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Longitudinal Motion Control of a

High-Speed Supercavitation Vehicle
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(bokor@aem.umn.edu)† and Gary J. Balas (balas@aem.umn.edu)
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June 15, 2006

Abstract. This article focuses on theoretical developments in modeling and control
of High-Speed Supercavitating Vehicles (HSSV). A simplified model of longitudinal
dynamics is developed for control, and a dynamic inversion based inner-loop con-
trol technique is proposed to handle the switched, time-delay dependent behavior
of the vehicle. Two outer-loop control schemes are compared for guidance level
tracking. Various aspects of disturbance characteristics and actuator dynamics are
investigated and analyzed.

Keywords: supercavitation, dynamic inversion, bimodal systems, receding horizon
control

Figure 1. Water tunnel experiment on supercavitation

1. Introduction

Cavitation is an undesired phenomena in most engineering applications.
Recent developments in supercavitation, motivated by the demand for
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2 B. Vanek, J. Bokor, G.J. Balas and R.E.A. Arndt

high-speed underwater vehicles (DARPA Advanced Technology Of-
fice, 2005; Ashley, 2001) has generated renewed interest in cavitation.
Supercavitation can provide significant benefit for drag reduction by
maintaining a stable single vaporized water bubble around the ve-
hicle making it possible to extend the velocity range of underwater
applications.

The sharp edge of a cavitator mounted on the nose of the vehicle
creates large pressure gradient at high velocity. This phenomena leads
to flow separation, which can create a cavity bubble encompassing the
entire body. Only small regions of the vehicle are in contact with water.
The cavitator and fins at the aft end (if present) provide lift to stabi-
lize the body and may be used for guidance level control tasks. The
cavitator size, shape and forward velocity determine the dimensions of
the cavity bubble in which the body must fit. Any other contact with
fluid phase is undesirable from a drag reduction standpoint. In this
vehicle configuration, with no additional lift components, the vehicle is
unstable inside the cavity. One means to address the vehicle stability
involves the body itself. When the aft end penetrates the cavity surface,
a large restoring force, known as planing, forces the vehicle back inside
the cavity. Planing can be used as a support force to improve maneu-
verability and eliminate the need for fins. This leads to a reduced cost
and system complexity, but it can also lead to limit cycle oscillations
and increased drag if not controlled.

The actuation of the cavitator mounted on the nose becomes prob-
lematic if the goal is not only longitudinal control but three dimensional
trajectory tracking. The influence of high cavitator actuation rate on
the cavity stability and shape is uncertain. If planing does not support
the vehicle weight, then fins at the aft end have to provide a lift force
to balance the moment and stabilize the pitch motion. The fins effec-
tiveness is a nonlinear function of their immersion depth, and planing
can also occur with actively controlled fins. Note that the gap between
the body and the cavity wall is on the order of 1 − 5 cm compared
to the body length of 1 − 2 meters, for vehicle speeds between 75 and
100 m/s. Cavity-vehicle interaction also has memory effects since the
cavity shape, which affects planing, is a function of the vehicle past
path and buoyancy. Suppression of limit cycle oscillations and distur-
bance attenuation require high bandwidth actuators, precise inertial
measurements, and high sample rate real-time control algorithms.

The Russian navy has a supercavitation vehicle, the Shkval, cur-
rently in operation (Ashley, 2001), and German Diehl BGT Defence has
demonstrated successful stable, straight and curved path maneuvers
with the Barracuda (www.diehl-bgt-defence.de) supercavitating ve-
hicle. Despite these successes, no solution to the three dimensional
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Longitudinal Motion Control for HSSV 3

trajectory tracking problem for supercavitating vehicles is available
in the open literature. Significant research on supercavitation vehicle
control has been done in the past years, mostly using linear regulators
((Shao et al., 2003; Goel, 2002; Kirschner et al., 2002b; Kurdila et al.,
2003)). These model-based designs rely on linearized dynamics around
operating points. None of these approaches provide a planing-free op-
eration which is a potential requirement in the future Underwater
Express program ((DARPA Advanced Technology Office, 2005)). Other
control approaches, using nonlinear techniques ((Dzielski and Kurdila,
2003; Lin et al., 2004)) are in the early development phase. Numerous
challenges face the designers of supercavitating vehicle control systems.

This paper focuses on control challenges associated with the longi-
tudinal axis motion of supercavitating vehicles. The first part of the
paper (Section 2) describes a simplified pitch-plane model of a HSSV.
This model is a refined version of the model described in (Vanek et al.,
2006a), which was motivated by the papers of Dzielski and Kurdila
(2003) and Kirschner et al. (2003). The model includes delay-dependent
interaction between the vehicle and cavity wall, pitch-angle-dependent
terms, and a refined planing model. In contrast with previous mod-
els, the equations of motion are written around the center of gravity.
The second part of the paper summarizes the theoretical results on
bimodal systems, which enable the systematic design of a dynamic-
inversion-based inner-loop control architecture (Section 3). An outer-
loop controller is added to guarantee high-level tracking objectives. In
this paper, a pole-placement trajectory tracking controller with ver-
tical position and pitch-angle-tracking objectives is compared with a
receding horizon control (RHC) based design, where position and angle
tracking, planing avoidance, and actuator saturation are formulated as
performance objectives.

This paper adds to the literature by adressing planing avoidance
as a performance objective. Linear control methods previously pro-
posed ((Goel, 2002),(Shao et al., 2003)) did not take into account the
large deviations from the nominal equations of motion, hence stability
and performance were not guaranteed when the vehicle was planing.
Nonlinear methods proposed by ((Dzielski and Kurdila, 2003),(Vanek
et al., 2006b)) guarantee stability during planing, using the control
surfaces to attenuate the large forces caused by planing, but do not
take into account actuator position and rate limits, which restricts the
operation envelope of the vehicle. The result of this research show that
planing avoidance as a performance objective can significantly expand
the operation envelope of the HSSV. The increased performance comes
at the expense of slightly degraded position tracking performance, while
planing with undesirably high acceleration happens seldom if ever.
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4 B. Vanek, J. Bokor, G.J. Balas and R.E.A. Arndt

Simulation results of the closed-loop systems are compared in Sec-
tion 5. Challenges facing the control designer are highlighted with re-
spect to the actuator and sensor requirements, modeling issues, vehicle
configuration, robustness and performance. Conclusions and future di-
rections emphasizing the most important design criteria are highlighted
in the last section.

2. Mathematical Model

Several mathematical descriptions are available in the literature of
supercavitating vehicles, ranging from vertical directional one degree-
of-freedom (DOF) model (Kirschner et al., 2003), through a simplified
2-DOF longitudinal description (Dzielski and Kurdila, 2003) to a high
fidelity 6-DOF model (Kirschner et al., 2002a). A broader overview on
the characteristics of these models can be found in (Balas et al., 2006)
where another 2-DOF model from (Vanek et al., 2006a) is described.

Delay-dependent behavior of the cavity with refined treatment of
planing was developed in (Vanek et al., 2006b), however it neglected the
control forces’ pitch angle dependence. Given a single control surface
an additional force to support the vehicle requires constant nonzero
pitch angle of the vehicle. Hence, a relationship between the pitch
angle, moments and forces need to be developed. This is apparent since
trimming the vehicle around straight level flight requires nonzero angle
of attack on the fins and cavitator, to generate the required force and
moment balance.

For simplicity, the equations of motion are written around the center
of gravity (c.g.) and small angle approximations are used to eliminate
trigonometric nonlinearities. The small angle assumption is valid since
we anticipate angles less than 0.2 rad. Variable definition and coordi-
nate directions are shown in Figure 2. The geometry of the model is
intended to capture the main characteristics of a test vehicle. The body
consists of a cylindrical and a conical section, with the length of the
latter half of the former. The reference coordinate system is placed at
the center of gravity with positive x-axis pointing in forward horizontal
direction and the z-axis pointing to the center of Earth. The pitch angle
is denoted by θ (rad), pitch rate q (rad/s), the vertical position z (m)
and vertical velocity is w (m/s). δc (rad) is the cavitator angle with
respect to the x body axis, and δf (rad) the fin angle of attack in the
body coordinates. In general, there are four forces acting on the body,
the cavitator and fins forces, gravity, and planing which is not always
present.
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Longitudinal Motion Control for HSSV 5

The body length is denoted by L (m) and its radius is R (m). The
body has uniform density ρb = ρm (kg/m3), with relative density m
compared with water (ρ), from which the mass and inertia can be
calculated, neglecting the cavitator and fins contribution. Hence, the
vehicle mass (M), moment of inertia around the y axis (Iyy) and center
of gravity location from the nose (xcg) are given as:

M =
7

9
(mρπ)R2L (1)

Iyy =
11

60
R4Lπρm +

1933

45360
R2L3πρm (2)

xcg =
17

28
L (3)

If the full vehicle body is inside the cavity, hydrodynamic forces only

Cavity envelopeCavity centerline

Torpedo’s symmetry line

immersion

immersion

fin

cav

plane

fin

g

cav

Figure 2. Variables in the longitudinal plane

act on the cavitator and the fins. The cavitator drag coefficient is
modeled as Cx = Cx0(1 + σ) where σ is the cavitation number and
Cx0 = 0.82 (Logvinovich, 1972). The resulting lift on the cavitator is
approximately:

Fcav =
1

2
πρR2

nV 2Cxαc = Clαc (4)

where Rn (m) is the cavitator radius, ρ the water density, V (m/s) the
vehicle’s horizontal speed, and αc is the cavitator angle of attack. The
force acting on the fins located at the tail is modeled as:

Ffin = nClαf (5)

where n represents the fins effectiveness in providing lift as a function of
angle of attack (αf ) relative to the cavitator. Note that in the longitudi-
nal plane, the two horizontal fins are assumed to move in unison. Only
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6 B. Vanek, J. Bokor, G.J. Balas and R.E.A. Arndt

small angle deflections with maximum value of 0.2 rad are considered.
The following simplifying assumptions are assumed through out this
paper: the horizontal velocity (V ), water density (ρ) and cavitation
number (σ) are assumed constant.

The force and moment equations around the c.g. using the conven-
tions shown in Figure 2 are written as:

Mẇ = Fcav + Ffin + Fg + Fp (6)

Iyy q̇ = −(FcavLc + FfinLf + FpLf ) (7)

where Lc = 17/28L and Lf = −11/28L are the respective moment
arms of the cavitator and fin forces. The planing force is assumed to
act at −Lf distance from the c.g. The force components as function of
vehicle states are:

Fcav =
1

2
πρR2

nV 2Cl(
w

V
−

qLc

V
+ θ + δc) (8)

Ffin = −
1

2
πρR2

nV 2Cln(
w

V
−

qLf

V
+ θ + δf ) (9)

Fg =
7

9
ρmπR2Lg (10)

The remaining term Fp associated with the planing force needs further
consideration. This force is present when the vehicle transom interacts
with the cavity wall, leading to a force similar to that sustained by
powerboats bouncing on the top of the water. In the particular case of
the HSSV, the free fluid surface is the circular cavity wall created by
the cavitator and the vehicle tail is tubular. Logvinovich (1972) and
Vasin and Paryshev (2001) analyzed the situation when a cylindrical
body immerses into a cylindrical free fluid surface, which applies to
the current vehicle configuration. These analytical results relate the
immersion depth h (m) and the distance from the axis of symmetry to
the narrowest part of the spray sheet, generated by the displaced fluid.

The pressure force on the body is calculated from the energy of the
spray sheet. If the diameter of the cavity at the planing location is Rc,
then for (Rc−R) << Rc and small immersion angles, the planing force
can be approximated as:

Fp = −ρR2πV 2
(

1 −
R′

h′ − R′

)2 ( 1 + h′

1 + 2h′

)

αp (11)

The variable R′ denotes the normalized difference between the cavity
and body diameter (R′ = (Rc − R)/R). The variables h′ the nor-
malized immersion depth and αp (rad) the immersion angle, capture
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Longitudinal Motion Control for HSSV 7

the switched, nonlinear behavior of the dynamics. From Figure 2, the
planing depth is determined by the cavity shape (as a function of the
cavitator trajectory), vehicle position, and orientation. The position of
the vehicle transom, where planing occurs, is a function of the vehicle
position, rotation, and vehicle radius at the transom.

The cavity boundary is located at Rc distance from its centerline,
which is determined by the vehicle nose path through the water. At
the transom region, the centerline is at zn(t − τ). The cavity radius at
the planing location is assumed to be constant. Hence, the immersion
depth is the difference between the two quantities, and the nose position
zn(t) = z(t) − Lcθ(t).

h
′ =















1
R

[z(t) + θLf + R − zn(t − τ) − Rc] if zn(t − τ) + Rc < z(t) + θLf + R

0 (inside cavity)

1
R

[zn(t − τ) − Rc − z(t) − θLf + R] if zn(t − τ) − Rc > z(t) + θLf + R

(12)

Following the same reasoning, the immersion angle can be calculated
based on the knowledge of the delayed vertical speed of the vehicle
nose (żn(t) = w(t) − V θ(t) − Lcq(t)) and current pitch angle plus the
contraction rate of the cavity bubble (Ṙc):

αp =



















θ − żn(t−τ)+Ṙc

V
bottom contact

0 inside cavity

θ − żn(t−τ)−Ṙc

V
top contact

(13)

It is important to note that, based on equation (12) the system is
described by three different set of equations corresponding to three
possible modes, one with linear and the other two with nonlinear delay
dependent terms. The vehicle dynamics are continuous on the switching
surface between different modes, since the nonlinear planing force is
zero on the boundary.

Stability and hysteresis tests with a cavity-piercing fin performed in
the high-speed water tunnel at St. Anthony Falls Laboratory (Syrstad
et al., 2005) confirm the cavity shape specification as described in
(Logvinovich, 1972). To simplify further the dynamic equations based
on the assumption that the body planes at the approximate location
of the fins, the following constants are defined:

κ1 =
L

Rn

(
1.92

σ
− 3)−1 − 1, κ2 = (1 − (1 −

4.5σ

1 + σ
)κ

40
17
1 )

1
2 (14)
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8 B. Vanek, J. Bokor, G.J. Balas and R.E.A. Arndt

Using the above expressions, the radius of the cavity at L distance from
the cavitator is:

Rc = Rn(0.82
1 + σ

σ
)

1
2 κ2 (15)

The expression for the contraction rate of the cavity (Ṙc) is:

Ṙc = −
20

17
(0.82

1 + σ

σ
)

1
2 V

(1 − 4.5σ
1+σ

κ
23
17
1 )

κ2(
1.92
σ

− 3)
(16)

The equations for the cavity shape presented in equation (16) are valid
given that they are evaluated sufficiently far from the cavitator:

L > Rn(
1.92

σ
− 3) (17)

but before the cavity closure.
Using these equations, supplemented by the basic kinematic equa-

tions for position and pitch angle:

θ̇ = q, ż = w − V θ (18)

the system states z, θ, w and q can be written in state space form as:










ż

θ̇
ẇ
q̇











= A









z
θ
w
q









+ B

[

δe

δc

]

+ Fgrav + Fplane(t, τ) (19)

where A and B represent the linear part, Fgrav is a constant term
and Fplane corresponds to the nonlinear relationship associated with
planing. The specific values of the system matrices are as follows:

A =













0 −V 1 0
0 0 0 1

0 (C1−C2)
M

(C1−C2)
(MV )

(−C1Lc+C2Lf )
(MV )

0
(−C1Lc+C2Lf )

Iyy

(−C1Lc+C2Lf )
(IyyV )

(C1L2
c−C2L2

f
)

(IyyV )













(20)

B =











0 0
0 0
C1
M

C2
M

−C1
Iyy

Lc
C2
Iyy

Lf











(21)

Fgrav =









0
0
g
0









(22)
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Table I. System parameters for simulation model

Parameter Description Value and Units

g Gravitational acceleration 9.81 m

s2

m Density ratio, ρm

ρ
2

n Fin effectiveness 0.5

Rn Cavitator radius 0.0191 m

R Vehicle radius 0.0508 m

L Length 1.80 m

V Velocity 75 m
s

σ Cavitation number 0.03

Cx0 Lift coefficient 0.82

Fplane =











0
0
Cp

M

−
Cp

Iyy
Lf











(

1 −
R′

h′(t, τ) − R′

)2 ( 1 + h′(t, τ)

1 + 2h′(t, τ)

)

αp(t, τ) (23)

The constant terms C1, C2, Cp are defined to simplify the presentation.
Their specific values are:

C1 =
1

2
πρR2

nV 2Cx, C2 =
1

2
πρR2

nV 2Cxn, Cp = πρR2V 2 (24)

The system parameters are based on the benchmark HSSV in (Dzielski
and Kurdila, 2003) and presented in Table I.

3. Theoretical aspects of controller design

The state space equations describing the system in equation (19) rep-
resent a bimodal switched system. Several characteristics of this model
are of interest: (i) in the first mode, the system dynamics are linear
(inside cavity), and in the second mode they are nonlinear (planing)
input affine, though the control inputs affect the dynamics linearly in
both modes, (ii) the switching condition does not depend on the con-
trol inputs, and (iii) the switching hyperplane depends on the delayed
output variable zn(t − τ).

A switched, hybrid control strategy was developed in Balas et al.
(2006) for this type of system. Properties (i) and (ii) allow for feedback
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10 B. Vanek, J. Bokor, G.J. Balas and R.E.A. Arndt

linearization in both modes. This is performed via a coordinate system
with suitable geometric structure for the problem. It was shown (Balas
et al., 2006) that this design results in linear dynamics in both modes
ensuring continuous dynamics on the switching hypersurface. Since the
latter depends on delayed state variables, controllability has to be an-
alyzed, and a controller has to be designed that ensures stability and
tracking performance.

The proposed approach relies on the assumption that the delay
in the equations of motion can be eliminated by applying a suitable
feedback. The resulting controllability analysis and control design can
then be performed for bimodal linear time invariant (LTI) systems.

New state variables for equation (19) are selected for analysis and
control design:









x̄1(t)
x̄2(t)
x̄3(t)
x̄4(t)









=









zn(t)
−V θ(t) + wn(t)

θ(t)
q(t)









(25)

The matrix used for this coordinate transformation is:

Tc =









c1

c1A
c2

c2A









=









1 −Lc 0 0
0 −V 1 −Lc

0 1 0 0
0 0 0 1









(26)

The state space equations in the new coordinate system are:

˙̄x =

{

Acx̄(t) + Bcu(t) + F̄g if c̄(δ)x̄(t) ≤ 0,

Acx̄(t) + F̄p(t, x, δ) + Bcu(t) + F̄g if c̄(δ)x̄(t) ≥ 0,
(27)

where

Ac =









0 1 0 0
−α110 −α111 −α120 −α121

0 0 0 1
−α210 −α211 −α220 −α221,









Bc =









0
c1AB

0
c2AB









(28)

The difference between Fgrav and F̄grav is that F̄grav = TcFgrav + K1

where K1 is a constant associated with the shift in the origin of the
coordinate system. Similarly F̄plane = TcFplane.

The inputs enter linearly in the state equations in both modes, and
it is assumed that all states can be measured. This allows us to select
two outputs defined as y1 = x̄1 and y2 = x̄3, such that the vector

JVC06-12.tex; 26/08/2006; 17:12; p.10



Longitudinal Motion Control for HSSV 11

relative degree is well defined in both modes, and in addition, they are
identical, i.e. by defining:

Cc =

[

1 0 0 0
0 0 1 0

]

(29)

The relative degree for the modes are:

r2
1 = 2, r1

2 = 2, r2
1 + r1

2 = n = 4 Mode 1 (30)

r2
1 = 2, r2

2 = 2, r2
1 + r2

2 = n = 4 Mode 2 (31)

The consequence of this property is that one can apply state feed-
back in both modes to eliminate the time delay in Mode 1 and the
nonlinearity (exact feedback linearization) in Mode 2 (Balas et al.,
2005b). This feedback is given by (Balas et al., 2006):

Vehicle

fin

cavitator

Feedback 
Linearizing 
Controller

cB.Act
v

gravF
0x

∫ sC

cA

planeF

δ

(Bimodal)

sy

(switching) Linear system

x (t-
_

x
_

Figure 3. Control architecture for supercavitating vehicle model

uflc =

{

M−1
1 (ẏ12,ref (t) − Fαx̄(t) − F̄g + vI(t)) if c(δ)x̄(t) ≤ 0,

M−1
1 (ẏ12,ref (t) − Fαx̄(t) − F̄g − F̄p(x, δ) + vII(t)) if c(δ)x̄(t) ≥ 0,

(32)
where M1 = (CAB), y12,ref = [y1, y2]

T
ref . The feedback gain Fα is

defined by the controllability invariants αijk of the linear part of the
system (equation (28)). The structure of the designed feedback system
is shown in Figure 3.
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12 B. Vanek, J. Bokor, G.J. Balas and R.E.A. Arndt

The feedback linearized closed-loop has the following form in both
modes:

˙̄x =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









x̄ +









0 0
1 0
0 0
0 1









[

v1

v2

]

(33)

The switching condition is given by the sign of ys = c(δ)x̄.

3.1. Controllability analysis of the bimodal system

Controllability of linear bimodal systems with single input and dy-
namics continuous on the switching surface is analyzed in (Çamlibel
et al., 2004). These results are generalized to multi-input systems in
(Balas et al., 2005b) and applied to the supercavitating vehicle in (Balas
et al., 2006). The results show that the controllability analysis can be
performed by analyzing the controllability of the zero dynamics of the
switched system with respect to the switching hyperplane (C).

It can be shown that every linear system with relative degree (r) and
switching output ξ1 = ys has the following decomposition by applying
state transform and state feedback:

ξ̇ = A11ξ + γv (34)

up =
1

γ
(−A12η − B̄21ū + v) (35)

η̇ = A22η + B̄22ū + Gys, (36)

Since ξ1 = ys, equation (36) describes the dynamics of the system
on C. Rewrite the equation of this zero dynamics as:

η̇ = Pη + Qū + Rys. (37)

It is proved in (Balas et al., 2005b) that either the pair (P,Q) has
to be controllable, then η is controllable “without” using ys, e.g. by
applying ū = Q#(−Rys + w), or if the pair (P,Q) is not controllable,
then the conditions of controllability of the bimodal switching system
reduces to the controllability of equation (37) using unconstrained ū
and nonnegative (or in the other mode non-positive) input ys: (i) The
pair (P, [QR]) has to be controllable, (ii) Consider the decomposition
of equation (37) induced by the reachability subspace R(P,Q),

η̇1 = P11η1 + P12η2 + Qū + R1ys (38)

η̇2 = P22η2 + R2ys, (39)

where R2 6= 0. Then the imaginary part of the eigenvalues of P22 cannot
be zero.
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For the high-speed supercavitating vehicle model, this result has
to be generalized for a time delay system. Since only one delay time
is present in the switching condition, it is possible to discretize the
system using backward difference approximation (Safonov, 1987) that
preserves the relative degree needed to analyze the zero dynamics, with
extended state space by including the delayed state variable.

This results in the following discrete time state equations:

x(t + 1) = Adx(t) + Bdv(t), ys = Cdx(t) (40)

where

Ad =













1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
1 0 0 0 0













, Bd =













0 0
β21T β22T

0 0
β41T β42T

0 0













, Cd = [1, 0, V, 0,−1].

(41)
T denotes the sample time and the fifth state is the delayed position

of the cavitator. The switched output (Cd) is derived based on equation
(12). The above system can be decomposed into the following set of
equations:

ξ(t+1) =

[

0 a12

0 a22

]

ξ(t)+

[

0 0 0
0 b22 b23

]

η(t)+

[

0
e21

]

v1(t)+

[

0
e22

]

v2(t) (42)

ys =
[

1 0
]

ξ(t) switching condition (43)

η(t + 1) = Pη(t) + Rξ(t) + Qv2(t), (44)

where

P =





p11 p12 p13

0 p22 p23

0 0 p33



 , R =





0 r12

0 r22

0 0



 , Q =





0
0

q31



 . (45)

The zero dynamics with respect to the first input v1 are described
by equation (44) and a similar decomposition can be obtained with
respect to v2. Using the results in (Balas et al., 2006), it can be seen
that the (P,Q), pair is controllable in both cases, implying that the
dynamic inversion controller using inputs v1 and v2 with switching
can be applied to control the bimodal system and an additional linear
controller can be used for trajectory tracking.
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4. Outer loop control strategy

A single, linear outer-loop controller can guarantee stability and achieve
the desired tracking properties with feedback linearization, since the
system behaves the same regardless of the interior switching state.
A variety of linear design approaches can be used for stability and
control (Doyle et al., 1989; McFarlane and Glover, 1992; Balas et al.,
2005a; Mayne et al., 2000). The ability of the controller to directly
handle constraints could provide significant benefits if planing is re-
stricted. Hence, a simple pole placement controller is compared with
receding-horizon control approach which allows for actuator and state
constraints.

The inner loop dynamics after feedback linearization, using the new
canonical coordinates are:









ẋ1

ẋ2

ẋ3

ẋ4









=









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

















x1

x2

x3

x4









+ Bc

[

∆δf

∆δc

]

(46)

where ∆δf,c denotes the additional deflection of the fins and cavitator
commanded by the higher level controller. This system is nilpotent,
because all eigenvalues of A are zero. There is no cross coupling be-
tween the first two states (vertical position and speed), and the other
states (vehicle angle and angle rate). Hence, they can be controlled
independently by the two control inputs.

4.1. Multivariable Pole Placement for Tracking

An easy and tractable control design approach for linear systems is
pole placement. The performance objective is to track desired state
commands with no restrictions on the maximum actuator deflections,
since the tracking signals have minor contribution compared with the
action due to planing. With the assumption of full state feedback, this
can be done fairly simply. The inversion based controller has the form:

[

u1(t)
u2(t)

]

= (CAB)−1(−[αu]

[

x1(t)
x2(t)

]

−

− [αl]

[

x3(t)
x4(t)

]

− [Gc] − [Pc(t, τ)]) +

[

∆δf

∆δc

]

(47)

Where the αu,l coefficients are the elements of the Ac matrix (equation
(28)) and ∆δf,c are the signals responsible for reference tracking.

[αu] =

[

−α110 −α111

−α210 −α211

]

[αl] =

[

−α120 −α121

−α220 −α221

]

(48)
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The reference tracking part of the controller responsible for pole loca-
tions:

[

∆δf

∆δc

]

= (CAB)−1
{[

−ᾱ110 −ᾱ111

0 0

] [

x1(t) − x1,ref (t)
x2(t) − x2,ref (t)

]

+

+

[

0 0
−ᾱ220 −ᾱ221

] [

x3(t) − x3,ref (t)
x4(t) − x4,ref (t)

]

+

[

ẋ1,ref

ẋ3,ref

]}

(49)

The feedback linearized closed loop has the following form in all
modes:

Acl = Ac − BcFinv + BcFctr =









0 1 0 0
−ᾱ110 −ᾱ111 0 0

0 0 0 1
0 0 −ᾱ220 −ᾱ221









(50)

The closed-loop system is stable for a given set of ᾱ coefficients.

Feedback linearized system

∫cT pplF

FLA

FLB
refx

FLxv 1−
cT

x

dt

d

1

1

−
M

Figure 4. Control architecture for supercavitating vehicle model

The tracking part of the controller is responsible for the location of
the poles. The eigenvalues of the system are:

λ1,2 = −0.5ᾱ221 ± 0.5
√

(−ᾱ221)2 − 4ᾱ220 (51)

λ3,4 = −0.5ᾱ121 ± 0.5
√

(−ᾱ121)2 − 4ᾱ120

The poles can be freely adjusted in the stable region, while the driv-
ing factor for actuator deflections remains planing cancelation. Hence,
the only limiting factor for setting the pole locations is the actuator
bandwidth.

The structure of the feedback controller is shown in Figure 3. The
inner-loop controller feedback linearizes the system, and the outer-loop
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controller handles reference tracking. It is possible to track both posi-
tion and angle commands with consistent position, velocity, angle and
angle rate reference signals. The designed pole placement controller also
operates on the transformed canonic coordinates. The special structure
of the feedback linearized system allows the vehicle position and angle
to be controlled independently.

4.2. Outer-Loop RHC control

This section describes the design of an outer-loop controller using Re-
ceding Horizon Control (RHC). The previous section focused on the
inner-loop control with a simple pole-placement controller to achieve
reference tracking properties. In addition to the performance specifica-
tions, the reference tracking control should avoid actuator saturation
and immersion into the fluid, preventing the inner loop to command
unrealistically high deflections to cancel out the forces generated by
planing. Predicting planing may provide beneficial information which
can broaden the stable operation envelope of the vehicle, enabling more
aggressive reference trajectories, at the expense of slightly degraded
tracking performance.

A popular way to avoid saturations on the actuators is to use pre-
diction based control methods (Receding Horizon Control or Model
Predictive Control). The proposed control scheme is shown in Figure
5.

Feedback linearized system

∫cT

FLA

FLB
refx

FLxv 1−
cT

x

Performance 

objectives

RHC

Figure 5. The RHC control loop structure

The controller structure differs from the controller discussed in (Balas
et al., 2006), as the outer-loop uses RHC technique (equation 52).
[

u1(t)
u2(t)

]

= (CAB)−1

(

−[αu]

[

x1(t)
x2(t)

]

− [αl]

[

x3(t)
x4(t)

]

− [Gc] − [Pc(t, τ)] −

[

v1,RHC(t)
v2,RHC(t)

])

(52)

The standard linear RHC problem and solution using quadratic pro-
gramming is well known (Maciejowski, 2002) and reliable software tools
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are available for controller design (Bemporad et al., 2005). The discrete
time controller is obtained in a receding horizon fashion using model-
based predictions by solving a finite time constrained optimization
problem:

min
∆u(k|k),...,∆u(m+k−1|k),ε

{

p−1
∑

i=0

(

ny
∑

j=1

∣

∣w
y
i+1,j(yj(k + i + 1|k) − rj(k + i + 1))

∣

∣

2
+

+

nu
∑

j=1

∣

∣w
∆u
i,j ∆uj(k + i|k)

∣

∣

2
+

nu
∑

j=1

∣

∣w
u
i,j(uj(k + i|k) − uj,des(k + i))

∣

∣

2

)

+ ρεε
2

}

(53)

where ∆u denotes the input increments, (k+i|k) indicates the value for
time k+i using the available information at k. The tracking is achieved
by minimizing the error between y(k + i|k) the predicted output and
the reference (r(k + i)). The actuator usage and input rates are also
weighted in the cost function with wi,j coefficients. The constraints on
inputs, input rates, or outputs can be implemented as soft constraints:

uj,min(i) − εV u
j,min(i) ≤ uj(k + i|k) ≤ uj,max(i) + εV u

j,max(i) (54)

where ε is the slack variable relaxed with weight V u
j , which is heavily

penalized in the cost function with ρε. Normally input constraints are
implemented as hard constraints while output constraints are softened
to ensure feasibility when large disturbances are expected. The predic-
tion (ny) and control horizons (nu) have large impacts on the solution
and computational requirements. In general the prediction does not
exactly match the system response. Hence, the best solution is often
obtained by a suitable finite prediction horizon, while the decision
variable (the control signal), is changed over a shorter horizon, and
then held constant through the end of the prediction horizon.

The special structure of the inner-loop controller requires only a sin-
gle linear RHC controller for the feedback linearized system described
by equation (33). The objectives are reference tracking and planing
avoidance. One of the main assumptions is constant horizontal speed,
hence the delay is assumed constant. The delay in the simulation is
1.8 m/(75 m/s) = 0.024 s which is included in the discrete time system
model used for predictions in the RHC controller. The extended state-
space system includes the delayed position of the nose in addition to
the states described in equation (55). The sampling time of the RHC
controller is set to 0.008 s, three unit delays are required to express the
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desired state.






















x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)
x7(t)























=























z(t)
−V θ(t) + w(t)

θ(t)
q(t)

z(t − τ)
z(t − 2τ)
z(t − 3τ)























(55)

The system matrices used for prediction are derived from the contin-
uous time model using backward difference approximation (Safonov,
1987). This preserves the simple geometry of the equations, including
the relative degree, and the dynamics are easier tractable, than with
the simple zero-order hold equivalence transformation.

Ad =























1 T 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 T 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0























, Bd =























0 0
β21T β22T

0 0
β41T β42T

0 0
0 0
0 0























, (56)

T denotes the sample time in Ad and Bd. The seventh state (x7)
represents the delayed position of the nose. The planing condition is
expressed using x7 with the relation described in equation (12):

R − Rc ≤ Cpxd ≤ Rc − R, Cp = [1, 0, L, 0, 0, 0,−1] (57)

.
This additional output can be used in the control predictions to

constrain planing, causing the inner-loop to generate smaller control
deflections.

Direct constraint fulfilment cannot be guaranteed because the two
controllers act parallel (Figure 3) and only the RHC signals are con-
strained. This is only sufficient for a limited maneuver range. Usually as
soon as the RHC command reaches its maximum value, the body hits
the cavity wall or the tracking performance becomes poor. The wall
impact results in oscillations and increased control deflections, while
the drag on the hull also increases.
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5. Control of a Supercavitating Vehicle Model

Simulations are performed in the Matlab/Simulink environment,
and parameter dependencies are analyzed for comparison with a basic
setup. The reference trajectory is an obstacle avoidance maneuver: the
horizontal speed is constant 75m/s while the vehicle moves down 2 m
and returns to continue its straight path within 1.2 seconds, as seen in
Figure 6. The initial trajectory is composed by four arcs approximated
by B-splines to provide continuous, easily numerically differentiable
functions. The additional reference signals are derived using further
assumptions. The vertical position change (ż(t)) is caused by the verti-
cal speed of the vehicle (w(t)) plus the longitudinal speed component’s
projection to the vertical plane (−V θ(t)). Earlier results (Dzielski and
Kurdila, 2003) suggested that w is closely related to planing, hence it
is desired to be kept small.

wref (t) = 0, θref (t) =
−1

V
żref (t) (58)

The pitch rate reference (qref (t)) can be calculated as θ̇ref (t). It is
assumed that the environment (static pressure and water density) re-
mains constant during the maneuver. A 200 rad/s first order actuator
model is included in the simulation, which was not considered in the
control design. In addition to the model mismatch, the system is also
affected by random disturbance, which is based on measurements de-
rived from water tunnel experiments done in UMN St. Anthony Falls
Laboratory (Arndt et al., 2005). The cavity wall disturbance is modeled
as white noise passed through a 150 Hz second order low-pass filter
(equation (59)). The cavity disturbance has a maximum 10% magni-
tude of nominal cavity gap. This disturbance by nature does not show
up in all situations, if the transom is far enough from the cavity walls,
it has no effect on the vehicle. But if the transom is close to the cavity
surface and immersion occurs, the immersion depth will be determined
not only by the vehicle states but also by the noisy cavity radius which
has a randomly varying component. A non-smooth cavity represents a
challenge as the cavity wall is the switching surface of the controller.

Gn =
0.1

55.93
(Rc − R)

106

s2 + 2000 + 106
(59)

5.1. Pole Placement simulation results

The performance specifications are to track trajectory reference com-
mands while minimizing limit cycle oscillations. The reference tracking
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Figure 6. Tracking different amplitude maneuvers with pole placement controller
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Figure 7. Tracking different amplitude maneuvers with pole placement controller

has lower priority compared with oscillation attenuation. The following
controller gains were selected:−ᾱ110 = −40000;−ᾱ111 = −400;−ᾱ220 =
−90000;−ᾱ221 = −600. With which the resulting eigenvalues are
−300;−300;−200;−200 (equation (51)).

The contribution from the tracking part of the controller with these
high gains is still negligible compared with the inversion based contri-
bution to compensate the effect of planing.

Three maneuvers with 1.5, 2 and 2.5 m amplitudes are compared
in Figures 6 and 7. The tracking performance of the closed-loop sys-
tem is very good, considering the high disturbance level, though the
planing depth (h) is significant. Large oscillations are present when
the transom steps over from one mode to another. The planing depth
has a clear relationship with the sharpness of the maneuver (Figure 7).
These sharp maneuvers require large actuator deflections, and create
significant drag. Increased thrust would be required to maintain con-
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Figure 8. The actuator models role with pole placement controller

stant longitudinal speed. Including this additional control objective is
undesirable, since thrust is not a control variable.

Accurate knowledge of delay in the cavity shape description plays
an important role in the performance. The vehicle tracks the reference
signal well given accurate information of the delay. Imprecise knowledge
of the delay results in oscillations and the system becomes unstable at
approximate 15 − 20% error. Simulations with 2.4 ms variation in the
delay lead to poor performance with oscillations and intensive actuator
usage.

The original controller was designed without an actuator model.
The effect of a first order actuator with 30Hz bandwidth is considered
through the simulations. Significantly slower actuators were not able
to stabilize the system, while faster actuators achieved better perfor-
mance. The case when the actuator is treated as unity (Figure 8) clearly
results in better performance than the one with the first order actuator
model, since only small oscillations occur. All other results presented
have the actuator model included.

Sensitivity to cavity wall disturbances is investigated by varying the
magnitude and frequency content of the disturbance. The maximum
planing depth remains the same if the disturbance magnitude increase
by a factor of 5 to 0.5 times the cavity gap, but the actuator deflections
are slightly more aggressive. The response has larger spikes and has
longer settling times. Changing the second order disturbance filter to a
first or third order filter with the same bandwidth has a small effect on
the response. Hence the pole placement design is relatively insensitive
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to the smoothness of the cavity wall disturbance, because of the high
planing depth.

The vehicle has noticeably different dynamical behavior for long
excursion maneuver, which do not require high pitch rate motion,
(Figure 12). The reference maneuver is a 4 s down-up maneuver with
amplitude 20 m, and as suggested in (Dzielski and Kurdila, 2003) with
the reference on normal velocity (wref (t)) set to zero. The maneuver
can be executed without planing, because the disturbances on cavity
shape fade away noticeably faster than the maneuver changes. The
cavity bubble is in quasi-steady state during the maneuver.

5.2. RHC simulation results

The continuous-time feedback linearization controller is implemented in
the inner-loop while the discrete RHC controller is running at 0.008 s
sampling time as an outer-loop (Figure 5). The predictive controller
has a six step prediction horizon, which is sufficiently longer than the
delay in the cavity description. The best results were achieved with a
three step long control horizon, which allows sufficient freedom for the
control solutions but is less sensitive to uncertainties in the predictions.
Constraints are chosen corresponding to the physical limitations of the
vehicle. The maximum actuator deflections are set to ±0.2 rad and
the maximum deflection rates are ±100 rad/s. The maximum deflec-
tion is meant to constrain the maximum achievable force, while its
angle value is less important, since the size of the fins are currently
under investigation. The maximum vertical speed is 28.75 m/s and
the maximum pitch angle is set to 0.25 rad to ensure the validity
of small angle approximations. Structural loads are closely related to
maximum pitch rate which is constrained to ±10 rad/s. Drag reduction
and smooth motion with extending the operation envelope of the vehicle
can be achieved with planing-free flight, while the control surface deflec-
tions are also lower. The maximum transom deviation from the cavity
centerline is constrained to 1 cm, which is smaller than the nominal
cavity gap (1.39 cm) to guarantee planing avoidance in the presence of
disturbances.

The optimization problem weights differently the input and output
variables. The input weight is set to 100 on both inputs, and the
input rate weight set to 50. These weights can be interpreted with
the knowledge of the output-error weights. The high position error
weight (25000) indicates that position tracking received the highest
priority, while the lower velocity error weight (1000), angle error weight
(100) and angle rate error weight (2500) ensure that tracking of these
variables have lower impact on the optimization. These slightly penal-
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Figure 9. Tracking different amplitude maneuvers with predictive controller
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Figure 10. Tracking different amplitude maneuvers with predictive controller

ized variables improve stability with oscillation damping. The planing
depth is not weighted high (1000). It is important to note that the
output variable constraints are implemented as soft constraints, and
planing depth constraint violations generate 10 times higher slack vari-
able than other outputs. The slack variable weight is chosen to be
2.5×109. The actuator model Gact = 200

s+200 , and the disturbance model

Gn = 0.1
55.93(Rc − R) 106

s2+2000+106 are the same as before.

The same 1.2 s reference trajectory on z(t), w(t), θ(t) and q(t) is
used. The results with the basic setup for 1.5, 2, and 2.5 m amplitude
maneuvers are shown in Figures 9 and 10.

The RHC reference tracking performance is less precise (Figure 12)
than the pole placement controller, particularly on the signals with
lower weights. The tradeoff is that planing occurs only for short periods
with low depth (Figure 10). Tracking is achieved with low actuator
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Figure 11. Sensitivity of RHC tracking performance

deflections, without oscillations. As the trajectory becomes more ag-
gressive, planing occurs more frequently. This requires increased actu-
ator usage, though the maximum planing depth, unlike in the pole
placement case, is not increase with the trajectory amplitude. The
overall control effort is significantly smaller than the pole placement
design though at the expense of the state trajectories, especially the
angle rate, being less smooth.

Uncertainty in delay time induces significant performance degra-
dation because the bounds on constraining the maximum transom
deviation from the cavity centerline are very tight. Uncertainty in
the delay of 24 ms leads to oscillatory behavior, and larger control
deflections are commanded due to the consequent uncertainty in the
planing location. The closed-loop system becomes unstable around 10−
15% (24 − 36 ms) error in delay time.

The impact on tracking performance due to the addition of actu-
ators, which are not addressed in the controller design, is shown in
Figure 11. As one would expect, the performance is better if the actu-
ator is perfect. Planing occurs for a very short time when actuators
are included in the simulation. Assuming perfect actuators provide
reduced oscillations, at the expense of high-rate control signals, what
can significantly influence the cavity stability (Syrstad et al., 2005).

The disturbance magnitude has a strong influence on the perfor-
mance. A comparison with a disturbance magnitude of 0.1 and 0.5 cav-
ity gap is shown in Figure 11. As the disturbance magnitude increases,
planing occurs more frequently and the immersion depth increases.
This leads to larger control deflections and fast angle rate responses.
The position tracking performance is not significantly affected by the
disturbance level.
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Figure 12. Comparison of pole placement and predictive controller

The bandwidth of the cavity disturbance model also influences the
closed-loop performance. Although limited information is available about
the cavity wall smoothness, it is natural to assume that it is not perfect.
The selected disturbance magnitude is 0.1(Rc − R) passed through a
1000 rad/s low-pass filter. The nominal simulation uses a second order

filter Gnom(s) = 0.1
Knf

(Rc−R) 106

s2+2000+106 which is normalized to provide

approximately maximum 0.1(Rc − R) magnitude signals. Two other
disturbance filters are studied: a normalized first order (K1

1000
s+1000) and

a third order one (K3
109

s3+3000s2+3·106s+109 ), they are comparable in point

of all their poles are at 1000 rad/s and the maximum magnitude of
the cavity disturbance is held constant. The closed-loop response with
third-order disturbance filter planes longer, also causing larger angle
rates. Hence, it indicates the importance of correct characterization of
the cavity wall disturbance.

Longer maneuvers with higher amplitude excursions (4 s, 20 m) are
also considered with the RHC design (Figure 12). As expected from
the pole placement results, planing does not occur with the receding
horizon approach. The state and control trajectories are very similar
to the pole placement case. Figure 12 also shows the importance of
planing avoidance, since the pole-placement controller commands unre-
alistically high actuator deflections in the short maneuver when planing
occurs.

A simulation is performed with only a position reference signal,
while all the other states are desired to be zero, to analyze how the
constraints restrict the motion of the vehicle. Slight degradation in the
position tracking performance is observed. The actuator deflection and
all the vehicle state trajectories are very close to the original reference
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Figure 13. Tracking with hard actuator constraints with predictive controller (2m
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case. Hence, as was expected, planing avoidance represents a very tight
constraint on the system.

The RHC scheme was implemented on the plant to aid in avoiding
actuator saturations. As indicated in Figure 3, the control loop has two
independent components. Therefore, direct constraint fulfilment is not
possible. The controller performance is analyzed with hard actuator
constraints on cavitator and fin deflections set to 0.2 rad in Figure 13.
Note that the fin deflection command increases to 0.4 rad at 0.55 s
but it is not allowed. The plant remains stable with slightly degraded
performance, while the system with pole placement controller (Balas
et al., 2006) becomes unstable with same conditions at this maneuver.
However, if the trajectory becomes more aggressive, the tracking per-
formance and/or the stability of the system become poor with hard
actuator limitations using the RHC controller.

6. Summary

Two outer loop control strategies are implemented with a dynamic
inversion controller for the HSSV. The main objective of the pole- place-
ment design is to stabilize the vehicle and provide precise trajectory
tracking commands, while the actuator deflections are not constrained.
Stabilization and tracking are successfully demonstrated, and with se-
lection of reference signals, planing was avoided in sufficiently large
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maneuvers. The pole-placement controller was insensitive to cavity
disturbances, though the performance is strongly affected by the delay
time. For certain cases, the pole-placement controller led to signifi-
cant immersion into the fluid requiring high actuator deflections which
resulted in increased drag on the hull and fins.

With the receding horizon approach, planing avoidance was suc-
cessfully incorporated into the performance objectives at the expense of
reduced tracking precision and higher sensitivity to cavity disturbances
and delay information. The smaller immersion depth and actuator de-
flections led to significantly lower drag in all maneuvers. Although the
approach relies heavily on the precision of the vehicle mathematical
model, its beneficial properties make it a reasonable method for further
development.

7. Conclusion

Supercavitation is a very promising way to increase the speed of un-
derwater vehicles at the expense of a complicated vehicle architecture.
Successful development of such system will require increased collabora-
tion between fluid and control researchers. As an intermediate step, the
control design challenges including delayed state dependency, nonlin-
earities, and switching with disturbed switching surface were analyzed.
An inversion based control methodology with RHC extension was pro-
posed for the 2-DOF mathematical model of the HSSV. An extensive
comparison was made between a classical linear outer-loop controller
and the receding horizon controller. The objective of planing avoid-
ance was solved, for a limited operating range. Important aspects of
the reference maneuvers were analyzed and sensitivity properties (a
vulnerable point of dynamic inversion) were studied with respect to
different cavity disturbances.

The next step of the analysis is to study the use of a single actuator
for control (cavitator or fins), to understand the system tradeoffs. The
ultimate goal remains the implementation of a three dimensional tra-
jectory tracking controller on the HSSV test vehicle. It is likely that the
controller for the high fidelity supercavitating model would require a
gain-scheduled controller. This raises interesting issues with the design
of dynamic inversion controller as the model parameters, like velocity
or fin immersion, vary.

Furthermore, robust constraint fulfillment remains an open issue,
which can be attempted to solve by further developments on the pro-
posed receding horizon control based method.
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