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Abstract

We employed a coupled dipole method (CDM) to study theoretically the interaction among

several spherical particles placed into two counter-propagating mutually incoherent Bessel

beams. This interaction is mediated by the light scattering among the particles. It has already

been demonstrated that, if the intensity of the incident beam is sufficiently high, the scattered

light is strong enough to self-arrange the objects in the space. Namely, the counter-propagating

and incoherent Bessel beams are extremely useful to be employed because the interaction

among the particles via the scattered light is not superimposed by other optical forces coming

from the radiation pressure of each beam and axial gradients of the beam intensities. Therefore

so-called optical binding between the particles is enhanced and leads to several stable

configurations of the particles. We studied these stable configurations using the CDM for

various properties of the beams and particles and we also compared these theoretical results

with the experimental observations.

Keywords: optical binding, optical tweezers, optical self-arrangement, coupled dipole method,

optical forces

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Optical manipulation with more particles revealed that the

light scattered by these particles significantly influences the

equilibrium positions where the particles are confined. This

interaction is called the optical binding and it results in the

self-arrangement of the particles with well-defined distances

between them. This phenomenon has been studied first in

a lateral geometry where the particles are self-arranged in

the plane perpendicular to the beam propagation. Usually an

elliptical interference fringe was used to observe this so-called

lateral binding experimentally on the surface [1–3]. A different

configuration uses two counter-propagating incoherent beams

and the particles are self-arranged along the propagation axes

of the beams [4–10]. Therefore the optical binding in this

configuration is called longitudinal. In both configurations

the optical binding between two particles was observed

if the spatial distribution of the optical intensity in the

illuminating beams was almost unvarying in the direction

of the particle binding. We focus here on the longitudinal

binding in two counter-propagating incoherent Bessel beams

because they provide an extremely long longitudinal region

of unvarying spatial beam distribution. Therefore the

optical interaction between the particles is not significantly

superimposed by the longitudinal variation of the optical

intensity of the illuminating beams and we expect longitudinal

self-arrangement of particles over hundreds of micrometres. In

this paper we focus especially on a detailed theoretical study

of such a configuration and the results are briefly compared to

the experimental observations.

Concerning the theoretical description of the optical

binding several methods have already been reported. If the

particles are small, they are considered as induced radiating

dipoles and the interaction between them is mediated by their
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radiation. Optical binding between spherical or cylindrical

nanoparticles was studied in the lateral configuration [11–17]

or longitudinal configuration [18]. Optical binding of larger

particles was studied using the multiple Mie scattering

method [19–21] or coupled dipole method (CDM) [22–24].

In this paper we have applied the CDM to study equilibrium

configurations of up to five optically bound spherical particles

placed into the counter-propagating incoherent Bessel beams.

We found long-and short-range periodicity in the self-arranged

chain of particles. We also obtained very good coincidence

between the theoretical conclusions and our experimental

observations and measurements.

2. Theoretical background

2.1. Description of the Bessel beam

An ideal Bessel beam is a result of an interference of the

conical bunch of plane waves that all propagate with their

k vectors tilted by an angle α0 towards the optical axis z.

Therefore all the plane waves have the same axial component

kz of their wavevector k and the angular spectrum of such an

ideal Bessel beam is described by the delta function δ(α − α0)

where α is the polar angle. The interference between all

plane waves results in the radial intensity distribution given

by the Bessel function of the first kind and the zeroth-order

J0(krρ), where ρ =
√

x2 + y2 is the radial distance from

the z axis and kr = k sin(α0) is the radial component of the

wavevector. The described ideal Bessel beam would propagate

with unvarying lateral intensity distribution and constant on-

axis intensity but also with infinite energy. In reality we can

approach the properties of the ideal Bessel beam only over

a limited longitudinal range. Such beams are called quasi-

Bessel beams and can be obtained, for example, if a Gaussian

beam passes though a conical lens (axicon). However, if the

axicon is illuminated with the Gaussian beam, the plane wave

spectrum behind the axicon does not have the form of the delta

function. Its width increases with decreasing Gaussian beam

waist w0 [25, 26] illuminating the axicon. Such a quasi-Bessel

beam still has an unvarying lateral intensity distribution shape

but it exists only over a limited longitudinal range zmax =

w0 cos α0/ sin α0. The quasi-Bessel beam can keep its unique

properties over a longitudinal distance reaching hundreds of

micrometres and therefore the on-axis intensity varies only

slowly along the propagation axis. Therefore, for the purposes

of the theoretical study of the longitudinal optical binding we

can neglect this longitudinal intensity variation and we can

assume that the particles move in a longitudinally unvarying

field. The electric field of such a linearly polarized beam

(along the x direction) can be approximated for small angles

α0 [27, 28] as

Ex = E0 J0(krρ) exp(ikzz). (1)

For practical reasons we define the radius of the Bessel beam

core ρ0 as J0(krρ0) = 0 which gives

ρ0 =
2.4048

kr

=
2.4048

k sin(α0)
. (2)

2.2. Calculation of optical forces and optical binding using

the CDM

We modified the classical CDM algorithm for the purposes

of the calculation of the optical binding between two

particles [24] and especially we employed the existing

symmetries in the problem to speed up the calculation. The

CDM is based on the division of each object into sufficiently

small domains. The volume of each domain is so small that the

domain may be approximated by an induced radiating dipole.

These dipoles are located at vertices of a 3D orthogonal lattice

approximating the object shape. Such dipoles belonging to the

object X occupy positions Xr = id + XR0. Components

of the 3D index i = (ix, i y, iz) have discrete values equal to

1, 2, . . . , N, d denotes the lattice constant and XR0 denotes

the position vector of the particle X in space. The same

symbolism is used for the dipole moment Xpi and the incident

field XEinc
i at the place of the dipole i inside the particle

X . The total dipole moment Xpi is induced by the final

electric field formed from the incident field XEinc
i and the fields

radiated from the dipoles inside the same or other particles:

Xpi

α
=

∑

j

0
Gij

Xpj +
∑

Y

∑

j

XY
Gij

Ypj + XEinc
i , (3)

where α is the polarizability of the dipole [18, 29] and the

Green tensors 0
Gij or XY

Gij [18, 24, 29, 30] denote the dipoles

inside the same or other particles, respectively. Equation (3)

must be solved iteratively to determine all the dipole momenta
Xpi in the system. Once they are determined (to a given

residual error), the time-averaged total forces acting upon each

dipole are calculated [31]:

〈X (Fξ )i〉 =
∑

ν

1
2

Re
[

X (pν)
∗
i ∂ξ (

X (Eν)i)
]

,

where ξ, ν = {x, y, z} . (4)

The substantial problem of how to obtain all spatial derivatives

of the total electric field XEi is clarified in [32]. The optical

force acting upon the object X is equal to the sum of the optical

forces acting upon all dipoles constituting the object.

The number of dipoles M in configurations described in

this paper reaches 1 million. Therefore the convolution method

together with fast Fourier transform (FFT) techniques must be

used [33]. Because we assume geometrical locations of dipoles

on a rectangular lattice, the distance between two arbitrary

dipoles rij depends only on the difference in their indices i−j.

This is valid also for the dipoles belonging to different objects.

Thus Gij = G
′
i−j and the summations in (3) may be converted

into convolutions
∑

j Gi−j
Xpj which are calculated by the

FFT. All together these techniques reduce computer memory

requirements from M2 to M and the number of computational

steps from M2 to just M ln(M) and therefore they significantly

speed up the calculation, too.

3. Results

3.1. Optical binding of two particles

Let us first use the CDM method presented in the previous

section to calculate the optical forces acting upon two spherical

2
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Figure 1. Upper scheme: the arrangement of two identical spherical particles with inter-particle separation IPS1. Upper plots: the
longitudinal optical force acting upon the right polystyrene particle R1 as the function of the IPS1. Diameter of the particles is 1070 nm and
their refractive index is nsp = 1.59. The wavelength of the incident beams is equal to 811 nm and corresponds to D2O as the surrounding
medium. The radius of the Bessel beam core is selected as 1.605 µm. In all figures in this paper we consider the intensity of the optical axis of
the single incident Bessel beam equal to 4 mW µm−2 which corresponds to the experimental conditions [10]. The equilibrium positions
correspond to such IPS1 where the total force is equal to zero and has a negative slope. Three zoomed regions reveal short-period oscillations
(amplitude proportional to 1/IPS) giving rise to multiple equilibrium positions (stable sub-configurations) in each region. The evaluation of
the mean first passage time (MFPT) [34] at each equilibrium position estimates how long the particles remain there. We found MFPT equal to
0.03 s for IPS1 48.6, 48.9 and 26.9 µm and MFPT equal to 0.1 s for IPS1 4.4 and 4.8 µm.

particles placed on the overlapping optical axis of both counter-

propagating mutually incoherent Bessel beams. We assume the

particles are localized only at the high intensity centre of the

Bessel beam core placed on the optical axis. This is justified

by the size of the radial optical force pushing the particle back

towards the optical axis if the particle is radially deviated.

The maximal value of this force is about 100 times higher

than the maximal axial binding force between both particles.

The upper part of figure 1 demonstrates how the longitudinal

optical binding force depends on the distance between both

polystyrene spheres of diameter 1070 nm. The long-period

force modulation creates three regions within the studied inter-
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Figure 2. Influence of the radius ρ0 of the Bessel beam core on the
stable inter-particle separations (IPS1) for two 800 nm polystyrene
particles immersed in D2O in the same set-up as in figure 1. Three
branches correspond to the three stable regions discussed there. The
most stable region with particles closer to each other is denoted by
red crosses. The multiple identical marks aligned vertically denote
several stable sub-configurations separated by the short-range period.
The middle branch (denoted by blue circles) represents, with respect
to the thermal activation, the practically unstable central region. The
third branch with the largest IPS1 corresponds to the long-range
binding in the Bessel beams studied in section 3.4. More than three
branches are not studied and shown here.

particle separation (IPS1) range for which the particles could

form stable configurations. The stability factor of each stable

configuration depends on the overall shape (envelope) of the

optical force and also on the amplitude of the short-range

force oscillation. Therefore the first and the third stable

configurations for IPS1 around 5 and 49 µm, respectively, form

more stable sub-configurations due to the negative slope of

the optical force envelope. The second stable configuration

with IPS1 around 27 µm is caused by the negative slope of

the optical force in the short-range oscillations superimposed

on the overall positive force slope. As is demonstrated in

the bottom part of figure 1, there exists a stable equilibrium

configuration for this IPS1 but, due to the thermal activation,

the shallow potential well is fast overcome and the particles

approach the first and third stable IPS1 regions mentioned

above. There exist two potential minima at these regions but

under the studied parameters the mean first passage time from

each minimum is shorter than about 0.1 s. Therefore the bound

particles frequently change their IPS1 and hop between both

potential minima in each region.

The periods of the long-range and short-range modulation

of the binding force can be approximated as

2π

k − kz

—long period,
2π

k + kz

—short period. (5)

The long-range modulation occurs when the field scattered

by the object propagates with k in the same direction as the

incident Bessel beam with kz . The short-range modulation

comes from the interference of the scattered field counter-

propagating with the incident Bessel beam.

Figure 3. Existence of several stable sub-configurations caused by
the amplitude of the short-range force oscillations. Only the stable
separations in the range from 2 to 15 µm were considered for the
radius of the Bessel beam core ρ0 = 1.8 µm.

Figure 2 demonstrates that the stable IPS1 increases with

increasing radius of the Bessel beam core. The number of

stable sub-configurations (multiple marks aligned vertically)

depends on the particle’s diameter—as figure 3 illustrates for

the stability branch with the shortest IPS1. As one can also

see in figure 3, particles smaller than 400 nm are bound in the

whole displayed region of IPS1 between 2 and 15 µm because

of the very high amplitude of the short-range oscillations.

However, for particles bigger than 400 nm the amplitude of the

long-range force oscillations becomes dominant and therefore

the stable sub-configurations occur only for some IPS1. It is

seen that certain particle diameters do not form several stable

sub-configurations and it can be related to the ‘size effect’

of the particles placed in spatially periodic fields [35, 36].

Figure 3 also demonstrates that the stable IPS1 decreases as

the diameter of the particle increases.

Figure 4 compares optical forces acting upon spherical

particles of diameters 800 and 1070 nm for different IPS1.

The calculated dependence of the optical force on the IPS1

enabled evaluation of the probability density that the particle

is found 1 µm from the certain IPS1. These results show that

the larger particles are much more localized and three distinct

peaks indicate three stable sub-configurations. High sensitivity

of the IPS1 and the overall shape of the probability distribution

on the radius of the Bessel beam core is shown for three beam

radii differing by 30 nm.

3.2. Optical binding of three particles

Firstly we considered a symmetric configuration of identical

particles as depicted in the top part of figure 5. The binding

forces upon particle R1 and the probability distribution of

IPS1 are similar to the case with two optically bound particles

(compare figures 4 and 5). However, three particles are placed

closer to each other in the stable configurations and the binding

force acting upon particle R1 is guided by the convolution

of two periodic dependences coming from different distances
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Figure 4. The optical force acting upon particle R1 and the
probability distribution of IPS1 is calculated for two identical
polystyrene spheres of diameters 800 nm (upper pictures) and
1070 nm (lower pictures). Three values of the Bessel beam core radii
ρ0 = 1.77 µm (blue dashed), ρ0 = 1.80 µm (green full) and
ρ0 = 1.83 µm (red dashed–dotted) demonstrate high sensitivity of
the stable IPS1 and particle behaviour on this parameter.

between particle R1 and the other two particles M and L1. Due

to the considered symmetrical configuration the force acting

upon the middle particle M is equal to zero for all IPS1 and the

optical force acting upon the left particle L1 has opposite sign

to the force acting upon R1.

We considered also a non-symmetrical arrangement with

non-equal inter-particle separations and we looked for new

stable configurations of the system. The forces acting upon

all three particles are shown in figure 6 as the function of

two independent inter-particle separations IPS1 and IPS2. We

found four stable configurations, two of them corresponding

to the symmetrical arrangement with IPS1 = IPS2 with

values 6.1 and 6.4 µm (the particle M is placed in the middle)

and the other two corresponding to the mirror image of a non-

symmetrical stable configuration with IPS1 = 6.4 µm and

IPS2 = 6.1 µm and vice versa.

Figure 5. Calculated optical force acting upon the right particle R1
and the IPS1 probability density in a symmetrical configuration of
three particles. Parameters of the calculation are the same as in
figure 4.

3.3. Optical binding of four and five particles

In these configurations we considered symmetrical set-ups

with two independent inter-particle separations IPS1 and

IPS2. The optical forces acting upon 800 nm particles

in the configuration with five particles are stronger as the

colour bars illustrate in figure 7. Stronger forces result in

closer localizations of the particles in stable configurations.

From the dependence of the calculated forces on two

separation parameters IPS1 and IPS2 we determined their

stable combination: IPS1 = 3.6 µm and IPS2 = 4.0 µm.

The calculations with four or five 1070 nm particles have not

shown any stable binding positions except for the case when

all particles are in physical contact. Experimentally it was

observed as a collapse of a particle cluster with more than

three 1070 nm particles. This type of configuration we do not

consider as optically bound.
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Figure 6. Longitudinal optical forces acting upon all three particles L1, M and R1 if non-symmetrical configurations are also considered
(independent IPS1 and IPS2). The particle size is 800 nm and the value of ρ0 = 1.80 µm (compare with figure 5). Purple curves visualize a
contour of zero force. Intersections of these zero-force contours denote in the last picture the equilibrium configurations but only those
denoted by circles are stable.

Figure 7. Longitudinal optical forces acting upon particles R1 and R2 in the symmetrical configuration of five particles. We considered two
independent inter-particle separations IPS1 and IPS2 (displayed in the top picture). The red (resp. blue) curves show combinations of IPS1
and IPS2 where the force acting upon R1 (resp. R2) is equal to zero. Their stable combination is marked by a red circle. We used the same
parameters as in the previous figures and the particle diameter was equal to 800 nm.

3.4. Long-range optical binding in Bessel beams

The long-range modulation of the optical binding force enables

stable configurations with particles far from each other (see

figures 1 and 2). Assuming the radius of the Bessel beam

core equal to 1.8 µm, two particles of diameter 800 nm can

settle 63.2 or 63.6 µm far from each other. The CDM enables

us to study the configuration of two clusters (see figure 8)
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Figure 8. Configurations of particles in the long-range optical
binding set-up. Top configuration assumes only two particles
separated by long-range separation (LSEP) and it is similar to the
set-up in figure 1. Bottom scheme shows two clusters separated by
LSEP and each contains two particles separated by short-range
separation (SSEP).

separated by long-range separation (LSEP) and each cluster

consists of two particles separated by short-range separation

(SSEP). Therefore all together four particles are bound in

the chain. Stable configurations were found by calculating

binding forces for different LSEP and SSEP with the result:

LSEP = 64.2 µm, SSEP = 7.6 and 8.0 µm. For comparison

the stable IPS1 for two 800 nm particles were 8.5 and 8.8 µm

(see figure 4). Therefore the presence of another cluster

decreases the separation between two particles in the cluster.

However, the presence of two particles in each of the two

clusters just weakly modifies the distance between the centres

of the clusters compared to the long-range stable configuration

of just two bound particles. It seems that the distance between

the clusters does not depend substantially on the number of

particles in each cluster.

3.5. Comparison with the experiment

We used a low temporal coherence fibre laser working at

1064 nm and providing a maximal output power of 10 W.

The output beam was split into two beams with optical

path difference 60× larger than the coherence length of

the laser, equal to 1 cm, and therefore no interference

between both beams occurred. Both beams passed through

the axicons to create two counter-propagating Bessel beams.

Further demagnifying telescopes decreased the core radii of

the Bessel beams. Since the axicon tips were rounded,

longitudinal oscillations along the propagation axis occurred.

We filtered them off in the back focal plane of the first lens

of the demagnifying telescope [37]. The final demagnified

radii of the Bessel beam were carefully measured and the

following values were obtained: 1.80 ± 0.03, 2.44 ± 0.03

and 3.70 ± 0.02 µm for three different demagnifications of

the telescope. The colloidal sample consisted of polystyrene

spheres (diameters 800 and 1070 nm) placed in an optical

quality cuvette filled with D2O to suppress any unwanted

thermal convection of the fluid due to absorption at the laser

wavelength. Positions of the spheres were observed by bright-

field illumination and recorded by the fast CCD camera IDT

XS-3. Thousands of frames were recorded with various

concentrations of particles and number of bound particles in

the beams. The individual particle positions were obtained

from each frame by a correlation algorithm [38] and the inter-

particle separations were analysed. The typical lifetime of

Table 1. Comparison of inter-particle separations obtained from the
CDM calculations and experimental measurements [10]. The
following parameters were used: radius of the Bessel beam core
ρ0 = 1.80 ± 0.03 µm, refractive index of D2O medium 1.320 and
diameters 1070 and 800 nm of polystyrene particles (nsp = 1.59).
The larger and smaller particles did not form stable configurations
with more than 4 or 6 particles in the cluster, respectively. In the
calculations we assumed mirror symmetry of configurations with 3
and more particles. The spread of the experimental data corresponds
to the standard deviation and the theoretical interval reflects the
existence of several stable sub-configurations (multistability) for
three Bessel beam cores.

No. of part. IPS1 (µm) IPS2 (µm)

1070 nm
2 CDM 6.4–7.2
2 exp. 6.3 ± 0.3
3 CDM 4.0–4.6
3 exp. 3.4 ± 0.5

800 nm
2 CDM 8.5–9.3
2 exp. 8.9 ± 0.3
3 CDM 6.1–6.7
3 exp. 5.7 ± 0.3
4 CDM 4.4–4.5 4.8–5.2
4 exp. 4.2 ± 0.5 4.8 ± 0.3
5 CDM 3.6 4.0
5 exp. 3.2 ± 0.2 4.1 ± 0.2

observed structures ranged from 10 to 100 s and depended

on the concentration of particles in the solution. Usually

we observed a gradual increase of the number of particles in

the cluster until the cluster collapsed and the particles were

in contact. The CDM simulations correspond well to the

experimental observations and the results are summarized in

table 1. In the majority of cases the theoretical results provide

slightly smaller inter-particle separations than we observed

experimentally. However, if one takes into account the strong

sensitivity of the inter-particle separations on all the parameters

of the system—namely the radii of the Bessel beam cores,

we consider the agreement as very good. Therefore the

CDM can be used to predict the principal behaviour of the

optically bound system of spherical particles in a qualitative

and quantitative manner.

Figure 9 compares the long-range stable configurations of

particles in all studied radii of the Bessel beams. It is seen

that the distance between the clusters and also the maximum

number of particles in each cluster strongly depend on the radii

of the Bessel beams. The wider the Bessel beam core, the

greater the distance between the clusters and the larger number

of particles in each cluster.

4. Conclusions

In this paper we demonstrated successful use of the coupled

dipole method (CDM) to predict the stable configurations

of longitudinally bound spherical particles. We considered

a geometry of two counter-propagating mutually incoherent

Bessel beams to suppress the influence of the longitudinal

beam intensity variation on the optical binding. We studied the

influence of the particle diameters and the radius of the Bessel
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Figure 9. The chains formed by particles of diameter equal to 1070 nm placed in the Bessel beams of three different core radii 1.80 ± 0.03,
2.44 ± 0.03 and 3.70 ± 0.02 µm, corresponding to the pictures going from the top to the bottom. The average distance between the clusters
demonstrates the effects of the forward-scattered radiation and it can be approximated by the analytical formula for the long-range period (5).
Larger radii of the Bessel beam cores generally lead to higher numbers of particles in each individual cluster and also to larger separations
between the clusters. Because of the limited camera field of view the neighbouring clusters are not displayed for the widest Bessel beam.

beam core on the inter-particle separations for two, three, four

and five optically bound particles. High sensitivity of the

inter-particle separations and number of stable configurations

on these parameters was observed. We found that increasing

the number of bound particles decreases the inter-particle

separation and increases the binding optical force acting upon

individual particles. Configurations with three particles can

form non-symmetrical stable arrangements. Stable clusters

with four and five particles are arranged so that inter-particle

separations between outer particles are larger comparing to the

inner ones. We also studied theoretically the stable long-range

configurations with two clusters composed of two particles

because these arrangements were observed experimentally.

Theoretical CDM predictions were compared with quantitative

experimental observations for different numbers of particles

and radii of the Bessel beam cores. It proved that the CDM is

the appropriate tool to study multi-particle self-arrangements

in laser beams and can be further extended to non-spherical

particles, too.
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