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ABSTRACT: 
 
Background: Changes in autonomic nervous system function, characterized by heart 

rate variability (HRV), have been associated with and observed prior to the clinical 

identification of infection. We performed an evaluation of this metric collected by 

wearable devices, to identify and predict Coronavirus disease 2019 (COVID-19) and its 

related symptoms.  

Methods: Health care workers in the Mount Sinai Health System were prospectively 

followed in an ongoing observational study using the custom Warrior Watch Study App 

which was downloaded to their smartphones. Participants wore an Apple Watch for the 

duration of the study measuring HRV throughout the follow up period. Survey’s 

assessing infection and symptom related questions were obtained daily.  

Findings: Using a mixed-effect COSINOR model the mean amplitude of the circadian 

pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), 

a HRV metric, differed between subjects with and without COVID-19 (p=0.006). The 

mean amplitude of this circadian pattern differed between individuals during the 7 days 

before and the 7 days after a COVID-19 diagnosis compared to this metric during 

uninfected time periods (p=0.01). Significant changes in the mean MESOR and 

amplitude of the circadian pattern of the SDNN was observed between the first day of 

reporting a COVID-19 related symptom compared to all other symptom free days 

(p=0.01).  

Interpretation: Longitudinally collected HRV metrics from a commonly worn commercial 

wearable device (Apple Watch) can identify the diagnosis of COVID-19 and COVID-19 

related symptoms. Prior to the diagnosis of COVID-19 by nasal PCR, significant 

changes in HRV were observed demonstrating its predictive ability to identify COVID-19 

infection.  

Funding: Support was provided by the Ehrenkranz Lab For Human Resilience, the 

BioMedical Engineering and Imaging Institute, The Hasso Plattner Institute for Digital 

Health at Mount Sinai, The Mount Sinai Clinical Intelligence Center and The Dr. Henry 

D. Janowitz Division of Gastroenterology. 
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INTRODUCTION 

 

Coronavirus disease 2019 (COVID-19) has resulted in over 41 million infections and 

more than 1.1 million deaths.1 A prolonged incubation period and variable 

symptomatology has facilitated disease spread, with approximately 30-45% of 

individuals having asymptomatic SARS-CoV-2 infections, and testing generally limited 

to only symptomatic individuals.2-4 Health care workers (HCWs), characterized as any 

type of worker in a health care system, represent a vulnerable population with a 

threefold increased risk of infection compared to the general population.5 This increased 

risk of transmission is important in healthcare settings, where asymptomatic or pre-

symptomatic HCWs can shed the virus contributing to transmission within healthcare 

facilities and their households.6  

 

Digital health technology offers an opportunity to address the limitations of traditional 

public health strategies aimed at curbing COVID-19 spread.7 Smart phone Apps are 

effective in using symptoms to identify those possibly infected with SARS-CoV-2, but 

they rely on ongoing participant compliance and self-reported symptoms.8 Wearable 

devices are commonly used for remote sensing and provide a means to objectively 

quantify physiological parameters including heart rate, sleep, activity and measures of 

autonomic nervous system (ANS) function (e.g., heart rate variability [HRV]).9 The 

addition of physiological data from wearable devices to symptom tracking Apps has 

been shown to increase the ability to identify those infected with SARS-CoV-2.10  

 

HRV is a physiological metric providing insight into the interplay between the 

parasympathetic and sympathetic nervous system which modulate cardiac contractility 

and cause variability in the beat-to-beat intervals.11 It exhibits a 24 hour circadian 

pattern with relative sympathetic tone during the day and parasympathetic activity at 

night.12-14 Changes in this circadian pattern can be leveraged to identify different 

physiological states. Several studies have demonstrated that lower HRV, indicating 

increased sympathetic balance, is a reliable predictor of infection onset.15,16 However, 

HRV and its dynamic changes over time have not been evaluated as a marker or 
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predictor of COVID-19. In response to the COVID-19 pandemic we launched The 

Warrior Watch Study™, employing a novel smartphone App to remotely enroll and 

monitor HCWs throughout the Mount Sinai Health System in New York City, a site of 

initial case surge. This digital platform enables remote survey delivery to Apple iPhones 

and passive collection of Apple Watch data, including HRV. The aim of this study is to 

determine if SARS-CoV-2 infections can be identified and predicted prior to a positive 

test result using the longitudinal changes in HRV metrics derived from the Apple Watch. 

 

METHODS 

 

Study Design 

  

The primary aim of the study was to determine whether changes in HRV can 

differentiate participants infected or not infected with SARS-CoV-2. The secondary aim 

was to see if changes in HRV can predict the development of a SARS-CoV-2 infection 

prior to diagnosis by a SARS-CoV-2 nasal PCR. Exploratory aims were (1) to determine 

whether changes in HRV can identify the presence of COVID-19 related symptoms; (2) 

to determine whether changes in HRV can predict the development of COVID-19 

related symptoms; and (3) to evaluate how HRV changed throughout the infection and 

symptom period.  

 

HCWs in the Mount Sinai Health System were enrolled in an ongoing prospective 

observational cohort study. Eligible participants were ≥18 years of age, current 

employees in the Mount Sinai Health System, had an iPhone Series 6 or higher, and 

had or were willing to wear an Apple Watch Series 4 or higher. Participants were 

excluded if they had an underlying autoimmune disease or were on medications known 

to interfere with ANS function. A positive COVID-19 diagnosis was defined as a positive 

SARS-CoV-2 nasal PCR swab reported by the participant.  Daily symptoms were 

collected including fevers/chills, tired/weak, body aches, dry cough, sneezing, runny 

nose, diarrhea, sore throat, headache, shortness of breath, loss of smell or taste, itchy 
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eyes, none, or other. This study was approved by the Institutional Review Board at The 

Icahn School of Medicine at Mount Sinai.  

 

Study Procedures 

 

Participants downloaded the custom Warrior Watch App to complete eligibility 

questionnaires and sign an electronic consent form. Participants completed an App-

based baseline assessment collecting demographic information, prior COVID-19 

diagnosis history, occupation, and medical history and were then followed prospectively 

through the App. Daily survey questionnaires captured COVID-19 related symptoms, 

symptom severity, SARS-CoV-2 nasal PCR results, serum SARS-CoV-2 antibody test 

results, and daily patient care related exposure (Supplementary Table 1). Participants 

carried out their normal activities throughout the study and were instructed to wear the 

Apple Watch for a minimum duration of 8 hours per day.  

 

Wearable Monitoring Device and Autonomic Nervous System Assessment 

 

HRV was measured via the Apple Watch Series 4 or 5, which are commercially 

available wearable devices. Participants wore the device on the wrist and connected it 

via Bluetooth to their iPhone. The Watch is equipped with an enhanced 

photoplethysmogram (PPG) optical heart sensor that combines a green LED light paired 

with a light sensitive photodiode generating time series peaks that correlate with the 

magnitude of change in the green light generated from each heartbeat.17 Data are 

filtered for ectopic beats and artifact. The time difference between heartbeats is 

classified as the Interbeat Interval (IBI) from which HRV is calculated. The Apple Watch 

and the Apple Health app automatically calculate HRV using the standard deviation of 

the IBI of normal sinus beats (SDNN), measured in milliseconds (ms). This time domain 

index reflects both sympathetic and parasympathetic nervous system activity and is 

calculated by the Apple Watch during ultra-short-term recording periods of 

approximately 60 seconds.11 The Apple Watch generates several HRV measurements 

throughout a 24-hour period. HRV metrics are stored in a locally encrypted database 
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accessible through the iPhone Health app which is retrieved through our custom Warrior 

Watch App. Data is transferred from the iPhone and Apple Watch upon completion of 

the e-consent and any survey in the App. Wearable data is stored locally allowing 

retrieval during the days when surveys are not completed by participants.  

 

Statistical Analysis 

 

Heart Rate Variability Modelling 

 

The HRV data collected through the Apple Watch was characterized by a circadian 

pattern, a sparse sampling over a 24-hour period, and a non-uniform timing across days 

and participants. These characteristics bias easily derived features including mean, 

maximum and minimum creating the need to derive methods that model the circadian 

rhythm of HRV. A COSINOR model was used to model daily circadian rhythm over a 24 

hour period with the non-linear function Y(t) = M+𝐴𝑐𝑜𝑠(2𝜋t/𝜏 + 𝜙) + ei(t) [equation 1], 

where τ is the period (𝜏 =24h), M is the Midline Statistic of Rhythm (MESOR), a rhythm-

adjusted mean, A is the amplitude, a measure of half the extent of variation within a day 

and Φ is the Acrophase, a measure of the time of overall high values recurring in each 

day (Supplementary Figure 1). This non-linear model with 3 parameters has the 

advantage of being easily transformed into a linear model by recoding time (t) into two 

new variables x and z as 𝑥 = sin(2𝜋t/𝜏), 𝑧 = sin(2𝜋t/𝜏). HRV can then be written as 

Y(t)=M+𝛽xt + 𝛾zt + ei(t) [equation 2], where the linear coefficients 𝛽, 𝛾 of the linear 

model in equation 2 are related to the non-linear parameters of the non-linear model in 

equation 1 by 𝛽 = 𝐴𝑐𝑜𝑠(𝜙)   𝛾 = −𝐴𝑠𝑖𝑛(𝜙). One can estimate the linear parameters 𝛽, 𝛾 

and then obtain the A and 𝜙 as:  

       

We took advantage of the longitudinal structure of the data to identify a participant 

specific daily pattern and then measured departures from this pattern as a function of 

COVID-19 diagnosis or other relevant covariates. In order to do so we used a mixed-
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effect COSINOR model, where the HRV measure of participant i at time t can be written 

as HRVit = (M+𝛽.xit + 𝛾.zit ) + 𝑊𝑖𝑡. 𝜃𝑖+ ei(t), ei(t)~N(0,s), and where M, 𝛽 and  𝛾 are the 

population parameters (fixed-effects) and 𝜃i is a vector of random effects and assumed 

to follow a multivariate normal distribution 𝜃 i~N(0,Σ). In this context the introduction of 

random effects intrinsically model the correlation due to the longitudinal sampling. To 

measure the impact of any covariate C on the participants’ daily curve, we can introduce 

such covariates as fixed-effects as its interactions with x and z: HRVit = M+𝑎oCi+(𝛽 +𝑎2Ci).xit + (𝛾 + 𝑎 3Ci. )zit + 𝑊𝑖𝑡. 𝜃𝑖  + ei(t) [equation 3]. Model parameters and the standard 

errors of equation 3 can be estimated via maximum likelihood or reweighted least 

squares (REWL) and hypothesis testing can be carried out for any comparison that can 

be written as a linear function of 𝑎′𝑠, 𝛽 𝑎𝑛𝑑  𝛾 parameters.  

 

However, to test if the COSINOR curve, defined by the non-linear parameters M, A and 𝜙  in equation 1 differs between the populations defined by the covariate C, we 

proposed the following bootstrapping procedure where for each resampling iteration we: 

(1) Fit a linear mixed-effect model using REWL; (2) Estimated the marginal means 

obtaining the linear parameters for each group defined by covariate C; (3) Used the 

inverse relationship to estimate marginal means M, A and 𝜙  for each group defined by 

C; and (4) Defined the bootstrapping statistics as the pairwise differences of M, A and 𝜙   
between groups defined by C. For such iterations, the confidence intervals for the non-

linear parameter was defined using standard bootstrap techniques, as well deriving the 

p-values for the differences of each non-linear parameter between groups defined by Ci. 

Age and sex were included as a covariate in HRV analyses and admitted invariant and 

time-variant covariates. 

 

Association and Prediction of COVID-19 Diagnosis and Symptoms 

 

The relationship between a COVID-19 diagnosis and change in HRV curves were 

evaluated. To test this association, we defined the time variant covariate Cit for 

participant i at time t as:  
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𝐶𝑖𝑡 = {1      𝑡 ∈ [𝑡𝑜 , 𝑡𝑜 + 14] 0             𝑜𝑡ℎ𝑒𝑟𝑖𝑤𝑖𝑠𝑒 }.   

 

HRV metrics for the 14 days following the time of first positive SARS-CoV-2 nasal PCR 

test were used to define the positive SARS-CoV-2 infection window. To evaluate the 

predictive ability of changes in HRV prior to a COVID-19 diagnosis and to explore its 

changes during the infection period, the time variant covariate was used to characterize 

the following 4 groups: healthy uninfected individuals [t<t0-7], 7 days before COVID-19 

diagnosis [t≥t0-7, t<t0], the first 7 days post COVID-19 diagnosis [t0≤t<t0+7] and the 7-

14 days post diagnosis [t0+7≤t<t0+14].  

 

To determine the association between COVID-19 symptoms and changes in HRV 

metrics, we defined being symptomatic as the 1st day of a reported symptom and 

compared this to all other days. To evaluate the predictive ability of HRV to identify 

upcoming symptom days and to explore its changes over time the time variant covariate 

was used to characterize the following 4 groups: healthy asymptomatic individuals for 

t<t0-1, one day before COVID-19 symptoms [t≥t0-1, t<t0], the first day of COVID-19 

symptoms [t0≤t<t0+1] and one day post COVID-19 symptom development [t0+1≤t<t0+2]. 

 

Role of the Funding Source 

 

The study sponsors played no role in the study design, data collection, analysis, writing 

or decision for publication.  

 

RESULTS 

 

Two hundred and ninety-seven participants were enrolled between April 29th and 

September 29th, 2020, when data was censored for analysis (Table 1). The median age 

at enrollment was 36 years with 69% of participants being women. Twenty participants 

reported having a positive SARS-CoV-2 nasal PCR test prior to enrollment, while 28 

participants reported having a positive blood antibody test prior to joining the study. The 

median duration of follow up was 42 days (range 0-152 days). A median of 28 HRV 
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samples (range 1-129) were obtained per participant. Study compliance over the follow 

up period, defined as participants answering over 50% of daily surveys, was 70.4%.   

 

Identification and Prediction of COVID-19 Diagnosis 

 

Thirteen participants reported a positive SARS-CoV-2 nasal PCR during the follow up 

period. The mean MESOR, acrophase and amplitude of the circadian SDNN pattern in 

participants diagnosed with and without COVID-19 are described in Table 2. A 

significant difference in the circadian pattern of SDNN was observed in participants 

diagnosed with COVID-19 compared to those without COVID-19. There was a 

significant difference (p=0.006) between the mean amplitude of SDNNs circadian 

pattern in those with (1.23 ms, 95% CI -1.94- 3.11) and without COVID-19 (5.30 ms, 

95% CI 4.97-5.65). No difference was observed between the MESOR (p=0.46) or 

acrophase (p=0.80) in these two infection states (Figure 1a-c).  

 

The mean MESOR, acrophase and amplitude of the circadian SDNN pattern for those 

without COVID-19, those during the 7 days prior to a COVID-19 diagnosis, participants 

during the 7 days after a COVID-19 diagnosis and those during the 7-14 days after a 

COVID-19 diagnosis are described in Table 3. Significant changes in the circadian 

pattern of SDNN were observed in participants during the 7 days prior and the 7 days 

after a diagnosis of COVID-19 when compared to uninfected participants. There was a 

significant difference between the amplitude of the SDNN circadian rhythm between 

uninfected participants (5.31 ms, 95% CI 4.95-5.67) compared to individuals during the 

7 day period prior to a COVID-19 diagnosis (0.29 ms, 95% CI -4.68-1.73; p=0.01) and 

participants during the 7 days after a COVID-19 diagnosis (1.22 ms, 95% CI -2.60-3.25; 

p=0.01). There were no other significant differences between the MESOR, amplitude, 

and acrophase of SDNNs circadian rhythm observed between healthy individuals, 

individuals 7 days before a COVID-19 diagnosis, individuals 7 days after a COVID-19 

diagnosis, and individuals 7-14 days after infection (Figure 1d-e). 

 

Identification and Prediction of COVID-19 Symptoms 
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Symptoms were frequently reported during the follow up period with the greatest 

number of participants reporting feeling tired or weak (n=87), followed by headaches 

(n= 82) and sore throat (n=60) (Table 4). Evaluating the days when participants 

experienced symptoms, we found that loss of smell or taste were reported the most with 

a mean of 138 days. This was followed by feeling tired or weak, reported a mean of 25 

days and runny nose, reported a mean of 19.5 days (Figure 2). The mean MESOR, 

acrophase and amplitude observed in the circadian SDNN pattern in participants on the 

first day a symptom and on all other days of follow up are reported in Table 5. There 

was a significant difference in the circadian SDNN pattern between participants on the 

first day a symptom was reported compared to all other days of follow up. Specifically, 

there was a significant difference (p=0.01) between the mean MESOR of SDNNs 

circadian pattern on the first day of symptoms (46.01 ms, 95% CI 43.37-48.77) 

compared to all other days (43.48 ms, 95% CI 41.77-45.27). Similarly, there was a 

significant difference (p=0.01) between the mean amplitude of SDNNs circadian pattern 

on the first day of symptoms (2.58 ms, 95% CI 0.26-5.00) compared to all other days 

(5.30 ms, 95% CI 4.95-5.66) (Figure 3a-c). 

  

The mean MESOR, acrophase and amplitude observed in the circadian SDNN pattern 

in participants on the day before symptoms develop, on the first day of the symptom, on 

the day following the first day of the symptom and on all other days are reported in 

Table 6. Significant changes in the circadian pattern of SDNN were observed, 

specifically in the mean amplitude (p=0.04) when comparing participants on the first day 

of the symptom (3.07 ms, 95% CI 0.88-5.22) to all other days (5.32 ms, 95% CI 4.99-

5.66). Excluded from this analysis was the day prior and day after the first symptomatic 

day. Changes in SDNN characteristics trended toward significance prior to the 

development of symptoms. Specifically, the differences in the mean amplitude of 

SDNNs circadian pattern trended toward significance when comparing the day prior to 

symptom development (2.92 ms, 95% CI 0.50-5.33) with all other days (5.32, 95% CI 

4.99-5.66; p=0.056). Again, excluded from the analysis was the first day of the symptom 

and the day after the first symptomatic day. Additionally, there was trend toward 
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significance when comparing the amplitude of the SDNN circadian pattern between 

participants during the first day of the symptom (3.07 ms, 95% CI 0.88-5.22) with the 

one day after the first symptom was reported (5.47 ms, 95% CI 3.16-7.76; p=0.56). 

Excluded from the analysis was the day prior to symptom development and all other 

days. There were no other significant differences between the MESOR, amplitude, and 

acrophase of SDNNs circadian rhythm when comparing participants on the day before 

symptoms develop, on the first day of the symptom, on the day following the first day of 

the symptom and on all other days (Figure 3d-e). 

 

DISCUSSION 

 

In this prospective study, longitudinally evaluated HRV metrics were found to be 

associated with a positive SARS-CoV-2 diagnosis and COVID-19 symptoms. Significant 

changes in these metrics were observed 7 days prior to the diagnosis of COVID-19. To 

the best of our knowledge this is the first study to demonstrate that physiological metrics 

derived from a commonly worn wearable device (Apple Watch) can identify and predict 

SARS-CoV-2 infection prior to diagnosis with a SARS-CoV-2 nasal PCR swab.  These 

preliminary results identify a novel easily measured physiological metric which may aid 

in the tracking and identification of SARS-CoV-2 infections.  

 

Current means to control COVID-19 spread rely on case isolation and contact tracing, 

which have played a major role in the successful containment of prior infectious disease 

outbreaks.18-20 However, the variable incubation period, high percentage of 

asymptomatic carriers, and infectivity during the pre-symptomatic period of COVID-19 

have made containment challenging.21 This has further limited the utility of systematic 

screening technologies reliant on vital sign assessment or self-reporting of symptoms.7 

Advances in digital health provide a unique opportunity to enhance disease 

containment. Wearable devices are commonly used and well accepted for health 

monitoring.9,22 Commercially available devices are able to continually collect several 

physiological parameters. Unlike App-based platforms, wearable devices have the 

advantage of not requiring users to actively participate aside from regular use of the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2020. ; https://doi.org/10.1101/2020.11.06.20226803doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.06.20226803
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

device. Prior to the COVID-19 pandemic, population level data from the Fitbit wearable 

device demonstrated effectiveness at real-time geographic surveillance of influenza-like 

illnesses through the assessment of physiological parameters.23 This concept was 

recently expanded during the COVID-19 pandemic by Quer and colleagues who 

demonstrated that the combination of symptom-based data with resting heart rate and 

sleep data from wearable devices was superior to relying on symptom-based data alone 

to identify COVID-19 infections.10  

 

HRV has been shown to be altered during illnesses with several small studies 

demonstrating changes in HRV associated with and predictive of the development of 

infection.24 Ahmad and colleagues followed 21 subjects undergoing bone marrow 

transplant finding a significant reduction in root mean square successive difference 

metrics prior to the clinical diagnosis of infection. Furthermore, wavelet HRV was noted 

to decrease by 25% on average 35 hours prior to a diagnosis of sepsis in 14 patients.16 

In another study in 100 infants, significant HRV changes were noted 3-4 days preceding 

sepsis or systemic inflammatory response syndrome with the largest increase being 

seen 24 hours prior to development.15 Building on these observations demonstrating 

that ANS changes accompany or precede infection, our team launched the Warrior 

Watch Study.  

 

We demonstrated that significant changes in the circadian pattern of HRV, specifically 

SDNN’s amplitude, was associated with a positive COVID-19 diagnosis. Interestingly, 

when we compared these changes over the seven days preceding the diagnosis of 

COVID-19 we continued to see significant alterations in amplitude when compared to 

individuals without COVID-19. This demonstrates the predictive ability of this metric to 

identify infection. Interestingly when we follow individuals 7-14 days after diagnosis with 

COVID-19, we find that the circadian HRV pattern starts to normalize and is no longer 

statistically different from an uninfected pattern. As an exploratory analysis we 

evaluated how HRV was impacted by symptoms associated with a COVID-19 

diagnosis, since individuals may not be tested despite symptoms. We found significant 

changes in the amplitude of the circadian HRV pattern on the first day of symptoms, 
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with a trend toward statistical significance on the day before and after symptoms are 

reported. Taken together, these findings highlight the possible use of HRV collected via 

wearable devices to identify and predict COVID-19 infections.  

 

There are several limitations to our study. First, there was a small number of 

participants who were diagnosed with COVID-19 in our cohort limiting our ability to 

determine how predictive HRV can be of infection. However, these preliminary findings 

support the further evaluation of HRV as a metric to identify and predict COVID-19 and 

warrant further study. An additional limitation is the sporadic collection of HRV by the 

Apple Watch. While our statistical modelling was able to account for this a denser 

dataset would allow for expanded evaluation of the relationship between this metric and 

infections/symptoms. The Apple Watch also only provides HRV in one time-domain 

(SDNN), limiting assessment of the relationship between other HRV parameters with 

COVID-19 outcomes. Lastly, an additional limitation is that we relied on self-reported 

data in this study, precluding independent verification of COVID-19 diagnosis.  

 

In summary, we demonstrated a relationship between longitudinally collected HRV 

acquired from a commonly used wearable device and SARS-CoV-2 infection. These 

preliminary results support the further evaluation of HRV as a biomarker of SARS-CoV-

2 infection by remote sensing means. While further study is needed, this may allow for 

the identification of SARS-CoV-2 infection during the pre-symptomatic period, in 

asymptomatic carriers and prior to diagnosis by a SARS-CoV-2 nasal PCR tests. These 

findings warrant further evaluation of this approach to track and identify COVID-19 

infections and possibly other type of infections.  
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Table 1. Baseline demographics of participants at enrollment.  
  Cohort (n=297) 
Age, mean (SD)  36.3 (9.8) 
Body Mass Index, mean (SD)  25.6 (5.7) 
Female Gender (%)   204 (69.4) 
Race (%) 

Asian  73 (24.6) 
Black  29 (9.8) 
Other  43 (14.5) 
White  108 (36.4) 

Ethnicity (%)   
Hispanic  44 (14.8) 

Baseline Positive SARS-CoV-2 nasal PCR (%)  20 (6.7) 
Baseline Positive SARS-CoV-2 serum antibody (%)  28 (9.4) 
Occupation* (%)   

Clinical non-Trainee  198 (68.0) 
Clinical Trainee  36 (12.4) 
Non-clinical Staff  57 (19.6) 

Baseline Smoking Status (%)   
Current/Past smoker  35 (11.9) 
Never/Rarely smoker  259 (88.1) 

Baseline Immune Suppressing Medication (%)  4 (1.4) 
PCR, polymerase chain reaction; SD, standard deviation 
*Clinical trainee defined as a resident or fellow; clinical non-trainee defined as HCWs reporting at least 
one patient facing day during follow up, exclusive of resident and fellows; non-clinical staff defined as a 
HCW who did not report a patient facing day during follow up.  
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Table 2. HRV parameters in participants with and without COVID-19 diagnosed based 
on SARS-CoV-2 nasal PCR swabs.  

Parameter Parameter Mean, ms (95% CI) 
COVID-19 Negative 

Parameter Mean, ms (95% CI) 
COVID-19 Positive 

Difference 
(95% CI) 

p-
value 

MESOR 43.57 (41.40-45.40) 42.46 (38.90-45.79) -1.12 (-4.22- 1.73) 0.46 

Amplitude 5.30 (4.97-5.65) 1.23 (-1.94- 3.11) -4.07 (-7.29- -2.07) 0.006 

Acrophase -2.44 (-2.49- -2.39) -2.23 (-2.22- -4.24) 0.22 (-1.74- 2.43) 0.80 
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Table 3. Comparison of HRV parameters based on the time period before and after 
diagnosis.  

Parameter Period Around 
COVID-19 
Diagnosis  

Mean, ms 
(95% CI) 

Period Around 
COVID-19 
Diagnosis 

Mean, ms 
(95% CI) 

Difference  
(95% CI) 

p-
value 

MESOR       

 7 Days Before 40.56 
(35.98-45.46) 

Uninfected 43.58 
(41.88-45.37) 

-3.03  
(-6.98-1.02) 

0.13 

 7 Days After 40.77 
(36.44-45.42) 

Uninfected 43.58 
(41.88-45.37) 

-2.81  
(-6.73-1.10) 

0.17 

 7-14 Days After 43.80 
(40.01-47.65) 

Uninfected  43.58 
(41.88-45.37) 

0.22  
(-3.39- 3.73) 

0.89 

 7 Days Before 40.56 
(35.98-45.46) 

7-14 Days After 43.80 
(40.01-47.65) 

-3.24  
(-9.63-3.33) 

0.32 

 7 Days After 40.77 
(36.44-45.42) 

7-14 Days After 43.80 
(40.01-47.65) 

-3.03  
(-6.98-1.02) 

0.13 

 7 Days After 40.77 
(36.44-45.42) 

7 Days Before 40.56 
(35.98-45.46) 

0.217  
(-3.39-3.73) 

0.89 

Amplitude       

 7 Days Before 0.29  
(-4.68-1.73) 

Uninfected 5.31  
(4.95-5.67) 

-5.02  
(-10.14- -3.58) 

0.01 

 7 Days After 1.22  
(-2.60-3.25) 

Uninfected 5.31  
(4.95-5.67) 

-4.09  
(-7.87- -1.93) 

0.01 

 7-14 Days After 3.80  
(-0.64-7.88) 

Uninfected 5.31  
(4.95-5.67) 

-1.51  
(-5.79-2.35) 

0.48 

 7 Days Before 0.29  
(-4.68-1.73) 

7-14 Days After 3.80  
(-0.64-7.88) 

-3.51 
 (-10.50-0.22) 

0.20 

 7 Days After 1.22  
(-2.60-3.25) 

7-14 Days After 3.80  
(-0.64-7.88) 

-2.58  
(-8.44-2.08) 

0.34 

 7 Days After 1.22  
(-2.60-3.25) 

7 Days Before 0.29  
(-4.68-1.73) 

0.93  
(-1.92- 5.83) 

0.58 

Acrophase       

 7 Days Before -1.67  
(-3.78-1.19) 

Uninfected -2.44  
(-2.49- -2.39) 

0.78 
 (-1.4- 3.62) 

0.45 

 7 Days After -0.53  
(-2.39-5.89) 

Uninfected -2.44  
(-2.49- -2.39) 

1.92  
(0.03-8.13) 

0.48 

 7-14 Days After -2.63  
(-3.95-1.19) 

Uninfected -2.44  
(-2.49- -2.39) 

-0.19  
(-1.39-1.16) 

0.70 

 7 Days Before -1.67  
(-3.78-1.19) 

7-14 Days After -2.63  
(-3.95-1.19) 

0.96  
(-1.85-4.32) 

0.55 

 7 Days After -0.53  
(-2.39-5.89) 

7-14 Days After -2.63  
(-3.95-1.19) 

2.10  
(0.10-8.29) 

0.35 

 7 Days After -0.53  
(-2.39-5.89) 

7 Days Before -1.67  
(-3.78-1.19) 

1.14  
(-1.34- 7.27) 

0.58 
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Table 4. Number of participants reporting each symptom. 
Symptom Number of Participants (%)* 
Fever or chills 11 (3.7) 
Tired or weak 87 (29.3) 
Body aches 47 (15.8) 
Dry cough 32 (10.8) 
Sneezing 52 (17.5) 
Runny nose 43 (14.4) 
Diarrhea 33 (11.1) 
Sore throat 60 (20.2) 
Headache 82 (27.6) 
Shortness of breath 11 (3.7) 
Loss of smell or taste 5 (1.7) 
Itchy eyes 53 (17.8) 
Other 26 (8.8) 

* Precents add to greater than 100% as participants can report one or more symptom 
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Table 5. HRV parameters on the first day of reported symptoms compared to all other 
symptom free days.  

Parameter Parameter Mean, ms (95% 
CI) First Day of Symptoms 

Parameter Mean, ms 
(95% CI) All Other Days 

Difference (95% CI) p-value 

MESOR 46.01 (43.37-48.77) 43.48 (41.77-45.27) 2.53 (0.82-4.36) 0.01 

Amplitude 2.58 (0.26-5.00) 5.30 (4.95-5.66) -2.73 (-5.16- 0.31) 0.01 

Acrophase -2.21 (-2.83- -1.58) -2.44 (-2.49- -2.39) 0.24 (-0.38- 0.88) 0.44 
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Table 6. Comparison of HRV parameters based on symptom state and the time-period 
before and after the first day of reported symptoms. 
 

Parameter Symptom State Mean, ms 
(95% CI) 

Symptom State Mean, ms 
(95% CI) 

Difference  
(95% CI) 

p-
value 

MESOR       

 One day after 1st 
symptom day 

44.52 
(42.05-46.94) 

Asymptomatic 43.49 
(41.74-45.21) 

1.03  
(-0.64-2.67) 

0.21 

 One day before 
1st symptom day 

43.84 
(41.41-46.15) 

Asymptomatic 43.49 
(41.74-45.21) 

0.34  
(-1.46-2.23) 

0.73 

 1st day of 
symptom 

44.87 
(42.42-47.18) 

Asymptomatic 45.49 
(41.74-45.21) 

1.37  
(-0.24-3.04) 

0.11 

 One day before 
1st symptom day 

43.84 
(41.41-46.15) 

One day after 1st 
symptom day 

44.52 
(42.05-46.94) 

-0.69  
(-3.72-2.47) 

0.66 

 1st day of 
symptom 

44.87 
(42.42-47.18) 

One day after 1st 
symptom day 

44.52 
(42.05-46.94) 

0.34  
(-1.46-2.23) 

0.73 

 1st day of 
symptom 

44.87 
(42.42-47.18) 

One day before 1st 
symptom day 

43.84 
(41.41-46.15) 

1.03  
(-0.64-2.67) 

0.21 

Amplitude       

 One day after 1st 
symptom day 

5.47  
(3.16-7.76) 

Asymptomatic 5.32  
(4.99-5.66) 

0.15  
(-2.21-2.37) 

0.91 

 One day before 
1st symptom day 

2.92  
(0.50-5.33) 

Asymptomatic 5.32  
(4.99-5.66) 

-2.40 
 (-4.75- -0.07) 

0.056 

 1st day of 
symptom 

3.07  
(0.88-5.22) 

Asymptomatic 5.32  
(4.99-5.66) 

-2.25  
(-4.38- -0.27) 

0.04 

 One day before 
1st symptom day 

2.92  
(0.50-5.33) 

One day after 1st 
symptom day 

5.47  
(3.16-7.76) 

-2.55 
 (-6.64- 1.65) 

0.25 

 1st day of 
symptom 

3.07  
(0.88-5.22) 

One day after 1st 
symptom day 

5.47  
(3.16-7.76) 

-2.40  
(-4.75- -0.06) 

0.056 

 1st day of 
symptom 

3.07  
(0.88-5.22) 

One day before 1st 
symptom day 

2.92  
(0.50-5.33) 

0.15  
(-2.20- 2.37) 

0.91 

Acrophase       

 One day after 1st 
symptom day 

-2.30 
(-2.60- -2.00) 

Asymptomatic -2.45 
(-2.50- -2.39) 

0.14  
(-0.15- 0.44) 

0.33 

 One day before 
1st symptom day 

-2.52 
(-3.31- -1.71) 

Asymptomatic -2.45 
(-2.50- -2.39) 

-0.08  
(-0.79-0.66) 

0.86 

 1st day of 
symptom 

-2.26 
(-2.73- - 1.79) 

Asymptomatic -2.45 
(-2.50- -2.39) 

0.19 
 (-0.24- 0.63) 

0.36 

 One day before 
1st symptom day 

-2.52 
(-3.31- -1.71) 

One day after 1st 
symptom day 

-2.30 
(-2.60- -2.00) 

-0.22 
 (-1.11-0.70) 

0.63 

 1st day of 
symptom 

-2.26 
(-2.73- - 1.79) 

One day after 1st 
symptom day 

-2.30 
(-2.60- -2.00) 

0.04  
(-0.36-0.46) 

0.86 

 1st day of 
symptom 

-2.26 
(-2.73- - 1.79) 

One day before 1st 
symptom day 

-2.52 
(-3.31- -1.71) 

0.26  
(-0.40-0.92) 

0.41 
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Figure 1: Relationship between HRV circadian rhythm and COVID-19 status. 
Timeline (A) illustrates HRV measures from the time of COVID-19 diagnosis via nasal 
PCR and during the following 2 weeks where subjects were deemed to be COVID-19+ 
(red), and were compared with measurements outside this window, where subjects 
were deemed COVID- (green). Daily HRV rhythm (B) during days with COVID+ (red) 
and COVID- (green) diagnosis, time (hours) is indicated by the x-axis while SDNN (ms) 
is indicated by the y-axis. Plots (C) showing Mean and 95%CI for the parameters 
defining the circadian rhythm: Acrophase, Amplitude and MESOR in COVID+ (red) and 
COVID- (green) days. Daily HRV pattern (D) for days were subjects were healthy 
(green), 7 days before COVID-19+ test (red), 7 days after COVID-19+ test (orange) and 
7-14 days after COVID-19+ test (light green), time (hours) is indicated by the x-axis 
while HRV (ms) is indicated by the y-axis. Mean and 95% CI for the Acrophase, 
Amplitude and MESOR of the HRV measured on days were participants were Healthy 
(green), 7 days before COVID-19+ test (red), 7 days after COVID-19+ test (orange) and 
7-14 days after COVID-19+ test (light green).  
+p<0.1;*p<0.05; **p<0.01; ***p<0.001; ns, not significant 
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Figure 2. Number of symptom days per participant when evaluating days when 
participants reported symptoms 
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Figure 3: Relationship between HRV circadian rhythm and symptom onset. 
Timeline (A) illustrates timing of symptom onset, HRV profiles of the first-symptom day 
(red) were compared to all other days (green). Daily HRV rhythm (B) on day of first 
symptom (red) and non/late-symptom (green) days, time (hours) is indicated by the x-
axis and HRV (ms) is indicated by the y-axis. Plots (C) showing Mean and 95%CI for 
the parameters defining the circadian rhythm: Acrophase, Amplitude and MESOR on 
first symptom (red) and non/late-symptom (green) days. Daily HRV pattern (D) for 
non/late-symptomatic days (green), the day before first symptom (red), day of first 
symptom (orange) and day after first symptom (light green), time (hours) is indicated by 
the x-axis while HRV (ms) is indicated by the y-axis. Mean and 95% CI for the 
Acrophase, Amplitude and MESOR of the HRV measured on non/late-symptomatic 
days (green), the day before first symptom (red), day of first symptom (orange) and day 
after first symptom (light green),  
+p<0.1;*p<0.05; **p<0.01; ***p<0.001; ns, not significant 
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Supplementary Table 1. Infection related survey questions.  
Survey Question Survey Responses 
Have you had any of the following symptoms 
in the past 24 hours? Check all boxes that 
apply: 
 

Fever or high temperature, chills, tired or 
weak, body aches, dry cough, sneezing, 
runny nose, diarrhea, sore throat, headache, 
shortness of breath, loss of smell or taste, 
itchy eyes, none, other [insert], None of these 
  

On a scale of 1 - 10, how bad do your 
symptoms feel today, compared to colds or 
flu that you have had in the past? 
 

1 [Extremely mild symptoms], 2, 3, 4, 5, 6, 7, 
8, 9, 10 [The worst symptoms that you have 
ever had] 
  

If you have been tested for the Coronavirus 
by nasal PCR since starting this study, what 
was the result of your test: 
 

Positive / Negative / I have not been tested 
for Coronavirus/Prefer not to say  
 

If you were tested for the Coronavirus by 
nasal PCR since starting the study, what is 
the date you were tested? 
 

Date: __________ 

If you have been tested for the Coronavirus 
by blood antibody since starting this study, 
what was the result of your test: 
 

Positive / Negative / I have not been tested 
for Coronavirus/Prefer not to say  
 

If you were tested for the Coronavirus by 
blood antibody since starting the study, what 
is the date you were tested? 
 

Date: __________ 
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Supplementary Figure 1. Locally estimated scatterplot smoothing (loess) curve showing 
a daily circadian pattern on HRV measures. Such pattern can be represented by the 
COSINOR model using 3 parameters: the rhythm-adjusted mean (MESOR), half the 
extent of variation within a day (Amplitude) and the time of overall high values recurring 
in each day (acrophase). Red and green dots represent hypothetical sampling times 
though the day from two subjects that have the same daily curve, showing that features 
like maximum, range, or CV will be easily biased by the sampling time. 
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