
RESEARCH Open Access

Longitudinal development of the gut
microbiome and metabolome in preterm
neonates with late onset sepsis and healthy
controls
Christopher J. Stewart1*, Nicholas D. Embleton2, Emma C. L. Marrs3, Daniel P. Smith1, Tatiana Fofanova1,

Andrew Nelson4, Tom Skeath2, John D. Perry3, Joseph F. Petrosino1, Janet E. Berrington2

and Stephen P. Cummings5

Abstract

Background: Late onset sepsis (LOS) in preterm infants is associated with considerable morbidity and mortality.

While studies have implicated gut bacteria in the aetiology of the disease, functional analysis and mechanistic

insights are generally lacking. We performed temporal bacterial (n = 613) and metabolomic (n = 63) profiling on

extensively sampled stool from 7 infants with LOS and 28 matched healthy (no LOS or NEC) controls.

Results: The bacteria isolated in diagnostic blood culture usually corresponded to the dominant bacterial genera in

the gut microbiome. Longitudinal changes were monitored based on preterm gut community types (PGCTs),

where control infants had an increased number of PGCTs compared to LOS infants (P = 0.011). PGCT 6,

characterised by Bifidobacteria dominance, was only present in control infants. Metabolite profiles differed between

LOS and control infants at diagnosis and 7 days later, but not 7 days prior to diagnosis. Bifidobacteria was positively

correlated with control metabolites, including raffinose, sucrose, and acetic acid.

Conclusions: Using multi-omic analysis, we show that the gut microbiome is involved in the pathogenesis of LOS.

While the causative agent of LOS varies, it is usually abundant in the gut. Bifidobacteria dominance was associated

with control infants, and the presence of this organism may directly protect, or act as a marker for protection,

against gut epithelial translocation. While the metabolomic data is preliminary, the findings support that gut

development and protection in preterm infants is associated with increased in prebiotic oligosaccharides (e.g.

raffinose) and the growth of beneficial bacteria (e.g. Bifidobacterium).
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Background
Late onset sepsis (LOS; defined as sepsis after 72 h of life)

remains a serious and common complication of prematurity,

with rates of 20–40% for infants <32 weeks gestation re-

ported in some studies. LOS in preterm infants impacts

negatively on survival (with mortality rates of up to 10%)

and on developmental outcomes [1]. Mechanisms of LOS

pathogenesis are poorly understood, but bacterial colonisa-

tion and low gestational age are key risk factors [2]. Bacterial

profiling studies have shown that LOS infants have an al-

tered microbiome and lower bacterial diversity [3–8], and

the bacterial strain isolated in diagnostic blood culture is fre-

quently present in the gut [9]. Central to LOS pathogenesis

are bacterial-host interactions modulating gut and systemic

immune responses, tight junction integrity, and host meta-

bolic function [10]. The most common organisms causing

LOS in preterm infants include coagulase-negative Staphylo-

coccus, Escherichia, Klebsiella, and Enterococcus [11].
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Recent advances in ultra-performance liquid chromato

graphy-mass spectrometry (UPLC-MS) untargeted meta-

bolomics facilitate further understanding of these com-

plex relationships involving host and bacteria, and the

complex interactions of immune and metabolic function

in relation to health and disease states [12]. While

largely pilot in nature, existing metabolomic studies in

preterm infants have demonstrated important findings.

In necrotizing enterocolitis (NEC), the most prevalent

serious preterm disease after LOS, the metabolite pro-

files are different at diagnosis compared to controls in

serum [13–15], urine [16], and stool [17]. Stool volatile or-

ganic compound and serum UPLC-MS has also demon-

strated differences between LOS infants and matched

controls at or immediately prior to disease [13, 15, 18].

Stool metabolite profiles are also significantly associated

with age [19] and serum metabolite profiles between pre-

term and term neonates also differ [14].

We aimed to explore relationships between gut micro-

biome and metabolome to determine key insights into

LOS development, impact, and recovery. This is the first

study to employ UPLC-MS untargeted metabolomics of

stool to determine host and bacterial functioning within

the gut of infants diagnosed with LOS.

Results

Infant and sample information

We recruited a large cohort of preterm infants, sampling

stool daily where possible (n = >300 infants/>3000 sam-

ples) and capturing key health-related outcomes using

precise definitions [17, 20, 21]. Using strict classification

for LOS (positive blood culture with a >5 days antibiotics)

and only including infants with robust temporal sampling

before and after disease diagnosis, we present comprehen-

sive longitudinal gut microbiome data on 613 stool sam-

ples from LOS infants (n = 7) and well-matched non-

diseased (no NEC or LOS) controls (n = 28). A subset of

63 stool samples from LOS infants (n = 4) and matched

controls (n = 10) also underwent UPLC-MS.

Infant demographics are shown in Table 1 and further

detail provided in Additional file 1: Table S1. The

average number of samples for LOS and control infants

was comparable (15 vs. 18, respectively). Infant demo-

graphics were comparable between LOS and matched

controls, although as expected, antibiotic use was in-

creased in LOS (antibiotic information provided in

Additional file 2: Table S2). Diagnostic blood culture

identified two cases of Staphylococcus aureus, two cases

of Staphylococcus epidermidis, one case of Enterococcus

faecalis, one case of Streptococcus agalactiae, and one

case of Escherichia coli (Additional file 1: Table S1).

The abundant bacterial genus in the gut microbiome

preceding diagnosis corresponds to the genera of the

causative agent in LOS

The gut microbiome of infants with LOS were highly in-

dividual and dynamic through time. The pathogen iden-

tified by blood culture was one of the most abundant

OTUs in the gut microbiota at diagnosis, with the corre-

sponding genus from the gut microbiome the most

abundant in four cases and second most abundant OTU

in two cases (Fig. 1). An exception was Staphylococcus

epidermidis LOS in infant 251, which was the seventh

most abundant genus at diagnosis. In all cases, the gen-

era of the bacteria isolated in diagnostic blood culture

were present prior to LOS diagnosis. For infant 173 who

was diagnosed with S. agalactiae, the organism was de-

tected 2 days before diagnosis and within 6 days of anti-

biotic treatment (flucloxacillin and gentamicin) it was no

longer detected.

Preterm gut community types dominant in

Bifidobacterium are protective for LOS

To further explore the complexity in the developing pre-

term microbiome, we employed PAM clustering analysis

to ascertain preterm gut community types (PGCTs), as

previously described [17]. All samples grouped into six

discrete clusters (Additional file 3: Figure S1): dominance

of Klebsiella (PGCT 1), dominance of both Klebsiella and

Enterococcus (PGCT 2), dominance of Staphylococcus

(PGCT 3), dominance of Enterococcus (PGCT 4), domin-

ance of Escherichia (PGCT 5), and mixed population with

Table 1 Summary of infant samples and demographic per group

Control (n = 28) LOS (n = 7) P value

Number of stool samples 520 106 –

Gestation (weeks)* 27 (25–28) 27 (26.5–28) 0.393

Birth weight (g)* 910 (863–1199) 1000 (725–1105) 0.612

Birth mode (CS/vaginal) 12/16 3/4 1.0

Gender (male/female) 20/8 4/3 0.475

Breast milk exposure (yes/no) 25/3 7/0 0.820

Antibiotic prediagnosis (days)* – 7 (2–14) –

Antibiotic total (days)* 4.5 (2–9.5) 23 (10–32) 0.071

*Median (interquartile range)
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high relative abundance of Bifidobacterium (PGCT 6)

(Additional file 4: Figure S2). No PGCT was strongly asso-

ciated with PreLOS samples when compared to all control

samples, whereas PGCT 2 and PGCT 6 were never found

in any sample from LOS infants before diagnosis (Fig. 2a).

PGCT 6 was also never found in any LOS infant after

diagnosis, and PGCT 2 was present in only 2 infants after

diagnosis, detected >2 weeks following diagnosis and

treatment (Fig. 2b and Additional file 4: Figure S2). Con-

versely PGCT 6, which represents a diverse community

high in relative Bifidobacterium abundance, was present

frequently throughout the control population from early

to late samples. Specifically, PGCT 6 was detected in 65

samples from 12 control infants, representing 43% of the

control population. Counting the number of unique

PGCTs over the first 25 days of life showed control infants

had an average of 3 unique PGCTs, compared to an aver-

age of 2 unique PGCTs in preLOS samples (P = 0.011).

Untargeted metabolomic profiling indicates distinct

functional profiles between infants with LOS and controls

Given the finding that the dominant genus in the micro-

biome is associated with the causative agent in LOS, we

further investigated the potential functional differences
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Fig. 1 Area plots showing the temporal development of the microbiome in infants diagnosed with late onset sepsis (LOS). Dashed red lines

represent the day of LOS diagnosis with the bacteria isolated from blood culture identified. Dashed black lines represent the start of an antibiotic

treatment as per Additional file 2: Table S2.
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in the gut between infants diagnosed with LOS and

matched controls. Due to sample availability, this pilot

experiment included 4 infants with LOS (infants 130,

172, 181, and 251) and 10 matched controls, across 5

time points spanning before and after LOS diagnosis:

−14 days (time point 1; TP1), −7 days (TP2), 0 days

(TP3), +7 days (TP4), and +14 days (TP3), relative to

diagnosis of LOS. Although each LOS infant had differ-

ent bacterial species isolated in diagnostic blood culture

(Fig. 1), PCA showed metabolite profiles clustering dis-

tinctly between LOS infants and matched controls, with

the most profound differences at diagnosis (0 days) and

+7 days (Fig. 3). Receivers operating characteristic

(ROC) curves were generated, and area under a ROC

curve (AUC) was implemented to provide a measure of

how well metabolites distinguish between LOS and

matched controls. Lines progressing towards the upper-

left corner of plots represent better discrimination

(higher sensitivity and specificity). At diagnosis, the

AUC ranged from 0.787 with 5 metabolites to 0.883 with

25 metabolites and both equated to a sensitivity of 75%

and a specificity of 89%.

Fourteen stool metabolites were identified as signifi-

cantly altered between LOS and control infants at diag-

nosis (TP3), with 7 metabolites (all increased in

controls) remaining significant following adjustment for

7 confounders (Table 2). Galactose metabolism was the

most frequently increased pathway in control infants,

and sucrose (P = 0.001) and raffinose (P = 0.001), both

from galactose metabolism, were the most significant

metabolites. These metabolites increased through time

within control infants, whereas the same metabolites

remained at baseline or reduced prior to diagnosis in

LOS infants (Fig. 4). Notably, following diagnosis and

treatment, these metabolites increased in LOS infants,

but tended to remain at lower intensity compared to

Fraction PreLOS

0.0 0.5 1.0

1

2

3

4

5

6

A

LOS_130
LOS_166
LOS_172
LOS_173
LOS_178
LOS_181
LOS_251

Control_117
Control_131
Control_143
Control_152
Control_153
Control_156
Control_159
Control_167
Control_168
Control_176
Control_182
Control_186
Control_188
Control_203
Control_206
Control_207
Control_208
Control_209
Control_215
Control_222
Control_223
Control_224
Control_228
Control_229
Control_232
Control_234
Control_241
Control_253

0 10 20 30 40 50

1

2

3

4

5

6

PGCT

B

Day of life 

Fig. 2 Characterisation of the gut microbiome between infants diagnosed with late onset sepsis (LOS) and matched controls. a Transition network

analysis showing PGCTs in PreLOS samples compared to matched controls approximated as a Markov chain with subject-independent transition

probabilities. Arrow weights reflect the transition probabilities from one sample to the next. Size of circle reflects the relative number of samples

associated with that PGCT. Pale blue indicates PGCTs of consisting of control samples only, and the darker shade of purple shows increased number of

PreLOS samples in that PGCT. b Temporal change in PGCTs in each individual infant. Red lines represent day of LOS diagnosis. Only samples up to day

50 of life are included. Infant 178 died during the study
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controls (with the exception of metabolites from C21-

steroid hormone biosynthesis that remained at baseline

throughout). Taken together, the PCA and box plot ana-

lysis of the most significant metabolites suggest altered

and delayed functional development in the gut in LOS

infants prior to diagnosis.

Multi-omic analysis shows distinct correlations between

significant metabolites and abundant bacterial genera

sPLS correlation analysis was performed using MixO-

mics to determine the correlations between the domin-

ant bacterial genera and identified metabolites (Fig. 5).

Bifidobacterium and Streptococcus showed comparable

strong positive correlations with a range of metabolites

that were significantly increased in control infants

(Table 2), including raffinose, 18-hydroxycortisol, 18-

oxocortisol, acetic acid, and L-alpha-acetyl-N-normetha-

dol. These findings were supported when only including

control infants in the analysis; demonstrating diagnosis is

not confounding the results (Additional file 5: Figure S3).

Furthermore, this correlation was lost when analysing a

shuffled dataset and is thus not an artifact of autocorrel-

ation. Morganella also showed weak positive correlation

with these metabolites. Veillonella showed distinct cluster-

ing with strong correlations to a range of metabolites, in-

cluding vitamin K and ascorbic acid (vitamin C), as well as

10,11-dihydro-12R-hydroxy-leukotriene E4 that was sig-

nificantly increased (P = 0.032) in LOS infants. Staphylo-

coccus, Bacteroides, Escherichia, Klebsiella, Enterococcus,

and Pseudomonas all showed weak correlations with the

detected metabolites.

Discussion
We explored gut microbiome and metabolome factors

that are altered in the development of LOS in preterm

infants and show that the dominant taxa in the gut

microbiome are usually isolated in diagnostic blood cul-

ture. Control infants had greater microbiome develop-

ment and prevalence of PGCT 6 (Bifidobacterium

dominant). Novel untargeted stool metabolomics on a

subset of samples showed that metabolite profiles are

significantly different between LOS and control infants

at diagnosis and 7 days later. Stool metabolites from a

range of pathways/sources, especially sucrose and

A B Fig. 3 Metabolomic profiles between infants diagnosed with LOS and

matched controls across all 5 time points, where TP3 represents

samples at diagnosis. a PCA (unconstrained ordination) of LOS infants

(red) and matched controls (green). Each sample represented by the

small circle and ellipses represent the 95% confidence interval. b

Receiver operating characteristic curves of support vector machine

predictions for LOS and control samples. AUC represents the strength

of the predictive classifications. Selected number of metabolites

computed in intervals from 5, 10, 15, 25, 50, and 100 metabolites
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Table 2 List of metabolites and pathways significantly altered between control and LOS infants at diagnosis (day 0)

Metabolite Pathway Fold change Log2(FC) P value Adjusted
P value

Increased in controls Sucrose Galactose metabolism 15.6 3.96 0.001 0.005

Raffinose Galactose metabolism 1963.1 10.94 0.001 0.014

18-Hydroxycortisol C21-steroid hormone biosynthesis
and metabolism

10683 13.38 0.003 0.010

L-Glutamate Tryptophan metabolism 29.33 4.87 0.003 0.008

18-Oxocortisol C21-steroid hormone biosynthesis
and metabolism

17551 14.10 0.005 0.013

Didemethylcitalopram N-Glycan degradation 6.14 2.62 0.007 0.021

L-alpha-Acetyl-N-normethadol Drug metabolism-cytochrome P450 676.77 9.40 0.009 0.226

Acetic acid C21-steroid hormone biosynthesis
and metabolism

577.12 9.17 0.011 0.042

Lactose Galactose metabolism 11.66 3.54 0.033 0.123

3-Ketolactose Galactose metabolism 555.27 9.12 0.047 0.002

Increased in LOS 21-Hydroxy-5beta-pregnane-3,11,20-trione C21-steroid hormone biosynthesis
and metabolism

0.004 −7.93 0.034 0.137

10,11-dihydro-leukotriene B4 Leukotriene metabolism 0.16 −2.68 0.034 0.153

Monoethylglycinexylidide Drug metabolism-cytochrome P450 0.29 −1.79 0.039 0.125

11-Deoxycortisol C21-steroid hormone biosynthesis
and metabolism

0.004 −7.93 0.043 0.147

Abbreviations: LOS late onset sepsis, FC fold change

A B C D

E F G H

Fig. 4 Box plots to show the levels of significant metabolites though each time point between infants diagnosed with late onset sepsis (LOS)

and matched controls. Plots listed in order of significance. a Sucrose. b Raffinose. c L-Glutamate. d Didemethylcitalopram. e Acetic acid.

f 18-Hydroxycortisol. g 18-Oxocortisol. h L-alpha-Acetyl-N-normethadol
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raffinose, tended to increase in controls through time

compared to LOS infants, where they remained low prior

to and at diagnosis. Finally, combining omic datasets to

explore correlations between the microbiome and metab-

olome showed Bifidobacterium was positively correlated

with metabolites significantly increased in control infants.

The gut microbiome has been previously implicated in

the pathogenesis of LOS [3–9], with whole genome shot-

gun sequencing revealing the exact strain in diagnostic

blood culture can be detected in stool [9]. Our data

concurs, showing the species cultured from blood was

typically abundant from birth and corresponds to the

most or second most abundant OTU in the gut at diag-

nosis. One exception occurred where the microbiome

was dominated by Klebsiella and Escherichia, but S. epi-

dermidis was isolated in blood culture. Due to the preva-

lence of S. epidermidis on the skin, this organism is a

common contaminant of blood cultures, however, it is

also commonly associated with preterm sepsis [22]. It is

possible that different mechanisms are in action where

LOS results from organisms that typically colonise the

skin, for example, through compromised skin barrier

from venepuncture, heel pricks etc., than where the

mechanism is of translocation of gut bacteria [23].

PGCT 6 (Bifidobacteria dominant) was only found in

control infants, detected in nearly half of all control infants

(43%), but whether this is a cause of gut health or a marker

of gut health is unknown. The potential health-promoting

properties of Bifidobacterium are well reported [24–29].

Although the largest existing probiotic trial of 1315 pre-

term infants found no significant improvement to NEC or

LOS rates using Bifidobacterium breve [30], only specific

species of Bifidobacterium in the preterm gut are able to

utilise human milk oligosaccharides (HMOs): these species

appear to have key roles in establishing the pioneering spe-

cies of the gut [31]. While B. breve produce fucosidases

and sialidases, only Bifidobacterium longum subspecies

infantis are able to digest all HMO structures [32]. The

differences between timing, dose, and most importantly

the Bifidobacterium species/strains used are likely to ac-

count for the inconsistent health benefits between Bifido-

bacterium probiotic studies. In a separate cohort, we have

previously shown that Bifidobacterium bifidum deliber-

ately administered to preterm infants can colonise and

persist in threefold greater relative abundance following

discharge, compared to control infants [33].

Metabolomics was employed to determine if the

changes in gut microbiome were reflected at the
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functional level and if metabolic markers for LOS could

be detected. LOS samples grouped distinctly at diagnosis

(sensitivity of 75% and a specificity of 89%). Previous

work has shown serum metabolite profiles [13] and stool

volatile organic compound profiles [18] altered between

LOS infants and controls within 3 days of onset, but no

single metabolite being diagnostic of LOS. We found no

differences in stool metabolites 14 or 7 days before

diagnosis. Although significant in the unadjusted

models, following adjustment for potential confounders,

no metabolite was significantly increased in all LOS in-

fants. This suggests the pathogenesis is of acute onset,

with multiple aetiological components affecting individ-

ual infants differently.

Network analysis was employed to determine correla-

tions between the microbiome and metabolome,

revealing that Bifidobacterium and Streptococcus have

comparable positive correlations. Given Bifidobacterium

dominant communities were specific to control infants

and Bifidobacterium is strongly associated with a healthy

mature gut microbiome [24–29], it is notable that me-

tabolites correlated with this genera were significantly

increased in control infants. Metabolites correlated with

Bifidobacterium and Streptococcus were from a range of

pathways: raffinose (Galactose metabolism), L-alpha-

acetyl-N-normethadol (Drug metabolism), and acetic

acid, 18-hydroxycortisol, and 18-oxocortisol (C21-ster-

oid hormone biosynthesis and metabolism). Raffinose is

a derivative of sucrose, and these two metabolites were

the most significant overall, with both increased in con-

trols. Raffinose is a α-galactosyl (α-GAL) oligosaccharide,

and because humans do not possess the α-GAL enzyme,

it is fermented in the gut by bacteria containing the α-

GAL enzyme. This metabolite reduced in LOS infants

prior to diagnosis, increasing after treatment, whereas it

remained consistently high in controls from day 7 (TP2).

Raffinose is considered a prebiotic [34] that has been

shown to inhibit the growth of potentially pathogenic

bacteria [35] and to promote Bifidobacterium spp. in

human and animal studies [36]. In addition, raffinose

increases short chain fatty acid (SCFA) concentrations,

specifically acetic and propionic acid, contributing to

increased weight gain in animal models [37, 38] and a

reduction in pathogenic bacteria [39]. Due to the use of

LCMS, SCFA were not detected in the current study,

but further work exploring the exact strains of Bifido-

bacterium and their specific effects on the gut

microbiome and metabolome is warranted.

The study has several potential limitations. The strict

inclusion criteria requiring extensive longitudinal sam-

pling before and after disease diagnosis meant only 7

infants with LOS were included, despite collection of

samples from >300 infants. However, this cohort size is

comparable to existing studies in LOS and the findings

here support existing data [3–7, 9]. Cost and sample size

considerations meant metabolomics was performed on

only four infants with LOS and ten controls and thus

conclusions drawn this analysis should be considered

preliminary. It is necessary to repeat the correlation

analysis at specific time windows in larger cohorts.

Nonetheless, this study has yielded important findings

that warrant validation in large multi-center studies with

extensive longitudinal sampling, particularly within

7 days of LOS diagnosis.

Conclusions

Using novel multi-omic analysis, we show for the first

time that the gut microbiome and metabolome are asso-

ciated with the pathogenesis of LOS. In accordance with

published data, we find the causative agent in LOS is

usually abundant in the gut microbiome, suggesting

translocation though the gut epithelium. This is further

supported by the change in bacterial and host metabol-

ism in the gut, which is reflective of altered function.

While the causative agent of LOS varies, Bifidobacteria

dominant communities were only found in controls and

this taxa was further correlated with the metabolites

significantly associated with control infants, including

raffinose, sucrose, and acetic acid. The current study

supports that gut development and protection in

preterm infants is associated with increased in prebiotic

oligosaccharides (e.g. raffinose) and the growth of bene-

ficial bacteria (e.g. Bifidobacterium). The finding in the

current study requires validation in a larger cohort and

the exact mechanisms, and the development of therapies

aimed at promoting health for preterm infants, such as

pre- and probiotics, warrant further investigation.

Methods

Participants and study design

The study design, setting, participants, and methods of data

collection have been reported previously [17, 40]. Briefly, all

infants were cared for in a single unit with standardised

feeding, antibiotic, and antifungal guidelines. LOS was de-

fined as a positive blood culture treated with antibiotics for

a minimum of 5 days along with signs consistent with sep-

sis reviewed independently by two clinicians. Cultured iso-

lates from positive blood culture were identified using

matrix-assisted laser desorption ionisation–time of flight

mass spectrometry. All demographic information is sum-

marised in Table 1, and full information for each infant is

provided in Additional file 1: Table S1.

Stool samples and clinical data were collected from a

total of 318 preterm infants at study conception. Seven

well-sampled cases of LOS and 28 matched controls, free

of LOS, or NEC, were selected based on extensive longitu-

dinal sampling and matched by gestational age (GA;

+/−1 week), birth weight, and delivery mode. A total of
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613 analysed stool samples underwent 16S rRNA gene

bacterial profiling. Metabolomic profiling was performed

on a subset of 14 infants (63 stools): 4 LOS and 10

matched controls. LOS samples were selected for analysis

relative to disease diagnosis at day of life (DOL) −14 (time

point 1; TP1), −7 (TP2), 0 (TP3), +7 (TP4), and +14

(TP5), and controls were matched to this by DOL.

16S rRNA gene bacterial profiling

Nucleic acid extraction of stool was carried out on

100 mg of sample using the PowerLyzer™ PowerSoil®

DNA Isolation Kit (MoBio, CA, USA) in accordance

with the manufacturer’s instructions. Bacterial profiling

utilised the 16S rRNA gene targeting variable region 4

based on the Schloss wet-lab MiSeq SOP and resulting

raw fastq data were processed using Mothur (version

1.31.2), as described previously [41]. Briefly, combined

reads were trimmed to 275 reads with 0 ambiguous

bases. Chimeric sequences were detected by Chimera.u-

chime and were removed from downstream analysis.

Alignment was generated via the Silva v4 database [42]

and chloroplast, mitochondria, unknown, archaea, and

eukaryota linages were removed from the analysis. Raw

sequences were deposited in MG-RAST under the

accession numbers 4516545.3-4516585.3.

UPLC-MS metabolomic profiling

Metabolomic profiling was performed as previously de-

scribed [19, 43]. Briefly, 100 mg stool was homogenised

(80% methanol), was vortexed for 15 min, centrifuged

(10000×g), and was lyophilised. Reverse-phase ultra-

performance LCMS tandem mass-spectrometry (UPLC-

MS/MS) was performed using an Accucore C18 column

(2.6 μm, 150 × 2.1 mm) at 40 °C, 3.0 μl injection, and

300 μl/min flow rate. Gradients increased from 5% acet-

ronitrile (ACN) to 95% ACN over 22 min, followed by

8 min wash, and re-equilibration. Samples were run ran-

domly in triplicate on a Q-Exactive (Thermo) using

HESI with high resolution (70,000) positive and negative

switching. The mass range was set from 100–1000 m/z.

SIEVE (version 2.2) was used to process the Thermo

RAW files by component extraction.

Bioinformatic and statistical analysis

Bacterial community analysis

16S bacterial profiles were analysed using a stand-alone

tool for analysing and visualising microbiome data sets

developed at the Center for Metagenomics and Micro-

biome Research at Baylor College of Medicine (not pub-

lished), conducted in R version 3.3 [44]. Each sample

was rarefied to 4397 reads. PGCTs were determined

using a publically available script for linear mixed-effects

modelling, medoid-based clustering, and Markov chain

modelling [45]. Bray-Curtis was used to calculate the

distance between all samples, and this was denoised by

extraction of the most significant Principal Coordinates

Analysis (PCoA) eigenvectors before applying the PAM

algorithm. Gap statistic was used to determine the num-

ber of clusters. Significance of categorical variables was

determined using the non-parametric Mann-Whitney

test for comparison of LOS and control infants. Only

taxa present in >1% relative abundance were included in

statistical analysis. All P values were adjusted for mul-

tiple comparisons with the false discovery rate (FDR) al-

gorithm [46].

Metabolomics analysis

UPLC-MS data was filtered to include only m/z features

that occurred in >20% of samples. Metabolite annotation

and pathway enrichment was performed using Mummi-

chog [47]. Mummichog was used to determine signifi-

cant pathways between infants diagnosed with LOS and

matched controls. Unlike the microbiome dataset, meta-

bolomics was performed at five specific time windows

relative to LOS onset, with matched day of life control

samples. Analysis was therefore cross sectional within

the specific time windows. Metabolomic MetaboAnalyst

3.0 [48] was employed to generate PCA plots and to de-

termine the AUC between LOS and control infants at

each time point. Receivers operating characteristic

(ROC) curves were generated by linear support vector

machine (SVM) classification with Monte-Carlo cross

validation using balanced subsampling. In each Monte-

Carlo cross validation, two thirds of the samples were

used to examine the feature importance, and the classifi-

cation model was validated using the one third of sam-

ples left out. Several iterations were performed to

determine the optimal number of metabolites to predict

MV use, with analysis based on 5, 10, 15, 25, 50, or 100

of the top metabolites based on the average importance.

Two-tailed Welch’s t test (<2 variables) or ANOVA (>2

variables) were used to determine significant metabo-

lites. Regression models adjusted for seven potential

confounding variables: delivery mode, gestation age, sex,

feed (received some maternal breast milk or formula

only), number of days of antibiotics treatment, number

of antibiotics used, and age. P values were adjusted for

multiple comparisons using FDR [46].

Integrated analysis of microbiome and metabolomic

datasets

MixOmics [49] was implemented in R to determine the

correlation between the relative abundance of the dom-

inant bacterial taxa from 16S rRNA gene sequencing

and the intensity of metabolites of interest by sparse

partial least squares regression (sPLS) [50].
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