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Longitudinal, genome-scale analysis of DNA
methylation in twins from birth to 18 months of
age reveals rapid epigenetic change in early life
and pair-specific effects of discordance
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Abstract

Background: The extent to which development- and age-associated epigenetic changes are influenced by

genetic, environmental and stochastic factors remains to be discovered. Twins provide an ideal model with which

to investigate these influences but previous cross-sectional twin studies provide contradictory evidence of within-

pair epigenetic drift over time. Longitudinal twin studies can potentially address this discrepancy.

Results: In a pilot, genome-scale study of DNA from buccal epithelium, a relatively homogeneous tissue, we show

that one-third of the CpGs assayed show dynamic methylation between birth and 18 months. Although all classes

of annotated genomic regions assessed show an increase in DNA methylation over time, probes located in

intragenic regions, enhancers and low-density CpG promoters are significantly over-represented, while CpG islands

and high-CpG density promoters are depleted among the most dynamic probes. Comparison of co-twins

demonstrated that within-pair drift in DNA methylation in our cohort is specific to a subset of pairs, who show

more differences at 18 months. The rest of the pairs show either minimal change in methylation discordance, or

more similar, converging methylation profiles at 18 months. As with age-associated regions, sites that change in

their level of within-pair discordance between birth and 18 months are enriched in genes involved in

development, but the average magnitude of change is smaller than for longitudinal change.

Conclusions: Our findings suggest that DNA methylation in buccal epithelium is influenced by non-shared

stochastic and environmental factors that could reflect a degree of epigenetic plasticity within an otherwise

constrained developmental program.

Background
Epigenetic modifications such as DNA methylation play

an important role in development, ageing and disease

[1-3]. However, the factors that influence epigenetic

dynamics are poorly understood. Twin studies have the

potential to estimate genetic components of epigenetic

state [4,5] and have demonstrated that gene expression

and DNA methylation profiles can both be influenced

by allelic, stochastic and environmental factors [6-10].

Non-shared environmental and stochastic factors

together have been estimated to be the largest influence

on promoter methylation in utero [7].

Studies of epigenetic change over time have predomi-

nantly used cross-sectional approaches and have focused

on adults [11-17] or on intrauterine development [18,19].

A small number of such studies have assessed age-asso-

ciated DNA methylation across wider time-spans,

encompassing childhood, adolescence and adulthood

[20-23]. Consistently, age-associated changes in DNA

methylation are more likely to involve (1) increases in

methylation; (2) genes associated with development, sig-

naling and regulation of transcription; and (3) regions

involved in epigenetic reprogramming during embryonic
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stem cell differentiation [12,14]. Since most of these stu-

dies have focused on CpG islands and promoter regions,

age-associated epigenetic changes are incompletely char-

acterized in relation to genomic coverage and life-course.

Longitudinal studies investigating aging and longevity

have distinct advantages over cross-sectional designs,

particularly in relation to controlling for genetic varia-

tion. For example, longitudinal studies directly query

temporal sequences and pathways and individuals are

studied rather than group averages. Longitudinal, array-

based studies in blood from children in the first 1 to 5

years of postnatal life have shown similar results to

adult studies with respect to gene function, genomic

location and direction of age-related changes in DNA

methylation, with the majority of age-related changes

being observed in regions flanking CpG islands [24-26].

In adults, a high-resolution array-based study found a

mixture of age-stable and age-dynamic variability

throughout the methylome in adults [27]. Other studies

of global DNA methylation in adults also showed a

genetic influence on increase and decrease in DNA

methylation [28] and a decrease in interspersed repeat

DNA methylation over time [29].

A small number of epigenetic studies of ageing have

focused specifically on twins. Cross-sectional studies

have found that older monozygotic (MZ) twins differ

more with respect to global and repetitive DNA methyla-

tion [30], a phenomenon referred to as ‘epigenetic drift’.

In contrast, using DNA from saliva, no evidence for such

drift was found within MZ twins aged 21 to 55 years

using a promoter/CpG island array [15]. A cross-sec-

tional comparison of DNA methylation at the imprinted

IGF2/H19 locus in adolescent and middle-aged MZ twins

also found no evidence of epigenetic drift within pairs

[31]. To our knowledge, only one study has examined

DNA methylation in twins longitudinally, measuring

three loci in buccal DNA from 46 MZ pairs and 45 dizy-

gotic (DZ) pairs at 5 and 10 years of age [8]. This study

revealed (1) locus-specific variability in DNA methyla-

tion; (2) change over time in individuals; (3) within-pair

correlation and (4) epigenetic drift. Taken together, these

studies show that epigenetic change over time is likely to

be regulated by many factors, potentially in a tissue-spe-

cific and genome context-dependent manner. Longitudi-

nal epigenetic studies in twins offer tremendous potential

to further our understanding of the relationship between

genetics and other factors that specify inter-individual

temporal change in DNA methylation profile in humans.

We have used the Infinium HumanMethylation450

BeadChip (HM450) platform, which interrogates >485,000

CpG dinucleotides and contains probes from CpG islands,

shores (2 kb regions flanking CpG islands), shelves (2 kb

regions flanking shores), sites from 1,500 bp upstream of

transcription start sites through to gene bodies and

3’ UTRs, in addition to intergenic regions, regions involved

in epigenetic reprogramming during embryonic stem cell

differentiation and enhancers [32,33]. Although repeats

are not covered by these arrays and intergenic regions are

not covered to the same depth as genic regions, the plat-

form represents a significant step towards genome-scale

coverage. Using the Infinium HM450 platform, we have

performed a longitudinal study of DNA methylation at

birth and age 18 months in DNA from buccal swabs from

10 MZ and 5 DZ twin pairs from the Peri/postnatal Epige-

netic Twins Study (PETS) cohort [34]. We report a large

degree of epigenetic change during the first 18 months of

postnatal life, with strong regional genomic biases for rate

of change over time. We also present evidence for pair-

specific levels of epigenetic change, suggesting a complex

interplay between environment, non-shared environment

and stochastic factors in molding the early postnatal

epigenome.

Results
Data pre-processing

Our initial analysis of HM450 data included normalization

of previously identified differences between Infinium I and

Infinium II probes [35] using the SWAN method [36].

Stringent quality control steps to assess probe perfor-

mance (see Materials and methods) and removal of all

probes on × and Y chromosomes to minimize sex-specific

effects, resulted in 53/60 samples (Table 1) with data from

330,168 probes remaining for downstream analysis.

Determination of technical versus biological variation

First to assess the sensitivity to detect biological variability

between co-twins versus technical variation, we performed

replicate hybridizations of three MZ twin pairs both at

birth and 18 months. We compared the level of variation

between co-twins (biological variation) to the level of var-

iation between each technical replicate sample (technical

variation). Biological variation (twin 1 versus twin 2) con-

sistently exceeded technical variation (twin 1 versus twin

1; twin 2 versus twin 2) for each twin pair (Figure 1). We

determined the average level of differential methylation

between all biological and technical replicate arrays using

a moderated paired t-test with false discovery rate correc-

tion. Precisely 230,340/330,155 probes were differentially

methylated (adjusted P-value <0.05) across all biological

replicates, whilst 858/330,155 probes were found to vary

(adjusted P-value <0.05) across all technical replicates of

twin pairs.

Determining relationships between samples

Unsupervised hierarchical clustering of the entire dataset

(Figure S1A in Additional file 1) revealed that most sam-

ples cluster according to age. The majority of co-twins

also cluster together: 7/9 (78%) MZ co-twins cluster at
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birth and 6/6 (100%) at 18 months, while with DZ co-

twins, 4/5 (80%) cluster at birth and 2/4 (50%) cluster at

18 months. To explore the variation in this dataset attribu-

table to the effect of sequence variation on methylation

values via cis genetic effects or probe hybridization, we

performed hierarchical clustering selectively for probes

overlapping known SNPs as defined by the HM450 SNP

manifest (version 3, 103,148 probes). The results com-

pared well to the full dataset: 7/9 MZ co-twins cluster at

birth and 6/6 cluster at 18 months, while 4/5 DZ co-twins

cluster at birth and 3/4 cluster at 18 months (Figure S1B

in Additional file 1). Restricting this analysis to probes

with reported SNPs at the CpG site assayed by the probe

(2,527 probes in this data set) resulted in 8/9 MZ co-twins

clustering at birth and 6/6 at 18 months (Figure S1C in

Additional file 1). Interestingly, on average for this set of

probes, DZ twins did not cluster with their co-twin; rather,

DZ twins at birth clustered with their matched samples at

18 months. Thus, data for such probes are likely to reflect

the genotype of the individual rather than representing

purely methylation levels. A random sampling of the same

number of SNP-associated probes did not reproduce this

Table 1 Twin pair characteristics

Twin pair ID
number

Zygositya Chorionicityb Twin 1
sex

Twin 2
sex

Gestational
age

Birth weight discordance
(%)c

Samples removed
after QCd

1016 MZ DC M M 37 5.4 T2_18

1022 MZ MC M M 38 12.4 T1_18, T2 _18

1024 MZ DC F F 37 12.1 T2_B

1032 DZ DC F F 37 43.3 T1_18

1035e MZ MC F F 35 30.8

1042 DZ DC M M 30 19.8

1046 MZ DC M M 37 6.2

1057 DZ DC M M 37 13.3

1058 MZ DC M M 36 22.0

1072 DZ DC F F 37 14.5

1107 MZ MC F F 33 8.1 T1_18

1126 MZ MC F F 32 27.3 T2_18

2034 MZ DC F F 36 3.6

3006 DZ DC M M 37 3.6

3014 MZ MC M M 36 18.0

aMZ, monozygotic; DZ, dizygotic. bMC, monochorionic; DC, dichorionic. c[(Weight of heaviest twin - Weight of lightest twin)/Weight of heaviest twin] × 100.
dT1/T2, twin 1/2; B, birth sample; 18, 18 months sample. eTwin-to-twin transfusion syndrome.

Figure 1 Comparison of biological versus technical variation for matched replicate samples. The data are represented as volcano plots of

three MZ twin pairs (1035, 3014 and 2034; black) with an overlay of matched technical replicate DNA sample (gray). The x-axis represents the

M-value fold change of variation across the four samples in each pair (replicate samples for each of twin 1 and 2 at birth and 18 months). The

y-axis represents the -log10 FDR adjusted P-value for the moderated paired t-test. A genome-wide significance (FDR <0.1 for each individual pair)

is denoted by the dotted horizontal line. In general, variation between biological replicates exceeds genome-wide significance and technical

variation falls below genome-wide significance.
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clustering (data not shown), indicating this effect did not

represent a sampling bias. These results suggest that SNP-

containing probes account for little variation in the overall

data set, with the exception of probes with SNPs at the

CpG site assayed.

Identification of age-associated differentially methylated

probes

To identify specific sites of differential DNA methylation

associated with age, we used an empirical Bayes method

[37] to compare birth samples with matched 18-month

samples in all individuals and performed a probe-wise

moderated paired t-test for differential methylation.

Using this approach we found that 30.1% (99,198)

probes changed significantly over time (adjusted P-value

<0.05). These age-associated differentially methylated

probes (aDMPs) changed by a mean b of 0.031 (3.1%)

per year. Adding a further stringent cutoff of >20%

absolute change over time to minimize technical effects

[38] resulted in 0.8% (2,632) probes classified as strin-

gent aDMPs (Table S1 in Additional file 2). Of these

aDMPs, 87% showed a gain in DNA methylation over

time whereas 13% showed reduced methylation (Figure

2a). We selected candidate aDMPs for validation based

on their ranked change in methylation b value from

birth to 18 months. The Sequenom MassArray Epityper

platform was used to provide an independent measure

of DNA methylation at aDMPs and confirmed the valid-

ity of the HM450 dataset. Using this approach, we

confirmed that aDMPs identified by HM450 analysis are

also representative of methylation at surrounding CpG

sites (Figure 2b). Ontology and pathway analyses of the

aDMP-associated genes showed an over-representation

of cell development, morphogenesis (especially neuronal

cells), and GTPase signaling pathways (Table 2; Tables

S2 and S3 in Additional file 2). In order to determine

whether aDMPs were more likely to occur at specific

regions in the genome, we calculated the observed/

expected frequency (enrichment) of genomic locations

annotated in the HM450 manifest and assigned P-values

with hypergeometric means tests. Intergenic regions were

most likely to show changes in DNA methylation from

birth to 18 months (Figure 3, grey bars; enrichment =

6.0×), followed by enhancers (2.5×) and ‘open sea’ regions

>4 kb distant from CpG islands (1.7×). Promoters and

CpG islands, but not their flanking shores and shelves,

were less likely to show changed methylation over time

(Figure 3; relative enrichment of 0.23× and 0.39×,

respectively

Identification of age-associated differentially methylated

regions

In order to identify larger regions of coordinated methy-

lation change over time, we adopted a recently published

differentially methylated region (DMR)-finding method

[39]. This ‘bump hunting’ method identifies genomic

regions in which clusters of consecutive CpG sites exhibit

change over time in the same direction. Estimates were

A B

Figure 2 Characterization of age-associated changes in DNA methylation. (a) Heatmap of age-associated differentially methylated probes.

Rows represent probes, columns represent samples. Cells are colored according to level of methylation (blue, hypomethylated; yellow,

hypermethylated). Most age-associated changes involve an increase in methylation. (b) Heatmap of Sequenom EpiTyper validation data. Rows

represent assayed CpG sites, columns represent samples. Cells are colored as in (a). Increases in methylation with age mirror those shown in (a).
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obtained for aDMRs by computing group medians and

obtaining a value for the smoothed estimate that exceeds

a t-statistic cutoff of 0.995. Using these criteria, we

defined 897 aDMRs consisting of 4 or more consecutive

probes changing in methylation between birth and 18

months (aDMPs). These aDMRs ranged in size from 33

to 1,698 bp. Twelve of these regions contained ten or

more consecutive probes within approximately 1 kb of

each other (Table S4 in Additional file 2 with an example

shown in Figure 4). Of all aDMRs, 44% are located within

5 kb of a transcriptional start site, compared to 29% for

aDMPs (Figure S2 in Additional file 1 and Table S4 in

Additional file 2). Ontology analysis indicated that the

aDMRs were significantly enriched for biological processes

associated with cellular and organ development and in

DNA binding (FDR <0.05; Table 3). As the sixth largest

Figure 3 Enrichment of aDMPs by genomic location. Log-fold difference of enrichment (observed/expected frequency) in the aDMPs with

P < 0.05 and delta beta >0.1 (n = 14,629) and >0.2 (n = 2,632) for specific genomic locations, grouped by association with genes, CpG islands,

known DMRs and regulatory regions. Positive values indicate enrichment and negative values indicate depletion in the aDMP dataset. P-values:

*P < 0.05; ** P < 1 × 10-20, *** P < 1 × 10-50.

Table 2 Ontology enrichment analysis of age-associated differentially methylated probes

GO term Description Adjusted P-value

GO:0000904 Cell morphogenesis involved in differentiation 0.0035

GO:0051056 Regulation of small GTPase-mediated signal transduction 0.0042

GO:0046578 Regulation of Ras protein signal transduction 0.0075

GO:0030182 Neuron differentiation 0.0157

GO:0031175 Neuron projection development 0.0192

GO:0048667 Cell morphogenesis involved in neuron development 0.022

GO: 0007409 Axonogenesis 0.026

GO:0048812 Neuron projection morphogenesis 0.027

GO:0000902 Cell morphogenesis 0.038

Gene Ontology (GO) terms significant at an adjusted P-value <0.05 [81] are shown. For full analysis, see Table S2 in Additional file 2.
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DMR (Table S4 in Additional file 2) and a representative

of a number of the top age-associated ontologies, DNA

methylation was validated at the cytoplasmic FMR1 inter-

acting protein 1 (CYFIP1) gene in all samples using the

Sequenom MassArray Epityper platform (Figure 2b).

Epigenetic discordance within twin pairs at birth and 18

months

Within-pair epigenetic discordance resulting from non-

shared environmental factors has been postulated to

underscore variation in phenotypic traits [40,41]. We

Table 3 Ontology enrichment analysis for age-associated differentially methylated regions

GO term Description -log10 binomial P-value

GO:0048513 Organ development 17.68

GO:00048869 Cellular development process 15.59

GO:0030154 Cell differentiation 15.33

GO:0010033 Response to organic substance 14.47

GO:0009887 Organ morphogenesis 14.00

GO:0006359 Regulation of transcription from RNAs pol III promoter 9.66

GO:0000975 Regulatory region DNA binding 8.73

GO:0044212 Transcription regulatory region DNA binding 8.00

GO:0045945 Positive regulation of transcription from RNA pol III promoter 7.51

GO:0048598 Embryonic morphogenesis 6.80

GO:0016480 Negative regulation of transcription from RNA pol III promoter 6.67

GO:0003205 Cardiac chamber development 5.71

GO:0030326 Embryonic limb morphogenesis 4.4

GO:0060173 Limb development 3.82

GO:0035108 Limb morphogenesis 3.62

GO:0048546 Digestive tract morphogenesis 3.10

Gene Ontology (GO) terms significant at an adjusted P-value <0.05 [81] are shown.

Figure 4 Identification of age-associated differentially methylated regions. Example of a DMR (EGFL8) identified by the peak-finding

algorithm. The data show the loess-smoothed b values for all samples at birth (blue) and 18 months (red) according to genomic location. CpG

density is shown below and a CpG island represented as a red line.
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examined discordance in DNA methylation profile within

twin pairs at birth and at 18 months of age. We calculated

twin discordance as the absolute difference in b methyla-

tion values within pairs in birth samples and separately for

18-month samples. We ranked all probes according to

average within-pair discordance at each age and per-

formed ‘ranked-list’ ontology, which differs from ‘gene-list’

ontology in that there is no requirement for a predefined

cutoff. All probes on the array were ranked by their scores

for average within-pair discordance at each age (most dis-

cordant to least discordant), and the ranked list of probes

was analyzed by the GOrilla bioinformatics tool [42] to

identify ontology terms over-represented at the top of the

list, compared with the bottom. We found that the most

discordant genes at birth were consistently enriched for

ontology terms associated with RNA metabolism, includ-

ing spliceosome components and transcription factors

(Table S5 in Additional file 2). At 18 months of age, the

most discordant genes were associated with a similar set

of gene ontologies as seen at birth (Table S6 in Additional

file 2). The genes with discordant probes at both time

points include a wide array of spliceosome components

(for example, WDR83 and CWC22), zinc finger proteins

(for example, ZNF267, ZBTB1, ZNF10), ribosomal pro-

teins (for example, RPS26, RPL15, RPL12) and transcrip-

tion factors (for example, MAML1, HOXB13).

We next investigated the distribution of DNA methy-

lation discordance across genomic regions to determine

whether discordance is more likely to occur at specific

genomic locations. We have shown previously, using

HM27 arrays, that median within-pair methylation dis-

cordance increased with increasing distance from CpG

islands in three tissues (cord blood mononuclear cells,

human umbilical vein endothelial cells and placenta) in

both MZ and DZ twins at birth [7]. As the HM27 array

focuses primarily on gene promoters and CpG islands,

we repeated this analysis taking advantage of the diver-

sity of genomic locations contained within the HM450

arrays. We calculated absolute within-pair discordance

as before, and plotted probe discordance across genomic

location at birth and at 18 months. The distribution of

discordance values was consistent across all genomic

annotations targeted on the array, with no evidence of

regional enrichment (Figure S3A in Additional file 1).

Similar results were observed selecting the top 10,000

most variable probes, or alternatively when the analysis

was performed separately at birth and 18 months sepa-

rately for both MZ and DZ twins (data not shown). We

then filtered the dataset to include only probes present

on the HM27 arrays and found evidence of higher levels

of discordance around shores and shelves of CpG

islands (Figure S3B in Additional file 1), which is consis-

tent with our previously published observation with this

platform [7].

Level of change in epigenetic discordance (drift versus

convergence) over the first 18 months is a pair-specific

phenomenon

Since previous cross-sectional studies suggest that epige-

netic discordance in twins increases with age [30], we next

investigated the degree of epigenetic drift from birth to 18

months of age within our twin pairs. The probe-wise level

of within-pair discordance for CpG sites exhibiting a b-

discordance value of greater than 0.2 (>20% discordant)

was visualized at each age on scatterplots (Figure 5a,

points in red). In contrast to the anticipated drift asso-

ciated with age, we observed that the degree of within-pair

discordance over time varies in a pair-specific manner

(Figure 5a), with some pairs becoming more discordant in

18 month samples compared to birth samples (that is, epi-

genetic drift), some pairs becoming less discordant in 18

month samples, which we termed ‘convergence’, and

others similarly discordant at both ages (’stable’). This was

supported by Euclidean distance measures of twin discor-

dance [7] (Figure 5b). These phenomena were not asso-

ciated with zygosity or chorionicity, nor influenced by the

effects of probes targeting SNPs on the array (Figure S4 in

Additional file 1). We further calculated the change in dis-

cordance with age (delta discordance), as the difference in

twin discordance (absolute values) from birth to 18

months. The distribution of delta discordance values was

strongly centered about zero, with no evidence for overall

skewing with age (Figure 5c). A comparison of the magni-

tude of the absolute values of differences in within-pair

discordance over time (delta discordance) compared to

the absolute values for methylation change over time (18

months - birth) indicated that age-related changes are far

greater on average than changes to within-pair discor-

dance (Figure 5d).

We next sought to explore epigenetic drift and conver-

gence in more detail. As there were no probes that showed

consistent differences across all pairs, our aim was to

determine whether we could identify any gene ontologies

associated with probes that consistently ‘drift’, ‘converge’

or remain stable among our twins over time. To address

this we grouped our twin pairs according to their observed

temporal methylation discordance patterns (’drifting’ or

‘converging’), measured as values of change in discordance

(delta discordance). Within both of these categories, we

calculated the within pair delta discordance for each

probe, and ranked all probes on the average delta discor-

dance across pairs. We performed gene ontology analysis

on the ranked lists for each ‘drifting’ and ‘converging’ cate-

gory and found both were similarly enriched for genes

involved in development and morphogenesis (Table 4).

Discussion
This study, examining DNA methylation profiles in buc-

cal cells of young twins, has further confirmed the
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highly dynamic nature of the human epigenome postna-

tally, in agreement with previous studies in other tissues

[20,21,24-26,43]. Buccal cells represent a key bio-resource

for age- and disease-associated epigenetic association stu-

dies [8,12,44,45]. From a previous study [46] and our own

unpublished data, this sample type comprises >90% squa-

mous epithelial cells with <10% blood cells. Moreover, we

minimized cell heterogeneity due to immune reactions by

not collecting from infants with mouth infections. Almost

a third of all HM450 probes in our final dataset showed

significantly changed DNA methylation levels at FDR

<0.05. Furthermore, the average absolute methylation

change in these aDMPs was 4.7% (3.2% per year over 18

months) and almost 3% of aDMPs exhibited an absolute

methylation change of >20%. These changes are similar in

magnitude to those seen in blood from birth to one year

of age using HM27 arrays and FDR <0.05 (3.9% of probes

with changes >20%; average change of 9.2% per year) [24]

and in T cells from birth to one year of age using HM450

arrays and FDR <0.01 (2.7% of probes with changes >20%;

average change of 14% per year) [25]. In addition, our

findings are of similar magnitude to a cross-sectional

study of DNA methylation in the prefrontal cortex from

human cadavers using HM27 arrays [47]. In combination

with other cross-sectional studies [20,22], these cumulative

data support the idea that rate of change of DNA methyla-

tion in the genome in any one tissue is highest in utero,

possibly reflecting extensive cellular differentiation during

organogenesis, and then declines in childhood, with a

further drop in adulthood [20,21,43].

In the current study, most (approximately 90%) age-

associated changes involved an increase in DNA methyla-

tion over time. This agrees with previous longitudinal

studies of early childhood [24-26] and cross-sectional

studies of placenta throughout gestation [48], periph-

eral blood in children [20], peripheral blood in adults

Figure 5 Examination of twin-pair discordance with age. The absolute within-pair discordance values were calculated for each twin pair and

the change in discordance over time was assessed. (a) Scatterplots of methylation levels (b values) for six twin pairs versus their co-twin

visualized at birth and at 18 months showing two examples each of pairs exhibiting within-pair drift, convergence and stability between birth

and 18 months of age as defined in the text. Points shown in red represent those with an absolute within-pair discordance value of >0.2 (20%).

The number of discordant probes is shown in the bottom right corner of each plot. MZ, monozygotic; DZ, dizygotic; MC, monochorionic; DC,

dichorionic. (b) Euclidean distance of within-pair discordances plotted for each twin pair at birth and 18 months. Within-pair discordance

increases in those pairs that drift and decreases in those that converge; stable pairs remain with similar values. (c) Distribution of the delta

discordance values defined as absolute discordance at 18 months minus absolute discordance at birth. (d) Boxplot comparison of the change in

beta values with age (deltabeta) versus change in discordance values with age (deltadiscordance).
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[12,13,16], buccal cells in adults [12] and in a compari-

son of differences in various tissues between fetal and

adult tissues [22]. A recent study comparing the entire

methylomes of a newborn and a centenarian using

bisulfite sequencing [23] observed an age-associated

decrease in methylation in most genomic regions,

including interspersed repetitive DNA, intergenic and

intragenic regions. Although additional studies are

needed to reconcile these discrepancies, it is also likely

that age-associated methylation changes are dependent

on genomic and tissue context, on the methylation

analysis platform used and on sample size.

We found that aDMRs are more likely to be in inter-

genic and intragenic regions (Figure 3). Such regions

were also enriched in aDMRs identified in multiple tis-

sues in rats [49] and mice [50]. The intergenic regions

identified in our study are single copy and overlap with

enhancers (Figure 3). Such regions undergo the most

dynamic changes accompanying differentiation of pluri-

potent stem cells [51]. Almost a third of aDMPs identi-

fied, and almost a half of aDMRs, lay within 5 kb of

transcriptional start sites (Figure S2 in Additional file 1),

implicating such regions in the regulation of gene expres-

sion. The higher proportion of aDMRs (44%) compared

to aDMPs (29%) around gene promoters most likely

reflects the higher CpG density and co-methylation

(locally correlated methylation) within these regions [52].

However, this could also be due at least in part to the

relatively wider HM450 probe spacing in intergenic

regions.

Ontology and pathways analysis showed that approxi-

mately three quarters of the genes associated with stringent

aDMPs and all aDMRs are implicated in development and

morphogenesis (Tables 2 and 3; Table S2 in Additional file

2). Signaling pathways, including those based on GTPase

signal transduction, pathways intrinsic to development,

were also enriched, as has been observed in other studies

of age-associated changes in methylation [50,53]. A bias

towards genes involved in development has been seen in

cross-sectional [13,20,54,55] and longitudinal [25,27] stu-

dies of human aging and in a study of embryonic stem cell

differentiation [53].

It is interesting to note that approximately half of the

top ten aDMP ontologies related to neural development

(Table 2), a finding shared with previous studies of methy-

lation in saliva [15] and blood cell fractions and buccal

epithelium from adults [12] and in a large meta-analysis of

multiple HM27 datasets from human brain and blood

[55]. Further studies are needed to ascertain whether these

findings relate to biases related to the large proportion of

the genome expressed in the brain.

We found that despite a trend towards increased methy-

lation with age in all regions of the genome, CpG-dense

promoter regions were particularly depleted in aDMRs

Table 4 Ontology enrichment analysis for drifting and converging pairs

GO term Description Adjusted P-value

Drifting pairs

GO:0032502 Developmental process 3.21E-12

GO:0048856 Anatomical structure development 8.34E-10

GO:0048869 Cellular developmental process 2.15E-09

GO:0048598 Embryonic morphogenesis 2.61E-07

GO:0009653 Anatomical structure morphogenesis 9.50E-07

GO:0007389 Pattern specification process 2.36E-06

GO:0050793 Regulation of developmental process 3.86E-06

GO:0007166 Cell surface receptor signaling pathway 5.33E-06

GO:2000026 Regulation of multicellular organismal development 1.06E-05

GO:0023051 Regulation of signaling 2.59E-05

Converging pairs

GO:0048856 Anatomical structure development 7.43E-08

GO:0032502 Developmental process 1.01E-07

GO:0048598 Embryonic morphogenesis 2.14E-05

GO:0050793 Regulation of developmental process 2.99E-05

GO:0022610 Biological adhesion 3.66E-05

GO:0007155 Cell adhesion 3.05E-05

GO:0045595 Regulation of cell differentiation 7.62E-05

GO:0048869 Cellular developmental process 1.95E-04

GO:0023051 Regulation of signaling 3.07E-04

GO:2000026 Regulation of multicellular organismal development 3.66E-04

The top ten Gene Ontology (GO) terms ranked by FDR (q values) ranked by mean delta discordance across ‘drifting’ and ‘converging’ pairs.
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and CpG-poor promoters were moderately increased (Fig-

ure 3), contrary to previous cross-sectional [13,15,16,56]

and longitudinal [26] studies of ageing-associated methyla-

tion change. This disagreement is most likely because

HM27 arrays are enriched in CpG-dense CpG islands.

However, our data agree with findings from studies using

methods that include intergenic regions, that low CpG

density promoters are enriched in mouse aDMRs [50],

during differentiation of human embryonic stem cells [57]

and between birth and very old age [23].

Epigenetic discordance at birth and 18 months of age

Very few genome-wide studies of methylation or expres-

sion have been performed on buccal cells. One such

study, of buccal cells collected from 20 twins aged 13 to

14 years using a low resolution CpG island array, found

no significant methylation differences within pairs [44].

However, a study of smoking-induced differential gene

expression in buccal cells identified a differentially

expressed network of genes with, at the hub, transcrip-

tion factors REL and CREB [58], which are among the

top 10% most discordant genes at birth and 18 months in

our data (Tables S5 and S6 in Additional file 2). Despite

the extensive longitudinal changes in DNA methylation

described above, we found that, in general, probes

located within genes associated with RNA metabolism

(for example, spliceosome components) and control of

gene expression (for example, transcription factors) were

consistently more discordant within twin pairs at both

birth and 18 months of age. Of interest, this class of

genes has previously been shown to have altered levels of

transcription in buccal cancer [59].

Epigenetic drift and convergence

In the current study, we found that a summed value

(Euclidean distance) of epigenetic discordance across

hundreds of thousands of loci can vary between and

within pairs and can increase or decrease over time. In

accordance with our genome-scale findings, a longitudi-

nal study of DNA methylation at seven imprinted gene

loci in buccal cells between birth and one year of age

showed that inter-individual variation similarly increased,

decreased or remained similar in singletons and that the

direction of change could differ between individuals [45].

A longitudinal study of DNA methylation at three genes

in buccal cells in 46 MZ and 45 DZ twin pairs found that

methylation drifted in some pairs and converged in

others over time [8]. Similar results were found for MZ

and DZ twins and a role for genetic, shared and non-

shared environmental factors, dependent on genomic

location, in these longitudinal changes was postulated

[8]. For MZ pairs, changes in within-pair discordance

must be influenced solely by stochastic and non-shared

environmental factors. Evidence for the latter comes

from our previous studies of methylation in newborn

twins [6,7,60] and from a cross-sectional study of DNA

methylation in seven genes in whole blood from >200

MZ twin pairs aged 18 to 89 years [61]. Data from a long-

itudinal, genome-scale study of DNA methylation (using

HM450 arrays) in whole blood from an independent

cohort of young adults (aged 22 to 32 years) also provides

evidence of genome-scale methylation drift and conver-

gence defined by changes in Euclidean distance over time

(Figure S5 in Additional file 1).

Epigenetic drift has been postulated to arise from the

cumulative effects of (non-shared) environment and sto-

chastic events [30,62,63], the latter influenced by epige-

netic events such as promoter occupancy by transcription

factors [64] and by errors made during the maintenance of

DNA methylation profile following DNA replication

[30,63]. Recent studies suggest that epigenetic drift may

also reflect differing rates of change of methylation among

the population [65]. Furthermore, others have argued that

epigenetic variability (or noise) is itself genetically pro-

grammed and has evolved to mediate some degree of plas-

ticity (via canalization) [66]. In contrast, we suggest that

‘convergence’ may involve sites of methylation equalization

between co-twins, possibly reflecting regression to the

mean as a contributing factor. Regression to the mean is a

phenomenon in which it is a statistical certainty that indi-

vidual phenotypes, such as growth patterns [67], shift to

the population mean over time [68]. This explains why

twins with birth weight discordance become more similar

over time [69] and can be understood in terms of twin-

specific uterine-specific restrictions being replaced postna-

tally by a greater degree of shared environment [69-71].

Indeed, the twins in the current study had a median

weight discordance [(Weight of the heavier twin - Weight

of the lighter twin)/Weight of the heavier twin] of 13.3%

at birth and 2.8% at 18 months. Although caution is

needed with interpretations from a small sample size, we

note that ‘converging’ pairs were more likely to start with

a higher within-pair discordance (mean Euclidean distance

= 375) than the drifting pairs (mean Euclidean distance =

295) (Figure 5b), although this difference did not reach

significance (P = 0.11). Clearly, larger longitudinal twin-

based studies are needed to further investigate factors con-

tributing to epigenetic drifting and convergence over time.

Conclusions
We have conducted the first longitudinal study of epige-

netic change in buccal cells in twins from birth, using a

validated, genome-scale methylation array. We have

shown evidence that the epigenetic profile of both MZ

and DZ twin pairs can exhibit epigenetic drift or conver-

gence early in postnatal development. As genes involved

in development exhibited the largest absolute changes in

methylation over time and the largest, smaller-scale
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changes within twin pairs, we conclude that the epigen-

etically driven developmental program is influenced to

some extent by stochastic and/or non-shared environ-

mental factors. Thus, canalization may be influenced by

such factors, in addition to genetic factors as suggested

by Waddington [72,73].

Materials and methods
Subjects, tissues and DNA extraction

Sample collection from twins at the time of delivery was

carried out with appropriate human ethics approval from

the Royal Women’s Hospital (project number 06/21),

Mercy Hospital for Women (project number R06/30), and

Monash Medical Centre (project number 06117C),

Melbourne and the study was conducted according to the

Declaration of Helsinki principles. The twin pairs chosen

for methylation array analysis are shown in Table 1. The

10 MZ pairs and 5 DZ pairs shared a similar sex ratio,

gestational age and birth weight to the full group of 250

pairs. Buccal cells were collected with Catch-all Sample

Collection Swabs (EPICENTRE Biotechnologies, Madison,

WI, USA) and were stored at -20°C until DNA extraction,

which was performed as previously described [60].

Infinium HumanMethylation450 BeadChip data

acquisition and processing

DNA samples (1 μg) were bisulfite converted using the

Methyl EasyXceed bisulfite modification kit (Human

Genetic Signatures, North Ryde, Australia), according to

the manufacturer’s instructions. Conversion efficiency

was assessed by bisulfite-specific PCR. DNA samples

were hybridized to Illumina Infinium Human Methyla-

tion450 (HM450) BeadChip arrays according to the man-

ufacturer’s instructions. Raw intensity data (IDAT) files

were imported into the R environment (version 2.14.1)

[74] and processed using the minfi package [75]. All ana-

lyses were performed in R using packages available from

the Bioconductor project [76]. Data quality was assessed

in minfi using plots derived from various control probes

on the array. Poor performing probes defined as those

with an average detection P-value >0.001 in one or more

samples were removed from the analysis (n = 132,113).

Data from five samples with an average detection P-value

>0.05 and with evidence of poor bisulfite conversion effi-

ciency were removed completely. Probes on the × and Y

chromosomes were also discarded from all samples. The

resulting data were pre-processed using the Illumina

method within minfi and subset-quantile within-array

normalization was performed [36] for combined normali-

zation of Infinium type I and type II probes. The log2

ratio of methylated probe intensity to unmethylated

probe intensity were calculated in minfi and the resulting

M-values [77,78] were quantile normalized between

arrays using the limma package [79]. Sample quality was

further assessed using hierarchical clustering plots avail-

able in minfi and lumi [77] packages. Following this,

three additional samples were removed as outliers consti-

tuting a final data set of 330,168 probes and 53 samples.

Statistical analysis

Exploratory analysis of sample relationships was per-

formed using unsupervised hierarchical clustering analy-

sis with the Euclidean distance and complete linkage

algorithm, and dendrogram was created using gplots

[80]. Differential methylation analysis was performed on

M-values using the limma package using a cutoff of

FDR-corrected P-values <0.05 [81] and delta beta values

>0.2. To study discordance among co-twins at the

probe-level, a linear model was fitted to the M-values

with twin-pair as a predictive factor to model the twin

relationship. The level of discordance among co-twins

was interpreted as the residual measurement for each

CpG from the model-fit. For enrichment analysis, gene

sets were populated with probe IDs using the annotated

regions provided in the Illumina HM450 manifest file

(version 1.1). Annotations used were classified as gene-

related (TSS1500 and TSS200, regions from -1500 to

-200 and -200 to the transcriptional start site respec-

tively, 5’ UTRs, first exons, gene bodies, 3’ UTR and

intergenic (no gene annotation)); CpG island-related

(islands (also split into intragenic and intergenic)),

shores (0 to 2 kb flanking islands), shelves (2 to 4 kb

flanking islands) and open sea (>4 kb from islands)

[82]); DMRs (associated with cancer (CDMRs) and

induced pluripotent stem cell reprogramming (RDMRs);

[83] and regulatory regions (promoters, enhancers and

DNAse hypersensitivity sites, likely to be a mixture of

promoters and enhancers [84,85]). Boxplots were pro-

duced to graph each category by discordance score. The

‘bump-hunting’ methods described by Jaffe and collea-

gues [39] were implemented using the charm package

available in Bioconductor [86]. We used the ‘dmrFinder’

algorithm without covariate adjustment, using the

default SPAN settings and specifying a minimum four

probes, and a t-statistic cutoff to identify probes as

being in a DMR at 0.995. For gene ontologies the GOr-

illa bioinformatics tool [42] was used to perform

ranked-list ontology using the entire array content

ranked by scores for discordance. Gene-list ontology

enrichment was performed on significant gene lists

(FDR <0.05) using the DAVID bioinformatics tool under

the default settings [87]. Pathway analysis data were ana-

lyzed through the use of Ingenuity Pathway Analysis

(Ingenuity Systems, Redwood City, CA, USA). The ana-

lysis tool GREAT (Genomic Regions of Annotations

Tool) [88] was used to analyze the functional signifi-

cance of aDMRs using the single nearest gene associa-

tion rule within a 100 kb window.
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Sequenom MassArray target validation

Target validation was performed using the Sequenom

MassArray EpiTYPER (Sequenom, San Diego, CA, USA)

performed as previously described [18,60]. Amplicons

were designed using Sequenom EpiDesigner software.

Primers are listed in Table S7 in Additional file 2. In

brief, amplification was performed after bisulfite conver-

sion of genomic DNA with the MethylEasy Xceed bisul-

phite conversion kit (Human Genetic Signatures, North

Ryde, Australia). All PCR amplifications and downstream

processing were carried out at least in duplicate and the

mean methylation level at specific CpG sites determined.

Raw data obtained from MassArray EpiTYPING were

cleaned systematically using an R-script to remove sam-

ples that failed to generate data for more than 70% of

CpG sites tested [60]. Also, technical replicates showing

≥10% absolute difference from the median value of the

technical replicates were removed and only samples with

at least two successful technical replicates were analyzed.

Samples were compared across each analyzable CpG site

in the amplicon, as well as the mean across the whole

amplicon.

Data availability

Array data described in this manuscript have been sub-

mitted to the Gene Expression Omnibus public reposi-

tory and are freely available under the accession number

GSE42700.

Additional material

Additional file 1: Supplementary figures and legends.

Additional file 2: Supplementary tables and legends.
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