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Abstract

We study the longitudinal permeability of unidirectional disjoint
circular cylinders, when a Newtonian fluid is flowing at low Reynolds
number along these cylinders; the longitudinal velocity satisfies the
Poisson equation. The cylinders are arranged according to a doubly
periodic structure. The number of cylinders in each rectangle can be
arbitrary as well as their positions and radii. The method of functional
equations yields analytical formulae for permeability in terms of these
quantities. These formulae are written also in continuous form to
study the flow for large numbers of cylinders. Special attention is
paid to the case of the square unit cell, equal radii and lognormal
distribution of radii.

1 Introduction

The transport properties of bundles of parallel cylinders attracted the at-
tention of many famous scientists since the 19 th century as reviewed by
Landauer (1974). If cylinders arranged according to square or hexagonal ar-
rays, the method of Lord Rayleigh (1892) can be successfully applied. It is
based on the reduction of the problem to an infinite set of linear algebraic

∗The work was performed at IPGP
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equations which are truncated and solved numerically to get lower - order
formulae for the effective tensor. The method of Lord Rayleigh has been
extended by McPhedran et al. (1988). Other methods based on integral
equations or infinite sets have been applied by Bergman & Dunn (1992),
Kolodziej (1987), Sangani and Yao (1988a, 1988b) and others.

The method of functional equations has already been applied to various
problems such as rectangular arrays of cylinders (Mityushev&Adler 2000).
The major advantage of this method is to provide analytical expression for
the effective transport properties in a relatively systematic manner.

The objective of this paper is to provide an analytical expression for the
longitudinal permeability of a spatially periodic parttern of parallel cylinders.
In the unit cell, the number of cylinders, their radii and their locations are
arbitrary, as shown in Figure 1.

This paper is organized as follows. The problem is presented in Section
2, and the boundary value problem which governs the local velocity is de-
rived. We also construct a counterpart of the two-dimensional Hashimoto
function. In Section 3 the boundary value problem is reduced to a set of
functional equations. An iterative convergent algorithm to solve analytically
or numerically the set of functional equations is derived. The expression of
permeability is given in Section 4. Approximate analytical formulae for the
effective permeability are deduced in Section 5. Section 6 is devoted to the
case when discs have equal radii. Large number of discs in the unit cell is
discussed by continuous approach in Section 7. The lognormal distribution
of the radii is investigated in Section 8. Section 9 presents numerical results
and discussion of the general formulae. Appendix contains calculations of
the integrals of elliptic functions which are used in the main text.

2 Statement of the problem

Consider a lattice Q defined by two perpendicular fundamental translation
vectors ω1 and ω2 in the complex plane C ∼= R2, where the complex variable
z is related to the real ones x and y by the identity z = x + iy (i2 = −1).
It may be assumed that ω1 = α > 0 and ω2 = iα−1. The zero unit cell
Q(0,0) is displayed in Figure 1; its area

∣∣Q(0,0)

∣∣ is equal to 1. Let E := ∪j {ej}
be the set of numbers ej := m1 + im2, where j = (m1,m2) , m1 and m2

are integers. The lattice Q consists of the cells Qj = Q(0,0) + ej. Let us
consider mutually disjoint disks Dk :=

{
z ∈ Q(0,0) : |z − ak| < rk

}
in the

zero cell Q(0,0). Here ak := xk + iyk is the center, rk is the radius of Dk.
Let x̃ + iỹ := 1

n

∑n
k=1 (xk + iyk) denote the center of gravity of xk + iyk,

D := Q(0,0)\ (∪nk=1 (Dk ∪ ∂Dk)) be the complement of all disks Dk to the
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unit cell Q(0,0).
The plane C is assumed to be the perpendicular cross - section Dk + ej of

an infinite array of parallel circular cylinders. A Newtonian fluid of viscosity
µ is flowing at low Reynolds number through this array. When the driving
pressure gradient is perpendicular to the plane C, the Stokes equation is
reduced to a Poisson equation for the component w(x, y) of the fluid velocity
(see Adler, 1992). Since we shall work with dimensionless quantities, it is
convenient to assume that the pressure gradient and the viscosity are set
equal to 1. Hence, w(x, y) is a solution of the following boundary value
problem that we shall study

∆w = 1 in D (2.1)

w is doubly periodic

w = 0 on the circle |t− ak| = rk, k = 1, 2, ..., n,

where ∆ is the two-dimensional Laplace operator, the position inside a do-
main is denoted by the complex variable z = x + iy; the position along
boundaries is denoted by the complex variable t.

The boundary value problem (2.1) with n = 1 has been solved by Mi-
tyushev&Adler (2000). We shall constantly use this result in the present
paper. In particular, the lattice sums S2n and the doubly periodic functions
of Weierstrass and Eisenstein are derived in detail by Weil (1976) and Mi-
tyushev&Adler (2000). The functional equation equivalent to (2.1) will be
obtained in three main steps following Mityushev&Adler (2000). The Pois-
son equation (2.1) is first reduced to a Laplace equation by a suitable change
of unknown. Second the boundary value problem is stated in terms of an-
alytic functions ψk(z) whose properties are studied. Third, the boundary
value problem for ψk(z) is replaced by a set of functional equations (either
continuous or discrete) for the unknown functions ψk(z).

2.1 Reduction to a Laplace equation

In order to reduce (2.1) to a problem for the Laplace equation, we introduce
the function

w0(x, y) :=
1

4π

(
S2 (x− x̃)2 + (2π − S2) (y − ỹ)2)− 1

2πn

n∑

k=1

ln |σ(z − ak)| ,
(2.2)

where the constant S2 and the Weierstrass function σ(z) are derived in Mi-
tyushev&Adler (2000). The function w0(x, y) has the following properties:

i) ∆w0 = 1 in Q0\ ∪nk=1 {ak},
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ii) w0(x, y) ∼ − 1
2πn

ln |z − ak| near z = ak for each k = 1, 2, ..., n.
iii) w0(x, y) is doubly periodic.
Let us prove the third property, for instance, for the x - direction. Denote

by [w0]x the jump of w0(x, y) along the cell Q0 in the x - direction. By virtue
of the properties of the σ-function (see Mityushev&Adler (2000))

[w0]x =
S2

4π

[
(x− x̃)2]

x
− 1

2πn

n∑

k=1

[ln |σ(z − ak)|]x = 0.

We now are ready to rewrite problem (2.1) in terms of harmonic functions.
Introduce the new unknown function u(x, y) by

u(x, y) = w(x, y)− w0(x, y) in D. (2.3)

u(x, y) is a solution of the following boundary value problem

∆u = 0 in D (2.4)

u is doubly periodic

u = −w0, |t− ak| = rk, k = 1, 2, ..., n.

2.2 Expression of the boundary conditions in terms of
complex potentials

In order to represent the boundary value −w0 as a real part of an analytic
function in each |t− ak| = rk, we introduce the functions

fk(z) := − 1

4π
[(S2 − π) (z − ak)2 + 2 (S2αk − i(2π − S2)βk) (z − ak)+ (2.5)

S2α
2
k + (2π − S2)β2

k + πr2
k]+

1

2πn

n∑

m6=k
lnσ(z − am) +

1

2πn
ln
σ(z − ak)
z − ak +

1

2πn
ln rk, k = 1, 2, ..., n,

where αk := xk− x̃, βk = yk− ỹ. The function fk(z) is analytic in |z − ak| <
rk, Hölder continuous in |z − ak| ≤ rk and satisfies the relation

Re fk(t) = −w0(x, y), |t− ak| = rk for each k = 1, 2, ..., n,

since the function −w0(x, y) can be represented as

−w0(x, y) = − 1

4π

[
S2 (Re (t− ak) + αk)

2 + (2π − S2) (Im (t− ak) + βk)
2]
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+
1

2πn

n∑
m=1

ln |σ(z − am)| , |t− ak| = rk.

It is known that each harmonic function is the real part of a complex
potential in the complex plane C. If a function U(x, y) is harmonic in a
multiply connected domain G of the complex plane, it can be expressed as

U(x, y) = Re

[
Φ(z) +

n∑

k=1

Ak ln(z − zk)
]
, z = x+ iy ∈ G

according to the decomposition theorem (see Axler, 1996 et al.). Here, the
function Φ(z) is analytic and single-valued in G, and Ak are real numbers. If
we assume that ∞ ∈ G, and Gk (k = 1, 2, ..., n) are connected components
of the complement of G to C, zk is a point of Gk, the connectivity of G is
equal to n− 1 and

n∑

k=1

Ak = 0. (2.6)

We now extend the decomposition theorem to the torus represented by
the lattice Q. We assert that the function u(x, y) which is harmonic in D
and doubly periodic, can be written as

u(x, y) = Re

{
ϕ(z) +

n∑

k=1

Ak [lnσ(z − ak) + akζ(z − ak)]
}
, z ∈ D, (2.7)

where σ and ζ are Weierstrass’ functions; Ak are real constants satisfying rela-
tion (2.6). The function ϕ(z) is analytic in D and quasi-periodic. According
to the terminology of the elliptic function theory, we define a quasi-periodic
function as a function satisfying the relations

ϕ(z + α)− iγ1 = ϕ(z) = ϕ(z + iα−1)− iγ2, (2.8)

where γ1 and γ2 are real constants. The choice of a branch of the logarithm
does not impact on the value u(x, y) because we actually deal with Re ln z
in (2.7). Let us choose an arbitrary branch of ln(z−ak) and suppose that the
cut corresponding to this fixed branch is doubly periodic and has no common
points with Dm for each m 6= k.

The local form of the representation (2.7) in D follows from the decom-
position theorem on the plane C, where each bracket of (2.7) yields the
increment of the complex potential along |t− ak| = rk. We only have to
prove that ϕ(z) is quasi-periodic; for this purpose calculate the jump (see
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Mityushev&Adler (2000))

0 = [u]x = Re

{
[ϕ(z)]x +

n∑

k=1

Ak

[
πi+ S2α

(
z − ak +

α

2

)
+ S2αak

]}
=

Re [ϕ(z)]x + S2α

n∑

k=1

Ak

(
x+

α

2

)
= Re [ϕ(z)]x ,

where relation (2.6) is used. Hence, Re [ϕ(z)]x = 0 and ϕ(z) has a purely
imaginary jump along the x−direction. Similarly ϕ(z) has a purely imaginary
jump along the y−direction. The elliptic function theory implies that these
jumps are constants and therefore (2.7) is valid.

We now can rewrite the problem (2.4) in terms of complex functions.
Let us look for a function ϕ(z) analytic in D, continuous in D ∪ ∂D and
quasi-periodic with the following boundary condition

Re ϕ(t) = Re gk(t), |t− ak| = rk, k = 1, 2, ..., n, (2.9)

where the function gk(t) is defined by

gk(t) := fk(t)−
n∑

m6=k
Am [lnσ(t− am) + amζ(t− am)]− (2.10)

Ak

[
ln
σ(t− ak)
t− ak + akζ(t− ak)− ak

t− ak

]
− Ak

[
ln rk +

ak
r2
k

(t− ak)
]
.

gk(t) contains n unknown real constants Ak satisfying relation (2.6). For sake
of convenience, we represent the data Re gk(t) in such a way that gk(z) is
analytic in |z − ak| < rk and Hölder continuous in |z − ak| ≤ rk.

A few words about the general theory of problem (2.9) are needed. Prob-
lem (2.9) is a Riemann-Hilbert problem for a multiply connected domain
D on the Riemann surface torus represented by the lattice Q (see Mityu-
shev&Rogosin, 1999; Zverovich, 1971). Our statement of problem (2.9) cor-
responds to the modified Dirichlet problem studied by Mikhlin (1964) and
completely solved by Mityushev&Rogosin (1999) in the complex plane. In
the present paper we extend the method of functional equations presented
by Mityushev&Rogosin (1999) from the complex plane to the torus Q. As a
first step, let us write (2.9) as a R−linear conjugation problem

ϕ(t) = ψk(t)− ψk(t) + gk(t) + iωk, |t− ak| = rk, k = 1, 2, ..., n, (2.11)

where the unknown function ψk(z) is analytic in |z − ak| < rk and Hölder
continuous in |z − ak| ≤ rk, ψk(ak) = 0. The real constants ωk are unknown
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as well as Ak. But the form of ωk does not impact on the required function
Re ϕ(z). Hence, we shall not calculate ωk as discussed in Section 3.

Boundary value problems of the type (2.11) were reduced to integral equa-
tions by Zverovich (1971) and Mikhlin (1964). But such equations which can
be solved numerically do not provide analytic formulae with explicit structure
parameters. In the next section, we apply the method of functional equations
to obtain analytic lower-ordered formulae for the effective permeability.

3 Functional equations

3.1 Costruction of functional equations

Let us represent the unknown functions ψk(z) by their Taylor expansion

ψk(z) =
∞∑

l=1

ψlk(z − ak)l, |z − ak| ≤ rk, k = 1, 2, ..., n.

Following Mityushev (1997), we introduce the operators Wk and Vk

Wkψk(z) :=
∑

j

∞∑

l=1

ψlk
r2l
k

(z − ak − ej)l =
∞∑

l=1

ψlkr
2l
k El(z − ak),

Vkψk(z) :=
∞∑

l=1

ψlkr
2l
k σl(z − ak),

where El(z) is the Eisenstein’s function of order l (see Weil (1976) and Mityu-
shev&Adler (2000)) and σl(z) is the modified Eisenstein’s function of order
l. We introduce the function Φ(z) which is analytic in |z − ak| < rk and D

Φ(z) :=





ψk(z) +
∑n

m6=k Wmψm(z) + Vkψk(z) + gk(z) + iωk, |z − ak| ≤ rk,

k = 1, 2, ..., n,
ϕ(z) +

∑n
m=1 Wmψm(z), z ∈ D.

Calculate the jump of Φ(z) along each circle |t− ak| = rk

∆k := Φ+(t)− Φ−(t) = ϕ(t) + Wkψk(t)−Vkψk(t)− ψk(t)− gk(t)− iωk.

Use of the relation El(z)− σl(z) = z−l yields

Wkψk(t)−Vkψk(t) =
∞∑

l=1

ψlkr
2l
k (t− ak)−l = ψk(t), |t− ak| = rk.
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Here we apply the equality r2
k(t − ak)

−1 = t− ak on |t− ak| = rk. (2.11)
implies that ∆k = 0; hence, Φ(z) is analytic in Q0 by the principle of analytic
continuation. Let us find the jumps of Φ along Q0. We have

[Φ]x = [ϕ]x +
n∑

m=1

[Wmψm(z)]x = [ϕ]x ,

since [El]x = 0 for each l = 1, 2, ...,

[Φ]y = [ϕ]y +
n∑

m=1

ψ1mr
2
m [E1]y = [ϕ]y − 2πiα−1

n∑
m=1

ψ1mr
2
m,

because [El]y = 0 for l = 2, 3, ... and [E1]y = −2πiα−1. Application of the
generalized Liouville’s theorem on the lattice Q implies

Φ(z) = Φ0 + Φ1z.

Let us determine the constants Φ0 and Φ1. It follows from the quasi-periodicity
of ϕ that

[Φ]x = Φ1α and Re [Φ]x = 0 =⇒ Re Φ1 = 0,

[Φ]y = iΦ1α
−1 and Re [Φ]y = 0 =⇒ Im Φ1 = −2πIm

n∑
m=1

ψ1mr
2
m.

Therefore,

Φ1 = 2πiIm
n∑

m=1

ψ1mr
2
m. (3.1)

It follows from the definition of Φ in the disks |z − ak| ≤ rk that

ψk(z) = −
n∑

m6=k
Wmψm(z)−Vkψk(z)− gk(z)− iωk + Φ0 + Φ1z,(3.2)

|z − ak| ≤ rk, k = 1, 2, ..., n.

The equalities (3.2) can be considered as a set of n functional equations
with respect to n functions ψk(z) analytic in |z − ak| < rk and continu-
ous in |z − ak| ≤ rk. The set (3.2) contains also undetermined constants
ωk. The general theory of such functional equations is discussed by Mityu-
shev&Rogosin (1999) and Mityushev (1997). We note that (3.2) does not con-
tain any integral term which requires difficult numerical calculations. Here
we deal with compositions of functions instead of integrals.
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Write (3.2) in discrete form

ψk(z) = −
n∑

m6=k

∞∑

l=1

ψlmr
2l
mEl(z − am)−

∞∑

l=1

ψlkr
2l
k σl(z − ak)− (3.3)

−gk(z)− iωk + Φ0 + 2πizIm
n∑

m=1

ψ1mr
2
m, |z − ak| ≤ rk, k = 1, 2, ..., n.

Substitute z = ak in (3.3) and take the real part:

0 = −
n∑

m6=k

∞∑

l=1

r2l
mRe

[
ψlmEl(ak − am)

]−
∞∑

l=1

r4l
k S2lRe ψ2l,k− (3.4)

−Re gk(ak) + q +Re [2πiak] Im
n∑

m=1

ψ1mr
2
m, k = 1, 2, ..., n,

where q := Re Φ0. Note that Im Φ0 does not impact on the final form of
Re ϕ(z). Hence, we shall calculate only q. Since values Re gk(ak) contain the
unknown constants Ak, we may consider (2.6) and (3.4) as n + 1 real linear
algebraic equations with respect to the n+ 1 real unknowns A1, A2, ..., An, q.
Thus, (3.3), (3.4) and (2.6) generate a couple of equations, namely the func-
tional equations (3.3) and the linear algebraic equations (3.4) and (2.6).

3.2 Iterative algorithm to solve functional equations

Let us construct an iterative algorithm to determine q, Ak and ψlk. We
introduce the auxiliary values

Pk := −
n∑

m6=k

∞∑

l=1

(−1)l r2l
mRe

[
ψlkE

l
mk

]−
∞∑

l=1

r4l
k S2lRe ψ2l,k −Re fk(ak)−

(3.5)

2πyk

n∑
m=1

r2
mIm ψ1m +

n∑

m6=k
Amηkm, k = 1, 2, ..., n,

where ηkm are defined as follows ηkm := ln |σ (ak − am)| − Re akζ (ak − am).
Then (3.4) becomes

Ak = (ln rk)
−1 (Pk + q) , k = 1, 2, ..., n. (3.6)

It follows from (2.6)

q = −L
n∑

m=1

Pm
ln rm

, (3.7)
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where L :=
(∑n

m=1
1

ln rm

)−1

. The iterative algorithm is based on (3.3) - (3.7),

since the right-hand part of (3.3) has an accuracy order in r2
m higher than

the left-hand part. The right-hand part of (3.6) has an order on (ln rm)−1

higher than the left-hand part.
First we take as zero-th approximation

A0
k = 0 and ψ

(0)
k (z) = 0 (3.8)

Then,

P
(0)
k = −fk(ak), q(0) = −L

n∑
m=1

P
(0)
m

ln rm
(3.9)

We can propose a finite iterative algorithm modifying the algorithm (3.3)
- (3.7). The finite algorithm is summarized as follows. Let us choose a natural
numberN, corresponding to calculation accuracy which isO

(
max(r2m1

1 r2m2
2 · · · r2ms

s )
)
,

where m1 +m2 + ...+ms = N + 1, as r :=maxkrk → 0. We may assume that
N is even.

The first step of the algorithm consists of using (3.8) and calculating P
(0)
k

and q(0) by (3.9).

The p-th step consists of the sequence of operations. ψ
(p−1)
lk and A

(p−1)
k

are known as the (p− 1)−th approximations of the values required. Using
(3.5) we introduce the values

P
(p)
k := −

n∑

m6=k

N∑

l=1

(−1)l r2l
mRe

[
ψ

(p−1)
lk El

mk

]
−
N/2∑

l=1

r4l
k S2lRe ψ

(p−1)
2l,k −Re fk(ak)+

2πyk

n∑
m=1

r2
mIm ψ

(p−1)
1m +

n∑

m6=k
A(p−1)
m ηkm, k = 1, 2, ..., n,

q(p) = −L
n∑

m=1

P
(p)
m

ln rm
, (3.10)

A
(p)
k = (ln rk)

−1
(
P

(p)
k + q(p)

)
, k = 1, 2, ..., n. (3.11)

The next approximation for ψk(z) is derived from (3.3)

ψ
(p)
k (z) = −

n∑

m6=k

N−1∑

l=1

ψ
(p−1)
lm r2l

mEl(t− am)−
N∑

l=1

ψ
(p−1)
lk r2l

k σl(t− ak)− (3.12)

−gk(z) + q(p) − 2πizIm
n∑

m=1

ψ
(p−1)
1m r2

m, |z − ak| ≤ rk, k = 1, 2, ..., n.
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Here, the functions gk(z) contain the values A
(p)
k according to (2.10).

If ψlk are known then

Re φ(z) = q −
n∑

k=1

∞∑

l=1

r2
mRe

[
ψlkEl(z − am)

]
+Re [2πiz] Im

[
n∑

k=1

r2
kψ1k

]

(3.13)
In the next section, we present the finite algorithm in discrete form. More-

over, we shall do a modification which considerably reduces the amount of
required calculations.

4 Effective permeability

We now proceed to calculate the effective permeability KII by integrating
the velocity w(x, y) over the unit cell

KII = −
∫

D

w(x, y)dσz,

where w(x, y) is the solution of problem (2.1). Application of (2.3) and (2.7)
yields

KII = −
∫

D

[
w0(x, y) +Re ϕ(z) +

n∑

k=1

Ak (ln |σ (z − ak)|+ akζ (z − ak))
]
dσz.

According to Adler (1992), KII can be expressed by k∗c := 4πKII . Then

k∗c = −I1 −
n∑

k=1

(
4πAk − 2

n

)
Jk − 4π

n∑

k=1

AkRe (akYk)− 4πI3 (4.1)

where

I1 :=

∫

D

(
S2 (x− x̃)2 + (2π − S2) (y − ỹ)2) dσz, Jk :=

∫

D

ln |σ (z − ak)| dσz,
(4.2)

Yk :=

∫

D

ζ (z − ak) dσz, I3 :=

∫

D

Re ϕ(z)dσz,

where
∫
D
F (z)dσz :=

∫ ∫
D
F (x+ iy)dxdy denotes a double integral. Without

loss of generality, we assume that x̃+ iỹ = 0, i.e., the center of gravity of all
ak is equal to zero.

Let us substitute (3.13) in I3
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I3 = q |D| −
n∑

m=1

∞∑

l=1

r2l
mRe

[
ψlmF

m
l

]
+ 2π

n∑
m=1

πr2
mym

n∑
m=1

r2
mIm ψ1m, (4.3)

where Fm
l :=

∫
D
El (z − ak) dσz, l = 1, 2, ... are calculated in Appendix (see

(10.7), (10.9) and (10.10)). Hence, in order to calculate k∗c from (4.1), we
need the constants q, Ak, ψlk (l = 1, 2, ...; k = 1, 2, ..., n).

We now discuss the form of the calculated coefficients and the accuracy.
One can see that each iteration of (3.12) increases the order of accuracy by
a factor r2

k for the coefficients ψlk and each iteration of (3.11) increases the
order of accuracy by a factor (ln rk)

−1. This shows that the coefficients ψlk,
Ak and q can be represented as series with the basic elements LΘs1...sn

t1...tn defined
as

Θs1...sn
t1...tn :=

r2s1
1 r2s2

2 · · · r2sn
n

lnt1 r1 ln r2 · · · lntn rn
. (4.4)

The form of k∗c preserves the same structure. Hence,

k∗c = −2L+ L
∑
sj ,tj

k∗
[
s1...sn
t1...tn

]
Θs1...sn
t1...tn , (4.5)

where the constants k∗
[
s1...sn
t1...tn

]
depend only on the lattice parameter α and on

the locations of the centers of the discs ak (k = 1, 2, ..., n). The exceptional
term −2L appears in the zero-th approximation of q. Actually, in the zero-th
approximation

Pk = −Re f(ak) = − 1

2πn
ln rk +O(quasi-constant), as r → 0,

where terms of the form L ln−1 rk are called quasi-constant. Then, it follows
from (3.10) that

q =
L

2π
+O(quasi-constant).

If equal radii rk = r are taken, the basic functions become

Θs
t :=

r2s

lnt r
, s = 0, 1, ...; t = −1, 0, 1, 2, ... ,

since L = 1
n

ln r. In this case quasi-constants become usual constants and
the leading term in (4.1) takes the form

k∗c = − 2

n
ln r +O(r0), as r → 0.

12



Let us come back to the general case with various rk. Consider the set
of divisors of the basic elements Θs1...sn

t1...tm . We say that an accuracy is given, if
a set A of mutually prime divisors is given. A divisor a is called maximal if
it can be divided by each divisor from A and if it is minimal from all such
divisors. The maximal power in a is called the index of a and is designated
by κ. For instance, if the accuracy is given by A =

{
Θ1,1

1,0, Θ0,0
0,2

}
, then

k∗c = L
[
c0 +

(
ln−1 r1 + c5

) (
c1 + c2r

2
1 + c3r

2
2 + c4r

2
1r

2
2

)
+ c6 ln−1 r2 + c6 ln−2 r2 − 2

]
.

In this case a = Θ1,1
1,2 and κ = 2. The required accuracy can be reached by κ

steps of the iterative method previously described. However, the number of
iterations can be reduced. Let us note that ψls enters in k∗c with the factor
r2l
s . Hence, the accuracy can be reached by the reduced accuracy Al for ψls,

where Al is obtained from A by changing the power sl by sl − l. Moreover,
if the accuracy for a term is reached in the algorithm, this term does not
change in the next iterations.

For equal radii the accuracy is defined by the divisors r2s
(
ln−1 r

)t
. For

instance, if we take A =
{
r4,
(
ln−1 r

)1
}
, we mean that k∗c is calculated as

k∗c = − 2

n
ln r+c0+c1r

2+c2r
4+c3 (ln r)−1+O

(
r2s

(ln r)−t

)
, as r → 0 for s+t > 1.

According to the algorithm, the constants Ak have the form

Ak = (ln r)−1

(
c4 +O

(
r2s

(ln r)−t

))
.

The ψlk are involved into k∗c with r2l; hence, we need to calculate ψ1k up
O(r2) and ψ2k up O(r0).

We now proceed to write the algorithm to calculate the ψlk from (3.12),
i.e., we write (3.12) in a discrete form. The coefficients ψ1k and ψ2k have to
be calculated separately. We select the terms with (z − ak)1 in (3.12)

ψ
(p)
1k =

n∑

m6=k

N∑

l=2

ψ
(p−1)
lm r2l

mlE
l+1
mk + (4.6)

n∑
m=1

r2
m

(
(S2 + ρmk)ψ

(p−1)
1m + 2πiIm ψ

(p−1)
1m

)
+

+

N/2∑

l=2

ψ
(p−1)
2l−1,kr

4l−2
k (2l − 1)S2l +

1

2π
(S2xk − i (2π − S2) yk) +

13



1

2πn

n∑

m6=k
ζmk +

n∑

m6=k
A(p)
m (ζmk + akρmk) +

A
(p)
k ak
r2
k

.

Let us note that ψ1k enters with the factor r2
k. Hence, the term A

(p)
k akr

−2
k

from (4.6) contains a removable singularity at rk = 0. Selecting the terms
with (z − ak)s in (3.12), we obtain

ψ
(p)
sk = (−1)s+1

n∑

m6=k

N∑

l=1

ψ
(p−1)
lm r2l

mC
s
l+s−1E

l+s
mk− (4.7)

N∑

l=1

ψ
(p−1)
l,k r

4(l−1)
k Cs

l+s−1Sl+s−fsk +
n∑

m=1

A(p)
m wms, k = 1, 2, ..., n; s = 2, 3, 4, ... ,

where

wms =
1

s!
[lnσ (z − am) + amζ (z − am)](s)z=ak if m 6= k,

wms =
1

s!

[
ln
σ (z − ak)
z − ak + ak

(
ζ (z − ak)− 1

z − ak

)](s)

z=ak

if m = k.

Here (s) is the derivative of order s, Ck
n = n!

k!(n−k)!
.

5 Discrete lower-order formulae for the effec-

tive permeability

5.1 Non equal radii

The algorithm derived in the previous section is used to calculate an analytic
expression of k∗c by symbolic calculation of the coefficients of the series (4.5)
corresponding to constants and quasi-constants, (ln rk)

−1 , πr2
k and (πr2

k)
2
.

We also calculate the terms of the type c (πr2
k)

2
, where c is a quasi-constant.

In the present section the symbol ,,≈ “ is employed in equalities with an
appropriate accuracy. Final formulae use integrals which were calculated
analytically in the Appendix for the square cell (α = 1).

Introduce the values

ck0 := − 1

4π

(
S2x

2
k + (2π − S2) y2

k

)
+

1

2πn

n∑

m6=k
σmk, k = 1, 2, ..., n, (5.1)

which appear in the expression

Re f (ak) = ck0 +
1

2πn
ln rk − r2

k

4
.
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Formula (4.1) can be expressed as

k∗c = −I1 +
2

n

n∑

k=1

Jk − 4π
n∑

k=1

AkTk − 4πI1
3 − 4πI2

3 , (5.2)

where I1 is given by (10.1) - (10.2),

2

n

n∑

k=1

Jk ≈ π

n

n∑

k=1

|ak|2 + 2T (0)− 2

n

n∑

k=1

n∑

m6=k
πr2

mσmk +
1

n

n∑

k=1

πr2
k, (5.3)

Tk := Jk +Re [akYk] ≈ 2T (0)− π

2
|ak|2 , (5.4)

The term T (0) ≈ −1.048576 according to (10.4).
We introduce (10.5) into (5.3) and omit the term πr2

k ln rk in (5.3) which
is reduced with the same term in 4πI1

3 . Hence,

I1
3 = q

(
1−

n∑

k=1

πr2
k

)
,

I2
3 ≈ −

n∑
m=1

[
r2
mRe (ψ1mF

m
1 ) + r4

mRe (ψ2mF
m
2 )
]

+ 2
n∑

k=1

πr2
kykIm ψ1k,

where

q ≈ L

2π
+ L

n∑

k=1

ck0

ln rk
− L

4π

n∑

k=1

πr2
k

ln rk
+ L

n∑

k=1

Ψk

ln rk
, (5.5)

Ψk =
n∑

m6=k

[
r2
mRe

(
ψ

(1)
1mζmk

)
+ r4

mRe
(
ψ

(0)
2mρmk

)]
+S2

n∑
m=1

r4
mRe ψ

(0)
1m− (5.6)

n∑
m=1

r2
m

(
S2Re

(
ψ

(0)
1m (ak − am)

)
+ 2πxkIm ψ

(0)
1m

)
,

Fm
1 has the form (10.7), Fm

2 ≈ π. Here, the formulae (10.7) - (10.9) are used
with a given accuracy. According to the general algorithm, the coefficients
ψlm are needed in the form

ψ
(1)
1m ≈ ψ̃

(−1)
1m r2

m ln−1 rm + ψ̃
(0)
1m + ψ̃

(1)
1mr

2
m, ψ

(2)
2m ≈ ψ̃

(0)
2m,

where ψ̃
(j)
lm does not depend on r2

k. We have to calculate Ak and q using only
one iteration in Step 2 from Section 3. Tedious calculations imply

Ak ≈ 1

2πn

(
1− nL

ln rk

)
+

(
ck0 − L

n∑
m=1

cm0

ln rm

)
1

ln rk
. (5.7)
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The formulae (4.6), (4.7) yield the required approximation for ψ1k and ψ2k

ψ
(0)
1k =

1

2π
(S2xk − i (2π − S2) yk)− 1

2πn

n∑

m6=k
ζmk, ψ

(0)
2k =

S2 − π
4π

+
1

4πn

n∑

m6=k
ρmk,

(5.8)

ψ
(1)
1k =

n∑

m6=k
ψ

(0)
2mr

4
m2E3

mk+
n∑

m=1

r2
m

(
S2Re ψ

(0)
1m − i (2π − S2) Im ψ

(0)
1m

)
+ψ

(0)
1k , k = 1, 2, ..., n.

We have presented k∗c in the form (5.2), where I1 is given by (10.2), the sum
2
n

∑n
k=1 Jk by (5.3), and so on (see formulae (5.3) - (5.6)). Let us write k∗c in

the extended form for the square array

k∗c ≈ −2L+ c0 + c1 + c2 + c3, (5.9)

where c0 contains constants and quasi-constants, c1 - logarithms, c2 - the
terms πr2

k, c3 - the terms πr2
kπr

2
m.

These four values can be represented as

c0 = −π
6

+
π

n

n∑

k=1

|ak|2 + 2T (0)− 4πL
n∑

k=1

ck0

ln rk
, (5.10)

where the constants ck0 are given by (5.1). Moreover,

c1 = −4π
n∑

k=1

Ak

[
2T (0)− π

2
|ak|2

]
− 4πq (5.11)

where Am is given by (5.7), and q by (5.5). Then,

c2 = −π
n∑

k=1

πr2
k |ak|2 −

2

n

n∑

k=1

n∑

m6=k
πr2

mσmk +
1

n

n∑

k=1

πr2
k−

4πL
n∑

k=1

1

ln rk

(
−r

2
k

4
+ Ψ

(0)
k

)
+ 4π

n∑

k=1

πr2
kL

n∑

k=1

ck0

ln rk
− (5.12)

2π
n∑

m=1

r2
mRe

[
am

(
πam − 1

n

n∑

m6=k
ζmk

)]
,

where

Ψ
(0)
k =

n∑

m6=k
r2
mRe

[
1

2

(
am − 1

n

n∑

l 6=m
ζlm

)
E1
mk

]
.
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Finally,

c3 =
1

2

n∑

k=1

(
πr2

k

)2
+4π

n∑
m=1

[
r2
m

(
Re ψ

(1)
1m

(
πam +

n∑
s=1

πr2
s (ζsm − (am − as))

))
−

πr4
mRe ψ

(0)
2m

]
− 8π

n∑

k=1

πr2
kyk

n∑

k=1

πr2
kIm ψ

(0)
1k ,

where ψ
(j)
1k , ψ

(0)
2k have the forms (4.6) and (4.7), respectively. In this paper,

the arguments of the elliptic functions are the differences ak − am. For the
sake of brevity, we introduce the following notations

σmk := ln |σ (ak − am)| , ζmk := ζ (ak − am) , ηmk := σmk − akζmk,

ρmk := P (ak − am) , El
mk := El (ak − am) . (5.13)

5.2 Equal radii

Let us consider the case where rk = r for each k = 1, 2, ..., n and the square
array. The formulae from the previous sections become

k∗c ≈ −
2

n
ln r + c0

0 + c0
1

n

ln r
+ c0

2nπr
2 + c0

3

(
nπr2

)2
. (5.14)

The coefficients of the various terms ln r and φ := nπr2 of (5.14) are given
by

c0
0 = −π

6
+ 2T (0)− 2

n

n∑

k=1

n∑

m6=k
σmk, (5.15)

c0
1 = −4π

n

n∑

k=1

Bk

[
2T (0)− π

2
|ak|2

]
, (5.16)

where

Bk = ck0 − 1

n

n∑
m=1

cm0.

We have

c0
2 =

π

n

n∑

k=1

|ak|2 − 2

n2

n∑

k=1

n∑

m6=k
σmk +

2

n
−

2

πn2

n∑

k=1

n∑

m6=k
Re

[(
πak − 1

n

n∑

s 6=m
ζmk

)
E1
mk

]
+ (5.17)
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4π

n

n∑

k=1

ck0 +
2

n

n∑

k=1

Re

[
ak

(
πak − 1

n

n∑

m6=k
ζmk

)]
,

c0
3 =

1

2n
+

4

n2

n∑
m=1

n∑
s=1

Re
[
amπψ

0
1m

]
+

4

n2

n∑
m=1

Re
[
amψ

(0)
1m

]
+

4

n2

n∑
m=1

Re ψ
(0)
2m,

(5.18)

where ψ
(0)
1k and ψ

(0)
2k given by (4.6) and (4.7), respectively. This completes

the terms in (5.14).
Hence, the great advantage of the method of functional equations is visible

in formula (5.14), since as claimed at the beginning, the coefficients have
explicit expressions (5.15) - (5.18) as functions of the centers ak.

6 Statistical lower-order formulae for the ef-

fective permeability

The formulae derived in the previous section admit a statistical interpreta-
tion. Let us consider (5.9) and (5.14) from the statistical point of view. If the
number of holes is sufficiently large, we may suppose that the centers of holes
ak and the radii of holes rk are distributed according to given distribution
functions. For the sake of simplicity, we assume that the distributions of ak
and rk are independent. Let us introduce the distribution measures dχ(z)
defined in Q(0,0) for ak and dη(r) defined in (0,+∞) for rk. For instance,

∫
G

dχ denotes the probability that n |G| points ak are in the domain G ⊂ Q(0,0).
recall that

∣∣Q(0,0)

∣∣ = 1. Since dη(r) does not depend on dχ(z), it gives the
distribution of the radii rk. In particular the normalization conditions hold,
i.e., ∫ +∞

0

dη(r) = 1,

∫

Q(0,0)

dχ(z) = 1

We stress here that only non-overlapping discs are considered. Therefore,
the distribution dχ(z) must satisfy some conditions. For instance, in Section
9 we discuss an example where each center ak may be shifted within in a
prescribed region and where each rk is bounded by a fixed value.

Let us study the form of k∗c by calculating the statistical average

〈k∗c 〉 =

∫ +∞

0

dη(r)

∫

Q(0,0)

k∗cdχ(z). (6.1)

Here we assume that the measures dχ and dη are such that the integral
(6.1) converges. Because of the independence of the measures dχ and dη, we
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separately calculate the statistical average of the coefficients of (4.5) by the
measure dχ(z) and the statistical average of the basis functions L, LΘs1...sn

t1...tn .
(4.5) yields

〈k∗c 〉 =

[∫ +∞

0

Ldη(r)

]
−2 +

∑
sj ,tj

[∫ +∞

0

Θs1...sn
t1...tn dη(r)

] [∫

Q(0,0)

k∗
[
s1...sn
t1...tn

]
dχ(z)

]
 .

(6.2)
Define

R(s,m) :=

∫ +∞

0

r2s ln−m rdη(r), s = 0, 1, ...; m = 0, 1, ... . (6.3)

Then ∫ +∞

0

Ldη(r) = [nR(0, 1)]−1 .

Using (4.4) we have

∫ +∞

0

Θs1...sn
t1...tn dη(r) = R(s1, t1)R(s2, t2)...R(sn, tn). (6.4)

6.1 Equal radii

First, we consider the discrete formula (5.14) for equal radii and derive 〈k∗c 〉
in this case with an appropriate accuracy. We have

〈k∗c 〉 = − 2

nR(0, 1)
+ 〈c0〉+ 〈c1〉nR(0, 1) + 〈c2〉φ+ 〈c3〉φ2, (6.5)

where 〈cj〉 is the statistical average of c0
j . Considering sums in c0

j as Rieman-
nian sums of integrals, we obtain

〈c0〉 = −π
6

+ 2T (0)− 2

∫

Q(0,0)

∫

Q(0,0)

ln |σ (z − w)| dχwdχz, (6.6)

where as always z = x + iy. Introduce the function B(x, y) := c(x, y) −∫
Q(0,0)

c(x, y)dχ.Application of the relations E1 (z) = ζ (z)−S2z and
∫
Q(0,0)

B(z)dχ =

0 yields

〈c1〉 = −π
∫

Q(0,0)

B(x, y)
(
x2 + y2

)
dχ. (6.7)

The two next coefficients are

〈c2〉 = π

∫

Q(0,0)

(
x2 + y2

)
dχ− 2

∫

Q(0,0)

∫

Q(0,0)

ln |σ (z − w)| dχzdχw−
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2

π

∫

Q(0,0)

∫

Q(0,0)

Re

[(
πz −

∫

Q(0,0)

ζ(w − ς)dχζ
)

(ζ(z − w)− π(z − w))

]
dχzdχw+

(6.8)

4π

∫

Q(0,0)

c(x, y)dχ+ 2

∫

Q(0,0)

Re

[
z

(
πz −

∫

Q(0,0)

ζ(z − w)dχw

)]
dχz.

〈c3〉 = 2π

∫

Q(0,0)

Re

[
z

(
z − 1

π

∫

Q(0,0)

ζ(z − w)dχw

)]
dχz, (6.9)

Let us note that n tends toward +∞ in the calculations of 〈cj〉 ; R(0, 1) tends
to zero if n → +∞ (or r → 0). Hence, the undetermined term nR(0, 1) in
(6.5) should be calculated, i.e., the relation between n and R(0, 1) should be
precisely described in each particular case.

The formula (6.5) can be considered as the average value of k∗c for a
given distribution dχ. It gives a good estimation if the number of holes n
is sufficiently large, or more precisely, if the Riemannian sums from (5.15) -
(5.18) provide good approximations of the integrals from (6.6) - (6.9). Here,
we are close to the question of substituting an ensemble of holes by a large
hole, but we shall not discuss it; in a sense, it is directly related to the
approximation of the Riemannian sums by the corresponding integrals.

6.2 Non equal radii

We now proceed to study the case of different radii rk. It follows from (5.10)
that 〈c0〉 contains in addition to some constants the term

−4π
1

nR(0, 1)

n∑

k=1

ck0

∫ +∞

0

dη (rk)

ln rk
= −4π

n

n∑

k=1

ck0.

One can see that the result does not depend on rk and dη (r). Hence, 〈c0〉
has the same form (6.6) as in the case of equal radii. Along similar lines, we
calculate the term 〈c1〉 corresponding to c1 from (5.11). First, we calculate
the statistical average

〈
1

n

n∑

m6=k

cm0

ln rm

1

ln rk
+

ck0

n ln2 rk

〉
= R2(0, 1)

〈
1

n

n∑

m6=k
cm0

〉
+
〈ck0

n

〉
R(0, 2),

where the statistical average in the left-hand part is determined with the
measure dη(r)dχ(z) and the statistical average in the right-hand part is de-
termined with dχ(z). After calculation of the statistical average with dχ (z)
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(n→ +∞), the term
〈
ck0

n

〉
R(0, 2) vanishes. Then, the statistical average of

Ak from (5.7) can be calculated as in the case of equal radii

〈Ak〉 ≈
〈
ck0 − 1

n

n∑
m=1

cm0

〉
R(0, 1).

The statistical average of q from (5.5) becomes

〈q〉 ≈ 1

2πnR(0, 1)
+

〈
1

n

n∑
m=1

cm0

〉
− R(1, 1)

4πR(0, 1)
. (6.10)

Here, the difference between the cases of equal and non-equal radii can be
clearly seen. For equal radii, the term R(1,1)

R(0,1)
in (6.10) is replaced by R(1, 0).

Therefore, the first two terms of (6.5) are valid for different radii; the next
terms are changed as it is shown.

In general, an average value can be very different from the value obtained
for a typical realization and it can be estimated by the standard deviation
which can be expressed by

D(vk) =
1

n

n∑

k=1

(
v2
k − ṽ2

)
,

where ṽ := 1
n

∑n
k=1 vk. The statistical average is

〈D(vk)〉 =

∫

Q(0,0)

v2(x, y)dχ−
(∫

Q(0,0)

v(x, y)dχ

)2

with an appropriate function v(x, y) corresponding to vk. The standard de-
viation of k∗c can be derived as follows

〈
(k∗c )

2 − 〈k∗c 〉2
〉

=

〈
L2


−2 +

∑
sj ,tj

k∗
[
s1...sn
t1...tn

]
Θs1...sn
t1...tn




2〉
− 〈k∗c 〉2 ,

where 〈k∗c 〉 is calculated with (6.2).

7 Lognormal distribution of the radii

In the previous section, we discuss the general distribution dη of the radii,
when 0 < r < +∞. When a distribution dη is truncated above rmax, a new
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renormalized distribution dγ is defined in such a way that dγ = dη
[∫ rmax

0
dη
]−1

.
rmax verifies the following normalization equation

∫ rmax

0

πr2dγ =
φ

n

∫ rmax

0

dγ, (7.1)

where φ and n are the concentration of the holes and the number of inclusions,
respectively.

The most important distribution is the lognormal distribution for which

dγ(r) =
α

r
exp

[
−(ln r − µ)2

2s2

]
dr,

where α, µ and s are given non-negative parameters. Then (7.1) becomes

φ

πn
=

∫ rmax

0
r exp

[
− (ln r−µ)2

2s2

]
dr

∫ rmax

0
r−1 exp

[
− (ln r−µ)2

2s2

]
dr
. (7.2)

If 0 < rmax << 1, we propose an asymptotic formula for rmax.
We shall use the standard error function

erf (u) :=
2√
π

∫ u

0

e−t
2

dt

which satisfies the properties erf (0) = 0, erf (+∞) = 1. Put p :=
φ
πn
, x0 := X+µ√

2s
, X := − ln rmax. The integrals from (7.2) are transformed

by substituting t = − ln r as follows

∫ rmax

0

r−1 exp

[
−(ln r − µ)2

2s2

]
dr =

√
2πs [1− erf (x0)] ,

∫ rmax

0

r exp

[
−(ln r − µ)2

2s2

]
dr = e−2(µ+s2)

√
2πs

[
1− erf

(
x0 +

√
2s
)]
.

Substitution of these expressions in (7.2) yields the following number equa-
tion for x0

pe2(µ+s2) =
1− erf (x0 +

√
2s
)

1− erf (x0)
. (7.3)

One can solve this equation numerically. However, when rmax is small, we
can deduce an approximate analytical formula for x0. Using the asymptotic
relation

erf (x) v 1− 1√
πx
e−x

2

, as x→ +∞
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since erf (x)− 1 is odd, we obtain the following equation

pe2(µ+s2) =
x0

x0 −
√

2s

and the desired formula for the maximal radius

rmax = exp

[
µ+

pe2(µ+s2)

1− pe2(µ+s2)

]
. (7.4)

As we saw in Section 4, the basic functions of the statistical representation
(6.5) contain R (k,m). We now try to estimate R (k,m) defined by (6.3) for
a lognormal distribution

R (k,m) = α

∫ rmax

0

r2k−1

lnm r
exp

[
−(ln r − µ)2

2s2

]
dr. (7.5)

The substitution −t = ln r transforms (7.5) into

R (k,m) = −
∫ +∞

X

e(t)t−mdt, (7.6)

where e(t) := α exp
[
− (t+µ)2

2s2
− 2kt

]
, X := − ln rmax. The integral (7.6) is

correctly defined as an improper one, since X > 0 and it decreases exponen-
tially at infinity. Integrate R (k,m) by parts

R (k,m) =
1

1−mX1−me(X) +
1

1−m
∫ +∞

X

e/(t)t1−mdt,

where m > 1, e/(t) = −
(

(t+µ)2

2s2
+ 2kt

)
e(t). We have

R (k,m) =
1

1−mX1−me(X)+
1

(1−m) s2
R (k,m− 2)+

µs−2 + 2k

(1−m) s2
R (k,m− 1) .

(7.7)
Hence, we obtain the recursive formula (7.7) for R (k,m). Therefore, it is
sufficient to calculate R (k, 0) and R (k, 1) in order to determine R (k,m) for
an arbitrary m by (7.7).

The integral R (1, 0) has been considered in relation with equation (7.2).
Along similar lines, we obtain

R (k, 0) = α

√
π

2
s exp

[
2kµ+ 2s2k2

] [
1− erf

(
X + µ√

2s
+
√

2ks

)]
. (7.8)
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The following integral requires a more complicated investigation

R (k, 1) = −
∫ +∞

X

e(t)t−1dt.

As for m > 1, integrate by parts

R (k, 1) = e(X) lnX +

∫ +∞

X

ln t e/(t)dt.

Using the identity (see, for instance, the program MATHEMATICA)

∫ +∞

0

ln t e/(t)dt = 0 (7.9)

we obtain

R (k, 1) = e(X) lnX −
∫ X

0

ln t e/(t)dt.

It follows from (7.9) that the latter integral tends to zero as X → +∞ (or
rmax → 0). If X → 0(or rmax → 1), this integral also tends to zero. Its
extremum is attached at the point X = 1. Investigate R (k, 1) as a function
of X. We have R/ (k, 1) = X−1e(X) > 0 for X > 0 and R// (k, 1) < 0 for
X > 0. Hence, the function R (k, 1) as a function of X increases from −∞
for X = 0 to zero for X = +∞, and it is convex. Near X = 0 the function
R (k, 1) is similar to lnX. We are interested by the behavior of R (k, 1) for
large X. Application of de l’Hospital’s rule yields the relation

lim
X→+∞

R (k, 1)

− s2

X2 e(X)
= 1.

Therefore, the following asymptotic formula is valid

R (k, 1) v − αs2

ln2 rmax

exp

[
−(ln rmax − µ)2

2s2
− 2k ln rmax

]
(7.10)

for small positive rmax.
Thus, in order to calculate the basic functions (6.4) from (6.2) for the

lognormal distribution we putR (k, 0) andR (k, 1) from (7.8) and (7.10), after
calculation of arbitrary R (k,m) by the recurrent formula (7.7). Moreover,
in these calculations, we assume that rmax has the form (7.4).
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8 Numerical results and conclusion

In the present paper, we were mainly concerned with the theoretical inves-
tigation of the longitudinal permeability of unidirectional circular cylinders.
An iterative convergent algorithm based on the method of functional equa-
tions was derived. We showed that the coefficient k∗c has the general form
(4.5). In particular we deduced the discrete lower-order formulae (5.9), (5.14)
and the statistical average (6.5). We discussed in detail the lognormal distri-
bution of the radii; namely, formula (7.4) for the maximal radius is deduced
and a simple recurrent algorithm (7.7), (7.8), (7.10) is given for the basic
functions (4.5).

Let us provide some examples demonstrating the possibilities of this
method. The computations were performed by A.E. Malevich.

In the first example, the unit cell contains 64 holes as displayed in Figure
2a. The position of each disc is obtained by a random deviation of the regular
array displayed in Figure 2b. A formula for k∗c for the regular array is given
by Mityushev&Adler (2000). For the cell displayed in Figure 2, we have

k∗c = −0.015625 lnφ− 0.0171142 + 0.36682φ+ (8.1)

0.00446609φ2 − 0.0879461φ3 + 0.135427φ4 − 0.0617604φ5,

where φ is the area fraction of holes. Formula (8.1) is calculated with the
accuracy divisor r10 ln0 r (see Section 4) and it is illustrated in Figure 3.

In the second example, we consider a set of 8 unit cells each of them
containing 16 holes (see Figure 4). The first cell contains a regular array of
cylinders for which

kreg = −0.0625 lnφ−0.0922513 + 0.125φ−0.03125φ2−0.00318571φ4. (8.2)

Formula (8.2) is taken from Mityushev&Adler (2000) dividing by 16 the
corresponding formula for a regular array of cylinders. The formulae for the
permeabilities of eight k∗c which are denoted as k1, ..., k8 have the form

k1 = −0.0625 lnφ− 0.0625551 + 0.0242069φ+ 0.178599φ2− (8.3)

0.325235φ3 + 1.12016φ4 − 1.25773φ5+

0.171063− 0.397395φ+ 0.469457φ2 − 0.911992φ3 + 1.77234φ4

−3.91732 + lnφ
,

k2 = −0.0625 lnφ− 0.045064 + 0.470861φ− 1.02981φ2+

1.88933φ3 − 2.44339φ4 + 2.18095φ5+
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−0.79148 + 1.46906φ− 2.44339φ2 + 4.90246φ3 − 8.02338φ4

−3.91732 + lnφ
,

k3 = −0.0625 lnφ− 0.0655803 + 0.275642φ− 0.400689φ2+

0.49855φ3 − 0.474074φ4 + 0.758116φ5+

−0.357906 + 0.672457φ− 0.647307φ2 + 0.00195946φ3 + 2.34301φ4

−3.91732 + lnφ
,

k4 = −0.0625 lnφ− 0.0514621 + 0.245081φ− 0.250573φ2−
0.113657φ3 + 0.810208φ4 − 0.437414φ5+

−0.025441 + 0.157152φ− 0.107024φ2 + 0.10414φ3 − 0.109507φ4

−3.91732 + lnφ
,

k5 = −0.0625 lnφ− 0.0532152 + 0.353858φ− 0.626954φ2+

0.378568φ3 − 0.486462φ4 + 2.74329φ5+

−0.928426 + 1.32836φ− 1.45804φ2 + 1.55225φ3 − 4.92257φ4

−3.91732 + lnφ
,

k6 = −0.0625 lnφ− 0.0482648 + 0.225533φ− 0.698149φ2+

1.43239φ3 − 1.94397φ4 + 2.07924φ5+

−0.100747 + 0.231596φ− 1.73211φ2 + 4.76384φ3 − 9.622φ4

−3.91732 + lnφ
,

k7 = −0.0625 lnφ− 0.0354179 + 0.182893φ− 0.567517φ2+

2.05524φ3 − 3.83446φ4 + 1.54685φ5+

−0.51629 + 1.04549φ− 0.257221φ2 − 2.96365φ3 + 22.5804φ4

−3.91732 + lnφ
,

k8 = −0.0625 lnφ− 0.0532151 + 0.0706493φ− 0.0320416φ2+

0.864306φ3 + 0.938413φ4 + 3.25426φ5+

−0.327548 + 0.0673839φ− 0.47006φ2 + 6.23122φ3 − 3.37361φ4

−3.91732 + lnφ
.

Formula (8.3) is calculated with the accuracy divisor r10 ln1 r. k∗c is illustrated
in Figure 5. It should be noted that in all our computations the permeability
is minimal for the regular array.

The third example is the finite Sierpinski carpet displayed in Figure 6.
Let us apply to it formula (4.5) in the zero-th approximation

k∗c = −2

(
n∑

k=1

1

ln rk

)
(8.4)
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The construction of the domain D is started from the disc |z| < r. Similitudes
have a contraction ratio equal to 1

3
. The set of first generation is obtained

as the union of the discs |z − a1k| < 1
3
r (k = 1, 2, ..., 8), where a1k are the

centers of first generation. And so on up to the P−th generation consisting
of 8P discs of radius 3−P r. Then (8.4) becomes

k∗c = k∗c (P ) = 2

(
P∑
p=1

1

p− ln 3− ln r

)−1

. (8.5)

Calculations with (8.5) and r = 1
6
, the maximal possible value of r, show

that a := k∗c (P + 1) /k∗c (P ) is closed to 1
8

for sufficiently large P . A similar
flow in the Sierpinski carpet with square holes has been discussed by Adler
(1986) and summarized in Adler (1992). It follows from (5.283a) of Adler
(1992) that k∗c (P ) ∼ aP1 , where a1 = 8/81 = 0.0988. The value of a1 should
be independent of the shape of the inclusions. Hence, the difference between
a and a1 is due to the fact that (8.4) is a zeroth-order approximation.

9 Concluding remarks

The method of functional equations provides a very powerful tool in order
to derive analytical expressions for the longitudinal permeability of spatially
periodic bundles of parallel circular cylinders of arbitrary centers and radii.

A general formula could be obtained which was specialized to a number
of particular cases.

This technique will be extended to the case of transversal flow in a sepa-
rate paper.

10 Appendix. Calculation of integrals

In order to calculate the effective permeability we have to calculate some
double integrals. The integral I1 is expressed as

I1 = I0
1 −

n∑

k=1

Ik1 , (10.1)

where

I0
1 =

∫

Q(0,0)

(
S2x

2 + (2π − S2) y2
)
dσz =

1

12

[
S2α

2 + (2π − S2)α−2
]
, (10.2)
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Ik1 =

∫

Dk

(
S2x

2 + (2π − S2) y2
)
dσz =

[
S2x

2
k + (2π − S2) y2

k

]
πr2

k +
1

2

(
πr2

k

)2
,

where ak = xk + iyk. The integral I0
1 is calculated by an iterative integral, Ik1

by polar coordinates.

Lemma 10.1. Let us consider the domain G which is the rectangle Q(0,0)

without the disc |z| ≤ r. Then

∫

G

P(z)dσz = π − S2.

Proof. We apply the following form of the Green’s formula
∫

G

F ′(z)dσz =
i

2

∫

∂G

F (t)dt

with F ′(z) = P(z) and F (z) = −ζ(z). Then we have

∫

G

P(z)dσz =
i

2

∫

∂Q(0,0)

ζ(t)dt− i

2

∫

|t|=r
ζ(t)dt.

We calculate the first integral

i

2

∫

∂Q(0,0)

ζ(t)dt =
1

2

∫

∂Q(0,0)

[−Re ζ(t)dy + Im ζ(t)dx+

iRe ζ(t)dx− iIm ζ(t)dy].

Using Mityushev&Adler (2000) we calculate

∫

∂Q(0,0)

Re ζ(t)dy = S2,

∫

∂Q(0,0)

Im ζ(t)dx = 2π − S2,

∫

∂Q(0,0)

Re ζ(t)dx =

∫

∂Q(0,0)

Im ζ(t)dy = 0.

By residua we also have

∫

|t|=r
ζ(t)dt =

∫

|t|=r
ζ

(
r2

t

)
dt = 0

Hence, ∫

G

P(z)dσz =
1

2
[−S2 + (2π − S2)] = π − S2.

The lemma is proved.
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Definition 10.2.
∫
Q(0,0)

P(z)dσz := limr→0

∫
G
P(z)dσz = π − S2.

This definition agrees with the v. p. integral.

Corollary 10.3.
∫
Q(0,0)

P(z−w)dσz = π−S2, since P(z) is doubly periodic.

Remark 10.4. For the square array (α = 1), we have
∫

Q(0,0)

P(z)dσz = 0.

We propose the following numerical method for the exact calculation of
the improper integrals

Yk :=

∫

Q(0,0)

ζ(z − ak)dσz, Jk :=

∫

Q(0,0)

lnσ(z − ak)dσz.

Using the jump relation for σ(z) and Green’s formula
∫

G

∂Q

∂x
dσz =

∫

∂G

Qdy

we can conclude that Yk is a linear function in Re ak and Im ak, and that Jk
is a square polynomial on Re ak and Im ak. Applying the method of least
squares for the square array (α = 1), we obtain the relations

Yk = −πak, Jk = T (0) +
π

2
|ak|2 , (10.3)

where

T (0) :=

∫

Q(0,0)

lnσ(z)dσz ≈ −1.048576. (10.4)

Then the integrals (4.2) are calculated by the formulae

Jk = Jk −
∑

m6=k
πr2

mσmk +
πr2

k

2
− πr2

k ln rk, Yk = Yk −
∑

m6=k
πr2

mζmk. (10.5)

Here, we use the integral
∫

Dk

Re [lnσ(z − ak)] dσz = −πr
2
k

2
+ πr2

k ln rk,

which was calculated by Mityushev&Adler (2000) and the mean value theo-
rem of the harmonic function theory. It is written as follows

∫

|z−a|<r
F (z)dσz = πr2F (a), (10.6)
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where the function F (z) is harmonic in |z − a| < r and continuous in |z − a| ≤
r.

The integral F k
1 is defined and expressed as follows

F k
1 :=

∫

D

E1(z − ak)dσz =

∫

D

ζ(z − ak)dσz − S2

∫

D

(z − ak)dσz =

∫

Q(0,0)

ζ(z − ak)dσz −
n∑

m=1

∫

Dm

ζ(z − ak)dσz − S2

∫

D

(z − ak)dσz.

We have
∫
Dm

ζ(z − ak)dσz = −πr2
mζmk, where ζmk := ζ(ak − am) for m 6= k

and ζkk := 0. We calculate by using (10.6)

∫

D

(z−ak)dσz =

∫

Q(0,0)

(z−ak)dσz−
n∑

m=1

∫

Dm

(z−ak)dσz = −ak+
n∑

m=1

πr2
m(ak−am)

Then

F k
1 = 2πiIm ak +

n∑
m=1

πr2
m [ζmk − (ak − am)] . (10.7)

Let us also calculate

F k
2 :=

∫

D

E2(z − ak)dσz =

∫

D

P(z − ak)dσz + S2

∫

D

dσz =

∫

Q(0,0)

P(z−ak)dσz−
n∑

m=1

∫

Dm

P(z−ak)dσz+S2 |D| = π−
n∑

m=1

πr2
mρmk−S2

n∑
m=1

πr2
m.

(10.8)
For the square array, (10.6) becomes

F k
2 = π −

n∑
m=1

πr2
m (π + ρmk) . (10.9)

Along similar lines, we have

F k
l :=

∫

D

El(z−ak)dσz =

∫

Q(0,0)\D
El(z−ak)dσz−

n∑

m6=k

∫

Dk

El(z−ak)dσz, l = 3, 4, ... .

We use the periodicity of El and the following formula from Mityushev&Adler
(2000) ∫

Q(0,0)\U
El(z)dσz = −πr2Sl,
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where U = {z ∈ C : |z| < r} . Then (10.6) yields

F k
l = −πr2

kSl −
n∑

m6=k
(−1)lEl

mkπr
2
m. (10.10)

where El
mk := El(ak − am).

(10.6) yields the following integral

∫

D

ydσz =
n∑

m=1

πr2
mym. (10.11)
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Figure 1: Unit cell of size (α, 1/α)
Figure 2: Random cell (a) and regular cell (b) with 64 discs
Figure 3: The effective permeability k∗c as function of the solid concen-

tration for the configurations displayed in Figure 2
Figure 4: Regular cell and eight random cells with 16 discs
Figure 5: The effective permeability k∗c for the configurations displayed

in Figure 4
Figure 6: Sierpinski carpet with circular discs
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