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Abstract  

 
Background 

High-throughput targeted sequencing of the 16S ribosomal RNA marker gene is often used to profile and 

characterize the taxonomic composition of microbial communities. This type of big high-through 

sequencing data is rapidly being applied to various infectious diseases like diarrhea. While many studies 

are limited to single “snapshots” of these communities, there is increasing recognition that longitudinal 

profiling of these communities are required to understand community dynamics and the complex 

relationships between dynamics and phenotypes of interest. Statistical methods that determine microbial 

features that are differentially expressed are required as an initial step to characterizing phenotypic 

associations with community dynamics in big data and infectious diseases.  

 

Results  

We present a novel method for longitudinal marker-gene surveys based on smoothing splines that allows 

discovery and inference of time periods where specific microbial features are differentially abundant. We 

applied our method to three 16S marker-gene surveys, including, groups of gnotobiotic mice on two diets, 

patients challenged with ETEC (H10407), and a vaginal microbiome of healthy women. Employing our 

methodology we recover known bacterial differences and highlight a few extra species providing insight 

into when specific changes occurred. Additionally, in the cohort challenged with ETEC we recover 

proposed probiotic bacteria Bacteroides xylanisolvens, Collinsella aerofaciens, and Faecalibacterium 

prausnitzii associatons with healthy individuals. 

 

Conclusions 

The method presented is, to our knowledge, the first flexible method of its kind implemented as a software 

capable of detecting time periods of differential abundance for microbial features species between two or 

more sample groups of interest. Our method is available within the metagenomeSeq open-source software 

for analysis of metagenomic package available through the Bioconductor project and is termed 

metaSplines.  
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Overview  

The advent of high-throughput DNA sequencing technology allows scientists to 

comprehensively examine microbial communities in an ecosystem through targeted 

sequencing of the 16S rRNA marker-gene (Lindsay et al., 2013). While many studies 

profile static community “snapshots”, microbial communities do not exist in an 

equilibrium (Handelsman, Tiedje, & ..., 2007). To better understand bacterial population 

dynamics, many studies are expanding to longitudinal sampling and foregoing cross-

sectional or single time-point explorations. Recent studies have characterized healthy 

microbial communities’ temporal dynamics in the gut (David et al., 2014) and skin 

following birth (Koenig et al., 2011). Studies have also characterized perturbations to the 

microbiome due to disease, including, diarrhea (Pop et al., 2014), malnutrition (Smith et 

al., 2013), SHIV (Morris et al., 2016), and bacterial vaginosis (Ravel et al., 2011). Other 

studies have explored the effects of external stimuli, including, the effect of diet 
(Turnbaugh et al., 2009) and antibiotic use (Pop et al., 2016a; Theriot et al., 2014). 

With a decrease in sequencing costs more longitudinal data will be generated for varying 

communities of interest. While data generation will present fewer difficulties, there 

remain several statistical challenges involved in analyzing these longitudinal datasets. 

The usual approach in the marker-gene survey literature is to perform pairwise 

differential abundance tests between specific time points and visually confirm, sometimes 

using smoothing methods like splines to aid display, how differences are manifested 

across time (Dickson et al., 2014; Kostic et al., 2015; Seto, Jeraldo, Orenstein, Chia, & 

DiBaise, 2014). These methods require that analysts provide one or more specific time 

points to test, and the statistical inferences derived from these procedures are specific to 

these pairwise tests. Other standard methods for longitudinal analysis test for global 

differences across time, sometimes using non-linear methods including splines to capture 

dynamic profiles across time (Smyth, 2005). In this case, statistical inferences are about 

global changes and not about specific time periods or intervals where differential 

abundance is detected. An approach that is able to perform statistical inferences about 

differential abundance over apriori unspecified time periods would provide a more 
specific view of microbial dynamics for longitundal surveys. 

Smoothing spline regression models (G Wahba, 1990) are commonly used to model 

longitudinal data and form the basis for methods used in a large number of applications 

(Bravo, 2008; Harezlak, Naumova, & Laird, 2007). Specifically, the Smoothing-Spline 

ANOVA (SS-ANOVA) method (Gu, 2013) is capable of directly estimating species’ 

abundances as smooth functions while incorporating sample characteristics as covariates 

in these models, e.g., sex and age in population studies, or technical factors like 

processing batches in the chosen model. Incorporating confounding sources of variability, 

both biological and technical is essential in high-throughput studies (Leek et al., 2010) 

and require statistical methods capable of estimating both smooth functions and sample-
specific characteristics. 

In this paper we present a method based on SS-ANOVA for the analysis of longitudinal 

microbial marker-gene surveys. It is based on a number of important features (i) it 

incorporates a normalization method designed for these types of surveys (Paulson, Stine, 

Bravo, & Pop, 2013), (ii) uses semi-parametric modeling to allow incorporation of 
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experimental confounders, essential for large observational studies or studies with 

complex experimental designs, (iii) it allows discovery of time intervals of differential 

abundance across multiple phenotypes of interest, and (iv) uses a permutation-based 

approach to provide robust statistical inferences over discovered time intervals of 

differential abundance. We have included this methodology in our open source 

metagenomeSeq toolkit for metagenomic data analysis, freely available through the 

Bioconductor project available at 

http://bioconductor.org/packages/release/bioc/html/metagenomeSeq.html (Paulson, 

Talukder, Pop, & Bravo, 2014). 

We begin with a brief overview of SS-ANOVA and our general framework followed by 

the analysis of three marker-gene surveys, including, (i) a gnotobiotic mouse study on 

differing diets (ii), a cohort of patients challenged with enterotoxigenic Escherichia coli 

(ETEC) and subsequent ciprofloxacin treatment, and (iii) healthy women’s vaginal 

microbiome over multiple weeks. We highlight temporal dynamics that occur in our re-

analysis of the gut microbiomes in shifting diets. In the cohort of patients challenged with 

ETEC we show the utility of our method in recovering expected a growth in Escherichia 

coli and find associations of potentially probiotic bacteria to individuals that do not 

become infected with diarrhea. In the vaginal microbiome we illustrate how the SS-

ANOVA method captures and incorporates significant background periodic trends in 
abundances.  

 

Background on Smoothing Spline ANOVA models 

Smoothing Spline analysis of variance (SS-ANOVA) (Grace Wahba, Wang, Gu, Klein, 

& Klein, 1995) is a semi-parametric method that models data generated from a smooth 

function 𝑓(𝑥) by assuming that 𝑓 is a function in a Reproducible Kernel Hilbert Space. 𝑓 

has a semi-parametric form given by 𝑓(𝑥) = 𝑑!
!

!!! 𝜙!(𝑥)+ 𝑔(𝑥) for coefficients 𝑑!, 

where functions 𝜙! have a parametric form and 𝑔 𝑥  is defined by 𝑔(𝑥) = 𝑔!! (𝑥!)+

𝑔!"!!! (𝑥! , 𝑥!)+⋯ where 𝑔! and 𝑔!" satisfy the standard ANOVA side conditions. 

𝑔! are main effects in the model and 𝑔!" are the interactions in the model. 

 

The SS-ANOVA estimate of 𝑓, given data (𝑥! ,𝑦!), 𝑖 = 1, . . . ,𝑛, is a solution of the 

penalized problem, 

min
!∈!

(𝑦! − 𝑓(𝑥))
!
+ 𝜆𝐽(𝑓(𝑥))                                                  

where the first term discourages the lack of fit of 𝑓 and the second term penalizes the 

complexity of 𝑓 with smoothing parameter 𝜆 controlling the trade-off between the two. 

We use Generalized Approximate Cross-Validation (GACV), an approximation to the 

leave-one-out estimate of the comparative Kullback-Leibler distance between  𝑓 and the 

unknown true 𝑓 to select the regularization parameters used in this process. We also 

provide Bayesian confidence intervals into our estimation procedure. Further details are 

provided in the appendix. 

Smoothing Spline Longitudinal Differential Abundance Methodology 

 

In general, we model data in the following form: 
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𝑌!"# = 𝑓!(𝑡, 𝑥!)+ 𝑒!" 

where 𝑖 represents group factor (health status, diet, etc.), 𝑡 represents time, 𝑘 represents 

replicate observations, 𝑥! are covariates for sample 𝑘 (including an indicator for group 

membership 𝐼{𝑘 ∈ 𝑖}) and 𝑒!" are independent 𝑁(0,𝜎!) errors. We assume 𝑓! to be a 

smooth function, defined in an interval [𝑎, 𝑏], that can be parametric, non-parametric or a 

mixture of both. 

 

Our goal is to identify time intervals where the absolute difference between two groups 

𝜂!(𝑡) = 𝑓!(𝑡,⋅)− 𝑓!(𝑡,⋅) is large, that is, intervals, 𝑅!!,!!, where: 𝑅!!,!! = {𝑡!, 𝑡! ∈

𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∣ 𝜂!(𝑥) ∣≥ 𝐶} and 𝐶 is a predefined difference threshold. 

 

We applied the SS-ANOVA model to time interval finding by modeling 𝑓 as 

semiparametric function: 

 

𝑓!(𝑡, 𝑥!) = 𝛽!𝑥! + 𝑓!(𝑡)+ 𝑓!(𝐼{𝑘 ∈ 𝑖})+ 𝑓!"(𝑡, 𝐼{𝑘 ∈ 𝑖})                            (1) 

 

where 𝛽 are coefficients of a linear model of sample covariates (e.g., age, sex), 𝑓! is the 

main smooth function over time, 𝑓! is the main effect term for group 𝑖 and 𝑓!" is a 

smooth function indicating an interaction term between group membership and time. By 

encoding group membership using a 0-1 binary variable, the ANOVA side conditions 

imply that we can directly estimate the difference function 𝜂!(𝑡) as 𝜂!(𝑡) = 𝑓!(1)+

𝑓!"(𝑡, 1). In contrast to other methods, we are able to directly estimate 𝜂!. We use 

Bayesian confidence intervals above to extend the definition of candidate time intervals 

of differential abundance 𝑅!!,!! from before as: 

𝑅!!,!! = {𝑥 ∈ 𝑡!, 𝑡!  such that  𝜂!!(𝑥) ≤ 𝐶  or  𝜂!!(𝑥) ≥ 𝐶} 

where 𝜂!! and 𝜂!! are the upper and lower 95% confidence intervals.  We use this direct 

estimate of the difference function 𝜂!(𝑡) to calculate area statistics  

𝐴!!,!!
= 𝜂!!!!,!!

(𝑡)𝑑𝑡 for each time interval of differential abundance. Figure 1 

provides an illustrative example of the difference function and test statistic.  

 

Finally, we contstruct a hypothesis test based on the area statistic to determine time 

intervals of differential abundance. For this test, the null and alternative hypotheses are: 

𝐻!:𝐴!!,!!
≤ 𝐾 

𝐻!:𝐴!!,!!
> 𝐾 

with 𝐾 as a predefined area threshold. 

 

We employ a permutation-based method to calculate a null distribution of the area 

statistics 𝐴!!,!! 's. To do this, the group-membership indicator variables (0-1 binary 

variable) are randomly permuted 𝐵 times, e.g., 𝐵 = 1000 and the method above is used 

to estimate the difference function 𝜂
!

! (in this case simulating the null hypothesis) and an 

area statistics 𝐴!!,!!
!  for each random permutation. Estimates 𝐴!!,!!

!  are then used to 

construct an empirical estimate of 𝐴!!,!! under the null hypothesis. The observed area, 

𝐴!!,!!
∗ , is compared to the empirical null distribution to calculate a 𝑝-value, i.e. 
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𝑝 =  
#!!!,!!

!
!!!!,!!

∗
!!

!!!
.  For permutations, we treat negative 𝜂! as negative area and positive 

𝜂! as positive area. We adjust for multiple testing across candidate time intervals by 

using a Bonferroni correction (𝛼/n). For example, if we test three candidate time intervals 

we would reject if the calculated p-value were less than 0.05/3. 

 

Results  

 

Smoothing splines analysis of shift in diet increases power  

In a study published by Turnbaugh et al., twelve germ-free adult male C57BL/6J mice 

were fed a low-fat, plant polysaccharide-rich diet. Each mouse was gavaged with healthy 

adult human fecal material. Following the fecal transplant, mice remained on the low-fat, 

plant polysaccharide-rich diet for four weeks. A subset of 6 were switched to a high-fat 

and high-sugar diet for eight weeks. Fecal samples for each mouse went through PCR 

amplification of the bacterial 16S rRNA gene V2 region weekly. Further details of the 

experimental protocols and data can be found in (Turnbaugh et al., 2009). We employed 

the SS-ANOVA modeling approach described above in re-analyzing the data and testing 

bacterial differences across time for the two differing diets. We aggregated counts to the 

class taxonomic level following CSS normalization. 

 

Using SS-ANOVA we tested the hypothesis that there was no difference in abundance 

for any particular class due to diet. We considered each bacteria independently of one 

other. We used SS-ANOVA to estimate abundance of bacteria with the following model: 

 

𝑌!"# = 𝑓! 𝑡 +  𝑓! 𝐼 𝑘 ∈ 𝑖 + 𝑓!" 𝑡, 𝐼 𝐾 ∈ 𝑖 + 𝑒!" . 

 

In this application 𝑓! 𝑡  represents the effect of time, 𝑓! 𝐼 𝑘 ∈ 𝑖  represents the effect of 

diet and 𝑓!" 𝑡, 𝐼 𝑘 ∈ 𝑖  represents the interaction of diet and time. In calculating our test 

statistic we estimate 𝜂!, a function of the difference in abundance obtained from 

estimated functions 𝑓! and 𝑓!" along with a point-wise  95% confidence interval. Using 

this confidence interval we calculate the difference area for time intervals to detect those 

above 0.3.   

In comparing the two diets a number of bacteria were differentially abundant including 

Actinobacteria prior to multiple-testing correction. We found at least one differential 

interval in the following classes of bacteria: Bacilli, Bacteroidetes, Erysipelotrichi. We 

observe that in analyzing Bacteroidetes with this framework revealed a significant 

increase immediately after the switch in diet followed by a significant decrease for the 

duration of the diet. In addition to what was reported by Turnbaugh et al. we were able to 

uncover greater abundance in Western diets for Deltaproteobacteria and Actinobacteria 

for a period immediately following the shift in diet before returning to stability (Figure 2, 
Table 1). 

 

Smoothing splines ANOVA accurately recalls patient challenge to enterotoxigenic 

Eschericia coli. 
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Diarrhea contributes significantly to the mortality in young children and infants in 

developing countries (Pop et al., 2014). Approximately 131,000 deaths per year are 

attributed to enterotoxigenic Escherichia coli infection as well as an estimated 10 million 

cases of travelers’ diarrhea. To further undertand how the intestinal microbiome is altered 

during infection, Pop et al. subjected 12 volunteers to ETEC (H10407) and subsequent 

antibiotic treatment (Pop et al., 2016b). They collected samples pre-infection and 104 

samples in the nine days following infection. Of the 12 volunteers, 5 subjects developed 

severe diarrhea with 7 remaining asymptomatic. We employed the same SS-ANOVA 

modeling approach described above in re-analyzing the data and testing bacterial 

differences across time between diseased and healthy patients. We aggregated counts to 

the species taxonomic level following CSS normalization. We considered each species 

independently. 

 

We chose the following model to test our approach: 

 

𝑌!"# = 𝛽!𝑥! + 𝛾
!
𝑎!" +  𝑓! 𝑡 +  𝑓! 𝐼 𝑘 ∈ 𝑖 + 𝑓!" 𝑡, 𝐼 𝐾 ∈ 𝑖 + 𝑒!" . 

 

In this application 𝑥! is an indicator for the individual patient as a fixed effect, 𝑎!" is an 

indicator for the particular samples provided ciprofloxacin treatment, 𝑓!(𝑡) represents the 

effect of time, 𝑓!(𝐼{𝑘 ∈ 𝑖}) represents the effect for subjects that developed diarrhea after 

challenge (disease group) and 𝑓!"(𝑡, 𝐼{𝑘 ∈ 𝑖}) represents the interaction of disease group 

and time. As before, we estimate 𝜂!, a function of the difference in abundance 

calculating a 95% confidence interval to find difference area for regions above our 

predefined cutoff of 0.3.  

 

Patients’ gut microbiota was collected from day -1 to 9 with infection at day 0. Only 

22/147 species had time intervals of potential differential abundance as estimated with 

SS-ANOVA. We recovered the expected largest difference in abundance due to a bloom 

of Escherichia coli starting from the day after infection (Figure 3 and Table 2). While a 

few bacteria were differentially abundant prior to infection (6/17), the majority of 

bacteria began to reveal a shift in abundance post. Abundant species that were associated 

with the diseased group included commensal bacteria, Roseburia Faecis, Roseburia 

inulinivorans, Bacteroides ovatus, and Bacteroides thetaiotaomicron. These bacteria 

potentially interact with ETEC or a bi-product of E. coli or are less sensitive to 

ciprofloxacin treatment which occurred earlier for certain diseased patients (Wexler, 

2007). Abundant species that were associated with the healthy individuals included, 

Alistipes sp., Bacteroides xylanisolvens, Collinsella aerofaciens, and Faecalibacterium 

prausnitzii. Bacteroides xylanisolvens, Collinsella aerofaciens, and Faecalibacterium 

prausnitzii have been proposed as probiotics, potentially playing a role in reducing 

inflammation and acting as a probiotic (Malinen et al., 2010; Miquel et al., 2013; 

Ulsemer et al., 2012).  

 

Periodic smoothing splines models cyclical differences in the vaginal microbiome  

We observed the utility of a periodic smoothing spline approach to model bacterial 

abundances and differential abundance estimates that fluctuate through time (Figure 4). 

Nugent scores are an important measurement in diagnosing women's health, in particular 
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to bacterial vaginosis (Nugent, Krohn, & Hillier, 1991), and is directly related to the 

presence of large Gram-positive rods (various Lactobacillus morphotypes). We tested the 

hypothesis that there was no difference in abundance for women that tended to have high 

to intermediate Nugent scores compared to women with low scores. We chose to separate 

women that had low nugent scores from those with intermediate to high values. We 

observed a clear separation following PCA analysis between these two groups of 

individuals following a PCA analysis. In particular, we highlight the use of periodic 

smoothing splines on the most abundant organism, Lactobacillus iners, from a 2010 

study of the vaginal microbiome of reproductive-age women (Ravel et al., 2011). Using a 

more flexible model and less parameterized model we are able to confirm the fluctuation 

of Lactobacillus iners in healthy and typically stable patient communities of low nugent 

scores.  

 

Comparison to alternative methods 

We compared the SS-ANOVA permutation based approach to two alternative approaches 

on the large healthy/malnourished infant cohort and the gnotobiotic mouse diet study. 

The first method consisted of a pairwise t-test for each time point. We did not observe 

any differential abundance at any time point in the infant cohort due to a lack of power. 

However, in analyzing the mouse study, Bacteroidetes, Bacilli, Erysipelotrichi, was 

significantly different in both methods between the same time intervals. However, using 

the SS-ANOVA approach we gained significant intervals of differential abundance for 

Deltaproteobacteria and Actinobacteria.  

 

The second alternative method in longitudinal differential abundance analysis is to fit a 

natural spline and calculate an F-statistic on the two fits. In our analysis of the diet study, 

the natural spline approach confirmed our analysis, but additionally reported 

Epsilonproteobacteria. This organism was present in only 3 samples at low abundance 

compared to an average of 119 samples for the other reported bacteria most likely a false 

positive. 

Methods 

Data acquisition and normalization 

Three 16S ribosomal RNA marker-gene surveys were used in the development and 

analysis of our method, metaSplines. The infant cohort and mouse gut shifting diet cohort 

datasets were downloaded from Bioconductor with existing annotations that were used to 

aggregate normalized counts. The ETEC challenged samples are available at: 

https://bioconductor.org/packages/release/data/experiment/html/etec16s.html. The 

multiple diet study is available within the metagenomeSeq pacakge as an example 

dataset. The vaginal microbiome count data and annotation was downloaded from the 

supplementary material of Ravel et al. at 

http://www.pnas.org/content/suppl/2010/06/03/1002611107.DCSupplemental/st04.xlsx 

(Ravel et al., 2011). Counts were converted from proportions back to raw counts 

rounding to the nearest integer. Further details for the sequencing, clustering and 

annotation are available in (Pop et al., 2016a; Ravel et al., 2011; Turnbaugh et al., 2009). 
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Data normalization is a crucial initial step in making counts comparable across samples. 

Counts were normalized per the cumulative sum scaling (CSS) method described in 

(Paulson et al., 2013). We aggregated normalized counts by annotation to various levels 

of the taxonomic tree including genera and class levels. Particular levels were chosen for 

the appropriate comparisons to previously published results. To analyze the infant cohort 

we aggregated normalized counts to genus level annotations. Classes were analyzed in 

the diet study and species for the vaginal microbiome cohort.  

 

 

Software 

The SS-ANOVA based method is available in the Biocondcutor package, 

metagenomeSeq. We provide an extensive documentation and vignette for users to 

analyze their own datasets.  For analyses presented we used metagenomeSeq version 

1.15.3. 

 

Conclusions  

We proposed a method for the time interval-finding task based on smoothing spline 

methods that is direct and interpretable. We applied our approach three different 

microbiome studies, an infant cohort, gnotobiotic mouse longitudinal study and healthy 

women vaginal consortium. Additionally, we performed a simple comparison analysis on 

the first two datasets using commonly employed methods, namely a pairwise comparison 

and F-test on natural spline fits. 

The smoothing-spline ANOVA method accurately detects time intervals of differential 

abundance by directly estimating the difference function of interest. This is the first 

method specifically developed for testing differentially expressed intervals of marker-

gene survey data. As longitudinal data becomes less cost-prohibitive methods to analyze 

the complex interactions in big infectious microbial data will necessitate methods like the 
one proposed.  

Additionally, Smoothing Spline ANOVA methods are potentially applicable to other 

high-throughput genomic data. Resolving base-pair differences is an important problem 

in several other high-throughput genomic data analysis applications including ChIP-seq 

(number of aligned reads in a given interval), DNA methylation (methylation level at a 

genomic locus), and recently RNA-seq (number of aligned reads in a genomic position). 

Intervals of interest in these applications include contiguous genomic intervals in which 

base-pair level measurements show significant differences between groups of samples. 

Recent widely used methods for this task take a smoothing approach to find these 

intervals of significant difference. However, these methods employ an indirect approach 

that is inefficient and appropriate interpretation of their estimates is not possible. As 

interval-finding applications continue to flourish with the advent of high-throughput 

assays, specifically next-generation sequencing, the general methodology presented here 

will address a rapidly increasing number of critical applications in genomics. 
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Figures 

Figure 1  - Illustrative example of time intervals of differential abundance. 

This example shows the difference function, 𝜂!(𝑡), with confidence intervals. We choose 

intervals labeled 𝑅!!,!! and 𝑅!!,!! as possible locations where there are significant 

difference in response between two groups. The areas under the curve in these intervals, 

𝐴!!,!!
 and 𝐴!!,!!, are calculated. These two areas are the test statistic being tested using 

permutation. 

Figure 2  - Actinobacteria is differentially abundant for a period of time before 

returning to stability 

The top part of the figure is the estimated 𝜂!(𝑡) from our model of difference of 

abundance. Using the Bayesian confidence interval we pick the interval (in grey) where 

we think there is a significant difference in abundance between the two diets for 

Actinobacteria. The bottom panel reveals the permutation of the null distribution of 

calculated areas. We show the predicted area in red revealing a significant difference at 

an alpha level of 0.05. 

 

Figure 3  - Smoothing Spline ANOVA recovers expected ETEC challenge as well as 

probiotic bacteria associated with healthy individuals. 

Estimated 𝜂!(𝑡) from our model of difference of abundance for Escherichia/Shigella 

(left) and F. prausnitzii (right). We observed that the differential abundance of 

Escherichia/Shigella follows immediately post infection and begins to decay after 

subsequent antibiotic treatment. Additionally, post challenge and treatment it would 

appear that there is a greater reduction in F. prausnitzii post diarrheal occurrence and 

antibiotics. 

 

Figure 4  - Vaginal microbiome time-series analysis reveals cyclical trend 

Top left, PCA analysis of samples from the vaginal microbiome cohorot of Ravel et al. 

2010. Colors represent in the top figure nugent scores for samples characterized as either, 

low, intermediate, or high. Top right, samples are recategorized as 0 - low nugent 

patients, or 1 high/intermediate nugent patients. Bottom left, Estimated function of 

difference in abundance for Lactobacillus iners. We observed that the differential 

abundance function follows an approximately monthly cycle. Top right, observed data 

with average of all data points running through the middle. 
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Tables 

 

Class names Interval start Interval end Area p-value Adjusted p-value 

Bacteroidetes: interval 1 18 20 6.189 0.001 0.006 

Bacteroidetes: interval 2 22 77 -117.998 0.002 0.012 

Bacilli 21 77 472.288 0.001 0.006 

Erysipelotrichi  13 77 118.463 0.001 0.006 

Deltaproteobacteria 20 77 116.940 0.003 0.018 

Actinobacteria 12 47 84.132 0.005 0.030 

Table 1  - Longitudinal differential abundance analysis of multiple diets 

Results of metagenomic data using the function metaSplines as stated above. The adjusted P-values are used to reject the null hypothesis. We use 𝛼=0.05 as a threshold to 

reject the null hypothesis. A positive area corresponds to a positive shift in abundance for western diet and a negative area corresponds to a positive shift in abundance for 

LF/LP diet. The diet was switched to western for half the mice after day 21.
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Species name Interval start Interval end Area p-value Adjusted p-value 

Bacteroides ovatus 5 9 14.303 0.017 0.374 

Escherichia/Shigella 1 9 43.66 0.001 0.022 

Faecalibacterium 

prausnitzii 

4 8 -18.107 0.001 0.022 

Ruminococcus faecis 5 6 1.022 0.001 0.022 

Bacteroides dorei -1 4 19.692 0.001 0.022 

Eubacterium rectale 5 6 -2.74 0.001 0.022 

Bacteroides xylanisolvens 1 9 -20.243 0.001 0.022 

Succiniclasticum ruminis -1 6 -19.336 0.001 0.022 

Collinsella aerofaciens 2 8 -17.71 0.001 0.022 

Bacteroides 

thetaiotaomicron 

5 9 13.332 0.001 0.022 

Alistipes sp. 5 9 -13.833 0.001 0.022 

Bacteroides plebeius 4 7 6.86 0.001 0.022 

Alistipes putredinis 7 9 -7.016 0.001 0.022 

Ruminococcaceae incertae 

sedis 

5 9 -5.005 0.001 0.022 

Roseburia faecis 5 9 -18.032 0.001 0.022 

Sutterella stercoricanis -1 4 -13.931 0.001 0.022 

Oscillibacter 6 7 -1.885 0.001 0.022 

Roseburia inulinivorans 2 7 16.468 0.001 0.022 

Eubacterium ventriosum 2 3 1.81 0.001 0.022 

Romboutsia lituseburensis -1 0 2.447 0.001 0.022 

Olsenella uli -1 1 2.143 0.012 0.264 

Turicibacter sanguinis -1 0 1.062 0.001 0.022 

Table 2  - Longitudinal differential abundance analysis of patients challenged with ETEC 

Results of metagenomic data using the function metaSplines as stated above. The adjusted P-values are used to reject the null hypothesis. We use 𝛼=0.05 as a threshold to 

reject the null hypothesis. A positive area corresponds to a positive shift in abundance for individuals that eventually became symptomatic and a negative area corresponds to 

a positive shift in abundance for individuals remaining asymptomatic. All individuals were infected with ETEC. 
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