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Abstract: Using a new channel shape equation for straight channels and a more versatile channel shape or local flow depth equation for
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straight and meandering ones. The method involves derivation of a new triple integral expression for the longitudinal dispersion coeffi-

cient and development of an analytical method for prediction of this coefficient in natural streams. The proposed method is verified using

70 sets of field data collected from 30 streams in the United States ranging from straight manmade canals to sinuous natural rivers. The

new method predicts the longitudinal dispersion coefficient, where more than 90% calculated values range from 0.5 to 2 times the

observed values. The advantage of the new method is that it is capable of accurately predicting the longitudinal dispersion coefficient in

single-channel natural streams without using detailed dye concentration test data. A comparison between the new method and the existing

methods shows that the new method significantly improves the prediction of the longitudinal dispersion coefficient.
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Introduction

River pollution has received much attention in recent years. The
longitudinal dispersion coefficient is a fundamental parameter in
hydraulic modeling of river pollution, for it is a measure of the
intensity of the mixing of pollutants in natural streams and is,
therefore, of great interest to river managers, environmental engi-
neers, institutional researchers, among others, who are involved in
river water pollution control.

More than 30 years ago Fischer ~1967! developed a theory for
determination of the longitudinal dispersion coefficient from
cross-sectional data and the transverse mixing coefficient. How-
ever, predicted longitudinal dispersion coefficients often deviate
from observed ones by orders of magnitude. The deviation is
attributed mainly to the inability to account for meandering and
other nonuniform conditions of the river.

The overall objective of this paper is to develop a simple yet
reliable method of estimating the longitudinal dispersion coeffi-
cient in single-channel natural streams, including straight and me-
andering ones. The method employs bulk channel parameters,
which are easily available without dye experiments. The specific

objectives are therefore to: ~1! establish a local flow depth equa-
tion describing the cross-sectional channel shape of natural
streams by incorporating the channel sinuosity; ~2! derive a new
triple integral expression defining the longitudinal dispersion co-
efficient; and ~3! determine the parameters of the new method
easily and develop a simple and accurate solution for obtaining
the longitudinal dispersion coefficient.

Previous Investigations

Numerous investigators have contributed to the understanding of
the mechanisms of longitudinal dispersion in rivers, beginning
with the simplest dispersion of dissolved contaminants in laminar
pipe flow ~Taylor 1953! to turbulent pipe flow ~Taylor 1954!.
Elder ~1959! extended the dispersion in pipe to the mixing in an
infinitely wide channel of constant depth and proposed that the
governing mechanism for dispersion in a wide channel is the
vertical velocity gradient. Fischer ~1967! attributed the lateral ve-
locity heterogeneity to the underlying mechanism of longitudinal
dispersion. McCutcheon ~1989! summarized studies related to
longitudinal dispersion. Despite the pioneering work of Taylor
and the landmark contribution of Fischer, and seminal studies of
Elder ~1959!; Sooky ~1969!; Chatwin ~1971!; Czernuszenko
~1990!; and Rutherford ~1994! among others, the discrepancies
between the magnitudes of the observed and predicted longitudi-
nal dispersion coefficients are still found in the range of 1–3
orders of magnitude and existing methods, in general, underesti-
mate the dispersion coefficient ~Sooky 1969; Godfrey and Fred-
erick 1970; Chatwin 1971; Nordin and Sabol 1974; Liu 1977; Seo
and Cheong 1998!. Such substantial discrepancies are often attrib-
uted to the irregularity, spiral flow, and the storage in dead zones
in natural streams.

Using a spectral technique, a stochastic method was proposed
to estimate an effective longitudinal dispersion coefficient, which
included the impact of irregular variations in the river width and
bed elevation, and concluded that the effective longitudinal dis-
persion coefficient could be ten or more times higher than the
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longitudinal dispersion coefficient of a corresponding straight
channel. Fischer ~1969! explained the considerable discrepancies
by considering the effect of variation of the cross-sectional geom-
etry on dispersion along the course of natural streams and pointed
out that stream meanders influence longitudinal dispersion in two
ways. First, the concentration of high velocities on the outside of
river bends results in increased dispersion. Second, river bends
induce secondary currents and therefore increased transverse mix-
ing, which means that the concentration of a pollutant tends to be
more uniform in a cross section, and thus reduces the longitudinal
dispersion. To obtain a mean dispersion coefficient of a meander-
ing stream, Fischer ~1969! suggested that individual dispersion
coefficients should be determined from some typical channel ge-
ometries and velocity distributions at various cross sections of a
stream, and an average longitudinal dispersion coefficient be de-
termined. Although the discrepancies were not reduced signifi-
cantly, Fischer’s suggestions are instructive.

Along a meandering stream there are dead zones, where the
water is rather isolated from the running water in the main chan-
nel. The water exchange between the running water in the main
channel and the more or less still water in these dead zones in-
fluences the mixing along the stream. There are multiparameter
models for computing this water exchange and the related longi-
tudinal dispersion ~Bencala and Walters 1983; Czernuszenko and
Rowinski 1997, 1998; Lees et al. 2000; Wörman 2000; Fernald
et al. 2001!. Seo and Cheong ~2001! solved a four-parameter dead
zone model by using the moment matching method and stated
that the concentration curves calculated from the four parameter-
model fit observed concentration curves better than the existing
methods. The majority of the dead-zone models seem capable of
providing good predictions of the dispersion process in natural
rivers, if there is a large number of detailed dye test measure-
ments for determining the parameters involved in the dead zone
equations. A high-resolution numerical method can satisfactorily
predict the longitudinal and lateral dispersion in natural streams
with arbitrary geometry and bathymetry, provided the detailed
field concentration measurements are made at strategically placed
monitoring stations ~Piasecki and Katopodes 1999!.

It follows from the above discussion that existing methods of
predicting the dispersion process in natural rivers require detailed
dye test concentration data. Such a requirement limits the appli-
cation of advanced methods, because detailed concentration data
are not readily available in most natural streams due to the high
cost associated with such measurements. Consequently, it is nec-
essary for effective river pollution control that an accurate ana-
lytical method for predicting the longitudinal dispersion coeffi-
cient in natural streams is developed, a method which does not
require detailed dye test concentration data.

Theoretical Formulation

In order to clarify the concept of diffusion and dispersion and to
derive an analytical equation of the longitudinal dispersion coef-
ficient for natural streams including straight and meandering ones,
it is necessary to consider the origin of diffusion and dispersion. If
there are no sources/sinks, the three-dimensional constituent
transport equation in natural streams can be written in terms of
instantaneous variables as ~Martin and McCutcheon 1999!
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where t5time; s, h, and z5coordinates along longitudinal, lat-
eral, and vertical directions in the natural coordinate system, re-

spectively; u, v , and w5flow velocities along the three coordi-

nate directions in LT21; c5constituent concentration in L3L23;

u, v , w, and c5instantaneous values; and Dm5coefficient of mo-

lecular diffusion in L2T21. Although the instantaneous velocities

u, v , and w of river flow can be obtained by means of advanced

flow measurement instruments, it is convenient to represent the

instantaneous values u, v , and w in terms of the time-averaged

values ~for a specified flow condition! ū , v̄ , and w̄ and the tur-

bulent fluctuating values u8, v8, and w8 of turbulent flow, i.e.,

u5 ū1u8, v5 v̄1v8, w5w̄1w8, and c5 c̄1c8. Substituting

these replacements of u, v , w, and c into Eq. ~1! and integrating

the equation with respect to time t, one gets

] c̄

]t
1
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The overbars indicate the time-averaged values of the quantities

under the bar, and u8, v8, w8, and c85fluctuations about the

mean values. By definition, the average of the fluctuating terms

must be zero. The last three terms on the right-hand side of Eq.

~2! represent the transport associated with the turbulent fluctua-

tions and are generally assumed to be proportional to the gradient

of c̄ on the basis of experimental results ~Holley 1969; McCutch-

eon 1989; Martin and McCutcheon 1999!
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in which E s , Eh , and E z5turbulent diffusion coefficients of flow

along the direction s, h, and z, respectively, due to the time aver-

aging of integration. Except at the interfaces where there are no

turbulent eddies, the role of molecular diffusion is negligible as

compared to that of turbulent diffusion in constituent transport

~McCutcheon 1989!. Substitution of Eq. ~3! into Eq. ~2! yields
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All the time-averaged quantities in Eq. ~4! can be expressed in the

form of the depth-averaged quantities as long as the mixing pro-

cess over the full flow depth is accomplished, i.e., ū5u% 1u9, n̄

5n% 1n9, w̄5w% 1w9, and c̄5c% 1c9. u% , n% , and w%

5depth-averaged velocities; and u9, n9 and w95deviations from

ū , n̄ , and w̄ . Similarly, c% 5depth-averaged concentration; and

c95deviation of c̄ from c% . Inserting these depth-averaged quan-

tities into Eq. ~4! and integrating the equation over local flow

depth h by using Leibnitz’s rule leads to ~Appendix I!
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where it has been considered that the turbulent diffusion coeffi-

cients E s and Eh are constant at the boundaries. The molecular

diffusion coefficient Dm related terms ~Dm]c/]s and Dm]c/]h!

are small at the water surface and the terms appearing according

to the Leibnitz rule when integrating the first two terms on the

right-hand side can be neglected ~Appendix I!. In the same man-

ner as Eq. ~3!, expressions for the cross products of the fluctuating

terms in Eq. ~5! are developed using an analogy to molecular

diffusion as
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]s
(6)
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]c%

]h

where K sz and Khz5dispersion coefficients in the s and h direc-

tions due to the vertical gradients of velocity and concentration.

The last two terms of Eq. ~5! denote the shear contribution to the

dispersion.

Although they are similar in form, Eqs. ~6! and ~3! are differ-

ent by nature. K sz and Khz stem from the vertical velocity and

concentration gradients and thus from the deviation of the longi-

tudinal and lateral velocities from their depth-averaged values,

whereas E s , Eh , and E z originate from the turbulent eddies and

thus from the deviation of the longitudinal, lateral, and vertical

instantaneous velocities from their time-averaged values. The

eddy turbulence at small scales is the predominant mechanism in

the turbulent diffusion process, and the velocity variation in the

cross section is the predominant mechanism in the longitudinal

dispersion process. Such an understanding of the dispersion

mechanism is essential for the determination of an accurate ex-

pression defining the dispersion coefficient. Substituting Eq. ~6!

into Eq. ~5! results in
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The different dispersion coefficients Dm for molecular diffu-

sion, E for turbulent diffusion, and K for advective dispersion, can

be lumped together to form mixing coefficients M, being different

in s and h directions. Dividing both sides of Eq. ~7! by h gives
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in which the transverse mixing coefficient M h and the longitudi-

nal mixing coefficient M s are

M h5Dm1Eh1Khz (8b)

M s5Dm1Es1Ksz (8c)

For convenience of mathematical manipulation, the depth-

averaged terms u% and c% can be represented by cross-sectionally

averaged terms U and C and deviations U8 and C8, i.e.,

u% ~s ,h !5U1U8~s ,h !5U1UF~s ,h ! (9a)

c% ~s ,h !5C~s !1C8~s ,h !5C~s !1C~s !G~s ,h ! (9b)

where F(s ,h) and G(s ,h) are subject to the following con-

straints:
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in which h5local flow depth, and B5channel width.

Substituting Eq. ~9! into Eq. ~8a! and noting ]C/]h50 yields

]@C~11G !#

]t
1U

]@C~11G !~11F !#

]s
1C

]~11G !n%

]h

5

1

h

]

]s
S hM s

]C~11G !

]s
D1

C

h

]

]h S hM h

]G

]h D (11)

In a coordinate system moving with the mean flow velocity U

along the s direction, x5s2Ut , y5h , Eq. ~11! is
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where n% 5average lateral velocity of the secondary current or

helix flow and thus n% '0. The lateral deviation of the concentra-

tion CG is much smaller than the mean concentration C in a cross

section. The decay of concentration ]C/]t is assumed to be much

smaller than the longitudinal concentration gradient term. Thus,

the first and the last terms on the left hand side of Eq. ~12! can be

neglected. Furthermore, on the right hand side the depth and con-

centration gradients are much greater in the lateral than in the

longitudinal direction ~Fischer 1967!, and therefore the first term

can be eliminated. All this leads to
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Fischer’s approach does not contain the second term, which is

attributed to the nonuniform velocity distribution of the flow in

meandering streams. Eq. ~13a! can be also written in the form
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Eq. ~13b! indicates that a scalar maintains a balance between the

longitudinal advective mass transport caused by the shear velocity

and the transverse mixing mass transport. Multiplying both sides

of Eq. ~13a! with h and integrating along y give an expression for

hM y]G/]y . Dividing by hM y and integrating once more gives
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The rate of longitudinal mass transport, relative to the moving
coordinate axis, is given by
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where the integration is performed over the full width. It should
be noted that the integration over width B makes sense only when
the lateral mixing process of constituents has been completed
across the whole flow width.

Substituting Eq. ~14! into Eq. ~15! and recalling the first equal-
ity of Eq. ~10! result in
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The rate of mass transport in the longitudinal direction can also be
defined in terms of a longitudinal mixing coefficient, with an
analogy to the molecular diffusion coefficient ~Fischer et al.
1979! as
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where A5BH5cross-sectional area of the river channel; H

5mean flow depth; and Kx5longitudinal dispersion coefficient
related to the integration over the whole channel cross-section and
is thus the most important mixing parameter. Equating Eqs. ~16!
and ~17! yields
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where the last term is attributed to the nonuniformity of flow.
Introducing dimensionless width coordinate j

j5

y

B
(19a)

and dimensionless depth h
*

h
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5
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where hmax5maximum flow depth in a cross section.
The transverse mixing coefficient M y can be expressed as

~Deng et al. 2001!

M y5M
*

hu* (20a)

with the dimensionless transverse mixing coefficient M
*
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where h5local flow depth; u*5local shear velocity; and U*

5cross-sectional shear velocity. The local shear velocity and the
maximum shear velocity in a cross section are expressed as

u*5gAgSh

and

umax
* 5gAgShmax (21)

where S5channel slope; g5acceleration due to gravity; and g
5correction factor to get a correct cross-sectional shear velocity.
Introducing the dimensionless depth h

*
, it is seen that

u*5umax
* Ah
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(22)

The mean shear velocity in a cross section is obtained by inte-
grating the local shear velocity over the width
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This mean value should correspond to the cross-sectional shear
velocity

U*5AgRS (24)

where R is hydraulic radius. Comparing Eqs. ~23! and ~24! it is
seen that
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The ratio between the cross-sectional shear velocity and the maxi-
mum shear velocity is obvious from Eq. ~23! and is
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Also the cross-section average flow depth H can be related to the
maximum depth and expressed in dimensionless form H

*
:

H
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Returning to the expression for M y , Eq. ~20a!, replacing the local
shear velocity with the maximum cross section shear velocity,
gives

M y5M
*

hmaxumax
* h

*
3/2 (28)

Replacing variables y, h, and M y in Eq. ~18! with their dimen-
sionless forms j, h

*
, and M

*
by means of Eqs. ~19! and ~28!,

one obtains
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Expressing umax
* in terms of I

*
and U

*
on the basis of Eq. ~26!

and inserting it into Eq. ~29! yields
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with
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The j coordinate is shown in Fig. 1 reflecting the variation of the

dimensionless local flow depth h
*

with the channel shape param-

eter b and skewness parameter a and the location j. Let I

5I
*

I0 , then Eq. ~30a! can be rewritten as

Kx
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52S I

M
*
D S U

U*D 2S B

H
D 2

(30c)

Eq. ~30! is the basic equation of the longitudinal dispersion coef-

ficient Kx . As compared to Fischer’s expression of the longitudi-

nal dispersion coefficient, Eq. ~30! is characterized by two distinct

features: ~1! The transverse mixing coefficient in Eq. ~30! con-

tains both the lateral turbulent diffusion coefficient, included in

Fischer’s triple integration, and the lateral dispersion coefficient,

produced by the depth integration and discarded in the analysis of

Fischer and Taylor ~Fischer et al. 1979!. ~2! The second term in

Eq. ~30b! reflects the characteristics of flow in meandering rivers.

The contribution from this term becomes significant when sec-

ondary currents are strong. The variation of the dimensionless

velocity deviation ]F/]x attains the maximum at river bends and

becomes zero or negligible in straight reaches. The expression of

I0 reduces to Fischer’s triple integration for straight rivers without

secondary currents. In Eq. ~30! the channel width B, the mean

flow depth H, the mean velocity U, and the shear velocity U* are

readily available bulk hydraulic variables for natural streams, but

the other dimensionless parameters need to be determined.

Parameter Determination

Concentration Related Term CÕ„CÕx…

For a one-dimensional advection–diffusion equation, a simple
steady-state analytical solution can be obtained ~Martin and Mc-
Cutcheon 1999! as

C5C0 expS 2

Ux

Kx0
D (31a)

Eq. ~31a! leads to

C

]C/]x
52

Kx0

U
(31b)

Eq. ~31b! indicates that the ratio of the concentration C and its
derivative with respect to the longitudinal distance x is a constant
if Kx0 and U are regarded as constant along the stream. Kx in Eq.
~30! is different from Kx0 in Eq. ~31! which can be understood as
the longitudinal dispersion coefficient in the straight stream.

Velocity Deviation Parameter F

It is seen from Eq. ~9a! that the dimensionless parameter F rep-
resents the deviation of the depth-averaged velocity u(s ,h) ~the
double overbar is dropped hereafter! from the cross-sectional
mean U. It is assumed that the local velocity u(s ,h) can be cal-
culated from one of the uniform-flow formulas of Manning,
Chezy, Darcy-Weisbach, among others ~Chow 1959; Chang 1988!
by the incorporation of a correction factor f8. The local velocity
is then

u5f8aAShb (32)

where a5Chezy coefficient and b51/2 for the Chezy formula;
a51/n ~n5Manning roughness coefficient! and b52/3 for Man-
ning formula; a5(8g/ f )0.5 ~f 5dimensionless friction factor! and
b51/2 for Darcy–Weisbach formula; f8 is actually a factor lo-
calizing the cross-sectional formula

U5aASRb (33)

to individual verticals in the cross section. Then the velocity de-
viation parameter F can be expressed in terms of the local flow
depth h and the hydraulic radius R or the cross-sectional averaged
depth H that is used more frequently than R as

F5

u

U
215
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215f8S h

R
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215fS h

H
D b

21

5fS h
*

H
*
D b

21

Ff5f8S H

R
D bG (34)

It is apparent that the correction factor f accounts for the influ-
ences of the localization and the replacement of R by H. The
introduction of f is to assure that the integrated local velocity
corresponds to the mean velocity. Therefore, f is subject to the
constraint of Eq. ~10!, i.e.,

E
0

1FfS h
*

H
*
D b

21 Gh
*

dj50 (35)

The value of f can be determined by a trial and error method
when the numerical integral value of Eq. ~35! is very close to zero

Fig. 1. Channel shape change with a and b
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and no longer changes markedly with a new value of f. The
correction factor f is absolutely necessary to obtain an accurate
and stable numerical value of I0 . With f known, the dimension-
less parameter F the deviation of the dimensionless velocity from
the cross-sectional mean, can be determined from Eq. ~34!, and
thereby the triple integration I can be evaluated from Eqs. ~30b!
and ~26! if the dimensionless flow depth h

*
is known. Parameter

F may also be determined if field measurements of the transverse
distribution of u/U are available ~Appendix II!. It appears that all
the unknowns in Eq. ~30! are related to h

*
, therefore, a determi-

nation of the dimensionless flow depth h
*

is essential to the prac-
tical application of Eq. ~30!.

Local Flow Depth h
*

Based on the at-a-station hydraulic geometry relationship of
stable alluvial rivers a local flow depth equation for straight
streams in a channel center symmetrical coordinate system was
derived as follows ~Deng et al. 2001!:

h
*

512jb, @b5ln~B/H !# (36a)

where b5channel shape parameter, the dimensionless lateral co-
ordinate or distance j was measured from channel center ~coor-
dinate origin! due to the symmetry of the cross-sectional shape
around the channel center for straight streams. It should be noted
that the absolute value of j should be used for j,0. If the origin
of the coordinate system is set at one bank of the stream, as
shown in Fig. 1, then Eq. ~36a! assumes the following form:

h
*

512~ u2j21u!b (36b)

The cross-sectional channel shape of straight streams is sym-
metrical at least in theory or in a statistical sense, as shown in Fig.
8~b!. However, meandering streams are characterized by the
asymmetrical cross-sectional channel shape with a series of riffle-
pool structures. The position of the maximum channel or flow
depth at a cross section varies alternatively from one bank to
another and reaches the channel center in straight reaches be-
tween the two consecutive pools along the stream. It means that:
~1! the local flow depth in meandering streams varies both later-
ally and longitudinally even for steady flow; and ~2! Eq. ~36b!
should be a special case of the cross-sectional shape equation of
meandering streams. To that end, a new channel shape equation is
assumed for meandering streams as follows:

h

hmax
5h

*
5

ja

P
~12u2j21ub! 0<j<1 (37a)

a53F12sinS px

2L
D G~s21 !d d50.5

for s.2 and d51 for s,2 (37b)

where the denominator P is introduced to ensure a unity for the
maximum dimensionless depth h

*
and thus P is equal to the

maximum value of the numerator. a is a parameter used to reflect
the skewness of the cross-sectional channel shape and is deter-
mined based on the fact that the values of the dispersion coeffi-
cients obtained by Deng et al. ~2001! correspond to those of the
streams with sinuosity s51.6 and b53 as alluvial streams tend
to form a stable channel pattern with s'1.6 and b53 in a sta-
tistical sense ~Deng and Singh 1999!. s is the channel sinuosity,
defined as the ratio of the valley slope to the channel slope, or the
ratio of the channel length to the valley length ~Chang 1988!, i.e.,
s54L/Lm . L5one fourth of the arc length or the distance from
apex to entrance or to exit along the meander path; Lm

5meander wavelength; x5distance measured along the meander
path; and x50 at the apex and x5L at the entrance or exit of a
bend, as shown in Fig. 2. It should be pointed out that Eq. ~37b!
is an empirical result based on the sine-generated channel curve
~Chang 1988; Przedwojski et al. 1995! and fitting of Eq. ~37a! to
some measured cross-sectional channel shapes of natural streams.

Eq. ~37a! reduces to Eq. ~36b! when a50 ~s51 or x5L!.
Parameter P can be determined by differentiating the channel
shape equation with respect to lateral distance j. For the coordi-
nate system shown in Fig. 1, the coordinate origin is located on
the convex bank, and hmax should occur in the range of 0.5,j
<1. Thus, Eq. ~37a! is employed to determine the location of
hmax . Let

p5ja@12~2j21 !b# (38)

It is apparent that p50 when j51, and p reaches its maximum P

when 0.5,j5jc<1 for aÞ0. jc is the lateral coordinate of
hmax . Differentiating Eq. ~38! with respect to j and equating it to
zero yields

a2a~2j21 !b
22bj~2j21 !b21

50 (39)

For a specific cross section along the river channel, a and b are
known, jc can be solved from Eq. ~39!. Then, substituting jc into
Eq. ~38! results in

P5jc
a@12~2jc21 !b# (40)

An approximate but simple method of determining P and jc is
to take the maximum value of P corresponding to j50.525,
0.555, 0.575, . . . , and 1. jc50.5 for a50 or straight river
reaches. The variation of h

*
with a and b is plotted in Fig. 1,

where the vertical coordinate actually denotes (12h
*

). With h
*

defined, the dimensionless parameters H
*

, I
*

, and I can be de-
termined as

H
*

5E
0

1

h
*

dj5

1

P H E
0

0.5

ja@12~122j !b#dj

1E
0.5

1

ja@12~2j21 !b#djJ (41)

I
*

5E
0

1

Ah
*

dj5

1

AP
H E

0

0.5

Aja@12~122j !b#dj

1E
0.5

1

Aja@12~2j21 !b#djJ (42)

Eqs. ~41!–~42! can be solved by numerical integration. Depend-
ing on Eqs. ~34! and ~58! of the velocity deviation parameter F,
parameter I0 can be determined from two approaches: In the first
approach, Eq. ~34! is employed to determine F and ]F/]x

Fig. 2. Natural coordinate system
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]F

]x
5

f

H
*
b

]h
*
b

]x
1fh

*
b

]

]x S 1

H
*
b D (43)

It is seen from Eq. ~41! that the variability of H
*

is significantly
reduced due to the lateral integration as compared to h

*
. It sig-

nifies that the second term on the right hand side of Eq. ~43! is
significantly smaller than the first term. The second term is as-
sumed to be equal to the first term multiplied by a coefficient c.
Then, ]F/]x can be simplified as

]F

]x
5f~11c !

bh
*
b21

H
*
b

ja⌊12~ u122ju!b⌋

P
~ ln j !

3F23~s21 !s
p

2L
cosS px

2L
D G (44)

The arc length 4L of meandering channels varies in a wide
range around 2pB ~Chang 1988; Przedwojski et al. 1995!. It is
thus assumed that L5(11c)pB/2. Then,

]F

]x
52

3bf

H
*
b

~s21 !d

B
cosS px

2L
D h

*
b ln~j ! (45)

Substitution of Eqs. ~31!, ~34!, and ~45! into Eq. ~30b! leads to

I05E
0

1

h
*S f

h
*
b

H
*
b 21 D F E

0

j

h
*
25/2E

0

jS f
h

*
b

H
*
b 21 D h

*
dj dj

1S Kx0

UB
D S 3bf

H
*
b D ~s21 !d

3cosS px

2L
D E

0

j

h
*
25/2E

0

j

h
*
b11~ ln j !djdjGdj (46)

where cos( ) should take its absolute value when it is less than
zero. It is interesting to find that Kx0 /UB can be taken as a
constant of 3, i.e., Kx0'3UB , as listed in Table 2. Actually, the
accuracy of Kx0'3UB is comparable with that of the most accu-
rate empirical formula without the consideration of the influence
of channel meandering. If the Manning formula of uniform flow
is used, then the exponent b52/3, and Eq. ~46! can be recast into

I05E
0

1

h
*S f

h
*
2/3

H
*
2/321 D F E

0

j

h
*
25/2E

0

jS f
h

*
2/3

H
*
2/321 D h

*
dj dj

1S 6f

H
*
2/3D ~s21 !d cosS px

2L
D E

0

j

h
*
25/2E

0

j

h
*
5/3~ ln j !dj djGdj

(47)

In the second ~Chezy! approach to determine I0 , Eq. ~58! is
employed to determine F and ]F/]x in the same way as the first
approach, then one gets

]F

]x
5~11c !

f uh
*
21/2

2H
*
1/2

ja⌊12~ u122ju!b⌋

P
~ ln j !

3F23~s21 !d
p

2L
cosS px

2L
D G

52

3

2

~s21 !d

BH
*
0.5 f u cosS px

2L
D h

*
1/2 ln~j ! (48)

Substitution of Eqs. ~31!, ~58!, and ~48! into Eq. ~30b! results in

I05E
0

1

h
*Fu f uS h

*
H

*
D 1/2

21 G
3S E

0

j

h
*
25/2E

0

jFu f uS h
*

H
*
D 1/2

21 Gh
*

dj dj

1

9

2

~s21 !d

H
*
0.5 cosS px

2L
D E

0

j

h
*
25/2

3E
0

j

f uh
*
3/2~ ln j !dj dj D dj (49)

Eq. ~49! is employed mainly to check the validity of the applica-
tion of uniform flow equations to local flow. The correction factor
u in Eq. ~49! has the same function as f, but u ranges from
around 0.48 to 0.60. From Eq. ~47! I0 can be calculated for each
cross section in a stream reach and then the results are compared
with that from Eq. ~49! for sinuosity s.1.6. Eqs. ~47! and ~49!
indicate that the triple integration I0 varies with both the channel
sinuosity and the width–depth ratio.

Simplification of Triple Integration

In order to use Eq. ~30! easily in practice, a set of regression
equations is provided in Table 1 for the most possible range of
channel shape parameter based on the results of the numerical
integration, conducted for s51, 1.1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4,
2.6, 2.8, and 3, respectively, as indicated in Figs. 3~a–c! and Fig.
4.

The numerical integration is conducted for s51 – 3 and b
52.3– 5 as the channel sinuosity of alluvial streams ranges from
1 to 3 in general ~Schumm 1963!. Most meandering streams pos-
sess the width to depth ratio ranging from 10 to 150. Streams with
B/H.150 generally have a straight channel pattern ~Deng and
Singh 1999!. The width to depth ratio of some straight canals may
be less than 10. Therefore, a regression equation of I is given for
straight streams as shown in Fig. 5, where the I values are plotted
against the channel width to depth ratio as in the case of s51 the
expression ~37a! of h

*
contains only one parameter b

5ln(B/H). Table 1 just lists four cases of the width to depth ratio.
For other cases the I value can be linearly interpolated from the
neighboring values computed from the corresponding regression

Table 1. Simplified Expressions of Triple Integration I

b B/H Regression equation R2

2.3 10 I50.0061s3
20.0259s2

10.0422s20.0224 0.9969

3.0 20 I50.0077s3
20.0379s2

10.0686s20.0387 0.9983

4.0 54.6 I50.0094s3
20.0502s2

10.0954s20.0553 0.9972

5.0 148.4 I50.0105s3
20.058s2

10.112s20.0651 0.9972
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equations. The results of numerical integration illustrate that both
Eqs. ~47! ~Manning approach! and ~49! ~Chezy approach! lead to
comparable I values for b.1.6, as Eq. ~59a! is applicable to b
.1.6, due to the introduction of the velocity correction factor u.
The results of Eq. ~49! with f u calculated from Eq. ~59b! ap-
proach that of Eq. ~47! corresponding to s51.08– 1.11 for dif-

ferent b values. Such a result is easily understood as natural
streams scarcely follow a straight alignment with s51.0. It
means that the uniform flow equation with the revisions made in
the paper is applicable to local flow. Consequently, all the regres-
sion equations employ the I0 values from Eq. ~47!. It should be
pointed out that all the I values used in a regression analysis of
the equations in Table 1 are the average of the I values at cross
sections x50 and L, i.e., I5(Ix501Ix5L)/1.57, where 1.57 in-
stead of 2 is used due to the sine-generated channel curve of
natural streams. The influence of channel meandering on the
value of the triple integration defined in Eq. ~30! is demonstrated
in Fig. 4, where the one-term curve represents the I values calcu-
lated from the first term of Eq. ~30b! in combination with Eq.
~26!, and the two-term curve refers to the result incorporating the
contributions of all the two terms in Eq. ~30b!. Except for the case
of s approaching unity that is the implicit assumption of most
existing empirical formulas of the longitudinal dispersion coeffi-
cient, the influence of the second term on the I value is signifi-
cant. In fact, Fig. 4 indicates that the second term—the change of
the nonuniformity of flow along the channel—plays a more im-
portant role than the first term in the longitudinal dispersion pro-
cess of the moderately meandering streams with s51.25– 1.85
that is the channel sinuosity range of most natural streams ~Deng
and Singh 1999!. It means that for the most frequently occurring
natural streams, the second term is the controlling mechanism
underlying the longitudinal dispersion. However, all the existing
empirical methods fail to comprise this term. As a result, the
predicted longitudinal dispersion coefficients deviate from ob-
served ones by orders of magnitude. Owing to the incorporation
of the second term, Eq. ~30! should significantly improve the
prediction of the longitudinal dispersion in natural streams in
principle. To that end, a vast number of field observations are
employed to test the performance of Eq. ~30!.

Verification of Proposed Method

70 sets of field data measured on 30 streams in the United States
were used to test the accuracy and feasibility of the method de-
veloped for prediction of the longitudinal dispersion coefficient in
natural streams, including straight and meandering ones. Among
the 70 data sets, 59 were collected from Seo and Cheong ~1998!,
and the remaining 11 from Godfrey and Frederick ~1970!; Yot-
sukura et al. ~1970!; and McQuivey and Keefer ~1974!, the data
of channel sinuosity were calculated from 1:25,000 scale topo-
graphic maps based on the specific stream reaches of dye tests
described by Nordin and Sabol ~1974! and in the above-
mentioned reports. In Table 2, the third column is the channel
width to depth ratio; the fourth column gives the ratio of flow

Fig. 3. Variation of triple integration I with s and b

Fig. 4. Influence of channel meandering on triple integration

Fig. 5. Variation of triple integration I with B/H
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Table 2. Comparison of Measured and Predicted Longitudinal Dispersion Coefficients

Number River reach B/H U/U* M
*

DISPERSION COEFFICIENT Kg ~m2/s!

Measured value

Predicted by

Deng Fischer 3UB I ratio s

1 Antietam Creek, Md. 42.7 7.36 0.517 17.50 16.8 18.6 16.1 14.9 1.40

2 24.6 6.02 0.287 101.50 85.0 23.1 42.6 27.6 2.25

3 18.0 5.06 0.223 20.90 23.8 5.1 15.3 24.2 2.25

4 43.8 8.98 0.615 25.90 30.7 56.4 39.1 10.7 1.26

5 Monocacy River, Md. 88.5 5.00 0.836 37.80 31.0 61.7 38.0 17.3 1.28

6 130.9 3.48 0.970 41.40 35.4 74.5 44.6 21.7 1.28

7 78.8 14.09 1.803 29.60 87.5 387.7 95.2 16.0 1.28

8 84.8 5.51 0.864 119.80 132.3 160.7 93.6 28.8 1.61

9 98.9 5.75 1.070 66.50 39.9 58.3 28.0 31.2 1.61

10 Conococheague Creek, Md. 61.2 3.59 0.443 40.80 59.4 23.5 29.1 40.4 2.25

11 121.2 1.85 0.540 29.30 39.3 18.4 22.4 52.9 2.25

12 38.0 7.78 0.480 53.30 67.5 88.1 81.2 11.2 1.31

13 Chattahoochee River, Ga. 38.8 5.36 0.382 88.90 109.7 127.9 167.8 10.1 1.27

14 37.7 5.53 0.380 166.90 163.8 109.5 143.4 17.3 1.57

15 Salt Creek, Neb. 64.0 6.31 0.703 52.20 24.7 34.1 23.0 18.6 1.38

16 Difficult Run, Va. 46.7 4.03 0.376 1.90 2.1 7.5 10.9 3.5 1.09

17 Bear Creek, Colo. 16.1 2.33 0.176 2.90 3.0 7.3 53.1 1.6 1.08

18 Little Piney Creek, Mo. 72.0 7.35 0.910 7.10 7.5 36.0 18.5 7.2 1.13

19 Bayou Anacoco, La. 39.0 13.33 0.738 5.80 20.1 32.0 16.8 14.2 1.41

20 Comite River, La. 68.3 9.23 1.036 69.00 16.5 39.2 16.9 16.4 1.31

21 Bayou Bartholomew, La. 23.8 6.45 0.291 54.70 54.2 11.3 20.0 36.1 2.46

22 Amite River, La. 41.0 20.00 1.102 501.40 257.6 104.0 34.6 85.4 2.93

23 Tickfaw River, La. 25.3 3.38 0.228 10.30 10.3 3.8 12.1 16.4 1.75

24 Tangipahoa River, La. 38.8 6.67 0.440 45.10 60.6 42.8 45.2 19.1 1.46

25 74.7 17.00 2.002 44.00 41.8 141.8 30.5 22.8 1.46

26 Red River, La. 156.5 19.06 5.929 143.80 206.8 5077.5 464.1 17.9 1.20

27 40.8 4.83 0.374 130.50 133.9 101.6 140.5 15.4 1.44

28 41.6 7.89 0.530 227.60 230.7 248.0 205.7 15.5 1.44

29 89.2 13.05 1.967 177.70 172.6 933.6 218.7 15.0 1.24

30 Sabine River, La. 70.6 10.74 1.230 131.30 129.0 563.0 202.6 10.7 1.19

31 69.1 19.63 2.072 308.90 307.1 2535.7 509.8 9.4 1.17

32 Sabine River, Tex. 28.3 3.51 0.246 12.80 12.7 2.0 5.5 42.4 2.53

33 23.9 7.67 0.319 14.70 14.7 5.6 8.4 21.5 2.05

34 22.9 10.28 0.366 24.20 24.0 19.9 23.0 11.2 1.47

35 Mississippi River, La. 35.7 13.65 0.683 237.20 181.9 2134.2 1194.8 14.1 1.44

36 Mississippi River, Mo. 108.0 15.22 2.910 457.70 382.5 10123 1680.2 24.4 1.38

37 60.4 15.56 1.414 374.10 583.9 8389.7 2434.3 18.0 1.38

38 Wind/Bighorn River, Wyo. 32.3 6.97 0.384 184.60 151.6 108.3 131.3 15.5 1.56

39 35.8 11.37 0.596 464.60 609.1 666.1 445.5 16.3 1.56

40 Copper Creek, Va. 34.0 2.50 0.237 16.84 20.5 3.1 10.0 45.8 2.54

41 Clinch River, Va. 41.8 3.04 0.294 14.76 15.4 14.2 30.5 10.0 1.25

42 Copper Creek, Va. 48.1 1.29 0.222 20.71 13.2 1.9 8.2 51.8 2.54

43 Powell River, Tenn. 42.3 2.41 0.265 15.50 20.9 5.4 14.3 32.7 2.20

44 Clinch River, Va. 47.0 5.07 0.437 10.70 11.1 26.3 30.1 6.1 1.14

45 Copper River, Va. 23.3 4.85 0.252 20.82 13.3 12.0 28.8 7.2 1.26

46 Clinch River, Va. 23.6 7.21 0.306 40.49 41.3 81.4 130.3 4.0 1.14

47 22.1 6.17 0.270 36.93 29.8 52.7 105.4 3.9 1.14

48 Copper Creek, Va. 35.7 3.00 0.263 24.62 28.1 4.7 12.1 46.6 2.54

49 Missouri River, Iowa 62.2 22.09 2.021 1486.4 1355.4 4852.0 962.9 20.1 1.44

50 Bayou Anacoco, La. 27.6 5.07 0.285 32.52 19.8 13.6 26.4 11.4 1.41

51 40.2 5.97 0.422 39.48 42.7 38.6 43.9 14.5 1.41

52 Nooksack River, Wash. 84.2 2.50 0.467 34.84 93.8 99.3 128.7 17.8 1.30

53 Wind/Bighorn River, Wyo. 54.0 7.39 0.662 41.81 88.4 229.9 156.9 8.8 1.18

54 31.8 9.22 0.455 162.58 161.8 342.5 318.9 6.1 1.18

55 John Day River, Ore. 43.1 7.21 0.514 13.94 14.9 86.3 75.7 2.8 1.08

56 13.8 4.56 0.194 65.03 60.2 19.4 84.0 12.8 1.89
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velocity and shear velocity; the sixth column lists the values of
the observed longitudinal dispersion coefficient; and the fifth col-
umn is the dimensionless transverse mixing coefficient M

*
cal-

culated from Eq. ~20b!. As there are no field data of M
*

for the
river reaches listed in Table 2, it is thus difficult to quantitatively
determine the accuracy of Eq. ~20!. However, a qualitative com-
parison may enhance the confidence in application of Eq. ~20!.
Lau and Krishnappan ~1981! compiled 11 sets of field data for
transverse dispersion coefficient. Except the highest value of
M

*
53.30 for the Missouri River, the M

*
values of all other

rivers range from 0.22 to 1.0. Fischer et al. ~1979! suggested
M

*
50.6650% for moderately meandering streams. It is seen

from Table 2 that the values of 0.18,M
*

,0.9 account for 70%
of 70 data sets, although M

*
ranges from 0.18 to 2.91 except for

the extreme one of 5.93. Therefore, the calculated values of M
*

are consistent at least qualitatively with the measured values.
Using Eq. ~30c! and the regression equations in Table 1 in com-
bination with the interpolating method, the predicted dispersion
coefficients were obtained and listed in the seventh column of
Table 2. The results illustrate that the predicted dispersion coeffi-
cients by the new method are reasonably accurate as compared to
the measured ones for B,200 m. Among the 70 sets of predicted
and measured dispersion coefficients, 60 or 85.7% predictions fall
within the range of 0.5,KP(predicted)/KM(measured),2. A
step by step procedure for using the numerical integration and the
regression equations to calculate the longitudinal dispersion coef-
ficients is discussed in Appendix III.

It is found that the method overestimates Kx systematically
when B.200 m. The predicted dispersion coefficients of data set
No. 26 ~Red River!, No. 35–37 ~Mississippi River! are 305.98,
1475.49, 1930.25, and 2982.81 m2/s, respectively. The greater the
channel width B, the higher the predicted Kx is than observations.
Such an overestimation is attributed to the inconsistency of the
mixing conditions required by the equation derived in this paper
with the real dye test conditions. In theory, this method is appli-
cable to the fully mixing stream reaches in the whole flow width.
However, some dye tests were conducted on the partly mixing
river reaches ~McQuivey and Keefer 1976!. It means that the
actual mixing width is less than the channel width listed in Table
2, causing the overestimation. If an effective mixing width of 200
m is taken for the Red River and Mississippi River, 64 or 91.4%

of the predictions fall within the range of 0.5,KP /KM,2. It
should be pointed out that Eq. ~30! is still valid for the streams
with B.200 m if the full mixing is completed across the channel.
The discrepancy distribution of the predicted dispersion coeffi-
cient from the measured one for all the investigated streams is
plotted in Fig. 6, where the discrepancy ratio is defined as
log(KP /KM). Predictions with a large deviation from observed
ones occur with quite a low frequency.

The longitudinal dispersion coefficients of the streams in Table
2 are also calculated from the widely used Fischer’s equation
~Fischer et al. 1979!

Kx

HU*
50.011S B

H
D 2S U

U*D 2

(50)

and from the empirical formula proposed by Seo and Cheong
~1998!

Kx

HU*
55.915S B

H
D 0.62S U

U*D 1.428

(51)

Eq. ~51! was regarded to be superior in explaining dispersion
characteristics of natural streams to existing equations ~Seo and
Cheong 1998!. The calculated results from Eq. ~50! are listed in
the eighth column of Table 2. The dispersion coefficients pre-
dicted by the procedure presented in this paper and the ones com-
puted from Eqs. ~50! and ~51! are compared with the measured
ones in Fig. 7. The new method significantly improves the pre-
diction of the longitudinal dispersion coefficient. It should be
noted that all the curves in Figs. 1–8 should be smooth and con-
tinuous lines in theory.

The integration term in Eq. ~30! contains the contribution from
the lateral velocity deviation from the mean flow as well as the
contribution from longitudinal gradients of the flow depth. By
comparing the full integration with the integration of only the first
term, the effect of the channel sinuosity is found. The ratio be-
tween Imeandering and I straight is shown in the tenth column of Table
2 for all the investigated streams. The ratio ranges from 1 to 85.4.
It is clear that neglect of the effect of channel meandering causes
large discrepancies between the predicted and observed disper-
sion coefficients. It is, therefore, essential to incorporate the effect
of channel sinuosity in the theoretical equations to obtain a rea-

Table 2. ~Continued!

Number River reach B/H U/U* M
*

DISPERSION COEFFICIENT Kg ~m2/s!

Measured value

Predicted by

Deng Fischer 3UB I ratio s

1

57 Yadkin River, N.C. 29.8 4.26 0.276 111.48 147.8 42.1 90.4 27.1 2.17

58 18.7 5.94 0.241 260.13 257.2 66.3 163.3 22.1 2.17

59 Coachella Canal, Calif. 15.6 16.10 0.348 5.92 5.8 45.1 48.9 1 1.00

60 Nooksack, Wash. 29.4 2.26 0.213 153.0 118.0 75.4 309.6 9.3 1.30

61 Susquehanna, Pa. 150.4 6.00 1.867 92.9 97.5 785.7 237.5 11.5 1.13

62 Bayou Anacoco, La. 47.6 6.44 0.523 13.9 18.5 19.6 17.4 16.4 1.41

63 Missouri River, Iowa 78.5 13.48 1.724 465.0 541.0 1897.5 488.6 19.4 1.35

64 56.5 15.24 1.277 837.0 889.3 2434.9 771.8 16.3 1.35

65 Missouri River, Iowa 63.3 19.62 1.853 892.0 1057.2 4119.6 904.2 17.4 1.35

66 Chicago Ship Canal 6.0 14.14 0.193 3 4.0 12.4 39.5 1 1.00

67 Elkhorn River, Neb. 108.7 9.35 1.860 9.3 11.4 157.8 42.3 5.9 1.09

68 Elkhorn River, Neb. 121.2 9.91 2.258 20.9 19.3 311.5 70.7 6.4 1.09

69 Comite River, La. 48.1 7.01 0.562 7 10.3 14.4 11.6 13.3 1.31

70 Comite River, La. 38.5 6.60 0.434 13.9 14.0 16.3 17.5 11.4 1.31
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sonable prediction of longitudinal dispersion coefficient. This is
the distinct feature of the new method.

In principle, the proposed method is limited to the steady flow
with constant cross-sectional averaged velocity U, flow depth H,
and channel width B along a channel. Such conditions may rarely
be satisfied strictly in natural streams but they may be met within
certain length and time scales depending on the variability of a
natural stream in terms of the accuracy of the proposed method
and the observed data. Fig. 6 indicates that the discrepancies
log(KP /KM) of this method mainly concentrate in the range of
20.15–0.15 or 0.708,KP /KM,1.412, corresponding to 0.84
,B/H,1.19 or 0.84,U/U*,1.19 or 0.84,BU/(HU*),1.19
in Eq. ~30c!. It means that 20% change in (B/H)3(U/U*) is
within the accuracy of the proposed method and the observed data
and the length of a stream reach should be limited according to
the 20% allowance in order to maintain a constant Kx . If a river
reach is very long and it causes a greater change than the 20%
allowance, then the river reach should be divided into several
subreaches to meet the requirement of the proposed method.

Conclusions

Using the cross-sectional shape equation of straight channels, a
more versatile channel shape or local flow depth equation is pro-
posed for natural single channel streams by introducing the chan-
nel sinuosity, the dominating factor causing the significant varia-
tion in the longitudinal dispersion coefficient. Incorporating the

effect of stream bends or the variation of local flow depth and
hence the local velocity along the course of natural streams, a
new triple integral expression of the longitudinal dispersion coef-
ficient is derived. Then, an analytical method is developed for
prediction of the longitudinal dispersion coefficient in natural
streams by an approximation of the complex triple numerical in-
tegration with a set of regression equations for different width to
depth ratios and sinuosity. The proposed procedure is verified by
using 70 sets of field data collected from 30 streams from straight
manmade canals to sinuous natural rivers in the United States.
The new method predicts the longitudinal dispersion coefficient
with an accuracy in which 91.4% of the calculated values range
from 0.5 to 2 times the observed values. A comparison between
the new method and other methods shows that the new method
significantly improves the prediction of the longitudinal disper-
sion coefficient. The analytical method developed here can be
applied with confidence to natural single-channel streams with the
channel width of less than 200 m. The new analytical method is
characterized by its capability of providing the most accurate pre

Fig. 6. Occurring frequency of discrepancy ratios predicted to measured Kx

Fig. 7. Comparison between measured and predicted Kx Fig. 8. Variation of velocity profile factor with j
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diction of the longitudinal dispersion coefficient in single channel natural streams without detailed dye test concentration data as compared
to existing other methods.

Appendix I. Integration over Flow Depth

As all the terms in Eq. ~4! are continuous in the flow field the equation is thus integral over both the flow depth and the channel width and
the order of differentiation and integration is interchangeable in terms of the Leibnitz rule. Inserting ū5u% 1u9, n̄5n% 1n9, w̄5w% 1w9,
and c̄5c% 1c9 into Eq. ~4! and integrating the equation vertically from z50 ~channel bottom! to z5h ~water surface! by means of
Leibnitz’s rule for differentiation of integrals yields

]~hc% !

]t
2c%

]h

]t
1

]~hu% c% !

]s
2~u% c% !

]h

]s
1

]~hn% c% !

]h
2~n% c% !

]h

]h
1~w% c% !h

5

]

]s
S h~Dm1Es!

]c%

]s
D2S ~Dm1Es!

]c%

]s
D

h

]h

]s
1

]

]h S h~Dm1Eh!
]c%

]h D2S ~Dm1Eh!
]c%

]h D
h

]h

]h

2H ]

]s F E
0

h

~u9c9!dzG2~u9c9!h

]h

]s J 2H ]

]h F E
0

h

~n9c9!dzG2~n9c9!h

]h

]h J 2~w9c8!h (52)

in which subscript h refers to the value at the water surface. After
the integration the last term of Eq. ~4! disappears because there is
no mass flux to the atmosphere or through the bottom. The depth
averaged c and uc are constant vertically and thus they occur
without the subscript h after the integration. The terms (u9c9)h ,
(v9c9)h , and (w9c9)h are assumed to be much smaller than u% c% ,

v% c% , and w% c% , respectively.
Expressing the vertical integrations of u9c9 and v9c9 in the

following form:

E
0

h

~u9c9!dz5h~u9c9!

and

E
0

h

~n9c9!dz5h~n9c9! (53)

As the turbulent intensity is usually regarded as zero at the water
surface and the molecular diffusion coefficient Dm related terms
are small at the water surface, Eq. ~52! can be then recast as

]~hc% !

]t
1

]~hu% c% !

]s
1

]~hn% c% !

]h
2c% S ]h

]t
1u%

]h

]s
1n%

]h

]h
2w% hD

5

]

]s
S h~Dm1Es!

]c%

]s
D1

]

]h S h~Dm1Eh!
]c%

]h D
2

]h~u9c9!

]s
2

]h~n9c9!

]h
(54)

The fourth term on the left hand side of Eq. ~54! is zero as

]h

]t
1u%

]h

]s
1n%

]h

]h
2w% h5

dh

dt
2w% h50 (55)

In the case of the steady flow the vertical velocity w% h at the water
surface should be zero and thus w% h5dh/dt50. The first three
terms on the left hand side of Eq. ~54! can be simplified as

]~hc% !

]t
1

]~hu% c% !

]s
1

]~hn% c% !

]h
5h

]c%

]t
1c%

]h

]t
1h

]~u% c% !
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1~u% c% !

]h
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]~n% c% !
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1~n% c% !

]h

]h
5hS ]c%
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1

]~u% c% !

]s
1

]~n% c% !

]h D1c% S ]h

]t
1u%

]h

]s
1n%

]h

]h D
5hS ]c%

]t
1

]~u% c% !

]s
1

]~n% c% !

]h D1c%
dh

dt
5hS ]c%

]t
1

]~u% c% !

]s
1

]~n% c% !

]h D (56)

Substitution of Eq. ~56! into Eq. ~54! leads to Eq. ~5! in the main text.

Appendix II. Second Approach for F

u/U can be easily expressed in terms of the dimensionless depth and friction term based on the uniform-flow formulas mentioned before.
For meandering rivers, u/U is often expressed in terms of the dimensionless depth and the dimensionless radius of curvature of the
meandering channel ~Chang 1988!. In most of the dimensionless expressions of u/U , the dimensionless depth h/H is raised to a power
of 0.5. Therefore, u/U is assumed to have the following general expression:

u

U
5 f uS h

H
D 1/2

5 f uS h
*

H
*
D 1/2

(57)
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Table 3. Numerical Integration of Eq. ~30!

1

A

j

B

j̄

C

Dj

D

h
*

E

h
*

Dj

F

H
*

G

(h
*

/H
*

)0.7

H I J K L M N O P Q R S T U V

Eq. ~35! First triple int First triple int I
*

Computation of the second triple integration in Eq. ~47! Eq. ~30c!

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 187.70

3 0.025 0.0125 0.025 0.0005 1.165E205 1.165E205 0.00931 21.2E205 21.16E-05 230.8351 230.835 0.0002 0.00018 0.0005 0.0005 23.07E27 23.07E27 20.818 20.818 4.7E26 4.73036E26 3.0175

4 0.050 0.0375 0.025 0.0055 0.000137 0.000149 0.04831 20.0001 20.00014 20.86285 231.698 0.0041 0.00432 0.0018 0.0024 21.41E25 1.44E25 20.817 20.900 0.0001 0.00011845 1.710

5 0.075 0.0625 0.025 0.0166 0.000416 0.000566 0.10099 20.0004 20.00053 20.23424 231.932 0.0122 0.01648 0.0032 0.0056 27.52E25 28.97E25 20.036 20.936 0.0004 0.00046953 0.077

6 0.100 0.0875 0.025 0.0336 0.000839 0.001405 0.16118 20.0007 20.00126 20.10795 232.040 0.0234 0.03984 0.0046 0.0102 20.0002 20.0003 20.024 20.960 0.0007 0.00116202 62.204

7 0.125 0.1125 0.025 0.0555 0.001389 0.002794 0.22549 20.0011 20.00239 20.06274 232.103 0.0364 0.07630 0.0059 0.0161 20.0004 20.0007 20.018 20.978 0.0011 0.00226342 22.092

8 0.150 0.1375 0.025 0.0817 0.002043 0.004837 0.29172 20.0016 20.00396 20.04156 232.144 0.0502 0.12652 0.0071 0.0232 20.0008 20.0015 20.015 20.993 0.0015 0.00380413 2.021

9 0.175 0.1625 0.025 0.1113 0.002782 0.007619 0.35837 20.0020 20.00594 20.02993 232.174 0.0637 0.19018 0.0083 0.0316 20.0012 20.0027 20.013 21.005 0.0020 0.00578193 0.234

: : : : : : : : : : : : : : : : : : : : : :

22 0.500 0.4875 0.025 0.5911 0.014777 0.125463 1.09093 20.0018 20.04283 20.00390 232.303 0.0581 1.38036 0.0192 0.2233 20.0075 20.0649 20.006 21.107 0.0020 0.04492052

23 0.525 0.5125 0.025 0.6314 0.015786 0.141249 1.14001 20.0013 20.04413 20.00343 232.307 0.0420 1.42231 0.0199 0.2432 20.0078 20.0727 20.005 21.112 0.0014 0.04636163

: : : : : : : : : : : : : : : : : : : : : :

34 0.800 0.7875 0.025 1.0000 0.025000 0.378304 1.54891 0.00617 20.01103 20.00035 232.323 20.199 0.35246 0.0250 0.4980 20.0060 20.1580 20.004 21.159 20.007 0.00837538

35 0.825 0.8125 0.025 0.9936 0.024840 0.403144 1.54230 0.00600 20.00503 200020 232.323 20.194 0.15849 0.0249 0.5229 20.0051 20.1632 20.004 21.163 20.007 0.00140617

36 0.850 0.8375 0.025 0.9693 0.024233 0.427377 1.51706 0.00536 0.00033 26.35E205 232.323 20.173 20.0148 0.0246 0.5475 20.0042 20.1674 20.004 21.168 20.006 20.0048437

37 0.875 0.8625 0.025 0.9227 0.023067 0.450444 1.46801 0.00419 0.00452 7.43E205 232.323 20.136 20.1504 0.0240 0.5715 20.0032 20.1706 20.005 21.173 20.005 20.0097515

38 0.900 0.8875 0.025 0.8486 0.021216 0.471660 1.38837 0.00250 0.00702 0.000218 232.323 20.081 20.2310 0.0230 0.5946 20.0023 20.1729 20.006 21.179 20.003 20.0126880

39 0.925 0.9125 0.025 0.7413 0.018532 0.490192 1.26869 0.00040 0.00742 0.000381 232.323 20.013 20.2438 0.0215 0.6161 20.0014 20.1743 20.009 21.189 20.000 20.0131560

40 0.950 0.9375 0.025 0.5941 0.014852 0.505044 1.09458 20.0018 0.00565 0.000601 232.322 0.0570 20.1868 0.0193 0.6353 20.0007 20.1750 20.016 21.205 0.0021 20.0110439 20.000303

41 0.975 0.9625 0.025 0.3994 0.009986 0.515030 0.84008 20.0032 0.00242 0.001001 232.321 0.1045 20.0823 0.0158 0.6511 20.0002 20.1752 20.043 21.248 0.0040 20.0070794 20.006686

42 1.000 0.9875 0.025 0.1490 0.003725 0.518755 0.43535 20.0024 1.500E216 0.003529 232.318 0.0782 20.00410 0.0097 0.6608 21.32E25 20.1752 20.511 21.759 0.0036 20.0034412 1459.3
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where a velocity distribution factor f u is introduced. Then, the
dimensionless velocity deviation F can be determined as follows:

F5

u

U
215 f uS h

*
H

*
D 1/2

21 (58)

Actually, Eq. ~58! can be obtained from Eq. ~34! by taking the
Chezy exponent. Based on the data measured on the bends of the
Yangtze River, the largest river in China and collected by Zhang
and Xie ~1993!, two regression equations of the velocity distribu-
tion factor f u(j) are obtained for the entrance and apex of the
river bends

f u~j !526.5565j3
17.0775j2

20.1579j10.4704,

for apex R2
50.7253 (59a)

f u~j !522.4682j2
12.4682j10.5658,

for entrance or exit R2
50.5483 (59b)

Eq. ~59a!, based on 96 sets of data, attains a maximum value
f u max51.58 at j50.708, f u(0)50.47 at j50, and f u(1)
50.837 at j51, as shown in Fig. 8~a!. Eq. ~59b!, based on 72
sets of data, reaches a maximum value f u max51.18 at j50.5,
f u(0)50.5658 at j50, and f u(1)50.5658 at j51, as shown in
Fig. 8~b!.

Appendix III. Engineering Application of Proposed
Method

To demonstrate computation procedures of the numerical integra-
tion and interpolation, the geometrical and hydraulic properties of
the Missouri River between the Sioux City, Iowa, and the
Plattsmouth, Nebraska, are utilized. According to the dye test
measurements in 1967 ~Yotsukura et al. 1970!, the best estimate
of the longitudinal dispersion coefficient for the study reach from
Blair Bridge to Plattsmouth Bridge is Kx516,000 ft2/s
51486.4 m2/s, the average channel width B5187.70 m, the av-
erage flow depth H53.02 m, the mean flow velocity U

51.73 m/s, and the mean shear velocity U*50.0774 m/s. These
average hydraulic data come from Table 2 in the document by
Yotsukura et al. ~1970!. Based on these mean values, the dimen-
sionless transverse mixing coefficient M

*
is calculated from Eq.

~20b! as 2.02. The measured channel sinuosity s51.44 for the
river reach from Blair to Plattsmouth. With these parameters
known, the remaining unknown in Eq. ~30a! is I5I03I

*
to pre-

dict Kx . I0 and I
*

can be computed in Microsoft Excel following
the procedures in Table 3 using Eqs. ~47! and ~42!.

Column A: Dimensionless transverse coordinate j50.0– 1.0
with increment of 0.025.

Column B: The average j̄ of two consecutive j values is ob-
tained by setting B35(A31A2)/2 ~It means that one writes the
formula ‘‘5(A31A2)/2’’ in the cell B3! and applying the for-
mula to the whole column.

Column C: Increment Dj of j is calculated by writing
‘‘5A3-A2’’ in the cell C3 or C35A3-A2 and then applying the
formula to the whole column.

Column D: Dimensionless flow depth h
*

is calculated using
its definition in Eq. ~37! and the observed data by ~1! setting x

50, ~2! setting D35((B3)∧(1.32))*(1-(1-2*(B3))∧(4.1304))
and applying the formula to the cells D3 –
D22 and D235((B23)∧(1.32))*(1-(2*(B23)-1)∧(4.1304))
and applying it to the remaining cells in the column, ~3! taking the
maximum value 0.655346349 of h

*
in the column as

P in Eq. ~37a!, and ~4! setting D3

5((B3)∧(1.32))*(1-(1-2*(B3))∧(4.1304))/0.655346349 and

applying the formula to cells D3 – D22 and D23

5((B23)∧(1.32))*(1-(2*(B23)-1)∧(4.1304))/0.655346349 and

applying it to the remaining cells in the column, where the num-

ber 1.32 comes from a533(1-0)3(1.44-1)1 and 4.1304 stems

from b5ln(B/H)5ln(187.7/3.0175)54.1304 in Eq. ~37!.
Column E: Numbers in this column are obtained by

setting E35(C3)*(D3) and applying it to the whole column.

Column F: Numbers in this column are obtained by setting

F35F21E3 and applying it to the whole column. The last fig-

ure 0.518755213 (F42) in this column is the dimensionless mean

depth H
*

, i.e., H
*

50.518755213.

Column G: This column is to calculate the term (h
*

/H
*

)2/3 in

the triple integration. Numbers in this column are obtained by

setting G35(D3/0.518755213)∧(2/3) and applying it to the

whole column.

Columns H and I: These two columns are used to find the

correction factor f satisfying Eq. ~35! by adjusting the trial value

of f until the last figure ~error! in cell I42 is less than 10215 or so.

The accuracy depends on Dj. The smaller the increment Dj, the

smaller the error. f50.805023170076455 causes an error of

1.50310216 in Eq. ~35!. Numbers in column H are

finally obtained by setting H3

5(C3)*(D3)*(0.805023170076455*(G3)-1) and applying it

to the whole column, and numbers in column I are obtained by

setting I35I21H3 and applying it to the whole column.

Column J: Numbers in this column are obtained by setting

J35((C3)*0.5*(I21I3))/((D3)∧(5/2)) and applying it to the

whole column. Here, the value 0.5 is to take on the average of I2

and I3.

Column K: Numbers in this column are obtained by setting
K35K21J3 and applying it to the whole column.

Column L: Numbers in this column are obtained by setting L3
5((C3)*0.5*(K31K2))*(D3)*(0.805023170076455*(G3)-1)
and applying it to the whole column.

Column M: Numbers in this column are obtained by setting
M35M21L3 and applying it to the whole column. The last
value 20.00409809 (M42) in this column is the value of the first
triple integration in Eq. ~47!.

Columns N and O: These two columns are used to calculate
the parameter I

*
. Numbers in column N are finally obtained by

setting N35(C3)*((D3)∧0.5) and applying it to the whole col-
umn. Numbers in column O are obtained by setting O35O2
1N3 and applying it to the whole column. The last figure
0.660799 (O42) in this column is the value of I

*
in Eq. ~30!, i.e.,

I
*

50.660799.
Column P: Numbers in this column are obtained by setting

P35(C3)*(LN(B3))*((D3)∧(5/3)) and applying it to the
whole column.

Column Q: Numbers in this column are obtained by setting
Q35Q21P3 and applying it to the whole column.

Column R: Numbers in this column are obtained by setting
R35((C3)*0.5*(Q21Q3))/((D3)∧(5/2)) and applying it to
the whole column.

Column S: Numbers in this column are obtained by setting
S35S21R3 and applying it to the whole column.

Column T: Numbers in this column are obtained by setting
T35((C3)*0.5*(S21S3))*(D3)*(0.805023170076455*(G3)-1)
and applying it to the whole column.

Column U: Numbers in this column are obtained by setting
U35U21T3 and applying it to the whole column. The last
value 20.003441201 (U42) in this column is the value of the
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second triple integration without the coefficient in Eq. ~47!.
Column V: The last column is to calculate the longitudinal

dispersion coefficient Kx using the available hydraulic data,
where cell V2 is B, V3 is H, V4 is U, and V5 is U*, V6
5V2/V3, V75V4/V5, V850.1451((V6)∧1.38)*(V7)/3520,
V95(V3)*(V5). V40 is calculated by setting V405

20.0013/((V6)∧0.3523), that gives the I value at x5L or
for s51. Actually, in the case of x5L or s51 the I value can
be calculated following the same procedure as mentioned
above for the case of x50. Cell V41 gives the average I

value of a river reach including at least one bend and one
straight transition portion by setting V41
5((6*(0.44∧1)* (0.805023170076455* (U42) / ((F42)∧(2/3)))
1M42)*(O42)1V40)/1.57. This formula can be interpreted as
the average I5(Ix501Ix5L)/1.57, where I5I0I

*
. The number in

the cell V42 is obtained from Eq. ~30c! by setting V425

2(V41)*((V6)∧(2))*((V7)∧2)*(V9)/(V8). It finally gives the
predicted longitudinal dispersion coefficient of the Missouri River
between the Blair Bridge to the Plattsmouth Bridge, i.e., Kx

51459.3 m2/s, close to the observed value of 1486.4 m2/s.
The value of I can also be calculated using the regression

equations in Table 1 and interpolation method. For the investi-
gated reach of the Missouri River, 4,b54.1304,5. Substitution
of s51.44 into the last two equations in Table 1 yields I(b
54)50.00605 and I(b55)50.00726. Linear interpolation of
the two I values gives I(b54.1304)50.1304
3(0.00726– 0.00605)10.0060550.00621, leading to Kx

51355.4 m2/s. It is apparent that the methods proposed in this
paper are capable of predicting the longitudinal dispersion coef-
ficient of natural streams with high accuracy as long as the ob-
served hydraulic and geometrical data are accurate. Table 1 in
conjunction with the interpolating method is suggested for engi-
neers to calculate I values and then Kx as it can give a simple yet
reasonably accurate prediction of Kx .

Notation

The following symbols are used in this paper:

A 5 cross-sectional area of river channel ~m2!;
a 5 generalized friction factor;
B 5 surface width of river channel ~m!;
b 5 exponent of flow depth in generalized local

velocity equation;
C 5 cross-sectional average concentration;

C8 5 deviation of local depth mean concentration
from cross-sectional mean;

C0 5 cross-sectional average concentration at x

50;
c 5 instantaneous concentration;
c̄ 5 time-averaged concentration;

c8 5 turbulent fluctuating concentration;
c% 5 depth-averaged concentration;

c9 5 deviation of c̄ from c% ;
D 5 molecular diffusion coefficient ~m2/s!;
E 5 turbulent diffusion coefficient ~m2/s!;
F 5 deviation of dimensionless local depth mean

velocity from cross-sectional mean;
f u 5 velocity distribution factor;
H 5 sectional average flow depth ~m!;

H
*

5 sectional averaged dimensionless flow
depth;

h 5 local flow depth ~m!;

hmax 5 maximum flow depth ~m!;

h
*

5 dimensionless flow depth;

I 5 revised triple integration by I
*

;

I0 5 triple integration;

I
*

5 correction factor of shear velocity for re-

placement of hydraulic radius by local flow

depth;

KM 5 measured longitudinal dispersion coefficient

~m2/s!;
KP 5 predicted longitudinal dispersion coefficient

~m2/s!;
K sz 5 dispersion coefficient in s direction due to

vertical gradients of ū and c̄;

Kx 5 longitudinal dispersion coefficient ~m2/s!;
Kx0 5 longitudinal dispersion coefficient in straight

stream ~m2/s!;
Khz 5 dispersion coefficient in h direction due to

vertical gradients of v̄ and c̄;

L 5 distance from bend apex to exit measured

along meander path ~m!;
Lm 5 meander wave length ~m!;
M y 5 transverse mixing coefficient ~m2/s!;
M

*
5 dimensionless transverse mixing coefficient;

n 5 Manning roughness coefficient;

P 5 maximum value of p;

p 5 dimensionless local flow depth;

R 5 hydraulic radius ~m!;
S 5 channel slope;

s 5 longitudinal coordinate;

t 5 time;

U 5 cross-sectional averaged longitudinal veloc-

ity ~m/s!;
U8 5 deviation of local depth mean velocity from

cross-sectional mean ~m/s!;
U* 5 cross-sectional shear velocity ~m/s!;
u* 5 local shear velocity ~m/s!;

umax
* 5 maximum shear velocity ~m/s!;

u,v ,w 5 instantaneous velocities in s, h, and z direc-

tions ~m/s!;
ū , n̄ ,w̄ 5 time-averaged velocities in s, h, and z direc-

tions ~m/s!;
u% ,n% ,w% 5 depth-averaged velocities in s, h, and z di-

rections ~m/s!;
u8,v8,w8 5 turbulent fluctuating velocities in s, h, and z

directions ~m/s!;
u9,v9,w9 5 deviations of ū , n̄ , w̄ from u% , n% , w% , respec-

tively ~m/s!;
x 5 longitudinal coordinate along meander path;

y 5 lateral coordinate;

z 5 vertical coordinate;

a 5 skewness parameter of channel cross sec-

tion;

b 5 channel shape parameter;

g 5 correction factor;

d 5 numerical constant;

h 5 lateral coordinate;

u 5 correction factor;

j 5 dimensionless transverse distance y /B;

p 5 3.14159 . . . .

s 5 channel sinuosity;

f 5 correction factor; and

c 5 correction factor.
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