
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
LONGITUDINAL RESISTIVE INSTABILITIES OF INTENSE COASTING BEAMS IN PARTICLE 
ACCELERATORS

Permalink
https://escholarship.org/uc/item/13q2p44g

Author
Neil, V. Kelvin

Publication Date
2008-10-03

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13q2p44g
https://escholarship.org
http://www.cdlib.org/


UCRL-11089 Rev

University of California

Ernest O.
Radiation

lawrence
laboratory

I
Ul lI', !

!III
I

LONGITUDINAL RESISTIVE INSTABILITIES
OF INTENSE COASTING BEAMS IN PARTICLE

ACCELERATORS

TWO-WEEK LOAN COpy

This is a library Circulatin9 Copy
which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Diuision, Ext. 5545

Berkeley, California



Submitted for publication to
Review Scientific Instruments

UNTVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W -740S-eng-48

LONGITUDINAL RESISTIVE INSTABILITIES
OF INT'ENSE COASTING BEAMS IN PARTICLE ACCELERATORS

v. Kelyin Neil and Andrew M o Sessler

September 29, 1964



UCRL-I1089 Rev.

LONGITUDINAL RESISTIVE INSTABILITIES

OF INTENSE COASTING BEAt\1S nr PARTICLE ACCELERATORS*

V. Kelvin Neil and Andrew M. Sessler

.Lm·rrence Radiation Laboratory
University of California

Livermore and Berkeley, California

September 29, 1964

ABSTRACT

The effect of finite resistance in the vacuum-tank walls on the

"longitudinal stability of an intense beam of particles in an accelerator

is investigated theoretically. We show that even if the particle fre-

quency is an increasing function of particle energy, the wall resistance

can render the beam unstable against longitudinal bunching. In the

absence of frequency spread in the unperturbed beam, the instability

occurs with a growth rate that is proportional to (N/a)1/2. where N

is the number of particles in the beam and a is the conductivity of

the surface mat;c:rial. By means of the Vlasov equation a criterion

for beam stability is obtained. In the limit of highly conducting

walls the criterion involves the frequency spread in the unperturbed

beam, the number of particles Nt the beam energy, geometrical pro-

perties of the accelerator, but not the conductivity q. A numerical

example presented indicates that certain observations of beam behavior

in the 1-'IURA 40-MeV- electron accelerator may be related to the phenomenon

we investigated.
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I. INTRODUCTION

The observation that longitudinal density fluctuations in an

electron stream may be amplified by the resistance in the surrounding

walls was first made by Birdsall, who used the concept to construct a

resistive-wall amplifier. Pierce has presented a general theory of

"slow wave" "amplifiers ,1 whereas Birdsall and Whinnery have given a

2general analysis of such structures.
.,

The purpose of our work is to extend the theory developed for

the analysis of traveling-wave tubes to an analysis of longitudinal

resistive instabilities ,of intense relativistic beams in cyclic particle

accelerators. In contrast to the "hydro~ynamic approach in Ref. 2,

the theory presented h~re includes details of the particle dynamics

that are vital to obtaining the criterion for stability. Our work is

also an extension of prev;ous studies of longitudinal instabilities3 ,4,5

and draws heavily upon the notation of Ref. 4. Our analysis was

stimulated by experiments with the MURA 40 MeV electron accelerator;
I .

these experiments. show a pronounced longitudinal bunching of the beam

6 "near the injection energy. Although the observed instability above

the transition energy is well understood, and had even been predicted

theoretically in Ref. 4, the observations of bunching below the transi-,

tion energy came initially as a surprise. The analysis presented here

culminates in a criterion for stability and a growth rate in the

absence of stability, both of which are in approximate agreement with

the observations at MURA. The theory suggests further experiments

suitable for determining"whether or not the observed phenomenon
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is in fact a resistive instability. In addition, the theory suggests

limitations on the design of high-current particle accelerators.

In the following linear-perturbation treatment, the unperturbed

beam is taken to be uniform in the azimuthal (0) direction. A perturbation

in particle density of the form exp(i(n6 - wt)]is assumed. The electric

and ~agnetic fields arising from the perturbation are calculated in

Sec. II for two different geomertries. In Sec. III the Vlasov equation
,

and the formalism of Refs. 4 and 5 are employed to derive a dispersion

relation that determines the allowed values of the frequency w •

Section IV is a discussion of the dispersion relation. The analysis

shows that resistance in the surrounding valls leads to exponential

growth of the density rluxu~tion if all particles in the unperturbed

beam have the same circ~lation frequency. The growth rate is proportional

to 0-
1 / 2 , where a is the conductivity of the vall material. An ef-

fective stabilizing mechanism 1s a spread in particle-circulation fre-

quency arising primarily from a spread in particle energy. Because the

contribution to the azimuthal electric field Ee from the finite resistance

in the walls is very much smaller than this field in the absence of

resistance, the stability criterion is quite sensitive to the distribution

of circulation frequencies in the unperturbed beam. For a realistic

energy distribution and highly conducting surfaces~ the stability

criterion is independent of O. A nmllerical example, namely an app1ica-

tion of the results to the ~ruRA 40-MeV electron acce~eratorf is given

in Sec. V.
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II. SOLUTION OF ~LL t S EQUATIONS

In this section we obtain the electric and magnetic fields

associated with a perturbed density that varies as exp[i(n6 - wt)],

where n is an integer. We consider two simplified models of the

beam and vacuum tank. The first is a beam of circular cross section

centrally located in a tank of circular cross section. The longitudinal

wavelength 2nR/n is assumed large compared to the minor radius of the
~

tank. Fr.om th~s model simple analytic formulas may be obtained for the

fields. The second model is a tank of rectangular-cross-section in which

the beam is located in the median plane of the cavity. The beam is

finite horizontally, but is infinitely thin in the vertical direction~

Finite resistance in tpe top and bottom tank walls is incorporated in

the calculation, but the side walls are assumed to be perfectly conducting.

In both geometries the '~ajor curvature of the vacuum tank is ignored,

and Maxwell's equations are solved for a straight pipe.

A. Vacuum Tank of Circular Cross Section

We consider a beam moving along the axial (z) direction in a

pipe of radius b. Let the beam have uniform density out tba'radius a~

as illustrated in Fig. 1. The perturbation is assumed to vary as

exp[i(kz - wt}], so when we relate this calculation to an actual

accelerator we will replace . 'k by (n/R) and z by Re, where R is

the major radius at which the beam circulates. The perturbed change (p)

and cUrrent (j) densities are
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[:1ei(kz-">t) when r < a •
p(z.t) ::

wOOn r > a •

jz :: wp/k

(2.1a)

In this section perturbed quantities carry no sUbscript. The electric

and magnetic fields arising from these sources have components E • E •, , r z

B<jl' all with z and t dependenc e given by exp [ i (kz - i.lt)]. ~

The complete solution to Maxwell's equations may be exhibited

in terms of modified Bessel functions. If the condition

holds, an expression for E inside the beam may be obtained by a simple
z

application of the equation

1--c
r

a I ~ 'u'a- I b 0;at ) ""' ...,

As shown! in the next section, the pertinent value of w is such

that w/k is very nearly equal to the main speed y of, particleS.

in the unperturbed beam. Therefore Eq. (2.2) may be stated as bJYA « 1, '

where A is the wavelength of the perturbation and y = [1 _ (v/c)2]-1/2.

When this condition holds, the radial electric field is given approximately

by
(

2 i(kz-wt)
I r when r < a "

I
E = np1e x ta

2
/r

(2.4)r
when r -> a



From the radial component of the e~Qation

we find

(DE Ike
r

The only boundary condition that must be satisfied at r == b :l.s

(2.6)

where 11 = {w/8no)1/2 and cr is the conductivity of the wall material

in sec-I. From Eqs. {2.4)t "(2.5), and (2.6) we haYe

We now apply Eq. (2.3) to a surface (Fig. 1) with the following

perimeter: from a point z,b on the wall radia.lJ.y imml'd to a. point

r < all along the z axis a distance dz~ radially outward to a. point

z + dz.b on the wall, and then along the "'rall back to the starting

point." Inserting Eqs. (2.5b) and (2.7) into Eq. (2.3)~ we have

rr (b
E (r' t Z ) dr' + / E (r' ~ z; -I- d z )dr I

-'b r ..Jr r

(2.8)

If we di~ide by dz and take the limit dz + Og the first two terms

on the left-hand side of Eq. (2.8) become
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..

Inserting Eq. (2.4) for Er andpe:t'forming the necess'ary integrations, we obtain

,

an expression valid for r < a. In Eq. (2.10) S-w: _ w/kc is the'phase

velocity of the perturbation in units of c.

In Sec. It I we need the azimuthal electric field that acts on

the particles. This involves some average of E over the beam cross :Iz '
.'

section, but in view of the. approximations inherent in Eq. (2.1), the

precise average required is not clear. Because E" varies slowlyz

across the beam, we will continue in the spirit of Ref. 4 and employ

Ez(r =O)~ although Ez(r =a) is probably more accurate.

Introducing the perturbed charge per unit length

A = ~Pla2 exp[i(kz - wt)], we have for the total field in the

direction:

z

A

(E·'i) 0
"OoJ r=

:: A , {2.l0a)

in which we have neglected the term proportional to i~ for reasons given

below. We note that the out-of-phase contribution decreases like

-2
Yw = 1 - S 2 involves a geometric factor, and is proportional tow J

the.variation of charge in the z direction--results all familiar;'from



• _. 4previous s ';U(Hes. The (new) in-·phase component exists only -DeCal.l.Se of

the wall resistivity ~ and furthe:rmore does not vanish e.s k -j-. 0 or as

s -+ 1. In all practical applications it appears thE'~t 7< is sufficiently
w

small that the in-phase component is sm!.lll compared to the (usual) out-·

of-phase component.

In the notation used in the next section p we h.:we

= -inA{l - t3 2)[1 + 29.n{b/a)] - 27\6 (R /0)>' 11w W
(2 .10b)

where n is the number of waves about the circumference, and the per-

turbed charge per unit azimuthal length A is written in the form

B. Vacuum Tank of Rectangular Cross Section
--,~~..._~--~-,.,..-_. ~-~..,..,:_ .........

In this section "re consider L beam infinit;~ly thin in the

vertical (z) direction Ioeated in the median plane of a rectangular

duct of heigh1~ h and width w~ as illustrated in Fig. 2. The beam,=

charge distribution in the x direction is .s.ssw"neo. to be unaltered

by the longitudinal. bunching and. deterr;:,ined. by :l.nit:i.al Gond.iti.ons so

rr (.. 'J .... )v ..~......~~ J l" . r \ i(kV~(A)t)
'O·V'" .1/\1 \"/"

wit'h oLd norma.lized so that_S~ a(x)dx '" 1, Conservation of charge

implies a surface-current distribution jy(x~y~t) ju.st equal to (0J/k)

times (J (x.y ,t ) •
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The boundary conditions for the electric and magnetic fields

are taken to be those appropriate to perfectly conducting surfaces at

the side walls so that the tangential electric and normal magnetic fields

vanish ut x = 0 and x = w. On the- top surface (z = h/2) we require

E = (1 - i)1( B
x Y

E ::: -(1- i)"RBY . x

and on the bottom surface (z = -h/2) we require

(2.12a)

E ::: (1 - i);tBy x

E ::: -(1x
i)1{ B

Y
(2.12b)

where K has been defined following ECJ.. (2.6).

Expressions for the fields are most easily written as two sets,

transverse magnetic (TM) and transverse electric (TE), with transverse

referring to the z direction. Each set independently satisfies

Haxwell's equations for free space everywhere inside the tank except

at z ::: O~ and 'also satisfies ECJ.s. (2.12a) and (2.12b). The desired

expressions are as follows:



";;'

"'-::'l1-,1
s

v(
h \ im ( 1 -i)

() ,
OJ (

- Ll

si:-.:-~ '7 -- ) - \j\ eOSE .,
~,--.L '" )

2 VC '- 2

/I /\

)< "l cos 11 x i + i k sin '. -. J i
i

- h \
cosh V( z + 2) im (1 _ i)Qsir..h v(z:;:'

ve

...,

/\1
1- i

X ,l\. I

J

i(hj'-0.lt)

L
r

im 1 -
:;:. ~)B = e ) E I + cosh V( z

.,.,.'[1'1 ve s I
I

S L

im (1 i)U( sinh V( z
- t:. )+ .--

iVC 2 i

l
-'

l-
/\ AI

)< ik sin 11 x i + 1') cos '11 x j I
J (2, \

j

e i( kY-0.lt)"L r
im I - h

(
r

sinh V( z -.~ = B ! + +"""'l'E VC s I 2
s L

ive ( ) n (1 -i ~\..cosh V z
ill

_. r.:.

r'
cos 1'J z i +

A 1
'(\ ~lOn on z i I
'j "'. " - .J I

J

,;2
N

V CGG T:

D \
-j- "::; )v(z

(
0 .<:\
"'- •.Lu)

+ i 1-: eO:3
/\

11 x isin

r
7 i ~ sinh V(z :;:.~) + iVC(lL' 2 ill

e i(kY-0.lt) LB
s

s

=



-12-

I th . L- 0
2 .__ n2 + k2 • v2 _- 0

2 _ (w/c)2 •. andn ese express10ns n = sn/~t ~ - _ •• • s

is an integer. The subscript s on these quantities has been omitted

for brevity. The top and bottom signs apply vhen z > 0 and z < 0

respectively.

We determine the constants E and B fro~ the discontinuity
s s

conditions at z = 0:

E + - Ez z

B + - B
x x

,

Expanding a(x) in a Fourier sin series in x,

we find

- iw (1 _ i)7\ sinh
vc

and

B = ~1f A a S d....!l) l'cosh r vh I}_ + 1vc (1 - i) l('sinh (v~)1.
s w 1 s wi~2 \ 2 w J

The only field component that enters into the Vlasov equation

in Sec. III is E (z = 0). After some simplification we have. toy

first order in 7\ ,

E (z
y

= 0) = 4rr i' ei(ky-wt) 2 sin n x- w·"l ., as
s

rk ( (.J 2)t -j/vh \ . )-J::> 2(Vh \ 1x 1_ 1 - fj anh:'- . - i(l - i 1\ S sech -2 I ' •lv w \21 w IJ
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~e may ignore the ter~ proportiona,l to (_i)2Jl. If the perturbation

"rravelengtl1 is long cornpared to the transverse

tank, then 11 » k and v;>c-.Q. ~ 11.

In Sec. III we need the average azimuthal electric field that

acts on the particles. This average is obtained by multiplying

Eq. (2.21) by a(x) and integrating the equation over x. Using

Eq. (2.18) as well as the normalization condition on a(x), we obtain

4 .>' n i(ne-wt) L ~
_ __IT_1.....l-.-e a 2 .£.... (1 _

w s Rvs

~

\

Bw
2

)tanh (V~) _i J(Bw sech2Iv~)j

(2.22)

where we have replaced y by Re and k by n/R.

This general expression may prove useful in some applications.

We have evaluated it numerically for a particular choice of a(x) that

has two parameters, namely that representing a beam of width ~ with center

X
o

as indicated in Fig. 2. The functional form chosen was!2~ cos
!. (x - xO) when Ix - xol < ~/2
~

a(x) = (2.23)

I 0 when Ix - xol >- /\ /?
l_ ~ -,-

"and a 7094 FORTwur progrum/ was developed to evaluate the quantities:

Relong = '\ a 2(l _ D 2) n {vh Ii

; s "w Rv tanh \2'}
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Im10ng

In terms of these •

.<REa> :2 -411'1),. (~) [Relong - i 7\ ImlongJ

'> .
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III. THE DISPERSION RELATION

The motion of the particles is treated by means of the Vlasov

~quation, which we solve in cylindrical coordinates. We incorporate the

formalism of Refs. 4 and 5, and in particular the canonical variables

e and Wfor the azimuthal motion. The quantity W= 2~(Pe - PO) where

Po is the canonical angular momentum and Po the mean value of Po for

the beam. The transverse motion of particles is considered only inso-,

far as it contributes to the transverse dimensions of the beam and to

the relation between the circulation frequency of particles and their

canonical angular momentum.

The particle-distribution function ~(W,O,t) satisfies the

one-dimensional equation5

o

The quantity (RE;) is evaluated in Sec. II. The unperturbed beam is

uniform in azimuth and constant in time so it may be described by a

distribution function $O(W). We consider an infinitesimal perturbation

that allows us to write the distribution function as

$ (W, o,t)

Inserting Eq. (3.2) into Eq. (3.1) and linearizing, we obtain

2~ie(REO) d$O
.

(w - nS) dW
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The function ~O is normalized so that the total n~~ber of particles

in the accelerator N is given by

(
N = 21TH i l{!n(W)dVl

~, . ....,

but it will be convenient in what follows to define a function

(3.4)

,
The perturbed charge density per unit length Al is found from

Combining Eqs. (3.3) arid (3.5) yields

,

in 'W'hich we must insert the appropriate expression for <REel from

Sec. II. The dispersion relation may be written in the form

-1 = (u - iV)I ,

with I defined by

I =JdfO di-I
dW (w ne) (3.8)

The definitions of U and V in Eq. (3.7) depend upon which expression

for (REe)is used in Eq. (3.6). If Eq. (2.10b) is used, we have

2 '
S )[1 + 2 tn (b/a))'W'

V = 2
2Ne l?S /b

~ w



-17-

If Eq. (2.22) is employed, the definitions are

U :: ~411'Ne2/'W) LeJ 2 n
R

,. (1- 8 2 ) tanh (\lh/2)
S \I 'WS . \

, (3.l0a)

(3.l0b)

By the definitions, Eqs. (2.24a) and (2.24b), the latter definitions of

U and V may be written

U :: (411'Ne2/w) Relong , (3.lla)

V :: 2(411'Ne ~/v) Imlong (3.llb)

Although 'U and V are functions of w through S :: w/kc, we
w

shall see below that values of w near nwO are of interest. It is

therefore a good approximation (provided the particles are not extremely

relativistic) to replace'8w by B =vIc, where v = wOR is the mean

velocity of particles in the beam and Wo is the mean angular frequency.
I

This simplification is strictly true at the stability limit of the

negative-mass instability, where w = nw
O

is a solution to the dis

persion equation. There is a further dependence of V on w through

~ = (w/811'o)1/2. This is a weak dependence, and we shall replace w by

nwo' thus rendering U and V independent of w. The quantities U and V

are positive, and for all cases in which we have evaluated them PC is

so small that V « U.
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IV. ANALYSIS OF THE DISPERSION RELATION

'A. Instability in Absence of Dnmpin~

In order to demonstrate the resistive instability we first

choose fO(\v) = o{W), which represents a beam with all particles having

the same canonical angular momentum. Since we are concerned only with

small deviations in W we may write

•e = , (4.1)

where Wo is 2~ times the average value of the particles' circulation fre-

quency f. The quantity k O reflects the characteristics of the

accelerator gUide;fiel~, and is related to ,f by

= 2~f(df/dE) , (4.2)

Below the transition energy

df/dE is, positive, and above the transition energy df/dE is negative.
I

The latter is the regime of "negative mass."

From Eqs. (3.7) and (3.8) we obtain

If kO < 0, then even for V = 0 (i.e., no resistiVity considered) Eq. (4.3)

exhibits an instability, namely the negative-mass instability. In

this regime we need not consider the effect of V since V is

always very small compared to U. For k
O

> 0 we obtain from

Eq. (4.3)
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w = (4.4)

where the positive sign corresponds to a "fast wave" in which the wave

phase velocity B is greater than the particle velocity S and the
w

1 2
perturbation is damped.' The minus sign corresponds to a "slow 'wave"

that grows exponentially with an e'':' folding time '0 given by

=

This formula may be evaluated with Eqs. (3.9) used in the circular-

geometry model. We further employ the approximation e = B with the
w

result

(4.6)=

1/2The e-folding time depends upon the conductivity 0 as 0 ,and upon

L' , n " ~ __"!'1/2~.. _ - .\,ue nUInoer o~ par~~c.4.es as!~' Tne aepenaence 01' '0 upon n is

correct bnly for values of n such that Eq. (2.2) is

-1/2 -bis a weak dependence, n t which enters through 1\ •

satiSfied. It

The general

dependence of TO upon n must be obtained from Eqs. (4.5) and (3.10).

B. Criterion for Stability-

A stability criterion will automatically emerge from the

dispersion relation if we use a function fO(W) that describes a fre

quency spread in the unperturbed beam. This is simply the well-known

phenomenon of Landau damping. The analysis is complicated by the

fact that V « U, which meaw, that the grm.rth rate is very small

and easily damped by particles riding at the wave velocity B. On
w
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the other hand, the wave velocity is shifted from B by the (relatively)

large term (nkou)1/2. with the result that the dampipg is sensitive

to the particle distribution at frequencies removed from the central

frequency w00 In illustration, consider the Lorentz, or resonance,

•

where 6 is a measure of the spread in W and hence of the frequency

spread in the beam. Equation (3.7) may be integrated readily with

the result

• (4.8)

where Eq. (4.1) has been employed and Y is assumed to be much smaller

than U. The slow-wave instability is damped out if

nk 6 >Lo ,to

this condition is much less stringent than the correct result derived

below. The criterion [Eq. (4.9)] has resulted from the very large tail

of the Lorentz line.

To consider other functions, we first \rrite the dispersion

relation in the form

nkO(U + iY)

(U2 + y2 )

:;II Jr dfO

dW

dW (4.10)
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where WI ::: (w - nwO)/nk
O

' Consider nova Gaussian distribution in Wp

with

:::

/\~S-
' ..J I"

r 1 l' )\ I" ,l

A partial integration and a change of variable from. H to W/c - i;. puts

Eq. (4.10) into the form

nkOo2 (U + iV)

(U2 + y2)
()... 12)

The function ~'(~l) has been investigated numerically by Fried,lO

but asymptotic expressions will suffice here. The stability criterion is

found by considering real ~1 ::: (w - nilla)/nka8. Since U » YI we must

have Re ~' ») 1m ~. This occurs in the limit of large ~1t where

the expansion

( 2)
t~xn ~( ..
- - -.1.: 1.

1
,. --

.- 2
(,1

(4.13)

is a good approximation. From Eqs. (4.12) fmd. (1~.13) we know at

once that

~ 2
1

T,l 2
'1- 2o
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or, to good approximation,

=

The corresponding fre~uency shift 0 - nwO is thus kOuWli or the same

as obtained for the two other choices of fO(W) in E~~. (4.4) and (4.8).

However, the stability criterion found from the Gaussian

distribution differs drastically from Eq. (4.9). The value of 6

necessary for stability is found by solving the transcendental~equation

-v /2U-{iT, (4.16)

where we have used Eq. (4.14) in the right-hand side of Eq. (4.12). We

will not pursue this criterion further, but merely note that the value

of 6 necessary for stability depends logarithmically on V, not

directly as in Eq. (4.9). For numerical computations Eq. (4.16) can

prove extremely useful.

?onsider now a distribution function fO(W), which has nonzero

values for only a finite range of W. It is easy to see that for such

a (physically realistic) function it is impossible to satisfy the

dispersion relation with real w if W
1

lies outside the range in which

f
O

is nonzero. This can be seen by writing E~. (4.io) in the form

( df
O= (/)1_

U- , dW
~/

dW + i rr df0 \
dW

W=W
1

(4.17 )
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where c? indicates the Cauchy principle value. The equation cannot be

satisfied by a real value of ~il if (dfo/dinl W=W
l

is zero. Furthermore,

it can be shown thutany WI having a real part outside the range of

nonzero fo(W) has an imaginary part with a sign corresponding to an

instability. The value of Re Hl has been seen to be insensitive to

the form of fO(W), so we can deduce a necessary condition for stability,

namely the range of f O(lo1) must include H
l

• Because V is so small

compared to U. this necessary condition is a very good approximation

to a sufficient condition. Quantitatively we have the frequency spread

(4.18)

is the condition for stability. Evaluating this for a vacuum tank of

circular cross section,. we have from Eqs. (3.9a~;

ll/2
[1 + 2 in(b/a)]i (4.19)

I
This result is algebraically just the criterion for suppression of the

negative-mass instability (but there, of course, df/dE is negative

and its absolute value appears in the formula).4 This last result

has the geometric factor appropriate to the circular geometry, and

is independent of n. We must remember however, that Eq. (4.19) is

valid only for n «yR/b. The more general ~ase can be handled

with Eqs. (4.10) and (3.l0~). The stability criterion is independent

of the surface resistivity a in this limit of highly conducting

surfaces.
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Equation (4.l9) may impose more severe desisn requirements

on a high-intens~ty accelerator than those necessary to circumvent

the negative-mass instability. This is because the negative-mass

instability i~ possible only if the energy is above the transition

energy where Idf/dE I is usually small and y may be large. But

Eq. (4.l9) must be applied near injection in an AGS. The absence

of any observed effect in present-generation machines--in contrast
~

to the observed negative-mass instability in Saturne, the Cosmotron,

and the Bevatron7--must be laid to the rather large ener~J spread

from the linac injectors.
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V. llUHERICAL EXAMPLE

As a numerical example we take the MURA 40-MeV electron accelerator

with parameters as listed in Tables I and II. We assume the conductivity

of the walls to be that of aluminUm! namely a = (3 x 1017 ) -1sec )0

Table III shows the results of numerical calculations for U and V,

as well as a comparison with the analytic formulas of Eqs. (3.9). The

agreement in the values of V is seen to be excellent, although the
~

geometry is remote from a circular situation and n is not much less

than yR/b. Table IV gives results for the growth time in the

absence of frequency spread i O' and for the frequency spread 6ws re

quired for stability. In Table V, N is taken at two values bracketi~g

the experimental range,and 6ws is expressed in terms of a requisite

energy spread 6E on the assumption that the frequency spread is caused
s

solely by an energy spread. The numbers are in semiquantitative

agreement with observation, with the 6E being closer to observationss
6than the

i
i O• The growth time '0 is a function of the resistivity of

tpewalls and could be considerably reduced if the effective resistivity

of the walls were higher than the nominal value (for aluminum) used in

these theoretical calculations.
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Table I. Geometrical parameters that are employed in'the numerical example

and that approximate conditions in the MORA 40-MeV· electron accelerator.

The dimensions are defined in Fig. 2.

Case

.A

B

C

D

n

1

10

10

10

R (cm)

'125

125

140

140

h (em) "vi (ClIl)

100

100

100

100

15

15

30

30

t. (cm)

.. 1.0

1.0

1.0

2.0
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Table II. Beam parameters employed in the numerical example. The

quantity K corresponds to n field-index parameter of 9.3.

wo(cm!sec)
E df 2 -1)Case y' K =-- kO(sec:'"' erg·- f dE

A 0.5528 1.2 1.33 x 108
1.96 0.575 x 1022

-B 0.5528 1.2 1.33 x'108 1.96' 0.575 x 1'022

C 0.8660 2.0 1.86 x 108 2.04 0.702 x 1022
,\ ,'.

D 0.8660 2.0 1.86 x 108 2.04 0.702 x 1022
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Table III. Values of the quantities U and V. as defined in Eq. (3.9).

The conductivity, in this example. is taken to be that of aluminum;

namely, (J = 17 -13 x 10 sec • In the evaluation of Eq. (3.9a). b has been

taken as h/2 and a _ _ A J ......
as til Co. It can be seen that the analytic formula

is an exceedingly good approximation--in this example. at least--to the

numerical computations.

Employing Eq. (3.90.) Emwoying Eq. (3.1-00.)

Case

A

B.

C

D

U 20if xlO (ergs)

5.61

2.02

1.38

V 26N xlO (ergs)

39.6

125

232

232

U 20N xlO (ergs)

0.'774

1.91

v 26IT xlO (ergs)

39.5

121

229

226
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Table IV. Growth time and frequency spreads required for stability in

the numerical example. The quantity La is computed with Eq. (4.5),

whereas 6w is evaluated with Eq. (4.19); in both cases the last two
s

collliiills of Table III are used. The quantity ~E is the energy spread
s

in the beam required'to give the frequency spread 6w
s

(and hence

stability), under the assumption that the frequency spread arises

solely from energy spread.

Case 1/2
N TO (sec)

...t:,w 1
N1 / 2 (sec- )

A 5.9 x 103 13.5 30

B 1.9 x 103 13.0 30

c c: ~ X ' ,,2 0 1. 22.,I.e;.. ... v u.'t

D 4.7 x 102 7.4 19



-30-

Table V. Growth times in the absence of energy spread, ana energy spread

required for stability for two different values of the total number of

particles in an example approximating conditions in the MURA 40-MeV-

electron accelerator.

N
Case

to (msec) !.IE (kV)
s

N

!.IE (kV)
s

A 590 0.3 59 3;0

B 190 0.3 19 3.0

C 52 j().22 5.2 2.2

D 47 0.19 4.7 1.9

~
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Fig. 1 Geometry of beam and tank of circular cross aection.

Fig. 2 Geometry of beam and tank of rectangular cross section.
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Fig. 1
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