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Abstract: Huntington’s disease (HD) is a genetic neurological disorder resulting in cognitive and motor
impairments. We evaluated the longitudinal changes of functional connectivity in sensorimotor, asso-
ciative and limbic cortico-basal ganglia networks. We acquired structural MRI and resting-state fMRI
in three visits one year apart, in 18 adult HD patients, 24 asymptomatic mutation carriers (preHD) and
18 gender- and age-matched healthy volunteers from the TRACK-HD study. We inferred topological
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changes in functional connectivity between 182 regions within cortico-basal ganglia networks using
graph theory measures. We found significant differences for global graph theory measures in HD but
not in preHD. The average shortest path length (L) decreased, which indicated a change toward the
random network topology. HD patients also demonstrated increases in degree k, reduced betweeness
centrality bc and reduced clustering C. Changes predominated in the sensorimotor network for bc and
C and were observed in all circuits for k. Hubs were reduced in preHD and no longer detectable in
HD in the sensorimotor and associative networks. Changes in graph theory metrics (L, k, C and bc) cor-
related with four clinical and cognitive measures (symbol digit modalities test, Stroop, Burden and
UHDRS). There were no changes in graph theory metrics across sessions, which suggests that these
measures are not reliable biomarkers of longitudinal changes in HD. preHD is characterized by pro-
gressive decreasing hub organization, and these changes aggravate in HD patients with changes in
local metrics. HD is characterized by progressive changes in global network interconnectivity, whose
network topology becomes more random over time. Hum Brain Mapp 37:4112-4128, 2016.  © 2016 Wiley

Periodicals, Inc.
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INTRODUCTION

Huntington’s disease (HD) is an autosomal dominant
genetic neurological disorder caused by a cytosine-
adenine-guanine (CAG) trinucleotide expansion on chro-
mosome 4 in the first exon of the huntingtin gene.
Clinically, HD is characterized by motor, cognitive and
behavioral disturbances. Neuronal loss in HD predomi-
nates in the basal ganglia (striatum and globus pallidus)
[Vonsattel, 2008] but also affects the cortex and occurs sev-
eral years prior to the onset of motor symptoms [Tabrizi
et al., 2009]. Individuals who satisfy the genetic criteria for
HD but do not yet show unequivocal motor signs are in
the prodromal phase of the disease (preHD).

In preHD subjects, neuroimaging has revealed reduced
brain volume or thickness and abnormal shapes that begin
in the basal ganglia and extend to the cortex [Tabrizi et al.,
2009]. Structural MRI can detect changes in volume [Majid
et al., 2011] or shape of the brain [Dumas et al., 2012; Tab-
rizi et al., 2009] over 1 year in preHD subjects. Higher
atrophy rates are observed in the basal ganglia than in the
cortex [Ross and Tabrizi, 2011]. Clinical changes have been
related to structural changes. The heterogeneity of HD
symptoms is suggested to result from the dysfunction of

Abbreviations
BA Brodmann area
BOLD blood oxygen level dependent
CAG cytosine-adenine-guanine
HD Huntington’s disease
preHD  premanifest HD
ROI region of interest
rs-fMRI  resting-state functional MRI

SD standard deviation
SDMT symbol digit modalities test;
UHDRS  Huntington’s disease rating scale

distinct cortico-basal ganglia circuits [Delmaire et al.,
2013], which is likely due to neuronal loss in the cortex
and basal ganglia and abnormal connections within
cortico-basal ganglia networks. Structural neuroimaging
studies have shown that functionally segregated sensori-
motor, associative and limbic cortico-basal ganglia net-
works may specifically contribute to clinical expressions of
HD comprising motor, cognitive or psychiatric co-
morbidities, respectively [Delmaire et al.,, 2013; Rosas
et al., 2005; Teichmann et al., 2005].

It is less clear how the degenerative process influences
the pattern of functional connections among anatomical
regions and leads to symptom expression. Resting-state
functional MRI (rs-fMRI) connectivity measures the syn-
chronization in slow blood oxygen level dependent
(BOLD) signal fluctuations between different brain regions
at rest and is a potential tool to study abnormal brain
function and its relation with changes in brain structure
and symptom expression [Damoiseaux and Greicius, 2009;
Fornito et al., 2015]. The intrinsic activity at rest may
reflect some aspects of the functional capacity of neural
systems and can consequently be considered appropriate
for studying brain function [Greicius et al., 2009]. The
characterization of spontaneous brain functional networks
and analysis of rs-fMRI data can be performed using
numerous different methods that employ region-based or
whole-brain approaches such as independent component
analysis or graph theory, which is a more recent develop-
ment [Bullmore and Sporns, 2009]. Graph theory suggests
that brain networks are organized according to small-
world architecture defined by high clustering of function-
ally related areas with short average path lengths [Bull-
more and Sporns, 2012]. This organization is suggested to
satisfy the competitive demands of brain networks in local
and global information processing [Kaiser and Hilgetag,
2006].
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In HD, most functional imaging studies have reported
reduced functional connectivity at rest within motor areas
as well as associative areas of the frontal and parietal
lobes [Dumas et al., 2013; Poudel et al., 2014 ], the basal
ganglia [Werner et al.,, 2014] and the default mode net-
work [Dumas et al., 2013]. In preHD, reduced connectivi-
ty has been reported in the same networks [Dumas et al.,
2013; Koenig et al., 2014; Poudel et al.,, 2014; Unschuld
et al., 2012], as well as in the visual system [Poudel et al.,
2014]. Using graph theory, a recent study suggested that
network properties approximated the random topology
in preHD [Harrington et al, 2015]. This study also
revealed weakened fronto-striatal connections with
strengthened fronto-posterior connections that evolved as
burden increased [Harrington et al., 2015]. Two longitudi-
nal studies investigated preHD and assessed the potential
utility of rs-fMRI as a biomarker of disease progression
[Odish et al., 2015; Seibert et al., 2012]. These two studies
did not find significant changes in connectivity over a
one-year [Seibert et al., 2012] or a three-year period
[Odish et al., 2015].

In this study, we evaluated the changes in functional
organization within the sensorimotor, associative and lim-
bic cortico-basal ganglia networks in preHD and HD
patients compared with controls using rs-fMRI and graph
theory over a 2-year period. We compared functional
changes with changes in brain structures in the basal gan-
glia of these subjects by calculating Pearson’s correlations
between volumes and graph theory metrics of the basal
ganglia. We also investigated whether specific functional
nodes or circuits contributed to the severity and variability
of the clinical outcome.

MATERIALS AND METHODS
Subjects

A total of 30 adult manifest HD patients (HD), 32 pre-
manifest gene carriers (preHD) and 30 healthy volunteers
(HV) were included at the Paris site (Institut du Cerveau
et la Moelle epiniére, France) in the frame of the longitu-
dinal TRACK-HD study from 2008 to 2010. Of these par-
ticipants, 10 HD, 7 preHD patients and 8 HV were
excluded from the study because as they did not com-
plete all three visits. Another 2 HD, 1 preHD and 4 HV
patients were excluded from the study because of poor
MRI quality due to excessive head motion during scan-
ning (as defined below). A total of 18 HD, 24 preHD and
18 HV patients who had completed all three visits with
good-quality MRI data were included in the fMRI analy-
sis. The HD patients, preHD patients and HV were
matched for age (ANOVA, P-value = 0.49) and gender (P-
value = 0.70, y? test) (Table I). The study was approved
by the local ethics committee, and all of the participants
provided written, informed consent prior to participating
in the study.

The clinical assessment, which was performed according
to the TRACK-HD standards, included the Unified Hun-
tington’s Disease Rating Scale (UHDRS-99) [Unified Hun-
tington’s Disease Rating Scale, 1996], a medical and
psychiatric history, current medications, HD history, clini-
cal motor scores, portions of the cognitive component
(symbol digit modalities test [SDMT)] [Smith, 1982], the
Stroop Word test [Stroop, 1935] and functional capacity.
The HV had no history of neurological or psychiatric dis-
ease, no contraindications for MRI and no HD inclusion
criteria. The inclusion criteria for the HD patients included
a positive genetic test for the HTT gene with 40 or more
CAG repeats. Furthermore, the HD patients had scores
higher than five points on the UHDRS and a total func-
tional capacity score greater than or equal to seven points.
The inclusion criteria for the preHD subjects consisted of a
positive genetic test with >40 CAG repeats and the
absence of motor disturbances with five or fewer points on
the UHDRS-TMS. Finally, a burden score ([CAG repeat
length-35.5] X age) exceeding 250 was required [Penney
et al., 1997]. Additional exclusion criteria included clinical
evidence of unstable medical or psychiatric illness, the use
of prescription antipsychotic medications within the past 6
months, the use of phenothiazine-derivative antiemetic
medications more than three times per month, alcohol or
drug abuse within the past year, history of another neuro-
logical condition, or an inability to undergo MRI scanning.
Subjects participating in the longitudinal TRACK-HD
study underwent MRI scanning at three time points (over
two years).

Image Acquisition

The data were acquired using a 3T Siemens Trio TIM
MRI scanner with body coil excitation and a 12-channel
receive-phased-array head coil (CENIR, ICM, Paris, France).

We acquired anatomical scans using sagittal three-
dimensional Tl-weighted magnetization-prepared rapid
acquisition gradient echo acquisition (field of view =256 X
256 mm?; repetition time (TR)=2,200 ms, echo time
(TE) =2.9 ms, flip angle = 10°, voxel size=1 X 1 X 1 mm?).

We acquired functional MRI data of the whole brain
using a gradient echo echo-planar imaging sequence sensi-
tive to the BOLD signal (field of view =64 X 64 X 45 mm?>;
TR = 2,400 ms, TE = 30 ms; flip angle =90°, 200 volumes in
one session; voxel size=3 X 3 X 3 mm3, no gap).

The rs-fMRI data were acquired over the course of 6
min. During the scans, the subjects were instructed to
relax, refrain from any structured thoughts and keep their
eyes closed and not fall asleep. This isolated the intrinsic
variations of the BOLD signal of the nervous system in
subjects performing no particular task. Each subject under-
went an MRI examination at each of the three visits sepa-
rated by one year (baseline: 2008, year 1: 2009, year 2:
2010).
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Functional Image Preprocessing

We first looked for differences in head motion between
the three groups. For each session in each subject, we calcu-
lated the framewise displacement (FD) from Power et al.
[2014], an index which yields a six dimensional time-series
that represents instantaneous head motion. We excluded
seven subjects with excessive head motion in at least one of
the three sessions [FD > 0.5 mm as defined in Power et al.
2014]. We additionally performed subjective visual quality
control on all of the scans to ensure correct registration. In
the remaining 60 subjects X three sessions (180 MRI exami-
nations), Kruskal Wallis test showed no statistically signifi-
cant differences in head motion among groups as shown by
the mean estimated FD values: 0.17 =0.07 mm in HD,
016 +0.08 mm in preHD and 0.15*0.07 mm in HV
(P=0.13). The functional data were then preprocessed
using different steps. We performed our analysis in the
native space using the following steps. First, we performed
a head-motion correction using rigid registration of func-
tional brain volumes to the mean volumes of functional
series. Second, we realigned the structural T1-weighted vol-
ume on the functional reference scan using Freesurfer
(http:/ /www.freesurfer.net/) and SPM (http://www fil.
ion.ucl.ac.uk/spm/) in the native functional space. Third,
we reduced the physiological noise by applying the tempo-
ral CompCor method [Behzadi et al., 2007] with five princi-
pal components. The first step of CompCor is to determine
noise regions of interest (ROIs; i.e., voxels with high tempo-
ral standard deviation). The first five principal components
of the noise ROIs signal were selected. Then, we conducted
global regression. The signal from the noise ROIs (white
matter and cerebrospinal fluid) was used to model the
physiological fluctuations in the gray matter. Fourth, we
applied 5-mm spatial Gaussian smoothing in SPM.

Selection of ROl and Construction of Brain
Functional Networks

According to an anatomical model [Alexander et al,
1986], we defined 182 ROIs to construct the associative,
which includes the visual and auditory cortex, the limbic
and the sensorimotor networks. The ROIs were selected
from the parcellation obtained using Freesurfer software.
Each network included the cortical areas and correspond-
ing basal ganglia regions (caudate nucleus, putamen and
globus pallidus), as well as the corresponding functional
parts of the thalamus described by Worbe et al. [2012]. For
each network, the anatomical labeling of the ROI is listed
in the Supporting Information Table I. For each subject,
we processed the anatomical T1-weighted images as fol-
lows. First, we obtained a cortical reconstruction using the
spherical transformation provided by Freesurfer [Fischl
et al., 1999, 2004]. The Freesurfer longitudinal registration
process was used for the three sessions [Reuter et al.,
2012] to take into account the longitudinal nature of study
and to reduce the variability in morphology among the

sessions for the same subject. We created a template from
these three sessions, which was the mean of the three T1
acquisitions. Since the parameters of all three acquisitions
were the same for each subject, we applied linear registra-
tion using FLIRT in FSL software [Jenkinson and Smith,
2001; Jenkinson et al., 2002]. We defined ROIs correspond-
ing to subcortical structures using the YeB atlas [Bardinet
et al., 2009; Yelnik et al., 2007], a three-dimensional histo-
logical and deformable atlas of the basal ganglia. The YeB
atlas was built from a single postmortem specimen that
first was imaged with MRI and then processed for histolo-
gy. A dedicated deformation strategy was set up and vali-
dated that allows the atlas to be accurately adapted to any
brain through MR-based registration.

The functional network was built from this set of ROISs,
which were represented as nodes interconnected by links.
We calculated the mean time series across all voxels with-
in each ROI in the individual space for each subject. We
also computed individual correlation matrices between all
pairs of ROIs within each functional circuit and subject.
The edges represented the correlations between these time
series.

We used the small-worldness coefficient to evaluate the
small-world properties in the networks [Humphries and
Gurney, 2008]. We calculated the small-world measures
for each graph [Rubinov and Sporns, 2010]. These meas-
ures were designed for unweighted graphs and are highly
dependent on graph cost, which corresponds to the
graph’s density (i.e., the proportion of actual connections
regarding the total number of possible connections). To
analyze the topological properties of brain functional net-
works, each correlation matrix was thresholded to create
binary graphs. Many studies have presented methods for
thresholding [e.g.,, De Vico Fallani et al., 2014], which
remains a problematic step in small-world measures. To
ensure that the topological measures were mathematically
comparable across subjects, a common networks cost is
necessary. Threshold functional connectivity matrices were
thresholded successively over a range of network costs.

The topological results reported in this study are accord-
ingly averages of the various metrics estimated for each
individual network over the available cost range [Ginestet
et al., 2011; Messé et al., 2013; Zalesky et al.,, 2012 ]. We
then compared the average correlation maps among the
HD, preHD and HV individuals. All of these analyses
were performed on the whole network. However, since we
defined three networks (i.e., sensorimotor, associative and
limbic), where each one included the cortical areas and
corresponding basal ganglia regions as well as correspond-
ing functional parts of the thalamus, the graph theory met-
rics were averaged for each network.

Quantification of Functional Interactions

We quantified the large-scale functional connectivity orga-
nization of the three cortico-basal ganglia networks using
graph theory metrics. Graph theory was applied to analyze

* 4116


http://www.freesurfer.net
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm

¢ Longitudinal Changes in Functional Connectivity of Cortico-Basal Ganglia Networks ¢

the fine-scale topological properties of each network. We cal-
culated individual graph theory measures for each subject
using the Brain Connectivity Toolbox (http://www.brain-
connectivity-toolbox.net) [Rubinov and Sporns, 2010].

o L, the characteristic path length of the network, repre-
sents the average distance between node i and all oth-
er nodes:

=ty -l 2jeN jif
n N g n—1

Ziel\l

where N is the set of all nodes in the network and n is the
number of nodes.
djj is the shortest path between i and ;.

o k, the degree, represents the average connections of
the node:

ki :ZjeNaij

e bc, the betweenness centrality, is the number of short-
est paths between the nodes that pass through that a
specific node i.

1 pri(i)
b=
! (n—1)(n—2) ZhieN Py

e C, the clustering coefficient, represents the fraction of a
node’s neighbors that are also neighbors of one other.

. 1 2t
= Zz‘eNCi = ZieN ki(ki—1)

The clustering coefficient and the local efficiency both rep-
resent the ability of a network to process specialized infor-
mation within densely interconnected groups of nodes
(functional segregation). The higher the clustering coeffi-
cient and local efficiency, the more segregated the network.

We first evaluated if the networks had small-world
properties using the small-worldness coefficient (s). A net-
work was considered to have small-word properties if
o >1 [Humphries and Gurney, 2008]:

o= C/ Crand
L/ Lrand

where C and Cyang are the clustering coefficients and L
and Lyang are the characteristic path lengths of the tested
network and random networks, respectively.

We also calculated the principal hubs, which are the
nodes with a high number of connections (i.e., the highest
degree k). The hubs facilitate integration between the parts
of functional networks and ensure that the network is
resilient against damage [Rubinov and Sporns, 2010]. We

identified the hubs using z-scores: A node was considered
to be a hub if hub index (Hi)>1.

where k, the degree, represents the average connections of the
node, k is the mean of k and 3(k) is the standard deviation of k.

Statistical Analysis

We conducted two-way, mixed ANOVA to determine
the effect of Session (sessions 1-3) and Group (HV, preHD
and HD) and the interaction Group X Session on graph
theory measures first on the whole brain then on local cir-
cuits (associative, limbic and sensorimotor).

We assessed normality, homogeneity of variance and
sphericity using Shapiro-Wilk, Levene’s and Mauchly’s
tests, respectively.

Statistical significance of a simple two-way interaction
and a simple main effect was accepted at a Bonferroni-
adjusted alpha level of 0.025.

For each group (HD, preHD), each circuit (associative,
limbic and sensorimotor) and each session (session 1-3), we
computed the correlations between graph theory measures
(k, be, C) versus clinical scores (UHDRS), graph theory
measures versus cognitive variables (SDMT and Stroop)
and graph theory measures versus volumes of the subcorti-
cal regions of each circuit using Pearson’s correlation coeffi-
cient. We adjusted the P-values for multiple comparisons
using a permutations test [Nichols and Holmes, 2002].

RESULTS

We first compared the networks for global measures,
and then we compared them for local measures in the
associative, limbic and sensorimotor circuits.

Graph Theory Measures in the Whole Brain

No significant effect was found for the small-worldness
coefficient (6). There was a significant group effect for the
average shortest path length (L, P =0.006, Fig. 1, Table II).
However, there were no session or interaction effects. L
decreased in HD compared with the HV and with preHD
individuals in sessions 1 and 2.

Graph Theory Measures in the Associative,
Limbic and Sensorimotor Networks

Significant differences for local graph theory measures
are presented in Figure 2 and Table II. The degree (k) dif-
fered among the groups in both the associative and limbic
circuits. Post hoc comparisons revealed that k increased in
HD patients in the associative network in session 1 com-
pared with the HV and preHD individuals and in the lim-
bic network compared with the HV and preHD
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Figure I.

Statistical analysis for graph theory measures in the whole brain.
(A) Diagram showing changes in L in the three groups over the
three sessions in the whole brain. There were significant
between-group differences for the L metric (mixed-model
ANOVA, P=0.006) with a decrease in L in HD as compared

individuals in all sessions. The betweenness centrality (bc)
and the clustering coefficient (C) differed among groups in
the sensorimotor network. Post hoc comparisons showed
that bc decreased in HD patients compared with preHD
patients in sessions 1 and 3 and that C decreased progres-
sively from HV patients to HD patients with a decrease in
HD patients compared with HV patients in all sessions
and compared with the preHD individuals in session 2.
No session or interaction effects were found for the graph
theory measures in these three networks.

Graph Theory Measures in the
Subcortical Regions

In the subcortical regions, k increased in the HD patients
compared with the HV patients in the three circuits (Fig. 3

with HV and preHD (post hoc t-test between HV and HD
* P<0.05, ¥ P<0.01; post hoc t-test between HV and preHD
# P <0.05  P<0.0l corrected for multiple comparisons). (B)
Significant correlations between L and UHDRS in preHD (blue
dots) and Stroop and SDMT in HD (red dots) and preHD.

and Table II). In the associative circuit, there was a group
effect with an increase in k in HD individuals compared
with HV individuals in session 3 and with preHD patients
in all sessions. There was also a session effect with an
increase in k in HD patients from session 1 to session 3. In
the limbic circuit, there was a group effect with an
increase in k in HD patients compared with HV in sessions
1 and 3. In the sensorimotor circuit, there was a group
effect as k increased in HD patients compared with HV
and preHD individuals. Post hoc tests revealed that k
increased in HD patients compared with HV and preHD
individuals in sessions 1 and 3. bc decreased in the limbic
and sensorimotor circuits in HD patients compared with
preHD individuals. There was only a session effect in the
basal ganglia (associative) for the degree measure k for
HD patients. A session effect for k was found in the basal

* 4118



¢ Longitudinal Changes in Functional Connectivity of Cortico-Basal Ganglia Networks ¢

TABLE Il. Statistical analysis and graph theory measures in HVY, preHD and HD for the whole brain and the three
circuits (ANOVA mixed model)

ANOVA mixed
model F value

Measure HV preHD HD (P-value) Post hoc t-test (P-value)
Whole brain:
L S1 2.52 +0.02* 2.57 +0.03 241 +0.04 Group effect 5.47 (0.006) *HV>HD in S1 (P = 0.04),
S2 (P =0.002)
S2 259 +£0.03 * 2.56 = 0.03# 243+ 0.03*# Session effect 0.58 (0.55) #PreHD>HD in S1
(P =0.02), S2 (P = 0.009)
S3 2.50 = 0.05 2.56 = 0.03# 2.49 + 0.03# Interaction 2.39 (0.05)
C S1 49.57 +0.58 50.59 = 0.82 49.27 +£0.83 Group effect 1.53 (0.22)
X107 S2 50.73 +0.71 50.45 +0.71 48.88 = 0.88 Session effect 1.29 (0.27)
S3 51.71 = 0.83 50.27 = 0.79 49.61 +0.72 Interaction 1.40 (0.23)
S1 3.944 +0.022 3.916 = 0.030 4.138 =0.140 Group effect 1.29 (0.28)
c S2 3.891 +0.024 3.902 + 0.029 4.039 +0.120 Session effect 1.06 (0.34)
S3 4.216 £0.140 3.935 = 0.034 3.975 +0.110 Interaction 2.22 (0.07)
Cortex
Associative network:
k S1 25.07 = 0.33* 2541+ 0.33# 26.45 + 0.28*# Group effect 4.00 (0.02) *HV<HD in S1 P = 0.009
S2 25.26 +0.29 25.26 +0.26 25.78 +0.24 Session effect 2.44 (0.09) #PreHD<HD in S1
P=0.04
S3 25.69 = 0.40 25.72 +0.26 26.29 = 0,30 Interaction 0.86 (0.48)
Limbic network:
k S1 24.00 = 0.39* 24.28 + 0.30# 25.52 + 0.33*# Group effect 11.12 (0.00006) *HV<HD in S1 (P =0.01),
S2 (P =0.03), S3
(P =0.00003)
S2 24.13 = 047% 24.32 = 0.51# 25.77 + 0.43*# Session effect 2.94 (0.05) #PreHD<HD in S1
(P=0.01), S2 (P =0.03),
S3 (P =0.003)
S3 24.29 + 0.36* 24.63 + 0.57# 26.91 = 0.38*# Interaction 0.87 (0.47)
Sensorimotor network:
be
S1 20.86 + 0.41 21.35+0.52 # 1812+ 1.1 # Group effect 4.46 (0.01) #PreHD>HD in S1
(P =0.04), S3 (P =0.04)
x10*
S2 21.32 +0.62 20.91 = 0.61 19.23 +£0.82 Session effect 0.95 (0.38)
S3 20.84 +0.11 22 +0.90 # 19.24 =091 # Interaction 1.40 (0.23)
C S1 55.05 + 0.92* 54.32 +1.35 52.21 = 01.00* Group effect 3.37 (0.03) *HV>HD in S1 (P = 0.01),
S2 (P =0.003), S3
(P =0.004)
X107 S2 56.89 = 1.15* 55.96 = 1.25# 51.53 = 1.07*# Session effect 1.20 (0.30) #PreHD>HD in S2
P =0.03
S3 56.25 = 1.03* 53.75+1.28 52.82 +1.42% Interaction 2.32 (0.05)
Basal ganglia
Associative network:
k S1 23.81+0.82 23.12 = 1.06# 26.03 = 0.77# Group effect 5.44 (0.006) *HV<HD in S3 P =0.04
S2 26.13 +1.12 23.47 = 0.96# 27.48 = 1.25# Session effect 5.00 (0.007) #PreHD<HD in S1
P=0.04,S2 P=0.03, S3
P=0.04
S3 25.56 = 1.03* 25.20 = 1.18# 28.95 + 1.18*# Interaction 0.63 (0.63) HD S1<S3 P=0.04
Limbic network:
k S1 20.26 = 0.85* 20.85 =1.17 23.66 = 0.83* Group effect 3.54 (0.03) HV<HD in S1p=0.01 in
S3 P=0.04
S2 22.27 0.9 21.03 +1.02 23.66 =128 Session effect 3.22 (0.04)
S3 23.12+0.92 23.72+1.21 2532 +1.17 Interaction 1.03 (0.39)
be S1 48.10 £ 0.21* 51.02 £ 0.21# 41.15 = 0.22%% Group effect 5.05 (0.008) *HV>HD in S1 and S2

P=0.03
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TABLE Il. (continued).

ANOVA mixed
model F value

Measure HV preHD HD (P-value) Post hoc t-test (P-value)
x10° S2 47.22 £ 0.29* 49.11 £ 0.19# 42.02 £0.21*# Session effect 0.04 (0.95) #PreHD>HD in S1
P=0.02in S2 P=0.03
in S3 P =0.02
S3 49.02 £0.30 49.09 + 0.284# 42.06 =+ 0.294# Interaction 0.13 (0.97)
Sensorimotor network:
k S1 21.80 =091 21.52 = 0.97# 25.37 = 0.83# Group effect 4.76 (0.01) HV<HD in S1 P=0.01 in
S3 P=0.03
S2 24.27 = 0.96 23.21+1.06 25.56 = 1.41 Session effect 3.35 (0.03) #PreHD<HD in S1 =0.03
in S3 P=0.04
S3 23.56 £0.91 2421+1.16 27.12+1.28 Interaction 0.52 (0.71)
be S1 51.55 +2.49 55.25 = 3.19# 45.93 = 2.81# Group effect 4.51 (0.01) *HV>HD in S3 (P = 0.04)
x10° S2 52.60 +2.27 51.12 277 51.57 =3.00 Session effect 0.33 (0.71) # PreHD>HD in S1 and
S3 (P =10.03)
S3 53.61 +4.58* 61.82 = 4.78# 4437 = 2.13#* Interaction 0.88 (0.47)

ganglia for the limbic and sensorimotor circuits, which
was not found in the post hoc tests. No interaction effect
was found for the graph theory measures in the subcorti-
cal regions.

Hubs in the Different Circuits

Using the Hi, we identified hubs in all of the groups
(Fig. 4, Supporting Information Table II). Hi in the three

Sensorimotor
*
0,30 e N
0,20
" II II II
0,10
0,00
HV preHD

mS1 mS2 83

*
0,6
0,55
ST 1
0,45
HV preHD
mS1 mS2  S3

circuits were 30.2, 30.4 and 31.7 in the associative circuit,
28.5, 28.4 and 29.0 in the limbic circuit, and 32.1, 33.1 and
32.6 in the sensorimotor circuit for S1, S2 and S3,
respectively.

In the associative circuit, the hubs were located in the
occipital cortex, left supramarginal gyrus (ROI 60, Brod-
mann area [BA] 18/19), left and right temporal planes of
the superior temporal gyrus (ROI 70 and 144, respectively,
BA 17), right lateral aspect of the superior temporal gyrus

Associative
27,00
26,00
k
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24 .00
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Figure 2.
Graph theory measures in the three circuits. Significant Group effects were observed for C
(P=0.03) and bc (P=0.01) in the sensorimotor network, k in the associative (P =0.02) and lim-
bic network (P = 0.00006).
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Graph theory measures in the subcortical regions. Changes in
(A) k in the sensorimotor network (group effect P=0.01), and
bc (group effect P=0.01), (B) k in the associative subcortical
regions (group effect P =0.0006; session effect P =0.007), (C) k
in the limbic network (group effect P =0.03) and the bc (group
effect P = 0.008).

(ROI 142, BA 40/43), and right opercular part of the inferi-
or gyrus (ROI 120, BA 40). In the limbic circuit, a hub was
located in the right ventral putamen. In the sensorimotor
circuit, hubs were located in the motor and premotor areas
(BA 4/6), left subcentral gyrus and sulci (ROI 38), and left
and right postcentral gyrus (ROI 62 and 137, respectively).

In the associative network, there was both a group and
a session effect for Hi. The left supramarginal gyrus (ROI
60) and left and right temporal planes of the superior tem-
poral gyrus (ROI 70 and 144) presented a session effect in
HD patients, and ROI 70 presented a session effect in
preHD patients. There was also a group effect indicating
that the hubs were significantly reduced in preHD patients
and no longer detectable in HD individuals (Supporting
Information Table II).

In the limbic circuit, there was only a significant session
effect in the right putamen in HD patients (P =0.04), and
post hoc t-tests revealed an increase in Hi in sessions 2
and 3 compared with session 1.

In the sensorimotor network, there was a group effect
and no session effect. The hubs were significantly reduced
in preHD individuals and no longer detectable in HD indi-
viduals (Supporting Information Table II). There was a

group effect for the following hubs: The left subcentral
gyrus and sulci (ROI 38) and the left and right postcentral
gyrus (ROI 62 and 137, respectively).

Clinical and Cognitive Variables

Significant differences for clinical and cognitive are pre-
sented in Table I. There was a session effect for UHDRS
(P=0.0002), and interaction session X group for SDMT
(P =0.0007) and a session (P =0.0005) and an interaction
session X group for the Stroop test (P = 0.0006). No signifi-
cant post hoc t-tests were found only for the UHDRS in
preHD individuals S1 < S3.

Correlation of Graph Theory Measures with
Clinical and Cognitive Variables

L was correlated with CAG repeat size in preHD indi-
viduals and with the SDMT and the Stroop test in preHD
and HD patients (Fig. 1, Table III).

Correlations between clinical scores versus graph theory
measures and cognitive scores versus graph theory meas-
ures in cortical regions for each network are presented in
Figure 5 and Table IIl. In HD patients, we found that
UHDRS scores were positively correlated with k in the
associative and limbic circuits; the Stroop and SDMT tests
were negatively correlated with k in the associative and

Session1 Session2 Session3

[

& B .
Gb 16 a7 36 16 56 16 437
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oSl e e 142
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¥ ,1‘Is & i ‘1!6 v 4 "‘16‘ :
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Figure 4.
Changes in hub organization in the three circuits. In the sensorimo-
tor network (green dots), there were a significant group effect, hubs
were reduced in preHD and no longer detectable in HD. In the asso-
ciative network (pink dots), there was both a group and a session
effect. In the limbic network (yellow dots), there was a significant
session effect in the right putamen in HD patients (P = 0.04).
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limbic circuits. No other correlations were found. In
preHD individuals, UHDRS scores were negatively corre-
lated with L and C in the sensorimotor circuit and posi-
tively correlated with k in the associative circuit. The
SDMT and Stroop test scores were positively correlated
with L and C in the sensorimotor circuit.

Correlations between the clinical and cognitive variables
and the graph theory measures in the subcortical regions
for each network are presented in Figure 6 and Table III.
We only found correlations for C in preHD individuals. In
the associative and sensorimotor circuits, C was negatively
correlated with UHDRS score. In the limbic circuit, C was
positively correlated with Stroop test score.

Correlations between the burden score and graph theory
measures in preHD patients were observed in the sensori-
motor circuit only (Fig. 6, Table III). The burden score was
negatively correlated with bc and k in both the cortical and
subcortical regions.

Correlation of Graph Theory Measures with
Basal Ganglia Volume

Correlations among basal ganglia volume and graph
theory measures are presented in Supporting Information
Table III.

The total volume of the limbic subdivision of the basal
ganglia (including the limbic putamen, caudate and globus
pallidus, as defined by the YeB atlas) was negatively corre-
lated with the measure k for the limbic basal ganglia in
HD patients. The total volume of the sensorimotor subdi-
vision of the basal ganglia (including the sensorimotor
putamen, caudate and globus pallidus of the basal ganglia)
was positively correlated with C for the sensorimotor basal
ganglia in HD individuals.

The volumes of the left external globus pallidus (associa-
tive), right putamen (limbic) and left putamen (sensorimo-
tor) were positively correlated with k in HD individuals.
The volume of the left caudate (associative) was negatively
correlated with k in HD patients. The volumes of the left
and right external globus pallidus (sensorimotor) and the
volumes of the left and right putamen (associative) were
positively correlated with C in HD individuals.

The volume of the right external globus pallidus (sensori-
motor) was negatively correlated with bc in HD patients
and positively correlated with bc in preHD individuals. The
volume of the left external globus pallidus (sensorimotor)
was negatively correlated with bc in preHD patients.

DISCUSSION

The aim of our study was to investigate longitudinally
the functional alterations in brain connectivity in HD and
preHD individuals. The main results can be summarized
as follows: HD patients exhibited a reduced average short-
est path length (L), which indicated a reduction in the
small-world network organization of the brain, whose

TABLE Ill. Correlation between UHDRS, SDMT, Stroop
and graph theory measures

preHD HD
Measure Variable r P-value r P-value
Whole brain
L SDMT 0.27 0.02 0.36 0.007
Stroop 0.38 0.0009 0.38 0.004
Cortex
Associative network
k UHDRS 0.30 0.002 0.28 0.03
SDMT -0.36 0.007
Stroop —0.39 0.003
Limbic network
k UHDRS 0.38 0.004
SDMT -0.22 0.04
Stroop —0.31 0.02
Sensorimotor network
C UHDRS —0.36 0.001
SDMT 0.22 0.03
Stroop 0.27 0.01
be Burden —-0.35 0.001
k Burden -0.36 0.00
Basal ganglia
Associative network
C UHDRS -0.35 0.002
Limbic network
C Stroop 0.27 0.02
Sensorimotor network
C UHDRS -0.32 0.005
k Stroop 0.25 0.03
Burden —-0.32 0.002
be Stroop -0.21 0.03
Burden -0.27 0.01

topology tended to approximate that of a random net-
work. The nodes in HD patients were also more connected
(increased in k), had fewer short paths between them
(reduced bc) and their neighbors were less frequently
neighbors of one other (reduced C). Changes predomi-
nated in the sensorimotor network for bc and C and were
observed in all circuits for k. Conversely, preHD subjects
showed no changes in graph theory measures with the
exception of the hubs. Overall, the hubs were reduced in
preHD individuals and no longer detectable in HD
patients in the sensorimotor and associative networks.
Changes in graph theory measures correlated variably
with clinical and cognitive measures. Lastly, there were no
changes in graph theory measures across sessions, which
suggests that these measures are not reliable biomarkers of
longitudinal changes in HD.

Graph Theory Measures in HD Patients

This investigation represents the first longitudinal study
evaluating functional connectivity in HD over two years of
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Figure 5.

Correlations between graph theory measures and clinical, cogni-
tive variables for each circuit. (A) Sensorimotor circuit: correla-
tion between C and scores at the UHDRS, SDMT and Stroop in
preHD. (B) Associative circuit: correlation between k and
scores at the UHDRS, SDMT and Stroop in HD, and UHDRS in

follow-up. The average shortest path length (L) decreased
in patients (significant group effect), which indicated that
the topology of the pathological network was similar to
that of a random network topology. For local measures,
nodes in HD individuals exhibited increases in k, which

preHD. (C) Limbic circuit: correlation between k and scores at
the UHDRS, SDMT and Stroop in HD patients. PreHD subjects
are represented by blue dots and HD patients by red dots. Val-
ues are presented in Table lll. [Color figure can be viewed at
wileyonlinelibrary.com]

attests to the sparsity of the network, reduced bc (i.e., fewer
short paths) and reduced C. These data, which relate to the
neighborhood density of a node, quantify the local connec-
tivity. An increase in k may indicate that more regions were
operating at the same time in HD patients. Individuals
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Correlations between graph theory measures clinical and cognitive
variables of basal ganglia. (A) Sensorimotor circuit: correlations
between C and scores at the UHDRS, k, bc and Stroop in preHD.
(B) Sensorimotor circuit: correlations between bc, k and burden for
cortical regions and subcortical regions in preHD. (C) Associative

suffering from HD also demonstrated a disappearance of
hubs in their associative and sensorimotor circuits. Overall,
the functional connectivity for HD patients was character-
ized by a reduced performance compared with that of HV.
Comparing our results with those reported in previous
studies is difficult because the definition of functional

circuit: correlation between C and scores at the UHDRS in preHD.
(D) Limbic circuit: correlation between C and scores at the Stroop
in preHD. PreHD subjects are represented by blue dots and HD
patients by red dots. [Color figure can be viewed at wileyonlineli-
brary.com]

connectivity depends on the method used. The majority of
previous studies used seed-based approaches and inde-
pendent component analysis to measure functional con-
nectivity. These methods only provide information about
the strength of the functional synchronization between dis-
tant regions. Reduced functional connectivity has been

* 4124 »


http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

¢ Longitudinal Changes in Functional Connectivity of Cortico-Basal Ganglia Networks ¢

reported by numerous studies in multiple brain networks
in HD individuals. This reduction in connectivity was
extensive and affected multiple networks. A reduction
between frontal regions and the medial visual network has
been reported [Dumas et al., 2013] in the default mode
network [Dumas et al., 2013; Quarantelli et al., 2013], the
executive control network [Dumas et al., 2013], the dorsal
attentional network [Poudel et al., 2014], in parietal regions
[Werner et al., 2014], and between the posterior putamen,
the superior parietal and the frontal executive network
[Poudel et al., 2014]. Our study, which confirms that
changes are widespread involving the sensorimotor, asso-
ciative and limbic networks, complements these findings
by demonstrating that changes predominated in the senso-
rimotor network (for bc and C). In contrast, only a few
studies have reported increased connectivity in the left
fronto-parietal network [Poudel et al., 2014; Werner et al.,
2014], the thalamus, striatum and default mode network
[Werner et al., 2014]. The reason for this discrepancy is not
known and has been interpreted as indicating the reduced
ability of intranetwork differentiation [Werner et al., 2014].

Graph Theory Measures in preHD Subjects

In contrast with HD patients, local graph theory metrics
(k, C, bc) were largely maintained in preHD subjects. This
finding is consistent with the results of a previous study
[Harrington et al., 2015]. PreHD subjects only exhibited a
reduction in the number of hubs in the three circuits.
Using independent component analysis or seed-based
approaches, previous studies found variable changes in
functional connectivity in preHD subjects. Reductions
have been reported between the premotor cortex and cau-
date nucleus [Koenig et al., 2014], the visual network and
frontal areas [Dumas et al.,, 2013; Unschuld et al., 2012],
the default mode network [Unschuld et al., 2012] and the
dorsal attentional network [Poudel et al., 2014].

Only one study used graph theory to compare function-
al connectivity in preHD patients classified into low, medi-
um and high subgroups depending on burden score
[Harrington et al., 2015]. These authors used graph theory
measures similar to ours: The global efficiency, which cor-
responds to the average inverse shortest path length (L),
the clustering coefficient and the density [Latora and
Marchiori, 2001; Rubinov and Sporns, 2010]. Consistent
with a previous study [Harrington et al., 2015], we did not
find significant changes in density (data not shown). This
study reported an increase in global efficiency (equivalent
to a decrease in L) in medium and advanced preHD sub-
jects (high burden score). This finding is consistent with
our results in HD subjects. In contrast, we failed to detect
changes in L in preHD individuals. This negative finding
may be explained by the fact that we included fewer
preHD subjects with younger ages corresponding to the
low and medium groups of Harrington et al. [2015]. In our
study, hubs were reduced in preHD individuals in the

associative and sensorimotor circuits, which is consistent
with the decrease in the rich club organization in the
medium and high preHD groups reported previously
[Harrington et al., 2015]. The rich club metric is similar to
the brain hubs in our study [van den Heuvel and Sporns,
2011]. Together, these results suggest that preHD is char-
acterized by progressive changes in global network inter-
connectivity, whose network topology becomes more
random, and decreased hub organization as a diagnosis of
HD approaches. These changes worsen in HD patients;
changes in local metrics are observed later in HD patients.

Graph Theory Measures in Associative, Limbic
and Sensorimotor Networks (Cortical and
Subcortical)

In HD, reduction in hubs was observed in the sensorimo-
tor network in all sessions, but the associative hubs were
maintained during the first and second sessions. In HD,
most functional imaging studies have reported reduced
functional connectivity at rest within motor areas as well as
associative areas of the frontal and parietal lobes [Dumas
et al., 2013; Poudel et al., 2014] and the default mode net-
work [Dumas et al., 2013]. We complement these results by
showing that changes predominated in the sensorimotor
network, as suggested by changes in bc and C. However, we
note that changes in k were observed in all of the circuits.

Longitudinal Changes in Graph Theory Measures

Overall, there were little or no changes in the graph the-
ory metrics across sessions in either the preHD or the HD
objects. This finding is consistent with previous studies of
preHD subjects that failed to demonstrate changes in func-
tional connectivity using independent component analysis
[Odish et al., 2015] or seed-based analysis in the isthmus
of the cingulate region and the putamen [Seibert et al.,
2012]. These two longitudinal studies investigated preHD
patients and assessed the potential utility of rs-fMRI as a
biomarker of disease progression. The authors did not find
significant changes in connectivity after one year [Seibert
et al., 2012] or three years of follow-up [Odish et al., 2015].
Taken together, these results suggest that functional con-
nectivity measures using rs-fMRI may not provide good
markers of disease progression. This results may be due to
the wide range of possible strategies for data analysis that
can influence the results of graph theory calculation,
including the choice of graph thresholding, the number of
cortical and subcortical regions and the size of the sample,
as shown previously [Vives-Gilabert et al., 2013]. In addi-
tion, the results of graph theory metrics based on task
fMRI have demonstrated significant between-subject vari-
ability [Vives-Gilabert et al., 2013].

In contrast to global or local connectivity measures (C,
bc), there was a significant increase in k (indicating
increased node connections) in subcortical regions for the
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three circuits in HD individuals compared with the con-
trols. In some cases, this finding was correlated with their
reduction in volume. In HD patients, the increase in k was
more pronounced in the associative circuit than in other
circuits, as shown by the presence of a session effect.

Lastly, there were significant changes in hub organiza-
tion over time. We noted a reduction in hubs in the asso-
ciative circuits in HD individuals (session effect in BA 18/
19 and 17) and in preHD subjects (BA 17).

The lack of longitudinal changes in imaging data was
not related to the absence of clinical decline. We can con-
clude that three years may not be sufficient for a longitu-
dinal study related to HD.

Correlation of Graph Theory Measures with
Clinical and Cognitive Variables

We found that the graph theory measures correlated to
differing degrees with the clinical measurements. Dimin-
ished performances on clinical tests were associated with a
decreased path length L, an increased degree k and a
reduced clustering C. In HD, there was some degree of cir-
cuit specificity between graph theory and clinical meas-
ures. Correlations with apathy scores were observed in the
limbic network, and correlations with cognitive tests
(SDMT and Stroop) were observed in the associative net-
work. In contrast, UHDRS scores were correlated with k in
the associative and limbic network but not in the sensori-
motor network, as expected. In addition, a decrease in L
was also correlated with reduced performance on the
SDMT and Stroop tests. This circuit specificity was not
obvious in preHD individuals; C in the sensorimotor and
limbic networks was correlated with all tests. We found
that the UHDRS scores were correlated with graph theory
measures in all of the networks. The correlations further-
more did not appear consistent across the studies, and no
correlation was found between scores on the Stroop test
and the tail making test in preHD individuals, unlike the
results of a previous study [Harrington et al., 2015]. Lastly,
the burden score was correlated with graph theory meas-
ures in the cortical and subcortical regions, which is con-
sistent with the results of Harrington et al. [2015], but in
the sensorimotor network only. Together with the predom-
inance of changes in graph theory metrics in the sensori-
motor network, this findings suggests that the disease
process has a larger impact on the sensorimotor network
connectivity.

LIMITATIONS

The study included only a moderate number of subjects.
More changes may have been detected in preHD individu-
als had we used a larger number of subjects. The head
motion of the patients might also have affected the rs-
fMRI measures [Van Dijk et al., 2012] despite the motion-
correction procedures applied to the data [Power et al.,

2014]. Head movements are particularly expected in HD
subjects. To regress out movement-induced variance, we
included motion-realignment parameters in our analysis.
The variance of the realignment parameters of patients did
not significantly differ from that of the controls. We also
excluded TRACK-HD subjects with excessive movement.

CONCLUSION

In this study, we demonstrated global and fine-scale
functional disorganization of cortico-basal ganglia net-
works in HD. This functional disorganization may reflect
the disorganization of cortico-basal ganglia networks, with
progressive loss of some small-world properties and loss
of hubs predominating in the sensorimotor and associative
networks. Moreover, our data also partly support the
hypothesis that the dysfunction of different networks
might contribute to the clinical heterogeneity of HD. In
conclusion, preHD is characterized by progressive decreas-
ing hub organization, and these changes worsen in HD
patients with changes in local metrics. HD is characterized
by progressive changes in global network interconnectivity
that render the network topology more random over time.

We observed correlations between the burden score and
graph theory measures for preHD in the sensorimotor cir-
cuit only. The burden score was negatively correlated with
bc and k in both the cortical and subcortical regions.
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