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Abstract. We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value.
This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longi-
tudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had
converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated
to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity.
In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive func-
tioning in the future.
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Introduction
During normal brain development and aging, the brain is
affected by progressive (e.g., cell growth and myelination)
and by regressive (e.g., cell death and atrophy) neuronal
processes (Silk & Wood, 2011). Those processes have been
found to follow a specific pattern, with gray matter (GM)
volume increasing in the first years of life and thereafter
decreasing continuously; and with white matter (WM) vol-
ume increasing steadily until around the age of 20 when it
plateaus (Good et al., 2001; Pfefferbaum et al., 1994).
Healthy brain aging has been found to follow a specific
heterogeneous and complex pattern of atrophy across the
adult lifespan (Good et al., 2001), with normal age-related
GM decline being inversely related to the phylogenetic or-
igin of each respective region, i.e., younger structures being
the last to mature as well as being more vulnerable to neu-
rodegeneration (Terribilli et al., 2009; Toga, Thompson, &
Sowell, 2006).

With the growing number of studies that have investi-
gated both normal and abnormal age-related brain changes,
most major neuropsychiatric disorders are now thought to
arise due to deviations from normal brain development

(Gogtay & Thompson, 2010). Also diseases such as Alz-
heimer’s disease (AD) and schizophrenia alter brain struc-
tures in diverse and abnormal modes (Ashburner et al.,
2003; Meda et al., 2008). AD in particular is widely as-
sumed to reflect accelerated aging (Cao, Chen-Plotkin,
Plotkin, & Wang, 2010; Jones et al., 2011; Saetre, Jazin, &
Emilsson, 2011), with accelerated age-related changes in
brain atrophy being already evident at the stage of mild
cognitive impairment (MCI), i.e., the prodromal stage of
AD (Driscoll et al., 2009; Spulber et al., 2010). Additional
evidence for this view was recently provided by showing
that the atrophied regions detected in AD patients are large-
ly overlapping with regions showing a normal age-related
decline in age-matched healthy control subjects (Dukart,
Schroeter, & Mueller, 2011).

Given the widespread but well-ordered brain tissue loss
that occurs as a function of age-based processes, a straight-
forward and efficient solution might be to model healthy
brain aging in order to subsequently identify abnormal aging
processes and accelerated brain atrophy before the onset of
upcoming clinical symptoms. Recently, we introduced a new
approach based on structural magnet resonance imaging
(MRI) data that enables to reliably estimate the brain age of
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any given subject (Franke, Ziegler, Klöppel, Gaser, & Initia-
tive, A. S. D. N., 2010). By employing kernel regression
methods in a large training database, the complex, multidi-
mensional aging patterns across the whole brain are detected
and finally aggregated to a single value, i.e., the estimated
brain age (Figure 1A). The individual discrepancies between
estimated and chronological age were termed brain-age gap
estimation (BrainAGE) score, with observed differences in
BrainAGE scores being interpreted as originating from struc-
tural brain changes that show the pattern of accelerated (or
decelerated) aging. Consequently, although only one MRI
scan per subject is employed, the degree of acceleration or
deceleration of brain aging can be quantified directly in terms
of years, allowing a wide range of analyses and predictions
on an individual level. For example, if a 70-year-old individ-
ual has a deviating BrainAGE score of +5 years, this means
that this individual shows the typical atrophy pattern of a
75-year-old individual (Figure 1B). The framework compris-
es well-established and fully automatic processing steps of
the MRI data, combines data from different scanners, and
accurately estimates the age of healthy individuals with a
correlation of r = 0.92 between estimated and chronological
age. Furthermore, this brain-age estimation model has
showed its potential to provide clinically relevant informa-
tion by reporting a statistically significant, positive deviation
of 10 years between estimated and chronological age in AD
patients from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database, indicating structural brain changes that
show the pattern of accelerated aging (Franke et al., 2010).
Additionally, a slightly modified BrainAGE approach recent-
ly provided a reliable reference curve based on structural
MRI data, allowing for the prediction of structural brain mat-
uration and a fast identification of developmental delays in
childhood and adolescence (Franke, Luders, May, Wilke, &
Gaser, 2012).

By implementing this new method of brain-age estima-
tion, our present studies further analyze the stability and
reliability of the BrainAGE approach, utilizing two sub-
samples that have (1) a short delay between two scans of
the same subject on the same scanner (1.5T) as well as (2)
two scans of the same subjects with two different field
strengths (1.5T and 3.0T). Second, within a follow-up pe-
riod of up to 4 years we explored the patterns of longitudi-
nal changes in individual BrainAGE and quantified about
400 cognitively normal, MCI, and AD subjects. Further,
we related discrepancies in brain aging to prospective cog-
nitive functioning and disease severity.

Methods

ADNI Database

Part of the data used in the preparation of this article were
obtained from the ADNI database (http://adni.loni.ucla.edu).
The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Adminis-
tration (FDA), private pharmaceutical companies, and non-
profit organizations, as a $60 million, 5-year public-private
partnership. The primary goal of ADNI was to test whether
serial MRI, positron emission tomography (PET), other bio-
logical markers as well as clinical and neuropsychological
assessment can be combined to measure the progression of
MCI and early AD. Determination of sensitive and specific
markers of very early AD progression should aid researchers
and clinicians in developing new treatments and monitoring
their effectiveness as well as lessening the time and cost of
clinical trials.

Figure 1. Depiction of the BrainAGE concept. (A) The model of healthy brain aging is trained with the chronological age
and preprocessed structural MRI data of a training sample (left, with an exemplary illustration of the most important voxel
locations that were used by the age regression model). Subsequently, the individual brain ages of previously unseen test
subjects are estimated, based on their MRI data (blue, picture modified from Schölkopf et al., 2002[not in refs, or
Schölkopf & Smola?]). (B) The difference between the estimated and chronological age results in the BrainAGE score.
Consequently, positive BrainAGE scores indicate accelerated brain aging (blue area; for more detailed information please
see Franke, Ziegler, Klöppel, Gaser, & Initiative, A. S. D. N., 2010).
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The principal investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of Cali-
fornia – San Francisco. ADNI is the result of efforts of
many coinvestigators from a broad range of academic in-
stitutions and private corporations, and subjects have been
recruited from over 50 sites across the United States and
Canada. The initial goal of ADNI was to recruit 800 adults,
aged 55 to 90, to participate in the research; approximately
200 cognitively normal older individuals to be followed for
3 years; 400 people with MCI to be followed for 3 years;
and 200 people with early AD to be followed for 2 years.
For up-to-date information, see http://www.adni-info.org.

Subjects

To train the age estimation framework, we used T1-weight-
ed MRI data of 560 healthy subjects (249 males) from the
publicly accessible IXI cohort (http://www.brain-develop-
ment.org; data downloaded in September 2011) aged
20–86 years, which were collected on three different scan-
ners (Philips 1.5T, General Electric 1.5T, Philips 3.0T).

Before analyzing the individual patterns of longitudinal
BrainAGE changes, the stability of BrainAGE estimations
within the same subjects were explored using two different
subsamples. The first test sample included structural MRI
data of 20 healthy subjects (aged 19–34 years) from the
Open Access Series of Imaging Studies database (OASIS;
Marcus et al., 2007; http://www.oasis-brains.org), for
whom a short-delay (less than 90 days) double scan on the
same scanner was available (Siemens 1.5T). The second
test sample included 1.5T as well as 3.0T structural MRI
data (acquired within a short delay) of 60 healthy nonde-
mented elderly subjects (aged 60–87 years) from the ADNI
database (data downloaded in May 2010). The characteris-
tics of all three samples are given in Table 1.

To investigate the longitudinal pattern of BrainAGE

changes in healthy aging, MCI, and AD, a third test sample
included all subjects from the ADNI database for whom at
least the baseline scan and one follow-up scan were available
(1.5T). Adopting the diagnostic classification at baseline and
follow-up, subjects were grouped as (1) NO (healthy sub-
jects) if diagnosis was NO at baseline and 3-year follow-up
[n = 108]; (2) sMCI (stable MCI) if diagnosis was MCI at
baseline and 3-year follow-up [n = 36]; (3) pMCI (progres-
sive MCI) if diagnosis was MCI at baseline and AD at some
follow-up, without reversion to MCI or NO [n = 112]; (4) AD
patients if diagnosis was AD at baseline, without reversion [n
= 150]. For further analyses we used baseline and follow-up
test scores of the cognitive scales: Alzheimer’s Disease As-
sessment Scale (ADAS; Mohs, 1996; Mohs & Cohen, 1988;
range 0–85, with higher test scores being related to worse
cognitive functioning), global Clinical Dementia Rating
Scale (CDR; Morris, 1993; range 0–3, with 0 denoting cog-
nitively healthy, 0.5 denoting mild cognitive impairments,
and a score of 1 or above denoting AD), and Mini-Mental
State Examination (MMSE; Cockrell & Folstein, 1988; range
0–30, with lower scores being related to higher disease sever-
ity). The baseline and follow-up characteristics of this test
sample are given in Table 2.

Table 1. Characteristics of the subjects in the training group
(IXI) and both test samples (OASIS and ADNI) double-
scanned within a short delay (< 90 days)

Training sample Test samples

IXI OASIS ADNI

No. subjects 560 20 60

Males/Females 249/311 8/12 22/38

Age mean (SD) 48.6 (16.5) 23.4 (4.0) 75.2 (4.8)

Age range 20–86 19–34 60–87

No. of MRI scan-
ners (1.5T/3T)

2/1 1/0 26/26

Notes. Please explain use of italics!

Table 2. Characteristics of the ADNI test sample for longitudinal analyses

NO sMCI pMCI AD

Baseline No. subjects 108 36 112 150

Males/females 61/47 30/6 67/45 76/74

Age mean (SD) 75.6 (5.0) 77.0 (6.1) 74.5 (7.4) 74.6 (7.6)

MMSE mean (SD) 29.22 (0.89) 27.42 (1.87) 26.62 (1.75) 23.45 (1.95)

CDR mean (SD) 0.00 (0.00) 0.50 (0.00) 0.50 (0.00) 0.73 (0.25)

ADAS mean (SD) 8.84 (3.84) 17.29 (5.88) 21.77 (5.70) 28.78 (7.85)

Follow-up No. scans (SD) 5.02 (0.77) 5.86 (0.87) 5.20 (1.38) 3.45 (0.74)

Follow-up duration in days (SD) 1194 (261) 1114 (244) 969 (360) 609 (222)

Age at last scan (SD) 78.9 (5.0) 80.1 (6.0) 77.2 (7.6) 76.3 (7.7)

MMSE at last scan (SD) 29.01 (1.27) 27.11 (2.63) 21.62 (4.28) 19.28 (5.64)

CDR at last scan (SD) 0.06 (0.16) 0.49 (0.15) 0.92 (0.42) 1.27 (0.67)

ADAS at last scan (SD) 10.11 (5.44) 17.64 (6.48) 32.53 (9.48) 38.14 (12.14)

Notes. Abbreviations: AD, Alzheimer’s disease; ADAS, Alzheimer’s Disease Assessment Scale; CDR, clinical dementia rate; MMSE, Mini-
Mental State Examination; NO, healthy control subjects; pMCI, progressive mild cognitive impairment; SD, standard deviation; sMCI, stable
mild cognitive impairment.
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Preprocessing of MRI Data and Data
Reduction

Preprocessing of the T1-weighted images was done using
the SPM8 package (http://www.fil.ion.ucl.ac.uk/spm) and
the VBM8 toolbox (http://dbm.neuro.uni-jena.de), running
under MATLAB. All T1-weighted images were corrected
for bias-field inhomogeneities, then spatially normalized
and segmented into GM, WM, and cerebrospinal fluid
(CSF) within the same generative model (Ashburner &
Friston, 2005). The segmentation procedure was further ex-
tended by accounting for partial volume effects (Tohka,
Zijdenbos, & Evans, 2004), by applying adaptive maxi-
mum a posteriori estimations (Rajapakse, Giedd, & Rapo-
port, 1997), and by using a hidden Markov random field
model (Cuadra, Cammoun, Butz, Cuisenaire, & Thiran,
2005) as described previously (Gaser, 2009). The images
were processed with affine registration and smoothed with
4-mm full-width-at-half-maximum smoothing kernels.

BrainAGE Framework

The BrainAGE framework utilizes a high-dimensional pat-
tern recognition method, i.e., relevance vector regression
(RVR; Tipping, 2001), to model healthy brain aging. RVR
was introduced by Tipping (2000) as a Bayesian alternative
to support vector machines (SVM), but is easier to use since
all model parameters are automatically estimated by the
learning procedure itself. More details can be found in
Bishop (2006), Schölkopf and Smola (2002), and Tipping
(2000). Recently, the BrainAGE framework proved to be a
reliable, scanner-independent, and efficient method for age
estimation in healthy subjects (Franke et al., 2010). It re-
sulted in a correlation of r = 0.92 between the estimated
and the real age in the test samples, and a mean absolute
error of 5 years. Furthermore, the study identified the num-
ber of training samples as the critical factor for prediction
accuracy.

In general, the age regression model is trained with the
chronological age and preprocessed whole brain structural
MRI data of the training sample, resulting in a complex
model of healthy brain aging (Figure 1A, left). Subsequent-
ly, the brain age of a test subject can be estimated using the
individual tissue-classified MRI data, aggregating the com-
plex, multidimensional aging pattern across the whole
brain into one single value (Figure 1A, right). The differ-
ence between estimated and chronological age results in
the BrainAGE score, which consequently directly quanti-
fies the amount of acceleration or deceleration in brain ag-
ing (Figure 1B). For training the model as well as for pre-
dicting  individual  brain ages, we used “The Spider”
(http://www.kyb.mpg.de/bs/people/spider/main.html), a
freely available toolbox running under MATLAB. For
more detailed information please refer to Franke et al.
(2010).

Within this study, the linear combination of whole brain
GM and WM images were used to train the BrainAGE frame-
work. Data reduction was performed by applying principal
component analysis (PCA), utilizing the “Matlab Toolbox for
Dimensionality Reduction” (http://ict.ewi.tudelft.nl/~lvan-
dermaaten/Home.html). PCA was performed only on the
training sample. The estimated transformation parameters
were subsequently applied to the test samples, allowing esti-
mation of individual brain ages based on baseline MRI data.
The difference between the estimated and the chronological
age resulted in the BrainAGE score, indicating accelerated
(positive values) or decelerated (negative values) brain aging.

Statistical Analysis

In the first analysis, the intraclass correlation coefficient
(ICC; two-way random single measures) as well as Stu-
dent’s t-test was calculated for each test sample separately
to assess the conformity and stability of BrainAGE estima-
tions across several MRI scans within a short delay (OA-
SIS) and across different scanner field-strengths (ADNI).

In the second analysis, the longitudinal changes in indi-
vidual BrainAGE scores, which were corrected for age and
gender, were fitted against days from baseline with a mul-
tivariate linear regression model. Baseline BrainAGE
scores, BrainAGE scores at last visit, and longitudinal
changes in BrainAGE were compared among the four di-
agnostic groups using an analysis of variance (ANOVA).
Posthoc analyses (with Bonferroni adjustment to compen-
sate for multiple comparisons) were conducted to further
explore significant group differences. The relationship be-
tween BrainAGE scores and cognitive scales (i.e., MMSE,
CDR, ADAS) were explored using Pearson’s linear corre-
lation coefficients. ICC was calculated using SPSS. All
other statistical testing was performed using MATLAB.

Results

Stability of BrainAGE Estimations

The BrainAGE estimations within the same subjects
proved to be stable across a short delay between two scans
as well as across scanners. In the OASIS subsample, in
which the subjects had a short delay between two scans on
the same scanner (1.5T), the brain-age estimations resulted
in mean (SD) raw BrainAGE scores of 13.8 (6.1) years for
the 1st and 12.8 (5.6) years for the 2nd scan (Figure 2A).
The raw BrainAGE scores derived from the 1st as well as
2nd scan significantly differed from a zero mean (p < .001),
but not among each other (p = .60). The correlation be-
tween the raw BrainAGE scores derived from the 1st and
2nd scan data resulted in r = 0.93 (p < .001). Thus, the
results suggest a systematical data-specific offset at each
of both scanning time points. For illustration reasons and/or
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better interpretability of the results, this offset can be easily
adjusted by a linear shift, i.e., setting the BrainAGE scores
to a zero group mean (Figure 2B). Linearly adjusting for
the offset at each scanning time point separately, resulted
in a correlation between raw and adjusted BrainAGE scores
of r = 0.996 (p < .001). The ICC between the BrainAGE
scores calculated from the 1st and 2nd scan was 0.93 [95%
confidence interval (CI): 0.83–0.97], demonstrating strong
stability of the estimated BrainAGE scores across several
MRI scans.

The ADNI subsample, which included only nondement-
ed subjects who had two baseline scans from MRI scanners
of two different field strengths (1.5T and 3.0T) showed
mean (SD) raw BrainAGE scores of –5.9 (7.0) years for the
1.5T data and –9.1 (6.6) years for the 3.0T data (Figure
3A), with a correlation between both scans of r = 0.91 (p
< .001). The raw BrainAGE scores derived from the 1.5T
as well as 3.0T data significantly differed from a zero mean
(p < .001). These results additionally suggest a strong de-
pendency of brain-age estimation on field strength, with

Figure 2. Unadjusted (A) and offset-adjusted (B) BrainAGE scores for double-scanned OASIS subjects on the same
scanner within a short delay. ICC between the BrainAGE scores calculated from the 1st and 2nd scan was 0.93.

Figure 3. Unadjusted (A) and offset-adjusted (B) BrainAGE scores for double-scanned ADNI subjects on 1.5T and 3.0T
scanner within a short delay. ICC between the BrainAGE scores calculated from the 1.5T and 3.0T scan was 0.90.
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1.5T MRI data resulting in larger BrainAGE scores than
those derived with 3.0T MRI data. Again, this offset can
be easily adjusted by a linear shift as described above (Fig-
ure 3B). After linearly adjusting for the field strength-spe-
cific offset, Student’s t-test resulted in no difference be-
tween the BrainAGE scores calculated from the 1.5T and
3.0T scan (p = 1.00). ICC between the BrainAGE scores
calculated from the 1.5T and 3.0T scan was 0.90 [CI:
0.84–0.94], demonstrating strong stability of the estimated
BrainAGE scores across different field strengths. Taken to-
gether, these results suggest that the BrainAGE framework
reliably estimates individual brain age based on structural
MRI data.

Longitudinal BrainAGE Estimation

In the longitudinal ADNI sample, the baseline BrainAGE
scores differed among the four groups (F = 26.8; p < .001).
For better interpretability, all individual BrainAGE scores
were adjusted by a linear shift determined in the NO group
(as described in “Stability of BrainAGE estimations”).
Thus, the baseline BrainAGE scores resulted in the follow-
ing group means: NO = –0.30 years, sMCI = –0.48 years,
pMCI = 6.19 years, and AD = 6.67 years (Figure 4A). Post-
hoc t-tests showed significant differences between
NO/sMCI vs. pMCI/AD (p < .05), suggesting structural
brain changes that show the pattern of accelerated aging in
the pMCI and AD groups. Regarding NO and sMCI sub-
jects, the estimated brain age at baseline did not differ sig-

nificantly from the chronological age (p = .61 in both
groups).

The BrainAGE scores remained stable for the NO and
the sMCI groups across the follow-up period of up to 4
years, but increased in the pMCI and AD groups, suggest-
ing additional acceleration in brain aging in the pMCI and
AD groups. The fit of the longitudinal changes in Brain-
AGE resulted in the following changing rates (BrainAGE
years per follow-up year): NO = 0.12, sMCI = 0.07, pMCI
= 1.05, and AD = 1.51 (Figure 5). These rates differed
among the groups (F = 23.1; p < .001), with posthoc t-tests
showing significant differences between NO/sMCI vs.
pMCI/AD (p < .05). At the last MRI scan of each subject,
the BrainAGE scores also differed among the groups (F =
44.0; p < .001), resulting in the following: NO = –0.06
years, sMCI = –0.38 years, pMCI = 8.96 years, and AD =
9.02 years (Figure 4B). Again, posthoc t-tests showed sig-
nificant differences between NO/sMCI vs. pMCI/AD (p <
.05). Regarding NO and sMCI subjects, the estimated brain
age at baseline did not differ significantly from the chro-
nological age (p = .92 and p = .68, respectively).

Taken together, these results suggest that the accelera-
tion in brain aging in pMCI and AD found at baseline be-
comes even more accelerated during the next months and
years. On the other hand, the results suggest that brain ag-
ing in NO and sMCI remained stable during the follow-up
period of 4 years, showing only normal age-related atrophy.

Across the whole sample, the BrainAGE scores at base-
line were moderately correlated with cognitive functioning
and clinical disease severity up to 4 years later (Table 3),
with larger BrainAGE scores being related to worse cogni-

Figure 4. Box plots of (A) baseline BrainAGE scores and (B) BrainAGE scores of last MRI scans for all diagnostic groups.
Posthoc t-tests showed significant differences between NO/sMCI vs. pMCI/AD (p < .05; red lines) at both time measure-
ments. The gray boxes contain the values between the 25th and 75th percentiles of the samples, including the median
(dashed line). Lines extending above and below each box symbolize data within 1.5 times the interquartile range (outliers
are displayed with a “+”). The width of the boxes depends on the sample size.
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tive functioning and more severe clinical symptoms (r =
0.39–0.46). The BrainAGE scores based on the last MRI
scan correlated even slightly stronger with cognitive scores
and clinical severity  of the last follow-up visit (r =
0.46–0.55). The changes in BrainAGE scores were also re-
lated to the individual changes in all of the three scores (r
= 0.27–0.33). These results denote a close relationship be-
tween accelerated brain aging and prospective worsening

of cognitive functioning within the whole sample, i.e.,
within the full variance of cognitive as well as BrainAGE
scores.

Even more interesting, when analyzing each diagnostic
group separately, we found these relationships between
BrainAGE and cognitive as well as severity scores were
only in the pMCI and AD groups, but not in sMCI and NO
groups (Table 3). In pMCI, the strongest correlation with

Table 3. Correlation coefficients between BrainAGE and cognitive functioning (ADAS scores) as well as disease severity
(MMSE & CDR scores) for the whole test sample as well as for each diagnostic group separately

NO sMCI pMCI AD Whole
sample

Correlation with baseline BrainAGE score MMSE score at last scan –0.14 0.09 –0.18 –0.38*** –0.46***

CDR score at last scan –0.04 0.03 0.13 0.24** 0.39***

ADAS score at last scan –0.03 –0.24 0.33*** 0.31*** 0.45***

Correlation with BrainAGE score at last scan MMSE score at last scan –0.12 0.01 –0.28** –0.46*** –0.55***

CDR score at last scan 0.01 –0.09 0.20* 0.30*** 0.46***

ADAS score at last scan –0.04 –0.10 0.40*** 0.37*** 0.55***

Correlation with change in BrainAGE score
(baseline – last scan)

MMSE change 0.09 –0.29 –0.23* –0.23** –0.33***

CDR change 0.13 –0.27 0.19* 0.19* 0.27***

ADAS change –0.10 –0.04 0.29** 0.16* 0.30***

*p < .05, **p < .01, ***p < .001. Please explain use of bold and italics!

Figure 5. Longitudinal changes in BrainAGE scores for NO (purple), sMCI (green), pMCI (red), and AD (blue). Thin
lines represent individual changes in BrainAGE over time; thick lines indicate estimated average changes for each group.
Posthoc t-tests showed significant differences in the longitudinal BrainAGE changes between NO/sMCI vs. pMCI/AD (p
< .05; black lines).
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BrainAGE was found in ADAS (r = 0.40; p < .001), which
is a rather cognitive scale. In AD, the strongest correlation
with BrainAGE was found in MMSE (r = –0.46; p < .001),
which is commonly used to measure disease severity in
AD. These results strongly support the recent result of pro-
found accelerated brain aging being related to disease se-
verity, most pronounced in subjects being already diag-
nosed with AD, and prospective worsening of cognitive
functioning, most pronounced in pMCI subjects.

Discussion

This study described and implemented a novel MRI-based
biomarker, aggregating the complex, multidimensional ag-
ing pattern across the whole brain into one single value,
i.e., the BrainAGE score that directly quantifies accelera-
tion or deceleration in individual brain aging. The Brain-
AGE framework comprises well-established and fully au-
tomated processing of the T1-weighted MR images and al-
lows one to combine data from different MRI scanners.
With correlations between chronological age and estimated
brain age of r = 0.92 in healthy adults, aged 20–86 years
(Franke et al., 2010), and r = 0.93 in healthy children and
adolescents, aged 5–18 years (Franke et al., 2012), the
BrainAGE framework has proved to be a straightforward
method of accurately and reliably estimating brain age with
minimal preprocessing and parameter optimization. Most
remarkably, although brain maturation in childhood as well
as brain aging in late life comprise very complex, multidi-
mensional, and highly variable processes (Good et al.,
2001; Lebel & Beaulieu, 2011; Lenroot & Giedd, 2006;
Wilke, Schmithorst, & Holland, 2003), the confidence in-
tervals of estimated brain age did not change as a function
of age (Franke et al., 2012, 2010). This underlines the great
potential of the approach to correctly capture the multidi-
mensional characteristics of the different maturational and
aging processes occurring in childhood and old age, respec-
tively.

Here, the BrainAGE framework was trained with whole-
brain structural MRI data of about 560 healthy subjects,
aged 20–86 years. The model of healthy brain aging was
then applied to new data samples. First, the stability of in-
dividual BrainAGE scores was examined. With ICCs 0.93
and 0.90 between the BrainAGE scores calculated from
two shortly delayed scans on the same MRI scanner and on
different 1.5T and 3.0T scanners, respectively, the Brain-
AGE framework proved its ability to provide reliable esti-
mates.

The sample-specific offsets that emerged in the estima-
tion of BrainAGE scores seem to depend on the kind of
MRI scanner used, its field-strength, the scanning sequenc-
es, and other sample-specific parameters. Therefore, the in-
fluences of varying image quality and segmentation quality
in training and test data on brain-age estimation quality lim-
it the reliability of the proposed method and should thus be

carefully controlled in future studies as well as analyzed
further within even larger samples. But since these offsets
proved to be systematic in all subjects within the same sam-
ple, it can be easily controlled for by a linear shift. When
quantifying brain aging and comparing BrainAGE in dif-
ferent clinical samples, one should include samples of
healthy subjects in order to control for potential sample-
and/or MRI scanner-specific offsets in the estimated
scores. There is no need to include control subjects to cor-
rect for potential offsets when examining only the relation
between BrainAGE and other measures or the difference
between brain aging in two subsamples of the same sample.
Here, the BrainAGE framework is robust and can further-
more be applied to and generalized across different scan-
ners. These results are in line with Klöppel et al. (2008),
indicating that the effect of the scanner is sufficiently dif-
ferent from that of aging processes.

Regarding the relevance within the clinical context, the
BrainAGE approach again proved its potential to indicate
accelerated brain aging based on structural MRI data. Sub-
jects with AD and subjects with MCI who converted to AD
and cognitively declined within 3 years of follow-up
(pMCI) exhibited significantly larger baseline BrainAGE
scores compared to control subjects and those with MCI
who remained cognitively stable (sMCI). Further, the
BrainAGE framework even proved its capability of recog-
nizing accelerated brain atrophy in a longitudinal design.
Already starting with a higher baseline BrainAGE score of
about 6 to 7 years in pMCI and AD, brain aging accelerates
even more during follow-up, at the speed of 1 additional
year in brain atrophy per follow-up year in pMCI subjects
and 1.5 additional years in brain atrophy per follow-up year
in AD patients. This accumulated to a mean BrainAGE
score of about 9 years at the last scan in both groups, with
mean follow-up durations of 2.6 years for pMCI and 1.7
years for AD. Compared to that, sMCI and healthy control
subjects did not show any deviations from healthy brain
aging at baseline or at follow-up. These results are in line
with recent studies that showed increased GM atrophy of
approximately 2% per year in AD (Anderson et al., 2012),
accelerated changes in whole brain volume in MCI (Dris-
coll et al., 2009), acceleration in atrophy rates as subjects
progress from MCI to AD (Jack et al., 2008), and greater
GM loss in certain regions in pMCI subjects (Chetelat et
al., 2005; Desikan et al., 2008; Leow et al., 2009; McDon-
ald et al., 2012; Sluimer et al., 2009). Furthermore, our re-
sults also support the assumption of AD being a form of or
at least being associated with accelerated aging (Cao et al.,
2010; Driscoll et al., 2009; Dukart et al., 2011; Jones et al.,
2011; Saetre et al., 2011; Spulber et al., 2010).

Additionally, the individual BrainAGE scores were
clearly related to measures of severity of clinical disease,
most pronounced in subjects already diagnosed as AD, as
well as cognitive functioning, most pronounced in MCI
subjects converting to AD within the next 3 years. Even
more interestingly and clinically valuable, the BrainAGE
scores estimated at baseline were already moderately cor-
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related to the prospective worsening of cognitive function-
ing within the next 3 years. Cognitive decline was recently
found to progressively accelerate years before being diag-
nosed as AD (Wilson, Leurgans, Boyle, & Bennett, 2011),
and be correlated with the atrophy rates in specified brain
regions (Desikan et al., 2008). Our results support the sug-
gested relationship between progressive acceleration in
brain aging and rate of change in cognitive functioning as
well as clinical severity in pMCI and AD during follow-up.
Furthermore, we could even show a distinct pattern of ac-
celerated brain aging in pMCI subjects being more closely
related to the worsening of higher cognitive functions, but
slightly less with disease severity, whereas in AD patients
accelerated brain aging was more closely related to disease
severity and slightly less with the worsening of higher cog-
nitive functions. Regarding NO and sMCI subjects, a ceil-
ing effect was observed as well as a slightly lower variance
within the cognitive scores. This may be mainly due to the
fact that the scales analyzed in this study were used specif-
ically to identify clinical disease severity as well as deteri-
oration in cognitive functioning in the ADNI sample. Fu-
ture work should further explore the relationship between
BrainAGE and cognitive functioning with cognitive scales
that are more appropriate to capture healthy cognitive ag-
ing.

In conclusion, the BrainAGE framework demonstrated
its potential to reliably indicate accelerated brain aging.
Since an additional increase in BrainAGE scores as well as
profound relationships to disease severity and prospective
worsening of cognitive functions were found in pMCI and
AD during follow-up, the validity of individual BrainAGE
scores indicating accelerated brain aging is further
strengthened. Future work should demonstrate the applica-
bility of the BrainAGE method on a single subject level in
order to indicate early on those people at risk for converting
to AD. Recently, we already demonstrated the capability of
the BrainAGE approach to work on a single subject level
by classifying subjects as either children (age range 5–10
years) or adolescents (age range 13–18 years), based on
their estimated brain age, with 97% accuracy (sensitivity =
98%, specificity = 96%; Franke et al., 2012).

The implication of these results is that this approach
could potentially lead to improved identification of people
at risk of faster degradation of brain structure and function
and potential risk for AD, thus contributing to an early di-
agnosis of neurodegenerative diseases, and facilitate early
treatment or a preventative intervention. Depending on the
availability of subject data, future explorations could in-
clude applying this approach to several risk factors for ac-
celerated brain aging and dementia, like diabetes (de Bres-
ser et al., 2010; van Elderen et al., 2010), the metabolic
syndrome (Solfrizzi et al., 2011), or other lifestyle factors
(Chen, Lin, & Chen, 2009; Clarke, 2006; Scarmeas et al.,
2009; Solfrizzi et al., 2008), to predict the severity of clin-
ical symptoms or the rate of cognitive decline, to differen-
tiate between different kinds of dementia (e.g., fronto-tem-
poral dementia), and to evaluate the therapeutic effect of

drugs or other treatment modalities. Additionally, since in-
dividual quality of life is increasingly being suggested as a
crucial outcome variable for health-improving and preven-
tive interventions in old age (Garratt, Schmidt, Mackin-
tosh, & Fitzpatrick, 2002; Martin, Schneider, Eicher, &
Moor, 2012), it may be enlightening to integrate the Brain-
AGE approach into the recently presented “functional qual-
ity of life” (fQOL) model (Martin et al., 2012). This model
determines the quality of life with a dynamic approach,
allowing the testing of the complex relations between in-
dividual functionality judgments (e.g., individual resourc-
es, activities, central life domains) and how these relations
can be adapted to stabilize or increase individual fQOL.
Moreover, the fQOL can be applied to compare between
and within subjects across the lifespan. Hence, future work
may examine the functional value of individual BrainAGE
scores and its complex interactions with fQOL-determining
variables such as subjective representations as well as eval-
uations of cognitive performance (e.g., memory) in order
to finally determine individuals’ overall quality of life.

Consequently, in the future this novel BrainAGE ap-
proach may prove clinically valuable in detecting both nor-
mal and abnormal brain aging, providing important prog-
nostic information.
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