
Longitudinal permeability of spatially periodic
rectangular arrays of circular cylinders

I. A single cylinder in the unit cell

Vladimir Mityushev1 & Pierre M.Adler2

1Dept.Math., Pedagogical University,
ul.Arciszewskiego 22 b, Slupsk Poland

2IPGP, tour 24, 4, place Jussieu, 75252 - Paris Cedex 05, France

Abstract

We study the longitudinal permeability of a spatially periodic rect-
angular array of circular cylinders, when a Newtonian fluid is flowing
at low Reynolds number along the cylinders. The longitudinal com-
ponent of the velocity obeys a Poisson equation which is transformed
into a functional equation. This equation can be solved by the method
of successive approximations. The major advantage of this technique
is that the permeability of the array can be expressed analytically in
terms of the radius of the cylinders and of the aspect ratio of the unit
cell.

Key words: functional equation, rectangular array, effective permeabil-
ity

1 Introduction

The transport properties of the unidirectional cylinders attracted the atten-
tion of many scientists since the 19 th century as reviewed by Landauer
(1974). If cylinders are arranged according to a square or hexagonal array,
the method of Lord Rayleigh (1892) can be successfully applied. It is based
on the reduction of the problem to an infinite set of linear algebraic equations
which are truncated and solved numerically to get lower - order formulae for
the effective tensor. The method of Lord Rayleigh has been extended by
McPhedran et al. (1988). Other methods based on integral equations or in-
finite sets have been applied by Sparrow & Loeffler (1959), Drummond and
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Tahir (1984), Bergman & Dunn (1992), Kolodziej (1987), Sangani and Yao
(1988a, 1988b) and others.

This paper deals with the longitudinal permeability of rectangular ar-
rays of cylinders, when a Newtonian fluid is flowing at low Reynolds number
around the cylinders. We assume that the driving pressure gradient is parallel
to the cylinders; the velocity field has only one non-zero component. Stokes
equations imply that this component satisfies the Poisson equation. In the
present paper the unit cell is a rectangle which contains a single circular disc,
which is the section of a cylinder (cf Figure 1). In contrast with the contribu-
tions, which were previously mentioned and which can easily deal only with
special structures such as square and hexagonal arrays, we apply the method
of functional equations (Mityushev&Rogosin, 1999). The major advantage
of this method is to provide analytical expressions for the effective transport
properties in a relatively systematic manner by using Mathematica c©. In
particular the necessary Hashimoto function can be expanded in terms of
the elliptic functions which prove to be very efficient computationally; note
that in the previous papers Hashimoto functions were constructed by slowly
convergent series. Hence, our final analytical formula involves not only the
solid volume fraction φ as in the previous papers, but also the aspect ratio
of the unit cell α2.

This paper is organized as follows. The problem is presented in Section
2, and the functional equation which governs the local velocity is derived.
The expression of permeability is given in Section 3. The resolution of the
functional equation is summarized in Section 4. The analytical and numerical
results are presented and discussed in Section 5. Some concluding remarks
are proposed in Section 6. Three appendices contain technical details which
are useful for the main text.

2 Statement of the problem. Functional equa-

tion

Consider a lattice Q defined by two perpendicular fundamental translation
vectors ω1 and ω2 in the complex plane C ∼= R2 where the complex variable
z is related to the real ones x and y by the identity z = x+ iy (i2 = −1). It
may be assumed that ω1 = α > 0 and ω2 = iα−1. The zero unit cell Q(0,0)

is displayed in Figure 1; its area
∣∣Q(0,0)

∣∣ is equal to 1. Let ∪j {ej} be the
doubly ordered set of the numbers ej := m1 + im2, where j = (m1,m2) , m1

and im2 are integers. The lattice Q consists of the cells Qj = Q(0,0) + ej.
Let us consider a disk Di := {z ∈ C : |z| < r0} in the zero cell Q(0,0). Let
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De := Q(0,0)\ (Di ∪ ∂Di) .
The plane C is assumed to be the perpendicular cross - section Di + ej of

an infinite array of parallel circular cylinders. A Newtonian fluid of viscosity
µ is flowing at low Reynolds number through this array. When the driving
pressure gradient is perpendicular to the plane C, the Stokes equation is
reduced to a Poisson equation for the component w(x, y) of the fluid velocity.
Since we shall work with dimensionless quantities, it is convenient to assume
that the pressure gradient and the viscosity are set equal to 1. Hence, w(x, y)
is a solution of the following boundary value problem that we shall study

∆w = 1 in De (2.1)

w is doubly periodic

w = 0 on the circle |t| = r0,

where ∆ is the two-dimensional Laplace operator. Generally speaking, the
position inside a domain is denoted by the complex variable z = x+ iy, but
the position along boundaries is denoted by the complex variable t.

The functional equation equivalent to (2.1) will be obtained in three main
steps. The Poisson equation (2.1) is first reduced to a Laplace equation by
a suitable change of unknown; the boundary value problem is then stated
in terms of analytic functions. Second, the boundary conditions can be ex-
pressed in terms of an unknown analytic function ψ(z) defined inside Di

whose properties are studied. Third, the boundary value problem for ψ(z)
is replaced by a functional equation (either continuous or discrete) for the
unknown function ψ(z).

2.1 Reduction to a Laplace equation

Let us start the application of this program. In order to reduce (2.1) to a
Laplace equation, we introduce the function

w0(x, y) := − 1

2π
ln |σ(z)|+ 1

4π

(
S2x

2 + (2π − S2) y2
)
, (2.2)

where the constant S2 and the Weierstrass function σ(z) are derived in Ap-
pendix A. The function w0(x, y) has the following properties:

i) ∆w0 = 1 in Q(0,0)\ {z = 0}, since ln |σ(z)| is harmonic in the domain
which is considered,

ii) w0(x, y) ∼ − 1
2π

ln |z| near z = 0 (see the first formula (7.3))
iii) w0(x, y) is doubly periodic.
The properties i) - ii) are obvious. In order to prove the third property,

for instance for the x - direction, let us denote by [w0]x the jump of w0(x, y)
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along the cell Q(0,0) in the x - direction. Application of (7.5) yields

[w0]x =
S2

4π

[
x2
]
x
− 1

2π
[Re ν(z)]x = 0.

The function w0(x, y) is a two-dimensional Hashimoto’s function S1 (Hashimoto
(1959)). More precisely, S1 = 4πw0(x, y). The function w0(x, y) is easily cal-
culated with the help of (7.4). Note that formulae (7.1) and (7.4) are valid
for an arbitrary lattice; moreover, the function w0(x, y) defined by (2.2) sat-

isfies i) - iii) in the general case. It is easily seen that S2−π
4π

Re t2 +
r2
0

4
=

1
4π

(S2x
2 + (2π − S2) y2) for |t|2 = x2 + y2 = r2

0. Then (2.2) implies

−w0 =
1

2π
ln |σ(t)| − S2 − π

4π
Re t2 − r2

0

4
, |t| = r0. (2.3)

We are now ready to rewrite problem (2.1) in terms of harmonic functions.
Introduce the new unknown function u(x, y) by

u(x, y) = w(x, y)− w0(x, y) in De. (2.4)

It is easily checked that u(x, y) satisfies the following boundary value problem

∆u = 0 in De (2.5)

u is doubly periodic

u = −w0 on the circle |t| = r0.

2.2 Expression of the boundary conditions in terms of
ψ(z)

Now that the first part of the program is completed, let us start the second
part and express the boundary condition in terms of an unknown analytic
function ψ(z).

2.2.1 Introduction of the analytic potential ϕ(z) defined on De

In order to represent the boundary value −w0 as a real part of an analytic
function, we introduce the function f(z) which is analytic in the unit cell
Q(0,0)

f(z) :=
1

2π
ln
σ(z)

z
− S2 − π

4π
z2, (2.6)

f(z) is equal to 0 at z = 0. The function f(z) can be considered as a complex
potential of the real function −w0, because the real part of 1

2π
ln σ(z) is equal
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to 1
2π

ln |σ(z)|. The term − 1
2π

ln z is added to f(z) to exclude the singularity
inside the disc |z| ≤ r0. Therefore, w0 and f(t) are related by

−w0 = Re f(t) +
1

2π
ln r0 + r2

0/4, |t| = r0. (2.7)

A complex potential ϕ(z) can be introduced which is expressed as

Re ϕ(z) = u(x, y)− 1

2π
ln r0 +

r2
0

4
, z ∈ De. (2.8)

It may be useful to insist that ϕ(z) is defined outside of all discs Di + ej.
Then we arrive at the boundary value problem

Re ϕ(t) = Re f(t), |t| = r0 (2.9)

with respect to the function ϕ(z) analytic in De and continuous in De∪∂De.
The known function f(z) has the form (2.6). Relation (2.8) implies that the
function Re ϕ(z) is doubly periodic in C as is u(x, y). However, the imaginary
part of ϕ(z) can have jumps along Q(0,0). It follows from the elliptic function
theory (Hurwitz (1964)) that these jumps can be only constants. Hence,

ϕ(z + α)− iγ1 = ϕ(z) = ϕ(z + iα−1)− iγ2, (2.10)

where γ1 and γ2 are real constants. According to Hurwitz (1964) the functions
satisfying (2.10) are called quasi-periodic in C. Actually, it will be shown
that ϕ(z) is doubly periodic. Problem (2.9) can be considered as a Dirichlet
(Schwarz) problem or Hilbert-Riemann problem (Zverovich 1971, Mityushev
1997b) in the class of doubly periodic functions (i.e., on a torus). We have
written the problem (2.9) in such a form that the real part of the unknown
function ϕ(z) analytic in De is in the left-hand side and the real part of the
known function f(z) analytic in Di is in the right-hand side.

2.2.2 Introduction of the analytic function ψ(z) defined on Di

Now let us deal with the interior of Di. In general the function ϕ(z) is not
continued analytically inside |z| ≤ r0; instead we introduce a function ψ(z)
which is analytic in |z| < r0 and continuous in |z| ≤ r0; it is defined by the
conjugation condition

ϕ(t) = ψ(t)− ψ(t) + f(t), |t| = r0. (2.11)

The condition (2.9) is known as an R-linear problem of the analytic function
theory (see (Mityushev&Rogosin, 1999)).

5



Let us summarize some of the properties of ψ(z). If the function ϕ(z)
is known from (2.9), then ψ(z) is constructed by the following Dirichlet
(Schwarz) problem which is a trivial sequence of (2.11)

2Im ψ(t) = Im (ϕ(t)− f(t)) , |t| = r0. (2.12)

The following lemma follows from the properties of symmetry of f(z) and
ϕ(z)

Lemma 2.1. The function ψ(z) satisfies the relations

ψ(z) = ψ(z) and ψ(z) = ψ(−z), |z| ≤ r0.

It follows from the lemma that the Taylor expansion of ψ(z) has the form

ψ(z) =
∞∑
m=0

ψ2mz
2m, where ψ2m ∈ R. (2.13)

Remark 2.2. The problem (2.12) with respect to ψ has a unique solution up
to a purely imaginary additive constant. This constant may be equated to
zero, and Re ψ(0) = 0. Since the lemma implies that ψ0 is real, ψ0 = 0.

The function ψ(z) corresponds to the perturbation of the zero-th disc
to the uniform flow in an infinite medium without any other cylinder. In
order to tentatively take into account the influence of all the cylinders, this
perturbation is made spatially periodic in the following way

∑
j

ψ

(
r2

0

z − ej

)
=
∑
j

∞∑
m=1

ψ2m
r4m

0

(z − ej)2m
=

∞∑
m=1

ψ2mr
4m
0 E2m(z). (2.14)

Actually we sum over all the cylinders the inversion function ψ
(
r2
0

z

)
which is

analytic outside of the disc |z| ≤ r0. We use here the doubly periodic Eisen-
stein’s functions E2m(z) (see Appendix A) and the Eisenstein’s summation
(7.6) on j = (m1,m2) for E2(z). The series (2.14) converges absolutely and
almost uniformly in Q(0,0)\ {0}(Mityushev 1997c).

2.2.3 Introduction of the analytic function Φ(z) defined in De and
Di

Let us now go back to problem (2.11). In order to reduce it to a functional
equation, introduce the function Φ(z) which is analytic in the domains De

and |z| < r0

Φ(z) :=





ψ(z) +
∑

j
/ψ
(

r2
0

z−ej

)
+ f(z), |z| ≤ r0,

ϕ(z) +
∑

j ψ
(

r2
0

z−ej

)
, z ∈ De.

(2.15)
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The sum
∑

j
/ contains all cylinder centres ej, except the origin j = (0, 0) .

Actually, it will be shown that Φ(z) is a constant.
Roughly speaking the function Φ(z) can be treated as the sum of all

complex potentials arising in the problem. In De, the function Φ(z) is the

sum of the potential ϕ(z) inside De and of the potentials ψ
(

r2
0

z−ej

)
induced

by all the other cylinders; in Di, Φ(z) is the sum of the potential ψ(z) inside
|z| ≤ r0, of the potentials of the other cylinders and of the external potential
f(z). Calculate the jump of Φ along |t| = r0

[Φ]|t|=r0 = ψ(t) + f(t)− ϕ(t)− ψ(r2
0/t) = 0. (2.16)

Here, we used the relation t = r2
0/t on |t| = r0 and (2.11). The principle of

analytic continuation implies that Φ(z) is analytic in C and quasi-periodic as
ϕ(z). Liouville’s theorem in the class of doubly periodic functions (Hurwitz
(1964)) applied to Φ(z) implies that

Φ(z) = B1z +B, (2.17)

where B1 and B are arbitrary constants. B1 can be determined in the fol-
lowing way. Calculate the jumps of Φ(z) along Q(0,0) using the definition of
Φ(z)

Φ(z + α)− Φ(z) = ϕ(z + α)− ϕ(z) = iγ1, Φ(z + iα−1)− Φ(z) = iγ2.

since the functions E2m(z) (m = 1, 2, ...) are doubly periodic. We now cal-
culate the same jumps with the help of (2.17)

Φ(z + α)− Φ(z) = B1α, Φ(z + iα−1)− Φ(z) = B1iα
−1.

Then B1α = iγ1 and B1iα
−1 = iγ2. Hence, B1 is simultaneously purely real

and purely imaginary; this is only possible for B1 = 0. Therefore,

Φ(z) = B = constant . (2.18)

The definition of Φ(z) in |z| ≤ r0 implies that

ψ(z) = −
∑
j

/ψ

(
r2

0

z − ej

)
− f(z) +B, |z| ≤ r0. (2.19)

The constant B can be expressed as

B = Φ(0) = ψ(0) +
∑
j

/ψ

(
r2

0

−ej

)
+ f(0) =

∞∑
m=1

ψ2mS2m. (2.20)
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2.2.4 The functional equation for ψ

We are now close to the goal since (2.19) and (2.20) can be added to yield

ψ(z) = −
∑
j

/

[
ψ

(
r2

0

z − ej

)
− ψ

(
r2

0

−ej

)]
− f(z), |z| ≤ r0. (2.21)

or

ψ(z) = −
∞∑
m=1

ψ2mr
4m
0 [σ2m(z)− S2m]− f(z), |z| ≤ r0, (2.22)

where σ2m(z) is the modified Eisenstein’s function (see Appendix A); the
forcing term for the equation f(z) is recalled to be known and given by (2.6).
The constant B in (2.19) and (2.20) is irrelevant.

Equation (2.21) is the equation that we were looking for; it replaces the
initial boundary value problem (2.1) for the Laplace equation. Equation
(2.21) is called the functional equation for the unknown function ψ(z) which
is analytic in |z| < r0 and continuous in |z| ≤ r0. (2.22) is called the discrete
form of (2.21). Such functional equations have been studied by Mityushev
(1997b, 1998) and in references cited therein.

If the solution ψ(z) of (2.21) is known, the definition (2.15) of Φ(z) implies
that the complex potential ϕ(z) can be expressed as

ϕ(z) = −
∑
j

ψ

(
r2

0

z − ej

)
+B = −

∞∑
m=1

ψ2mr
4m
0 [E2m(z)− S2m] . (2.23)

Hence, it is seen on this relation that ϕ(z) is doubly periodic.

3 Effective permeability

We now proceed to calculate the effective permeability KII (Adler 1992)
which is defined as the integral of the flow velocity over the unit cell

−KII =

∫

De

w(x, y)dσz =

∫

De

udσz +

∫

De

w0dσz, (3.1)

where
∫
De
wdσz is the double integral

∫ ∫
De
w(x, y)dxdy. Introduction of the

complex potential into (3.1) yields

−KII =
1

4π
I1 +

(
1

2π
ln r0 − r2

0

4

)(
1− πr2

0

)− 1

2π
I2 + I3, (3.2)
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where the double integrals I1 and I2 are derived in Appendix B. They can
be expressed as

I1 :=

∫

De

(
S2x

2 + (2π − S2) y2
)
dσz =

1

12

(
S2α

2 + (2π − S2)α−2
)− 1

2

(
πr2

0

)2
,

(3.3)

I2 :=

∫

De

ln |σ(z)| dσz = T (0) +
1

2
πr2

0 − πr2
0 ln r0, (3.4)

where the constant S2 is recalled to be given in Appendix A. The constant
T (0) is given by (8.3). By application of (8.4), (8.5) and (8.6), the double
integral I3 is defined as

I3 :=

∫

De

Re ϕ(z)dσz (3.5)

It can be expressed in terms of ψ2m (cf Appendix B)

I3 =
∞∑
m=1

ψ2mS2mr
4m
0 − ψ2πr

4
0. (3.6)

Therefore, the permeability KII , or equivalently

k∗c := 4πKII , (3.7)

can be calculated by (3.2), where I1, I2, I3 are given by (3.3), (3.4), (3.6),
respectively. In order to apply (3.6), we have to determine ψ2m by solving
the functional equation (2.22). The other terms are only functions of the
lattice sums S2m.

4 Solution to the functional equation

4.1 Exact solution to the functional equation in the
form of series

In the present section we study the functional equation (2.21) and its dis-
crete form (2.22). Following Mityushev (1997c), we briefly recall the main
properties of this functional equation. Let us consider the Banach space C+

consisting of the functions analytic in |z| < r0 and continuous in |z| ≤ r0

with the norm ‖ψ‖ := max|z|≤r0 |ψ(z)|. Convergence in C+ corresponds to
uniform convergence in |z| ≤ r0. Let us write (2.21) in an operator form
ψ = Aψ+f, where the operator A is defined by the right-hand side of (2.21).
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The operator A is compact in C+, and the equation ψ = ρAψ + f has a
unique solution for each ρ satisfying the inequality |ρ| < 1. This solution can
be found by the method of successive approximations with an expansion of
the form ψ =

∑∞
n=0 ρ

nAnf . For ρ = 1, it is known (Mityushev (1998)) that
equation (2.21) has a unique solution for sufficiently small r0 which can also
be found by the method of successive approximations. This last property
allows us to find approximate solutions up to O

(
r4N

0

)
for an arbitrary fixed

natural number N .
The exact solution of (2.21) can be represented in the form

ψ(z) = −f(z) +
∑
j1

/

[
f

(
r2

0

z − ej1

)
− f

(
r2

0

−ej1

)]
+ (4.1)

∑
j1

/
∑
j2

/


f


 r2

0

r2
0

z−ej1
− ej2


− f


 r2

0

r2
0

−ej1
− ej2





+ ... .

However, another form of this solution will be used, namely, a discrete form
which involves the coefficients ψ2m in order to compute I3 from (3.6), and k∗c
from (3.7).

Substitute the expansion (2.13) for ψ(z) into (2.22)

ψ2n = −
∞∑
m=1

ψ2mr
4m
0 C2n

2(m+n)−1S2(m+n) + pn, (4.2)

where

pn :=
S2 − π

4π
for n = 1 and pn :=

S2n

4πn
for n = 2, 3, .... (4.3)

The relations (4.2) can be considered as an infinite set of linear algebraic
equations with respect to ψ2n. Frequently, infinite sets of equations are hard
to solve even numerically. Here, it is very easy to obtain an analytical expres-
sion for ψ2n, because the method of successive approximations is applicable
to (4.2). Actually, the continuous equation (2.21) in the space C+ is repre-
sented as the discrete equation (4.2) in an appropriate space c+ of sequences
which is isomorphic to C+. Hence, convergence of the successive approxima-
tions for (2.21) implies convergence for (4.2). Thus, an exact form of ψ2n up
to O(r4N

0 ) can be determined for an arbitrary fixed natural number N . We
shall do it in the next section.

4.2 Calculation of ψ2n with a given accuracy

Let us apply this method. The zero-th approximation is ψ0
2n = pn, where pn

has the form (4.3). Substitution of ψ0
2n into (4.2) yields ψ1

2n and so on. If
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we restrict ourselves to the accuracy O(r4N
0 ), where N is an arbitrary fixed

natural number, a simpler algorithm can be derived. First note that we need
to determine ψ2m up to O(r

4(N−m)
0 ), m = 1, 2, ..., N . Then, (4.2) is simplified

as

ψ2n = −
N−m∑
m=1

ψ2mr
4m
0 C2n

2(m+n)−1S2(m+n) + pn, n = 1, 2, ..., N. (4.4)

The system (4.4) is finite, triangular and it can be solved as follows. Let us
write (4.4) in an explicit form

ψ2 = −C2
3S4r

4
0ψ2 − C2

5S6r
8
0ψ4 − ...− C2

2N+1S2N+2r
4N
0 ψ2N +

S2 − π
4π

,

ψ4 = −C4
5S6r

4
0ψ2 − C4

7S8r
8
0ψ4 − ...− C4

2N+1S2N+2r
4(N−1)
0 ψ2(N−1) +

S4

16π
,

... (4.5)

ψ2(N−1) = −C2(N−1)
2N−1 S2Nr

4
0ψ2 +

S2(N−1)

4π (N − 1)
,

ψ2N =
S2N

4πN
.

In order to solve (4.5), we first determine the zero-th approximation

ψ0
2 =

S2 − π
4π

, ψ0
4 =

S4

16π
, ..., ψ0

2(N−1) =
S2(N−1)

4π (N − 1)
, ψ0

2N = ψ2N =
S2N

4πN
.

(4.6)
It easily seen from (4.5) that this approximation is enough to exactly deter-
mine ψ2N . Substituting (4.6) into (4.5), we obtain the next approximation
up to O(r4

0) :

ψ1
2 =

S2 − π
4π

(
1− C2

3S4r
4
0

)
, ψ1

4 =
S4

16π
− C4

5S6r
4
0

S2 − π
4π

, ..., (4.7)

ψ1
2(N−1) = ψ2(N−1) =

S2(N−1)

4π (N − 1)
− C2(N−1)

2N−1 S2Nr
4
0

S2 − π
4π

,

ψ2N has been calculated in the previous iteration. The approximation (4.7)
for n = N − 1 provides the desired exact formula for ψ2(N−1) up to O(r4

0).
Further we substitute ψ1

2n into (4.5) and obtain the next approximation ψ2
2n

for n = 1, 2, ..., N − 2. ψ2N and ψ2(N−1) have been calculated in the previous
iterations. And so forth. In the last N - th step, we obtain the desired
formula for ψ2.
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We have derived the algorithm to calculate ψ2n up to O(r4N
0 ) with fixed

N . It is possible to modify this algorithm and to calculate ψ2n without any
restriction by application of this technique to (4.2). The zeroth approxima-
tion is

ψ0
2 =

S2 − π
4π

, ψ0
2n =

S2n

4πn
, n = 2, 3, ... . (4.8)

Substituting (4.8) into (4.2) yields the first approximation

ψ1
2 =

S2 − π
4π

(
1− C2

3S4r
4
0

)
, ψ1

2n =
S2n

4πn
− C2n

2n+1S2n+2r
4
0

S2 − π
4π

, n = 2, 3, ...

(4.9)
and so on.

5 Analytical and numerical results

Symbolic computations were performed by Mathematica c© to apply the
method derived in Sec.4 and the formulae of Appendices A and B. The pro-
grams summarized in Appendix C yield the following analytical results.

If α = 1 (square array), then

k∗c = lnφ−1 − 1.47644 + 2φ− 0.5φ2 − 0.0509713φ4 + 0.077465φ8−

0.109757φ12+0.122794φ16−0.146135φ20+0.244536φ24−0.322667φ28+ (5.1)

0.310566φ32 − 0.541237φ36 + 0.820399φ40 +O(φ44),

where φ = πr2
0. The terms up to φ8 are identical to the terms of Drummond

& Tahir (1984) who also provided a formula for k∗c up to φ8 for hexagonal
arrays of cylinders.

For rectangular array an analogous formula can be written, but it is too
long. Hence, we only provide the text of the program written inMathematica c©

in Appendix C and the following formula up to φ10 calculated by this program

k∗c = −I1 + 2I2 + φ− 2φ2 − lnφ/π + φ lnφ/π + 2φ2S2π
−1 − φ2S2

2/π
2 +

3φ4S4π
−2 − 6φ4S2S4π

−3 + 3φ4S2
2S4π

−4 − 1

2
φ4S2

4π
−4 − 9φ6S2

4π
−4 +

18φ6S2S
2
4π
−5 − 9φ6S2

2S
2
4π
−6 + 27φ8S3

4π
−6 − 54φ6S2S

3
4π
−7 +

27φ8S2
2S

3
4π
−8 − 81φ10S4

4π
−8 + 162φ10S2S

4
4π
−9 − 81φ10S2

2S
4
4π
−10−

10φ6S4S6π
−5 + 10φ6S2S4S6π

−6 + 30φ8S2
4S6π

−7 − 30φ8S2S
2
4S6π

−8−

90φ10S3
4S6π

−9 + 90φ10S2S
3
4S6π

−10 − 1

3
φ6S2

6π
−6 − 50φ8S2

6π
−6+ (5.2)
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100φ8S2S
2
6π
−7 − 50φ8S2

2S
2
6π
−8 + 300φ10S4S

2
6π
−8 − 600φ10S2S4S

2
6π
−10+

300φ10S2
2S4S

2
6π
−10 − 25φ10S2

4S
2
6π
−10 +

35

2
φ8S2

4S8π
−8 − 14φ8S6S8π

−7+

14φ8S2S6S8π
−8 + 392φ10S4S6S8π

−9 − 392φ10S2S4S6S8π
−10 − 1

4
φ8S2

8π
−8−

147φ10S2
8π
−8 + 294φ10S2S

2
8π
−9 − 147φ10S2

2S
2
8π
−10 + 84φ10S4S6S10π

−10−
18φ10S8S10π

−9 + 18φ10S2S8S10π
−10 +O(φ10),

where I1 and I2 have the forms (3.3) and (3.4); the Rayleigh sums S2n are
calculated with (7.1) and (7.2). Let us note that the term φ lnφ/π from
(5.2) is reduced with the corresponding term of 2I2 (see (3.4)). The function
k∗c = k∗c (α) is displayed in Figure 2.

6 Conclusion

We have studied the longitudinal permeability of rectangular arrays of cir-
cular cylinders, when a Newtonian fluid is flowing at low Reynolds number
along the cylinders. We have reduced the problem to a functional equation
and solved it. For square arrays the series of Drummond & Tahir (1984) were
extended up to φ8; we have computed the terms up to φ40 in (5.1). The next
terms can be computed by the algorithm derived in Appendix C.

The major advantage of the method of functional equations is to provide
analytical expressions for the longitudinal permeability up to a given preci-
sion in a relatively systematic manner in terms of the solid concentration φ
and of the aspect ratio of the unit cell α2. Numerical applications of (5.2)
with various φ and α show that the permeability reaches a minimum for the
square unit cell when φ is kept fixed.

The slow convergence for the two-dimensional Hashimoto’s function was
also solved. It is constructed in the form (2.2) which is very efficient compu-
tationally.

The present paper can be considered as an introduction to flow around
cylinders and is exploited in the second part where more complex boundary
value problems are discussed.

7 Appendix A

This Appendix recalls the basic functions of the elliptic function theory,
namely the Weierstrass’ functions due to Hurwitz (1964) and the Eisenstein’s
functions due to Weil (1976). We do not use the traditional parameters of
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this theory. As assumed in previous works devoted to periodic problems of
porous media and composite materials, the lattice sums are used. Modified
Eisenstein’s functions are also needed, as well as some formulae applied in
our calculations.

First, we consider the lattice sums S2n :=
∑

j
/e−2n
j introduced by

Rayleigh (1892). The theory of elliptic functions and Mityushev (1997a)
provide the following formulae which are computationally efficient

S2 =
(π
α

)2
(

1

3
− 8

∞∑
m=1

mh2m

1− h2m

)
, where h = exp

(
− π

α2

)
,

S4 =
1

3

(π
α

)4
(

1

15
+ 16

∞∑
m=1

m3h2m

1− h2m

)
, (7.1)

S6 =
1

15

(π
α

)6
(

2

63
− 16

∞∑
m=1

m5h2m

1− h2m

)
.

The other sums are calculated by the recursion formula

S2k =
3

(2k + 1) (2k − 1) (k − 3)

k−2∑
m=2

(2m− 1) (2k − 2m− 1)S2mS2(k−m).

Let us write the first sums as functions of S4 and S6

S8 =
3

7
S2

4 , S10 =
5

11
S4S6, S12 =

1

143

(
18S3

4 + 25S2
6

)
, (7.2)

S14 =
30

143
S2

4S6, S16 =
3S4 (33S3

4 + 100S2
6)

2431
,

S18 =
5S6

46189

(
783S3

4 + 275S2
6

)
, S20 =

3S2
4

508079

(
2178S3

4 + 12125S2
6

)
.

The following Weierstrass’ functions can be expressed as Taylor expan-
sions

ln σ(z) = ln z −
∞∑
n=2

S2n

2n
z2n,

ζ(z) =
1

z
−
∞∑
n=2

S2nz
2n−1, (7.3)

P(z) =
1

z2
+
∞∑
n=2

(2n− 1)S2nz
2n−2.
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The branch of ln z is chosen so that ln z = ln |z| + i arg z, where arg z ∈
[0, 2π); the cut of ln z is the positive real half-axis. It is easily seen that

(lnσ(z))/ = ζ(z), ζ/(z) = −P(z). The formulae (7.3) are not used here for
calculating the Weierstrass’ functions. For instance, σ(z) is better computed
by

σ(z) = α
θ1(zα−1)

θ
/
1(0)

exp

(
S2

2
z2

)
, (7.4)

where θ1(z) = i
∑∞

m=−∞ (−1)m h(m−0.5)2

exp [iπ (2m− 1) z] is the Jacobi θ-
function. Calculations with the formulae (7.1) and (7.4) are very fast because
the coefficient h is smaller than 0.04324 for 0 < α ≤ 1.

The function P(z) is doubly periodic. The functions ζ(z) and ν(z) =
lnσ(z) have the following jumps along Q(0,0)

ζ(z + α)− ζ(z) = αS2, ζ(z + iα−1)− ζ(z) = −iα−1 (2π − S2) ,

ν(z + α)− ν(z) = πi+ αS2

(
z +

α

2

)
, (7.5)

ν(z + iα−1)− ν(z) = πi− iα−1 (2π − S2)

(
z +

i

2α

)
.

The Eisenstein’s functions (Weil (1976)) are also useful

Em(z) :=
∑
j

(z − ej)−m .

These series are absolutely and almost uniformly convergent in Q(0,0)\ {0}
for m ≥ 3. When m = 1 or m = 2, a special method of summation is applied
(Weil (1976))

∑
j

:= lim
N→∞

−N∑
m2=−N

(
lim
M→∞

−M∑
m1=−M

)
(7.6)

The Eisenstein’s and Weierstrass’ functions are related by the identities

E1(z) = ζ(z)− S2z, E2(z) = P(z) + S2.

The modified Eisenstein’s functions are defined by

σl(z) = El(z)− z−l, l = 1, 2, ... .

They are analytic in the domain Q(0,0); σl(0) = Sl, where Sl = 0 for odd l.
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8 Appendix B

This Appendix derives the formulae (3.3), (3.4) and (3.6). The double in-
tegral in the domain G and the ordinary integral along the curve ∂G are
related by Green’s formula

∫

G

Qxdσz =

∫

∂G

Qdy (8.1)

Using (8.1) we calculate the integral

I1 =

(∫

Q(0,0)

−
∫

Di

)
(
S2x

2 + (2π − S2) y2
)
dσz =

(∫

∂Q(0,0)

−
∫

∂Di

)(
1

3
S2x

3 + (2π − S2)xy2

)
dy =

1

12

(
S2α

2 + (2π − S2)α−2
)− 1

2

(
πr2

0

)2
.

The integral I2 has the form

I2 =

∫

Q(0,0)

ln |σ(z)| dσz −
∫

Di

ln |σ(z)| dσz. (8.2)

The first integral in (8.2) is calculated by (8.1)

T (0) :=

∫

Q(0,0)

ln |σ(z)| dσz =
(
α2 + α−2

)(−3

4
+
π

8
− 1

4
ln 2

)
+
α2 − α−2

2
lnα−P0,

(8.3)
where

P0 :=
∞∑

k=2

S2k

2k(2k + 1)
Re

∫ 0.5α2

−0.5α−2

[(α
2

+ iy
)2k+1

−
(
−α

2
+ iy

)2k+1
]
dy =

(
− 1

96
+

1

320

(
α4 + α−4

))
S4 +

(
1

2688

(
α6 − α−6

)− 1

384

(
α2 − α−2

))
S6+

(
7

5120
+

1

18432

(
α8 + α−8

)− 1

1536

(
α4 + α−4

))
S8+

(
1

112640

(
α10 − α−10

)− 1

6144

(
α6 − α−6

)
+

1

5120

(
α2 − α−2

))
S10 + ... .
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The second integral in (8.2) can be calculated in polar coordinates

∫

Di

ln |σ(z)| dσz = −πr
2
0

2
+ πr2

0 ln r0.

Therefore, I2 can be expressed with the help of T (0) given by (8.3)

I2 = T (0) +
πr2

0

2
− πr2

0 ln r0.

We now proceed to deduce formula (3.6). (3.5) and (2.23) imply

I3 = −
∞∑
m=1

ψ2mr
4m
0 F2m, (8.4)

where

F2m =

∫

De

Re [E2m − S2m] dσz, m = 1, 2, ... .

F2m is constructed by means of Green’s formula (8.1). Moreover, the follow-
ing formula is applied (Weil (1976))

E2m(z) = − 1

2m− 1
E
′
2m−1(z)

The cases m = 1 and m > 1 need to be distinguished. For m = 1,

F2 = −
∫

∂Q(0,0)

Re E1(t)dy +

∫

|t|=r0
Re E1(t)dy − S2

(
1− πr2

0

)
.

The Eisenstein’s function E1(z) has a zero jump along Q(0,0) in the x - direc-
tion. Hence,

∫
∂Q(0,0)

Re E1(t)dy = 0. The next integral is calculated in polar

coordinates

∫

|t|=r0
Re E1(t)dy = r0

∫ 2π

0

Re

[
r−1

0 e−iθ −
∞∑
n=1

S2nr
2n−1
0 eiθ(2n−1)

]
cos θdθ = π

(
1− πr2

0

)
.

Therefore,
F2 = π − S2. (8.5)

The case m > 1 is similarly processed

F2m = − 1

2m− 1

∫

∂Q(0,0)

Re E2m−1(t)dy+
1

2m− 1

∫

|t|=r0
Re E2m−1(t)dy−S2m

(
1− πr2

0

)
.
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The first integral is equal to zero. The second integral is determined with
the help of

E2m−1(z) = z−2m+1 −
∞∑
n=1

C2n−1
2(m+n)−3S2(m−1+n)z

2n−1,

since
1

2m− 1

∫

|t|=r0
Re E2m−1(t)dy = −πr2

0S2m.

Therefore,
F2m = −S2m, m = 2, 3, ... . (8.6)

Substitution of (8.5) and (8.6) into (8.4) yields the formula (3.6).

9 Appendix C

This Appendix summarizes the program in Mathematica c© which calculates
k∗c for any rectangular array of cylinders with an arbitrary prescribed accu-
racy. In order to compute k∗c in agreement with (3.7) and (3.2), we calculate
I1 and I2 with (3.3) and (3.4). The crucial part of the calculations is the
integral I3 calculated with (3.6) in terms of the coefficients ψ2n. We only
give the central part of the program which computes the analytic expression
of ψ2n with a prescribed accuracy O(rn0 )

c[p,q]:=q!/(p!*(q-p)!)
psi[r,n,0]:=If[n==1,S[2]-Pi,S[2*n]/n]
psi[r,n,p]:=psi[r,n,0]-Sum[c[2*n,2*(n+m)-1]*
S[2*(n+m)]*psi[r,m,p-m]*rˆ4*m),m,1,p]
r:=Sqrt[v/Pi]
p:=20
I3:=Sum[psi[r,m,p+1-m]*S[2*m]*rˆ4*m),m,1,p]-psi[r,1,p]*Pi*r4

kc:=I1-2*I2+(2*Log[r]-Pi*r2)*(1-Pi*r2)+I3
Here, we take n = p = 20. psi[r,n,p] corresponds to ψp2n, S[2*n] to S2n,

and v to φ, respectively; I1, I2 and I3 correspond to I1, I2 and I3, respectively.
kc corresponds to k∗c .
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Figure 1: The unit cell of the rectangular array of cylinders
Figure 2: The effective permeability k∗c as a function of the parameter α

of the rectangle for various solid concentrations φ. It is calculated with (5.2)

20


