily accessible biomarker for the detection of Alzheimer disease (AD) pathology, but its

ability to monitor disease progression in AD remains unclear.

OBJECTIVE To study the potential of longitudinal plasma p-tau181 measures for assessing

neurodegeneration progression and cognitive decline in AD in comparison to plasma

neurofilament light chain (NfL), a disease-nonspecific marker of neuronal injury.

DESIGN, SETTING, AND PARTICIPANTS This longitudinal cohort study included data from the

Alzheimer’s Disease Neuroimaging Initiative from February 1, 2007, to June 6, 2016.

Follow-up blood sampling was performed for up to 8 years. Plasma p-tau181 measurements

were performed in 2020. This was a multicentric observational study of 1113 participants,

including cognitively unimpaired participants as well as patients with cognitive impairment

(mild cognitive impairment and AD dementia). Participants were eligible for inclusion if they

had available plasma p-tau181 and NfLmeasurements and at least 1 fluorine-18–labeled

fluorodeoxyglucose (FDG) positron emission tomography (PET) or structural magnetic

resonance imaging scan performed at the same study visit. Exclusion criteria included any

significant neurologic disorder other than suspected AD; presence of infection, infarction, or

multiple lacunes as detected bymagnetic resonance imaging; and any significant systemic

condition that could lead to difficulty complying with the protocol.

EXPOSURES Plasma p-tau181 and NfLmeasured with single-molecule array technology.

MAIN OUTCOMES ANDMEASURES Longitudinal imagingmarkers of neurodegeneration (FDG

PET and structural magnetic resonance imaging) and cognitive test scores (Preclinical

Alzheimer Cognitive Composite and Alzheimer Disease Assessment Scale–Cognitive Subscale

with 13 tasks). Data were analyzed from June 20 to August 15, 2020.

RESULTS Of the 1113 participants (mean [SD] age, 74.0 [7.6] years; 600men [53.9%]; 992

non-HispanicWhite participants [89.1%]), a total of 378 individuals (34.0%)were cognitively

unimpaired (CU) and 735 participants (66.0%)were cognitively impaired (CImp). Of the CImp

group, 537 (73.1%) hadmild cognitive impairment, and 198 (26.9%) hadADdementia.

Longitudinal changes of plasmap-tau181were associatedwith cognitive decline (CU: r = –0.24,

P < .001; CImp: r = 0.34, P < .001) and a prospective decrease in glucosemetabolism (CU:

r = –0.05, P = .48; CImp: r = –0.27, P < .001) and graymatter volume (CU: r = –0.19, P < .001;

CImp: r = –0.31, P < .001) in highly AD-characteristic brain regions. These associationswere

restricted to amyloid-β–positive individuals. Both plasmap-tau181 andNfLwere independently

associatedwith cognition and neurodegeneration in brain regions typically affected in AD.

However, NfLwas also associatedwith neurodegeneration in brain regions exceeding this

AD-typical spatial pattern in amyloid-β–negative participants.Mediation analyses found that

approximately 25% to45%of plasmap-tau181 outcomes on cognitionmeasuresweremediated

by the neuroimaging-derivedmarkers of neurodegeneration, suggesting links between plasma

p-tau181 and cognition independent of thesemeasures.

CONCLUSIONS AND RELEVANCE Study findings suggest that plasmap-tau181was an accessible

and scalablemarker for predicting andmonitoring neurodegeneration and cognitive decline and

was, unlike plasmaNfL, AD specific. The study findings suggest implications for the use of plasma

biomarkers asmeasures tomonitor ADprogression in clinical practice and treatment trials.
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A
lzheimer disease (AD) is a neurodegenerative disor-

der characterized by the accumulation of amyloid-β

(Aβ) plaques andneurofibrillary tangles of hyperphos-

phorylated tau in the brain.1 These neuropathologic changes

are believed to take part in a cascade of events that result in a

characteristicneurodegenerationpattern followedbyprogres-

sive cognitive impairment.2 Tracking neurodegenerative

changes in vivo is important for monitoring AD progression.

Current positron emission tomography (PET) and cerebro-

spinal fluid biomarkers enable the detection of Aβ and tau

pathology,3-6but thegeneralizeduseof thesebiomarkers is cur-

rently limited by their costs, availability, and invasiveness.

Recent evidence suggests that blood-based biomarkers

might be useful to detect AD pathology,7-19 potentially pro-

moting the widespread use of biomarkers in the diagnostic

workup of AD and clinical trial screening. Among candidate

disease-specific biomarkers in blood, plasma phosphory-

lated tau at threonine 181 (p-tau181) has shown promise as a

marker of disease status.7,9-12,19 However, the potential of

plasma p-tau181 as a marker of disease progression remains

largely unexplored. Specifically, it remains unclear (1) how

baseline and longitudinal plasma p-tau181 is associated with

progressive AD-specific neurodegeneration; (2) whether

plasmap-tau181provides complementary information tonon–

disease-specificplasmabiomarkersofneurodegeneration,such

as neurofilament light chain (NfL)20-22; and (3) how imaging

neurodegeneration markers mediate the association be-

tween plasma p-tau181 and cognitive decline.

In this study,wehypothesized that bothbaseline and lon-

gitudinal plasma p-tau181 levels associate with progressive

AD-related neurodegeneration,whichmaymediate the asso-

ciations between p-tau181 and cognitive decline. To test this

hypothesis, we investigated longitudinal associations be-

tweenplasmap-tau181 andestablished imagingmarkers of re-

gional neurodegeneration on fluorine 18–labeled [18F]fluoro-

deoxyglucose (FDG) PET and structural magnetic resonance

imaging (MRI), as well as relationships with cognitive perfor-

mance, in more than 1000 individuals from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). In addition, we ex-

plored whether plasma p-tau181 provides complementary

information to plasma NfL in forecasting and tracking

AD-related neurodegeneration and cognitive decline.

Methods

Study Design

Data used in this cohort study were obtained from the ADNI

database23 from February 1, 2007, to June 6, 2016 (eMethods

in Supplement 1). In this study,we includedall cognitivelyun-

impaired (CU) and cognitively impaired (CImp) participants,

including those with mild cognitive impairment and AD de-

mentia, from the ADNI GrandOpportunity/ADNI2 studywith

available plasmap-tau181 andNfLdata and at least 1 FDGPET

scan or structural T1 MRI performed at the same study visit

(n = 1113). In addition, 1048 participants of the study sample

(94%)alsounderwentPET imagingwith theAβ-sensitive tracer

[18F]florbetapir. Demographic characteristics of studypartici-

pants are presented in the Table. Further details of baseline

and follow-up assessments are provided in the eMethods in

Supplement 1. Inclusioncriteria for thedifferentdiagnostic cat-

egories in the ADNI cohort have been described previously.24

All participants providedwritten informed consent approved

by the institutional review board of each ADNI participating

institution.This study followed theStrengthening theReport-

ing of Observational Studies in Epidemiology (STROBE)

reporting guideline.

Blood Biomarkers

Blood sampling and processing were carried out in accor-

dance with the ADNI protocol25 and analyzed at the Clinical

Neurochemistry Laboratory, University of Gothenburg in

Mölndal, Sweden. Plasma p-tau181 concentration was mea-

sured using a novel assay developed in-house on the single-

molecule array HD-X (Simoa; Quanterix Corporation) instru-

ment, asdescribedpreviously.11PlasmaNfLconcentrationwas

alsomeasuredusingSimoa,aspreviouslydescribed.26Allblood

samples were analyzed in a single batch for each measure.27

We identified 4 outliers for plasma p-tau181 values and 1 for

NfL (0.4%), which were excluded from subsequent analyses

(eFigure 1 in Supplement 1).

Neuroimaging

Acquisitionprotocols andpreprocessing steps inADNI forFDG

PET and structuralMRI are described in detail elsewhere28,29

and have been summarized in the eMethods in Supple-

ment 1. Our in-house processing pipeline for FDG PET and

structural MRI, as well as details of the methods for voxel-

wise and region-of-interest (ROI) analyses, are alsodetailed in

the eMethods in Supplement 1. With FDG PET, we measured

AD-typical glucosehypometabolismas the average standard-

ized uptake value ratio (SUVR), using the pons as the refer-

ence region,30 in a previously defined Meta-ROI in Montreal

Neurological Institutespace31 that recapitulates regionsof typi-

cal hypometabolism (angular gyrus, posterior cingulate, and

inferior temporal gyrus) in AD. Structural T1-weighted MRI

Key Points

Question What is the potential of blood-based biomarkers for

predicting andmonitoring the progression of Alzheimer disease

neurodegeneration?

Findings In this cohort study that included 1113 participants from

themulticentric Alzheimer’s Disease Neuroimaging Initiative

study, baseline and longitudinal increases of tau phosphorylated at

threonine 181 (p-tau181) in blood plasma were associated with

progressive, longitudinal neurodegeneration in brain regions

characteristic for Alzheimer disease, as well as with cognitive

decline, only among participants with elevated brain amyloid-β.

Neurofilament light chain in plasma, however, was associated with

disease progression independent of amyloid-β and plasma

p-tau181.

Meaning These findings suggest that plasma p-tau181, alone or

combined with plasma neurofilament light chain, can be used as

an accessible, minimally invasive biomarker to track Alzheimer

disease progression.
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scans were used to measure gray matter volume of a previ-

ously defined AD-signature ROI composed of entorhinal, fu-

siform, inferior temporal, andmiddle temporal cortices.32We

alsoanalyzedgraymatter volume inahippocampusROI as an-

other commonly used structural MRI measure of AD-related

neurodegeneration33 (eTable in Supplement 1).

Cognitive Assessments

In CU individuals, global cognitive performance was as-

sessed using a cognitive composite measure specifically de-

signed for detecting early cognitive changes in clinical trials

involving CU individuals with evidence of AD pathology, the

Preclinical AlzheimerCognitiveComposite (PACC),34 adapted

for the available tests in ADNI.35 Lower PACC scores repre-

sent poorer cognitive performance. In CImp participants, the

AlzheimerDiseaseAssessment Scale–Cognitive Subscalewith

13 tasks (ADAS-Cog 13)36was used to assess cognitive impair-

mentseverity.HigherADAS-Cog13scores representpoorercog-

nitive performance.

Statistical Analysis

Individual rates of change in plasma biomarker levels as well

as in imaging measures (at the voxel and ROI levels) were es-

timated using linear mixed models with participant-specific

intercepts and slopes predicting biomarker levels over time.

Weinvestigatedtheassociationsbetween(1)baselineplasma

biomarker levels and longitudinal change in hypometabolism,

atrophy, and cognition and (2) longitudinal plasma biomarker

changesand longitudinalhypometabolism,atrophy,andcogni-

tivechange.Analysesoftheassociationsbetweenbaselineplasma

biomarkersandbaselineneurodegenerationareprovided in the

eAppendixandeFigures2, 3,4, 5,6, and7 inSupplement 1).For

eachanalysis, the following stepswere conducted: first,we fit-

ted linear regressions separately for CU and CImp individuals,

adjusted forageandsex (aswell as fieldstrengthandtotal intra-

cranial volume for atrophymeasures) using voxel or ROI-level

imaging-based neurodegeneration markers as the dependent

variableandplasmap-tau181andNfL, respectively, as the inde-

pendent variable. Second,we studied the independent contri-

butions of each plasma biomarker to hypometabolism or atro-

phyinthepreviouslydefinedAD-specificROIs.Forthis,weused

both plasma p-tau181 andNfL as independent variables in lin-

earmodels adjusted for thesamecovariatesasdescribedprevi-

ously, andwe compared the corresponding standardized β co-

efficientsbycomputing95%CIsderivedusinga2000-repetition

bootstrap procedure. Effect sizes were computed as partial

correlation coefficients (r). These analyseswere repeated sub-

stituting neurodegenerationmarkers as response variables by

cognitivemeasures andadjusted for age, sex, andyearsof edu-

cation.Additionally,weperformedmediationanalyses to inves-

tigatehowimagingneurodegenerationmarkers influenced the

associationbetweenplasmap-tau181andcognition.Finally,we

investigated howplasma biomarkers correlatedwith imaging-

basedneurodegenerationmarkersandcognitionamongpartici-

pants stratified by cognitive status (CU or CImp) and Aβ status

(positive,+ornegative,−) according toapreviouslydefinedcut

point of 1.11 [18F]florbetapir SUVR (using thewhole cerebellum

asreferenceregion) forADNI.37All statisticalanalyseswerecon-

ducted from June 20 to August 15, 2020, using MatLab 2018a

(TheMathWorks Inc). All testswere 2-sided. Significance level

wassetatP < .05.Nocorrections formultiplecomparisonswere

carriedoutexcept forvoxelwiseanalyses, followingrecommen-

dations fromthestatistical literature thatdiscourage theuseof

such procedures for hypothesis-driven studies with a limited

number of planned comparisons.38

Table. Cohort Characteristicsa

Characteristic

Cognitively
unimpaired
(n = 374)

Cognitively
impaired (n = 734)

Baseline characteristics

Age, mean (SD), y 74.8 (6.6) 73.6 (8)

Sex, men/women, No. 176/198 421/312

Race/ethnicity, non-Hispanic
White, No. (%)

323 (86) 664 (90)

APOE ε4 carriers, No. (%+b) 108 (29) 376 (51)

MCI/AD NA 536/198

Aβ-positive, No. (%) 113 (32)c 441 (65)d

Plasma p-tau181, median
(range), pg/mL

13.3 (0.4 to 72.3) 18.4 (1.2 to 69.6)

Plasma NfL, median (range),
pg/mL

33.3 (8.0 to 169.0) 37.9 (6.4 to 198.5)

Meta-ROI glucose metabolism,
FDG PET SUVR, mean (SD)

1.57 (0.14) 1.47 (0.18)

AD-signature ROI volume,
mean (SD), cm3

31.4 (3.2) 29.8 (4.2)

PACC, mean (SD) 0.0 (2.62) NA

ADAS-Cog 13, mean (SD) NA 19.0 (10.5)

Follow-up characteristics

Plasma p-tau181

Annual change, mean (SD),
pg/mL/y

0.34 (0.39) 0.49 (0.37)

Median follow-up, y 2.1 3.0

Plasma NfL

Annual change, mean (SD),
pg/mL/y

1.9 (1.8) 2.6 (2.5)

Median follow-up, y 2.1 3.0

Meta-ROI glucose metabolism

Annual change, mean (SD),
SUVR/y

−0.016 (0.009) −0.019 (0.014)

Median follow-up, y 2.0 2.0

AD-signature ROI volume

Annual change, mean (SD),
cm3/y

−0.12 (0.11) −0.19 (0.14)

Median follow-up, y 5.0 2.1

PACC

Annual change, mean (SD) −0.20 (0.26) NA

Median follow-up, y 6.0 NA

ADAS-Cog 13

Annual change, mean (SD) NA 1.9 (1.8)

Median follow-up, y NA 4.0

Abbreviations: Aβ, amyloid-β; AD, Alzheimer disease; ADAS-Cog 13, Alzheimer

Disease Assessment Scale–Cognitive Subscale with 13 tasks;

APOE, apolipoprotein E; FDG, fluorine 18–labeled fluorodeoxyglucose;

MCI, mild cognitive impairment; NA, not applicable; NfL, neurofilament light

chain; PACC, Preclinical Alzheimer Cognitive Composite; p-tau181,

phosphorylated tau at threonine 181; PET, positron emission tomography;

ROI, region of interest; SUVR, standardized uptake value ratio.

a The demographic characteristics of the outlier cases are not reported in this

table.

bThe%+ indicates the proportion of individuals who carry the APOE ε4 allele.

c Assessed in a subset of 348 participants.

dAssessed in a subset of 695 participants.
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Results

Baseline Plasma P-Tau181 Predicts Longitudinal

Neurodegeneration and Cognitive Decline

Of the 1113 participants (mean [SD] age, 74.0 [7.6] years; 600

men [53.9%]; and 992 non-Hispanic White participants

[89.1%]), a total of 378 individuals (34.0%) were CU and 735

participants (66.0%)wereCImp.Of theCImpgroup,537 (73.1%)

had mild cognitive impairment, and 198 (26.9%) had AD de-

mentia.Wefirst investigatedhowbaselineplasmap-tau181 lev-

els would predict future neurodegeneration progression.

Higher plasma p-tau181 levels were associated with faster

longitudinal progression of hypometabolism and atrophy

among CImp individuals in AD-vulnerable areas (FDG PET

SUVRchange, r = –0.28,P < .001; graymatter volumechange:

r = –0.28,P < .001) (Figure 1AandB). eFigure8 inSupplement 1

shows the typical spatial patterns of glucose hypometabo-

lism and atrophy in AD.Moreover, plasma p-tau181 was asso-

ciatedwith future atrophy in AD-vulnerable temporoparietal

regions among CU individuals (r = –0.11, P = .03) (Figure 1C).

This finding contrasts with the associations between plasma

NfLand regionalprogressiveatrophyobserved inCU individu-

als, which were mainly pronounced in frontal regions and

did not involve the temporal lobe (Figure 1C); eFigure 9 in

Supplement 1 shows the spatial overlap between plasma p-

tau181 andNfLassociationmaps.Noneof theplasmabiomark-

erswere significantly associatedwithdecreasing glucoseme-

tabolismin theCUgroup;however, therewasa reducedsample

size with available longitudinal FDG PET scans (approxi-

mately 50% of total patients). Although plasma p-tau181 and

NfL were positively associated (eFigure 10 in Supplement 1),

both plasma biomarkerswere independently associatedwith

progressive AD-typical neurodegeneration with comparable

effect sizes (eFigure 11 in Supplement 1); however, for atro-

phyprogression in theCImpgroup, plasmap-tau181hada sta-

tistically significantly stronger association than plasma NfL

(βp-tau181 – βNfL = –0.13; 95% CI, –0.27 to 0.00).

Baseline plasma p-tau181 levels were also associated with

prospectivecognitivedecline,both inCU(r = −0.12,P = .04)and

inCImp(r = 0.35,P < .001) individuals. In contrast, plasmaNfL

was only associated with cognitive decline among CImp indi-

viduals (CU:r = −0.06,P = .30;CImp:r = 0.26,P < .001). Incom-

binedmodels, both plasmamarkers were independently asso-

ciated with prospective cognitive decline in CImp individuals

(eFigure 12A in Supplement 1). Mediation analyses found that

25% to 45% of baseline plasma p-tau181 association with cog-

nitivedeclineweremediatedbybaseline imagingneurodegen-

erationmarkers (eFigure 12B in Supplement 1).

In Aβ-stratified analyses, plasma p-tau181was only associ-

ated with hypometabolism and atrophy in AD-typical regions

among Aβ+ CU and Aβ+ CImp participants (FDG PET SUVR

change:Aβ+CU,r = −0.31,P = .02;Aβ+CImp,r = −0.26,P < .001;

graymattervolumechange:Aβ+CU,r = −0.28,P = .004;andAβ+

CImp, r = −0.18, P < .001) (Figure 2 and eFigure 13 in Supple-

ment 1). Similarly, plasma p-tau181 was associated with cogni-

tivedecline inbothAβ+CUandAβ+CImpparticipants (Aβ+CU:

r = −0.33,P < .001;Aβ+CImp: r = 0.28,P < .001)butnot inAβ−

individuals. In contrast, plasma NfL was associated with pro-

gressiveatrophy in theAβ−groups,mainly involving thedorsal

frontal lobe regions less typically involved in AD (eFigure 14 in

Supplement 1). PlasmaNfLwas also associatedwith a decrease

in glucose metabolism and increase in atrophy in AD-

vulnerable regions inAβ+participants (FDGPETSUVRchange:

Aβ+CU, r = −0.24,P = .08; Aβ+CImp, r = −0.23,P = .002; gray

matter volume change: Aβ+ CU, r = −0.23, P = .02; Aβ+ CImp,

r = −0.13,P = .01) (eFigure15 inSupplement1). In linewiththese

results, plasma NfL was also associated with cognitive decline

inAβ−CImp(r = 0.23,P < .001)andAβ+CImp(r = 0.25,P < .001)

participants, but not in any of the CU groups.

Plasma P-Tau181 Changes Parallel Longitudinal

Neurodegeneration and Cognitive Decline

Wethen investigatedwhether longitudinal increasesofplasma

p-tau181 accompanied longitudinal neurodegeneration in

AD-typical regions. Plasma p-tau181 changes were associated

with adecrease in glucosemetabolismand an increase in atro-

phy among CImp participants, although significant associa-

tions with progressive neurodegeneration were also found in

CU individuals (FDG PET SUVR change: CImp, r = −0.27,

P < .001; gray matter volume change: CU, r = −0.19, P < .001;

CImp, r = −0.31, P < .001) (Figure 3), particularly with respect

toatrophyprogression.Thespatialassociationssuggestedagain

ahighcorrespondencewithAD-typicalneurodegenerationpat-

terns, although in the CU group, the pattern wasmore diffuse

and also involved frontal areas. Plasma NfL changes were also

significantly associated with progressive neurodegeneration

in AD-typical areas (FDG PET SUVR change: CU, r = −0.20,

P = .008;CImp, r = −0.27,P < .001;graymattervolumechange:

CU, r = −0.11, P = .05; CImp, r = −0.26, P < .001); however, the

spatial pattern also involved other frontoparietal regions less

characteristic ofAD-typical neurodegeneration (Figure 3Aand

B). eFigure 16 in Supplement 1 shows the spatial overlap be-

tweenplasmap-tau181andNfLassociationmaps. Inmultivari-

able analyses, changes of both plasma biomarkers were inde-

pendently associated with progression of imaging-derived

neurodegenerationmarkers (eFigure 17 in Supplement 1).

Similar to the associations with progressive neurodegen-

eration, longitudinal plasma p-tau181 changes were associ-

atedwithprospective cognitive decline in bothCU (r = −0.24,

P < .001) andCImp (r = 0.34,P < .001) individuals. PlasmaNfL

changes were also associated with cognitive decline in CU

(r = −0.12, P = .04) and CImp (r = 0.30, P < .001) individuals.

However, in a combined model with plasma p-tau181, the

association inCU individualswasno longer significant forNfL,

whereas inCImp, longitudinal changesof bothplasmamarkers

were independently associatedwith variations in cognitivede-

cline (CU: p-tau181, β = −0.23; 95% CI, −0.38 to −0.10; NfL,

β = −0.04;95%CI,−0.22 to0.12;CImp:p-tau181,β = 0.28;95%

CI, 0.17-0.39; NfL, β = 0.23; 95% CI, 0.10-0.38) (eFigure 18A in

Supplement1).Mediationanalyses foundthat25%to45%ofthe

plasma p-tau181 association with longitudinal cognition was

mediated by changes in imaging-derived neurodegeneration

markers (eFigure 18B in Supplement 1).

The results of analyses stratified by Aβ status suggest that

plasma p-tau181 changed in parallel with neurodegeneration
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progression only among Aβ+ participants and in a spatial pat-

tern that closely corresponds to AD-typical regional neurode-

generation, as evidenced by both voxelwise and ROI analyses

(FDGPETSUVRchange:Aβ+CImp,r = −0.27,P < .001;graymat-

ter volume change: Aβ+ CU, r = −0.25, P = .02; Aβ+ CImp,

r = −0.25,P < .001) (Figure4; eFigure19 inSupplement1). Simi-

larly, plasma p-tau181 changes accompanied cognitive decline

in Aβ+ participants (Aβ+ CU: r = −0.30, P = .003; Aβ+ CImp:

r = 0.31,P < .001)butnot inAβ−participants (Aβ−CU: r = −0.14,

P = .05; Aβ−CImp: r = −0.01,P = .92). By contrast, plasmaNfL

changes paralleled neurodegenerative changes also in Aβ− in-

dividuals,particularlywithrespecttoprogressiveatrophyacross

widespread cortical areas that also covered large parts of the

frontal lobe (eFigure 20 in Supplement 1). In ROI analyses,

plasmaNfL changeswere associatedwith atrophyprogression

inAD-vulnerableROIs forbothAβgroups,butassociationswith

Figure 1. Associations of Baseline Plasma Phosphorylated Tau at Threonine 181 (P-Tau181) and Neurofilament Light Chain (NfL)With Decreasing

GlucoseMetabolism and Increasing Atrophy
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Regression lines displayed in graphs were computed by setting covariates in the

linear model to average group levels (cognitively unimpaired [CU] or cognitively

impaired [CImp]) and categorical variables to the reference (female sex and, for

atrophymeasures, 3-T field strength). Age- and sex-adjusted associations of

baseline plasma p-tau181 and NfL with hypometabolism progression are shown

at the voxel (upper row) and Alzheimer disease (AD) meta–region of interest

(ROI) level (bottom row) in cognitively unimpaired (A) and cognitively impaired

(B) individuals. To account for the difference in sample sizes, results of

voxelwise analyses were thresholded on the voxel level at P < .01 (uncorrected)

for the CU group and P < .001 (uncorrected) for CImp. All maps were further

thresholded at the cluster level by restricting to clusters with a number of voxels

higher than the expected number of voxels as predicted using random field

theory. Age- and sex-adjusted associations of baseline plasma p-tau181 and NfL

with atrophy progression are shown at the voxel (upper row) and AD-signature

ROI level (bottom row) in cognitively unimpaired (C) and cognitively impaired

(D) individuals. Results of voxelwise analyses were thresholded at P < .01

(uncorrected) for the CU group and at P < .001 (uncorrected) for CImp. All maps

were further thresholded at P < .05 (familywise error corrected) at the cluster

level. The eTable in Supplement 1 shows ROI analyses using hippocampus

volume. FDG indicates fluorine 18–labeled fluorodeoxyglucose; PET, positron

emission tomography; and SUVR, standardized uptake value ratio.
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hypometabolismprogressionwereonlysignificant forAβ+par-

ticipants (graymattervolumechange:Aβ−CImp, r = −0.29,P <

.001;Aβ+CU, r = −0.25,P = .01;Aβ+CImp, r = −0.17,P = .002;

FDG PET SUVR change: Aβ+ CU, r = −0.42, P = .002; and Aβ+

CImp, r = −0.30,P < .001) (eFigures20and21 inSupplement 1).

Similarnonspecific resultswereobservedforcognitivechanges:

plasmaNfLchangeswereassociatedwithacognitivedecline in

CImpAβ− andAβ+participants (Aβ−CImp: r = 0.25,P < .001;

Aβ+CImp: r = 0.26,P < .001) butnot inCUAβ− (r = −0.13,P =

.06) or CUAβ+ (r = −0.11, P = .30) participants.

Discussion

In this cohort study, we investigated longitudinal associa-

tionsof p-tau181 levels in bloodwithmultimodal imagingbio-

markers of regional neurodegeneration and cognition in 1113

ADNI participants covering the entire AD spectrum. Further-

more, we compared this novel AD biomarker with a blood-

based biomarker of neuronal injury, plasma NfL, which is in-

creased in several neurodegenerative disorders and thus not

consideredspecific forAD.22Our findings suggest that (1) base-

lineplasmap-tau181 levelswere associatedwith cognitivede-

cline aswell aswith concurrent andprospective neurodegen-

eration in areas typically vulnerable in AD, as measured by

structural MRI and FDG PET; (2) longitudinal increments of

plasma p-tau181 accompanied cognitive decline and longitu-

dinal progression of neurodegeneration in the same AD-

vulnerable regions; (3) plasma p-tau181 and NfL were inde-

pendently associated with cognition and neurodegeneration

in AD-vulnerable areas; (4) plasma p-tau181 was specifically

associated with cognitive impairment and an AD-typical re-

gional neurodegeneration pattern among participants in the

AD continuum (Aβ+), whereas NfL was associated with cog-

nitive decline and neurodegeneration in both Aβ+ and Aβ−

groups, generally in spatial neurodegeneration patterns that

were less specific for AD-vulnerable regions; and (5) the asso-

ciationsbetweenplasmap-tau181 andcognitionwerenot fully

mediatedby imaging-derivedneurodegenerationmarkers, sug-

gesting independent links between plasma p-tau181 and cog-

nitive impairment that are not explained by neurodegenera-

tion as assessed with neuroimaging. Taken together, these

results suggest the potential of plasma p-tau181 as a scalable,

cost-effective, and accessible tool for estimating and moni-

toringAD-specificdiseaseprogression, extending results from

previous studies thatmainly focused on the ability of plasma

p-tau181 for establishing disease status.7,9-12

A main finding of the present study was the observation

that longitudinal increments of plasma p-tau181 paralleled

worsening hypometabolism, atrophy, and cognitive decline.

Figure 2. Associations of Baseline Plasma Phosphorylated Tau at Threonine 181 (P-Tau181)With Decreasing GlucoseMetabolism

and Increasing Atrophy in Amyloid-β–Positive (Aβ+) Cognitively Unimpaired and Impaired Participants
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Associations of baseline plasma p-tau181 with longitudinal hypometabolism in

Aβ+ cognitively unimpaired (CU) (A) and Aβ+ cognitively impaired (CImp)

(B) and with longitudinal atrophy in Aβ+ CU (C) and Aβ+ CImp (D) at the voxel

and region-of-interest (ROI) level. Models were adjusted for age, sex, and, for

atrophymeasures, for total intracranial volume andMRI field strength.

Statistical maps were thresholded using a lenient threshold (P < .05

[uncorrected] at the voxel level and further thresholded at the cluster level by

restricting results to clusters with a number of voxels higher than the expected

number of voxels as predicted using random field theory) to maximize

detection power in the Aβ– group while keeping identical thresholds for the Aβ+

group. Reported partial correlation coefficients were adjusted for the same

covariates. Regression lines were computed by setting covariates in the linear

model to average group levels (CU or CImp) and categorical variables to the

reference (female sex and, for atrophymeasures, 3-T field strength). The eTable

in Supplement 1 shows ROI analyses using hippocampus volume. FDG indicates

fluorine 18–labeled fluorodeoxyglucose; SUVR, standardized uptake value ratio.
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These associations, although generally stronger in the CImp

group, were also significant in CU individuals, which sug-

gests that plasma p-tau181 elevations might capture AD-

related neurodegenerative processes even at early, presymp-

tomatic disease stages and supports the use of repeated

measurements of plasmap-tau181 biomarker levels over time

for disease monitoring. However, some of the observed ef-

fect sizes were relatively small, particularly in the CU group.

Thus, future studies arewarranted toelucidate the clinical rel-

evance of longitudinal plasma biomarkers for disease moni-

toring in different at-risk populations.

Our longitudinal findings resonate with recent results on

longitudinalmeasures of plasmap-tau217, another novel can-

didate plasma biomarker of AD.39 Although the associations

Figure 3. Associations of Plasma Phosphorylated Tau at Threonine 181 (P-Tau181) and Neurofilament Light Chain (NfL) Changes

With Decreasing GlucoseMetabolism and Increasing Atrophy
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Regression lines displayed in graphs were computed by setting covariates in the

linear model to average group levels (cognitively unimpaired [CU] or cognitively

impaired [CImp]) and categorical variables to the reference (female sex and, for

atrophymeasures, 3-T field strength). Age- and sex-adjusted associations of

plasma p-tau181 and NfL change with hypometabolism progression are shown

at the voxel (upper row) and Alzheimer disease (AD) meta–region of interest

(ROI) level (bottom row) in CU (A) and CImp (B) individuals. To account for the

difference in sample sizes, results of voxelwise analyses were thresholded at the

voxel level at P < .01 (uncorrected) for the CU group and at P < .001

(uncorrected) for CImp. All maps were further thresholded at the cluster level

by restricting results to clusters with a number of voxels higher than the

expected number of voxels as predicted using random field theory. Age- and

sex-adjusted associations of plasma p-tau181 and NfL changes with atrophy

progression are shown at the voxel (upper row) and AD-signature ROI level

(bottom row) in CU (C) and CImp (D) individuals. Results of voxelwise analyses

were thresholded at P < .01 (uncorrected) for the CU group and at P < .001

(uncorrected) for CImp. All maps were further thresholded at P < .05

(familywise error corrected) at the cluster level. The eTable in Supplement 1

shows ROI analyses using hippocampus volume. FDG indicates fluorine

18–labeled fluorodeoxyglucose; SUVR, standardized uptake value ratio.
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of longitudinal plasmap-tau217withprogressiveneurodegen-

erationandcognitivedeclinewere largelyconsistentwith those

observedhere for p-tau181, plasmap-tau217 changeswerenot

associatedwithprogressivehippocampal atrophy inAβ+CImp

participants.39This findingcontrastswithour resultsonplasma

p-tau181, inwhichweobservedstatisticallysignificantandgen-

erally stronger outcomes among CImp individuals. This dis-

crepancy highlights the need for head-to-head comparison

studies investigating the value of the respective novel blood-

based biomarker for monitoring disease progression.

Consistent with prior findings assessing neurodegenera-

tionwithstructuralMRI,7,11our results fromFDGPETandstruc-

tural MRI evaluation suggest that higher baseline plasma

p-tau181 levelswere associatedwith current and futureneuro-

degeneration among CImp individuals. Baseline p-tau181 lev-

els were weakly associated with prospective neurodegenera-

tionintheCUgroup;however,wedidobservemorepronounced

associations in the Aβ+ CU group, which suggests the predic-

tive value of plasma p-tau181 when Aβ status information is

available.

Usingbrainwide analyses at thevoxel level,we found that

plasmap-tau181 elevationswereprimarily associatedwithhy-

pometabolism and atrophy in specific temporoparietal brain

regions that are characteristically involved in AD-related

neurodegeneration,31,40-42 and these associations were only

present amongAβ+ individuals. Together, these findings sug-

gest that p-tau181 is a specific marker for AD-related neuro-

degeneration. By contrast, plasma NfL was also significantly

associatedwith hypometabolism and atrophy amongAβ− in-

dividuals, and these associations commonly covered larger

frontoparietal areas not typically involved in AD. Neurode-

generation in frontoparietal areas has previously been found

to be associated with white matter hyperintensities in

aging,43-45 suggesting that the observedplasmaNfLneurode-

generationpatterns couldbe reflectiveof small vessel disease–

related neuronal injury. Accordingly, plasma NfL levels have

also been found to increase with increasing white matter hy-

perintensityburden.46This finding is in linewith findings from

several previous studies indicating that plasma NfL is amore

general marker of neuronal degeneration that is not specific

for AD26,47,48. Interestingly, in combined regression models,

we found that both plasma markers were independently as-

sociated with neurodegeneration in AD-typical areas, which

suggests that both provide unique information about the un-

derlying neurodegenerative processes that occur during the

natural course of AD. This finding also suggests the potential

for the combineduseof these biomarkers for anoptimized as-

sessment of progressive neurodegeneration.

Figure 4. Associations of Longitudinal Plasma Phosphorylated Tau at Threonine 181 (P-Tau181) ChangeWith Decreasing GlucoseMetabolism

and Increasing Atrophy in Amyloid-β–Positive (Aβ+) Cognitively Unimpaired (CU) and Cognitively Impaired (CImp) Participants
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Associations of longitudinal plasma p-tau181 change with longitudinal

hypometabolism in Aβ+ CU (A) and Aβ+ CImp (B) and with longitudinal atrophy

in Aβ+ CU (C) and Aβ+ CImp (D) at the voxel and region-of-interest (ROI) levels.

Linear models were adjusted for age, sex, and, for atrophymeasures, total

intracranial volume andMRI field strength. Statistical maps were thresholded

using a lenient threshold (P < .05 [uncorrected] at the voxel level and further

thresholded at the cluster level by restricting to clusters with a number of voxels

higher than the expected number of voxels as predicted using random field

theory) to maximize detection power in the Aβ- group while keeping identical

thresholds for the Aβ+ group. Reported partial correlation coefficients were

adjusted for the same covariates. Regression lines were computed by setting

covariates in the linear model to average group levels (CU or CImp) and

categorical variables to the reference (female sex and, for atrophymeasures,

3-T field strength). The eTable in Supplement 1 shows ROI analyses using

hippocampus volume. FDG indicates fluorine 18–labeled fluorodeoxyglucose;

SUVR, standardized uptake value ratio.

Blood Phosphorylated Tau181, Neurofilament Light Chain, and Neurodegeneration in Alzheimer Disease Original Investigation Research

jamaneurology.com (Reprinted) JAMANeurology April 2021 Volume 78, Number 4 403

Downloaded From: https://jamanetwork.com/ on 08/26/2022

http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2020.4986


In line with findings from previous studies,7,11,12 we ob-

served that baseline plasma p-tau181 levels were associated

with prospective cognitive decline. Here, we extended this

previous knowledge by noting that longitudinal increases

ofplasmap-tau181paralleledcognitivedeclineeven inasymp-

tomatic stagesofAD, further supporting thenotion thatplasma

p-tau181might captureearlypathologic changes in theADcas-

cade.Moreover,wealso found that approximately50%to70%

of the associationsof plasmap-tau181with cognitionwerenot

mediated by hypometabolism or atrophy, suggesting that

plasma p-tau181 reflects pathologic processes that influence

cognitive performance through partly independent path-

ways not captured by these established imaging markers of

neurodegeneration. This finding likely corresponds to the ac-

cumulationofneurofibrillary tanglepathology,whichhasbeen

previously found to independently contribute to cognitive im-

pairmentbeyondhypometabolismandatrophymeasures.49-51

However, in the current study, we could not confirm this hy-

pothesis owing to the lack of concurrent tau PET scans and

plasma p-tau181 measures in the ADNI cohort. Further stud-

ies are needed to elucidate how tauPETmediates the associa-

tions between plasma p-tau181 and cognition.

Together, these findings further support theuseofplasma

p-tau181 not only for determining disease status but also as a

cost-effective and specific biomarker ofdiseaseprogression in

AD.Plasmap-tau181, aloneor incombinationwithplasmaNfL,

might represent a suitable tool for assessing and monitoring

ADprogression in clinical settings before conductingmore ex-

pensiveor invasiveconfirmatory imagingorcerebrospinal fluid

tests. Owing to their close associationwithAD-typical neuro-

degeneration and cognition, repeated plasma p-tau181 mea-

surements over time might also be useful to identify rapidly

progressing forms of the disease in clinical scenarios as well

as to track treatmentoutcomes indisease-modifying trials.Fur-

ther studies in real clinical settings are warranted to investi-

gate how the use of plasma biomarkers may affect clinically

relevant outcomes.52,53

Strengths and Limitations

This study features several strengths and limitations. First,we

used a large, prospective cohortwith longitudinal plasmabio-

marker data, aswell asmeasures of cognition andmultimodal

imaging markers of neurodegeneration over a relatively long

follow-uptime.Second,almostallparticipants in thestudyalso

underwent Aβ PET, which allowed us to confirm that plasma

p-tau181 elevations specifically correlated with neurodegen-

eration in participants along the AD continuum. Third, all the

participants also had plasma NfL measurements, allowing a

head-to-head comparison of the neurodegenerative features

associated with each of the plasma-derived biomarkers. The

study has several principal limitations. First, the study used a

single cohort derived fromADNI,which represents a rather se-

lective population. Because the measurement of plasma p-

tau181 has only recently been introduced, there currently ex-

ists, to our knowledge, no other comparably large cohort that

couldprovideaccess toblood-derivedmeasuresofp-tau181and

NfL in combination with the detailed neuroimaging informa-

tion from structural MRI, FDG PET, and Aβ PET that was ana-

lyzed inour study, thus limiting thepossibility to replicate our

findings in an independent cohort at this time. Still, the large

study sample aswell as the robustnessof the results,with con-

verging findings from 2 different imagingmodalities formea-

suringneurodegenerationalongwithmeasuresofcognitivede-

cline, provide strong evidence in support of the potential of

plasmap-tau181 fordiseasemonitoring inAD.Second,onlyap-

proximately50%ofthestudyparticipantshadlongitudinalFDG

PET scans, which limited the statistical power to detect asso-

ciations with a decline in glucose metabolism, particularly in

the CU group. Third, study participants did not have available

tau PET scans at the moment of plasma p-tau181 measure-

ment.Fourth, theADNIstudyrecruitsparticipantswhoarerela-

tively devoid of vascular pathology. Recent evidence suggests

that white matter damage associates with Aβ deposition,54-56

and therefore, given the strong dependence of plasma p-

tau181onAβ, it is unclearhowvascular pathologymight affect

our findings.

Conclusions

In conclusion, our findings suggest that both baseline levels

and longitudinal changes in plasma p-tau181 levels were as-

sociatedwithprospectiveneurodegenerationandcognitivede-

cline that canbedescribedas characteristic forAD.PlasmaNfL

showedsimilarlypronouncedassociationswith cognitionand

imaging markers of neurodegeneration, but, in contrast to

plasmap-tau181, theseassociationswerenotADspecific.These

findings support the combineduseofplasmap-tau181 andNfL

for improved prediction and monitoring of disease progres-

sion in AD.
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