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Fitting a Polytomous Item Response Model
to Likert-Type Data
Eiji Muraki
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This study examined the application of the MML-EM
algorithm to the parameter estimation problems of the
normal ogive and logistic polytomous response models
for Likert-type items. A rating-scale model was devel-
oped based on Samejima’s (1969) graded response
model. The graded response model includes a separate
slope parameter for each item and an item response
parameter. In the rating-scale model, the item re-
sponse parameter is resolved into two parameters: the
item location parameter, and the category threshold

parameter characterizing the boundary between re-
sponse categories. For a Likert-type questionnaire,

where a single scale is employed to elicit different re-
sponses to the items, this item response model is ex-

pected to be more useful for analysis because the item
parameters can be estimated separately from the
threshold parameters associated with the points on a
single Likert scale. The advantages of this type of
model are shown by analyzing simulated data and data
from the General Social Surveys. Index terms: EM

algorithm, General Social Surveys, graded response
model, item response model, Likert scale, marginal
maximum likelihood, polytomous item response model,
rating-scale model.

An item response model expresses a probabilistic relationship between an examinee’s performance
on a test item and the examinee’s latent trait. Several types of item response models have been proposed.
The applicability of dichotomous item response models (Birnbaum, 1968; Lord, 1980; Lord & Novick,
1968; Rasch, 1960/1980) to cognitive item response data has been extensively studied.

Several polytomous item response models have been formulated based on these dichotomous models
(Andrich, 1978; Bock, 1972; Masters, 1982; Rost, 1988; Samejima, 1969). Bock’s (1972) nominal

response model is applicable to a test item in which the response options are not necessarily ordered. If
the options on a rating scale are successively ordered, as in a Likert scale (Likert, 1932), then a graded
response model (Samejima, 1969) or a Rasch family of polytomous item response model s-including
the partial credit model (Masters, 1982), the rating-scale model (Andrich, 1978), and the successive
interval model (Rost, 1988)-are more appropriate.

Bock and Lieberman (1970) proposed the marginal maximum likelihood (MML) method to estimate
the parameters of item response models. Although this method is applicable to virtually any type of item
response model, their procedure is not computationally practical for large numbers of items. Influenced

by Dempster, Laird, and Rubin’s (1977) EM algorithm, Bock and Aitkin (1981) reformulated the Bock-

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



60

Lieberman MML method. This revised MML method, the so-called MML-EM algorithm, is computationally
feasible for both small and large numbers of items. It has been applied to the estimation problems of the

two-parameter normal ogive model (Bock & Aitkin, 1981), the one-parameter logistic model (Thissen,
1982), and Thurstone’s multiple-factor model (Bock & Aitkin, 1981; Bock, Gibbons, & Muraki, 1988;
Thurstone, 1947). Other applications include a time-dependent model for the maintenance of parallel test
forms (Bock, Muraki, & Pfeiffenberger, 1988) and the polytomous item response models of Samejima
(1969) and Bock (1972), for which Thissen (1986) has developed a computer program.

In this study, Samejima’s (1969) polytomous item response model is modified and called a rating-
scale model, and the MML-EM algorithm is applied to estimation problems involving this special case of
her model. The main purpose of this study is to show that the MML-EM algorithm can be used to obtain
estimates of this model’s parameters and that it facilitates the analysis of Likert-type response data.

The Categorical Item Response Model

The operating characteristic (Samejima, 1972) is the essential feature of polytomous item response
models. It expresses how the probability of a specific categorical response is formulated according to the
laws of probability and the psychological assumptions regarding item response behavior.

In Samejima’s model, a person’s probability of responding in category k to a specific item j, Pjk(e),
is obtained by subtracting the probability of responding in or below category k - 1 from the probability
of responding in or below category k. The operating characteristic of the graded item response for the
latent trait variable 0 can therefore be expressed as

where P k (8) and P~j~_ 1(0) constitute the response model of the binary item for all response categories
less than k and k - 1.

In the normal ogive model (Samejima, 1969), the formula for P~(6) is given by

where <f>(x) = (211’)-1/2 exp( -x2/2),
c~~ is a discrimination parameter for item j, and

bjk is an item response parameter for item j and category k.
For each m-category item, there are m - 1 category boundaries. Because the probability of the

categorical response is determined by the lower boundary of the category k that the respondent endorses
and the boundary that the respondent fails to endorse, the values of the category threshold parameter
increase successively.

The rating-scale model is a special case of Samejima’s graded response model, that is,

The logistic form of the rating-scale model is

where D is a scaling constant that puts the 0 scale in the same metric as the normal ogive model. In the
discussion that follows, the slope parameter, the item location parameter, and the category threshold
parameter are respectively denoted al, b~, and c,.
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When the items in a questionnaire differ in their number of response categories, mj ( j = 1, 2, ...,

n), Samejima’s model in Equation 2 may be more appropriate than the polytomous item response model
in Equations 3 or 4. However, for a Likert-type questionnaire, where only a single scale is employed to
evoke different responses for test items, the rating-scale model is expected to be more useful because the
parameters associated with the items and the c, parameters associated with the points on a single Likert
scale can be estimated separately. The items can be ordered by their bj estimates, and the psychological
distance between the points on the Likert scale can be estimated independently of the item parameters.

The scaling of the widths between the category boundaries independent of the b~s was introduced
by Thurstone (Edwards & Thurstone, 1952) as the method of successive categories, and its parameter
estimation was discussed by Bock and Jones (1968). The rating-scale model in Equation 3, therefore,
can be thought of as a latent trait model derived from Thurstone’s scaling tradition. In contrast, Andrich’s s

rating-scale model belongs to a Rasch family of polytomous item response models and it was formulated
using a different operating characteristic (Andrich, 1978). Although both rating-scale models are suitable
for the analysis of Likert-type response data and their item threshold parameters are functionally equivalent,
their parameterizations of categorical components are quite distinctive (Muraki, 1983).

Parameter Estimation

Let U;k, represent an element in the matrix of the observed response pattern i . Ulk; = 1 if item j is
rated by the kth category of a Likert scale, otherwise Ujki = 0. By the principle of local independence
(Birnbaum, 1968), the conditional probability of a response pattern i, given 8, for m response categories
and n items, as denoted by a response matrix (Uj,), is the joint probability:

For examinees randomly sampled from a population with a normal distribution of the latent trait variable,
<1>(6), the unconditional probability of the observed response pattern i is

If an examinee responds to n items with m categories, his/her response pattem i can then be assigned
to one of mn mutually exclusive patterns. Let ri represent the number of examinees observed in such a

pattem i, and let N be the total number of examinees sampled from the population. Then ri is multinomially
distributed with parameters N and Pie Ujk)’ This probability can be interpreted as the likelihood function
of the parameters af, b;, and c,:

Taking the natural logarithm of Equation 7 yields

The likelihood equations for ij, b~, and ~, can be derived from the first derivatives of Equation 8 with
respect to each parameter, and respectively set to 0.
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Item Parameter Estimation

Let vj represent the parameters aj and bj. With respect to v,, which is the parameter vj for the specific
item j = h, the likelihood in Equation 8 can be differentiated as

,....n ~ ~ _

Now let the observed score patterns be indexed by f = 1, 2, ..., S, where S % min(N ,mn). If the number
of examinees with response patt~rn ~ is denoted by r,, then

The first derivative of the likelihood function in Equation 9 can be approximated by using the Gauss-
Hermite quadrature, such that

c c -

where

and

In Equation 11, A(X f) is the weight of the Gauss-Hermite quadrature, and X f is the quadrature point
(Stroud & Secrest, 1966). The quadrature weight A(Xf) is approximately the standard normal probability
density at the point Xf, such that 2.:;= ¡A(Xf) = 1. Because U~~< can take on only two possible values, 1

and 0, Equation i 1 can be rewritten as

where

and rhlif is the provisional expected frequency of the kth categorical response of item at the fth quadrature
point.

Bock and Aitkin (1981) applied the EM algorithm (Dempster et al. , 1977) to estimate the parameters
for each item individually, and then repeated the iteration process over r~ items until the estimates of all
the items became stable to the required number of decimal places. This is in contrast to the Fisher-scoring
procedure of Bock and Lieberman (1970). The qth cycle of the iterative process can be expressed as

where uq and vq-1 are the parameter estimates of the qth and (q - l)th cycles respectively, V - is the
inverse of the information matrix, and t is the gradient vector. For the item parameter estimation, the
elements of t and V are
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where v~ = ah or bh and OOh = ah or bh.
In Equation 18, Nf is called the provisional expected sample size at quadrature point f, and is com-

puted by

The rigorous proof of the approximation of the second derivatives in Equation 18 by the product of the
first derivatives is given by Kendall and Stuart (1973).

Category Threshold Parameter Estimation

Because the category threshold parameter c~, which is the parameter c, for the specific category
k = g, is contained in both P~~(0) and P~,~ + i (0) as shown in Equation 1, the first derivative of the likelihood
function in Equation 13 with respect to c, can be derived by the following process:

Because 1

and

then

The element of the gradient vector for the c, parameter estimation can be numerically computed as

Likert scales employing more than 10 categories are not commonly used in psychological or soci-

ological research. If the number of categories is small, say ~M ~ 12, the Fisher-scoring method can be
used to estimate the parameters without difficulty. Furthermore, because the covariance between any
categories that differ by more than two points is simply 0, the information matrix becomes an (rra - 1)
x (m - 1) tridiagonal symmetric matrix. The generation and inversion of this matrix is relatively simple.
The elements of the information matrix are
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The MML-EM Algorithm

The MML-EM algorithm consists of two steps. The first is the expectation step (the E-step) where the

provisional expected frequency and the provisional expected sample size are computed by using Equations
15 and 19, respectively. With these expected values, the information matrix and the gradient vector are
computed. Then, in the maximization step (the M-step), the Newton-Raphson method of Equation 16 is
performed to obtain the MML estimates. Both the E-step and the M-step are repeated (the EM cycle) until
all estimates become stable.

Each EM cycle consists of two estimation processes. First, the item parameters, aj and bj, of item j
are estimated one item at a time, and then the same iteration process is repeated for j = 1, 2, ... , n.

Second, after obtaining stable item parameter estimates for all items, the estimation process for the
m - 1 c, parameters is repeated until their values become stable at a specified level of precision.

The indeterminacy of the c, parameters and their relationship to the aj and bj parameters and 0 can
be expressed as

where s is a scaling factor and t is a location factor. Equation 28 shows that shifting the center of the
category metric results in a shift of bj in the same direction by the same units. If the intervals of the
category scale are expanded by the factor s and 0 is integrated out by N(0,~), the bjs will expand and
the ajs will contract by the same factor. Therefore, in the one-parameter model, the center of the c,
parameters must be set at an arbitrary point. The two-parameter model requires the additional constraint
of scaling to obtain converged values of aj and b;. This relationship among parameters will be demonstrated
in the analysis of the simulated data.

The algorithm described above is implemented in the PARSCALE program (Muraki & Bock, 1988).
In the program, the initial values of the c, estimates are obtained by the inverse normal transformation
of the sample categorical responses. During the process of c, estimation, if aj is constant, one end of the
category boundaries is fixed and is not estimated. In the case where aj varies for items, both ends are
fixed because of indeterminacy in the origin and scale of the c, parameter.

Data and Results

Simulated Data

Five thousand Likert-type response vectors for five items and five categories were generated with a
normal distribution of 8, N(0,1). Table 1 presents the original values of aj, b~, and c, parameters. These
simulated data were analyzed three times under different conditions of c, values. Ten quadrature points
were used and the precision level .001 was set for all estimations.

In Analysis 1, the simulated data were analyzed with the two endpoints of the category scale fixed.
The high degree of similarity of the recovered middle a;, bj, and c, parameters to the original values
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Table 1

Values of Category, Slope, and Location, and Parameters
for Original Simulated Data and for Three Analyses

*Constants supplied to the estimation program.

indicates that the MML-EM algorithm developed here works for estimating parameters if observed Likert-

type responses are generated based on the item response model in Equation 4.
As expressed by Equation 28, shifting the origin of the category scale affects the b; parameters by

the same amount, but does not affect the aj parameters. In Analysis 2, the c, estimates from Analysis 1
were increased by .5 and only the aj and bj parameters were estimated. As shown in Table 1, the a;
estimates were unchanged after the iteration was converged, but all the b, estimates were shifted by .5.

In Analysis 3, a normal prior distribution for &reg;, N(0,1.5 2), was used for the integration. All c,
parameters were multiplied by 1.5 and supplied to the estimation process as fixed points. When the
estimation process was converged, the aj estimates contracted and the bj estimates expanded by the same
amount. These results demonstrate that direct comparisons of aj and bj estimates are not possible unless
their corresponding sets of c, estimates are identical or their scaling and location factors are adjusted by
some equating method.

The main feature of the rating-scale model is that the item parameters can be separated from the c,
parameters. Although the origins and scales of the item aj and b, metrics are arbitrary and depend on
those of the c, estimates after the distribution of 0 is controlled, they are theoretically invariant. To
demonstrate this feature, the simulated dataset described above was analyzed with collapsed response
categories. In Analysis 4, the second and third categorical responses were collapsed into a single category.
Then, in Analysis 5, the three middle categorical responses were collapsed into a single categorical
response. Table 2 shows the aj, b~, and c, estimates, along with their standard errors. The standard errors
of the item parameter estimates increase slightly along with the further collapsing of response categories;
however, their estimated values never differ by more than .02 among the three simulated data analyses.
They are quite consistent regardless of the number of response categories.
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Table 2

Parameter Estimates (Est.) and Their
Standard Errors (SE) for Analyses 4 and 5 of

Simulated Data, Collapsing Number of Categories

*Constants supplied to the estimation program.

The General Social Surveys

This dataset was extracted from the General Social Surveys file, archived by the National Opinion
Research Center (Davis, 1988). The General Social Surveys have been conducted almost yearly since
1972. The questionnaire form used over the years has been quite consistent, although a few questions
have been added or deleted in certain years. Two sets of Likert-type questions were drawn from the

questionnaire. The first set of items, the so-called Satisfaction items, has been used since 1973; the second
set of items, the so-called Country items, has been used since 1974. For this study, the datasets of 1974,
1977, and 1983 were analyzed.

The directions for the Satisfaction items are: &dquo;For each area of life I am going to name, tell me the
number that shows how much satisfaction you get from that area.&dquo; The respondent’s numerical answers
from 1 to 7 correspond to seven ratings labeled as &dquo;A very great deal,&dquo; &dquo;A great deal,&dquo; &dquo;Quite a bit,&dquo;
&dquo;A fair amount,&dquo; &dquo;Some,&dquo; &dquo;A little,&dquo; and &dquo;None.&dquo; The items evaluated by this Likert scale are:
A. The city or place you live in. (City)
B. Your non-working activities-hobbies and so on. (Hobby)
C. Your family life. (Family)
D. Your friendships. (Friend)
E. Your health and physical condition. (Health)
The directions for the Country items are: &dquo;You will notice that the boxes on this card go from the highest
position of ’plus 5’ for a country that you like very much, to the lowest position of ’minus 5’ for a

country you dislike very much. How far up the scale or how far down the scale would you rate the

following countries?&dquo; The original 10-point scale was collapsed into a 5-point Likert scale. The items
evaluated by this scale are Russia (U.S.S.R.), Japan, England, Canada, Brazil, China, Israel, and Egypt.
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There were 1,4g4 completed interviews in 1974, 1,530 in 1977, and 1,599 in 1983. The respondents
were randomly sampled each year. After excluding the cases with missing responses, 500 male and 500
female respondents were randomly sampled from each year-cohort. The precision of convergence was
set at .001 in all analyses. The distribution of 0 for each year-cohort was assumed to be standard normal.
Ten quadrature points were used for the integration; lognormal prior distributions for aj and normal
distributions for bj parameters were used for the constraints of parameter estimation (Mislevy, 1986).

The combined data of 3,000 respondents to the Satisfaction items were analyzed with the highest
and lowest Ck parameters fixed to impose an origin and scaling constant on the category scale. Therefore,
the standard errors of these estimates are simply 0, as shown in Table 3. Satisfaction with the quality of
life was assumed to be a unidimensional latent trait. Table 3 gives category frequency distributions, the

category means, and the parameter estimates for the Satisfaction items. The signs of the bj estimates are
reversed, so that a higher bj value indicates more satisfaction from that area of life.

The data indicate that people are more likely to be satisfied in the areas of family life and friendships
than in the areas of living place and hobbies. Separate analyses of three year-cohorts showed that the
relative order of the items was quite consistent over the years, although the magnitude of the bj estimates
increased for some of the items and decreased for others.

Although a set of items shares a common Likert scale, respondents perceive the scale differently.
A single Likert scale may elicit more discriminating responses to some items than to others. An aj
parameter indicates this sensitivity of category changes for each item, and analysis shows that the Friend
item has a slightly higher discrimination than the others. When the discriminations of items vary to a
great extent, collapsing the category points of a Likert scale without considering their differential effect
on the items is not generally recommended.

The modified scale for Country items has 5 points. The lowest category boundary was fixed and the

remaining three c, estimates were obtained from the data for 3,000 respondents. Because aj parameters
were not estimated, the scaling factor of the category metric was automatically fixed. It was assumed

that the underlying trait dimension was a positive attitude toward foreign countries. Table 4 gives the bj
estimates as ordered by their corresponding category means. Each year-cohort was then analyzed with
the common c, estimates. This allowed for direct comparison of the bj estimates over the years. These
bj estimates are plotted in Figure 1.

As Figure 1 shows, Americans’ positive attitudes toward Canada and England are quite high in
comparison to the other countries, and remain constant over the years. On the other hand, it is quite
interesting to observe the trend of Americans’ attitude toward Egypt, China, and Russia over the years.
Many historical events may account for these dramatic shifts in popularity trends (Weaver, Alais, Franz,
& Carpenter, 1986).

Table 3

Response Frequency, Category Mean, and Parameter Estimates (Est.) and Their Standard
Errors (SE) for Items and Categories of the Datasets From 1974, 1977, and 1983
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Table 4

Response Frequency, Category Mean, and Parameter Estimates (Est.)
and Their Standard Errors (SE) for Items and Categories of the

Datasets From 1974, 1977, and 1983

Discussion and Conclusions

Although arbitrariness exists in the item difficulty estimates in a dichotomous item response model,
and although origin and scaling indeterminacies exist in the trait dimension as well as in the item parameter
estimates, the origin and scaling of an item parameter dimension can be fixed by applying the MML
method with a prior distribution on 0. However, the polytomous item response model developed here
introduces another indeterminacy, as shown in Equation 28. If multiple Likert scales with different numbers

Figure 1
Trend of Item Location Estimates for the Country Items

From the 1974, 1977, and 1983 Datasets
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of points are used in a single questionnaire, item estimates for the whole set of items cannot be compared
because of the arbitrariness of both the origin and the scaling of the c, estimates of each Likert scale.

If an assumption of unidimensionality of the latent trait distribution is met, each set of items with
a common Likert scale can be treated as a subtest. Test equating techniques developed for achievement

testing can be applied to the method of category scale adjustment and all item estimates can be equated.
This internal equating method needs to be investigated to take advantage of the specific features of the

present model. Another extension of the categorical item response model incorporates a research design
matrix (Muraki, 1983). A multidimensional polytomous item response model based on this model has
also been formulated, and its MML-EM algorithm is available (Muraki, 1985).

Likert-type data are often analyzed by assigning numeric scores to the response categories based on
the assumption that the observed categorical responses are quantitative and continuous. However, the
actual intervals between adjacent categories are generally unknown in advance. When the ordered cate-

gorical responses are treated as a discrete variable, a log-linear model has been frequently used for the

analysis of cross-classification tables (Clogg, 1979). According to this method, however, the number of
cells to be analyzed increases exponentially along with the increment in the number of items. For example,
in the Country data, 5g ( = 390,625) cells in the cross-classification table must be analyzed. In addition
to the computational difficulty of data with a large number of items or categories, the prediction of

categorical responses for a given trait value with sets of bj and Ck parameter estimates is not possible.
Another major advantage of polytomous item response models, as compared to the log-linear ap-

proach, is the ease of scoring persons or groups. For example, the rating-scale model is used for the

analysis of the California Direct Writing Assessment data (Cooper & Breneman, 1988). In the assessment

program, writing tasks (prompts) are grouped into subsets by their different types of writing. From the
set of tasks as a whole, each student is assigned a prompt to respond by writing a short essay. These

essays are then scored by three Likert-type scales. Muraki (1989) computed school-level scaled writing
scores for each writing type and for each Likert scale after the model parameters were estimated. Year-

by-year comparisons of the assessment results were greatly facilitated by the use of this particular item

response model.

The Rasch dichotomous item response model is often referred to as the one-parameter logistic item

response model. However, each of these models was formulated independently according to its own
distinctive assumptions. The one-parameter model is a logistic approximation to the normal ogive model,
in which the aj parameter is a known constant and does not have to be estimated. On the other hand,
there is no concept of an aj parameter in the Rasch dichotomous item response model. The aj parameter
or discrimination is a unique concept in a Thurstone family of item response models, because the

parameterization originates from the discriminal process specific to the randomly selected individual (Bock
& Jones, 1968).

The Rasch family of polytomous item response models is based on the assumption that each probability
of selecting a category k over a category k - I is governed by the Rasch dichotomous response model.
Rost (1988) formulated a Rasch polytomous item response model, called the successive interval model,
by introducing the item-specific &dquo;dispersion&dquo; parameter independent of the c, parameters. Rost’s dis-

persion parameters were estimated by the joint and conditional maximum likelihood methods and were
shown to be functionally analogous to the aj parameter of the Thurstone models. Because remarkable
similarities exist between the proposed rating-scale model and the successive intervals model, features
of each model must be carefully examined and compared.

Unlike the joint and conditional maximum likelihood estimation methods, the marginal maximum
likelihood method treats the person component, g, in the model as a random variable. In the analysis of
the General Social Surveys data, it was assumed that the variable was normally distributed, because

respondents were randomly selected. However, for more rigorous analyses, the prior can be updated by
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the use of the distribution computed after each estimation cycle. This simultaneous estimation of a latent
trait distribution and model parameters slows the convergence rate of the estimation process but minimizes

the effect of initial misspecification about a prior distribution on the parameter estimates. An empirical
distribution can be substituted for a theoretical prior if it is known before parameter estimation. The

effects of priors for the marginal maximum likelihood method, including a multiple-group situation, need
to be studied further.

Investigation has only recently begun on polytomous item response models. The EM algorithm is

rapidly gaining popularity for various estimation problems. Combining these recently developed techniques
should allow more flexible applications of item response theory to a wider variety of psychological and

sociological research problems. A major obstacle to wider acceptance of more general item response
models for qualitative data analyses is that a considerable amount of computational time is required to
obtain converged parameter estimates with reasonable precision. Although the rapid development of

computer technology will eventually shorten computational time, an effective numerical technique to

speed up the convergence process should also be developed.
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