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Abstract: While the low-energy part of the hadronic light-by-light (HLbL) tensor can be

constrained from data using dispersion relations, for a full evaluation of its contribution

to the anomalous magnetic moment of the muon (g − 2)µ also mixed- and high-energy re-

gions need to be estimated. Both can be addressed within the operator product expansion

(OPE), either for configurations where all photon virtualities become large or one of them

remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is

thus a major aspect of a model-independent approach towards HLbL scattering. Here, we

focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole

contributions from π0, η, η′. Since these conditions cannot be fulfilled by a finite number of

pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses

and transition form factors from Regge theory, the OPE, and phenomenology. Implement-

ing a matching of the resulting expressions for the HLbL tensor onto the perturbative

QCD quark loop, we are able to further constrain our calculation and significantly reduce

its model dependence. We find that especially for the π0 the corresponding increase of

the HLbL contribution is much smaller than previous prescriptions in the literature would

imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by

∆aLSDC
µ = 13(6) × 10−11. This number does not include the contribution from the charm

quark, for which we find ac-quarkµ = 3(1)× 10−11.
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1 Introduction

Current Standard Model (SM) evaluations of the anomalous magnetic moment of the muon,

aµ = (g−2)µ/2, differ from the value measured at the Brookhaven National Laboratory [1]

aexpµ = 116 592 089(63)× 10−11, (1.1)

by around 3.5σ. In the near future, the new Fermilab E989 experiment [2] will be able to

reduce the experimental uncertainty by a factor 4, and the E34 experiment at J-PARC [3]

will provide an important cross check, see ref. [4] for a comparison of the experimental

methods. Therefore, the theoretical calculation of aµ needs to be improved accordingly.

The uncertainty of the SM prediction mainly stems from hadronic contributions, such

as hadronic vacuum polarization (HVP), see figure 1 (a), and HLbL scattering, see figure 1

(b). Since the HVP contribution can be systematically calculated with a data-driven

dispersive approach [5–9], lattice QCD [10–16], and potentially be accessed independently

by the proposed MUonE experiment [17, 18], which aims to measure the space-like fine-

structure constant α(t) in elastic electron-muon scattering, the HLbL contribution may

end up dominating the theoretical error.1

Apart from lattice QCD [27–29], recent data-driven approaches towards HLbL scat-

tering are again rooted in dispersion theory, either for the HLbL tensor [30–35], the Pauli

form factor [36], or in terms of sum rules [37–41]. In all approaches, the most important

HLbL contributions are the π0-pole and other pseudoscalar-meson-pole contributions, see

figure 2. The strength of these pseudoscalar poles is determined by the transition form

factors (TFFs), which in turn can be reconstructed from dispersion theory [42–47], leading

to [46, 47]

aπ
0-pole

µ = 62.6+3.0
−2.5 × 10−11, (1.2)

1Note that higher-order insertions of HVP [5, 19, 20] and HLbL [21] are already under sufficient control,

as are hadronic corrections in the anomalous magnetic moment of the electron, where recently a 2.5σ

tension between the direct measurement [22] and the SM prediction [23] using the fine-structure constant

from Cs interferometry [24] emerged [25, 26].
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(a) (b)

Figure 1. Hadronic contributions to (g − 2)µ: (a) HVP, (b) HLbL. The pink blobs symbolize

hadronic intermediate states.

Figure 2. Pseudoscalar-pole contribution to (g − 2)µ. The cyan dots indicate the TFF of the

pseudoscalar meson.

in agreement with determinations from lattice QCD [48], Canterbury approximants

(CA) [49], and Dyson-Schwinger equations (DSE) [50]. Since the central value (1.2)

is close to earlier model-based calculations, e.g., within lowest-meson-dominance+vector

(LMD+V) models [51], the second-most important aspect of the dispersive approach apart

from rigorous uncertainty estimates is the clear definition of the pseudoscalar intermedi-

ate states in terms of physical, on-shell form factors, in contrast to earlier notions of a

pion-exchange contribution, see ref. [52], which involve the model-dependent concept of an

off-shell pion. This becomes particularly important when combined with other intermediate

states, ensuring that the pseudoscalar poles are consistent with, for instance, the dispersive

definition of two-pion intermediate states [34, 35], which in turn are determined by the cor-

responding on-shell quantities, in this case the helicity amplitudes for γ∗γ∗ → ππ [53–58].

However, in contrast to HVP there is no closed formula that resums all possible inter-

mediate states (in terms of the cross section for e+e− → hadrons [59, 60]), in such a way

that the consideration of exclusive channels will break down eventually, irrespective of the

complications when extending the dispersive formalism to higher-multiplicity intermediate

states. Therefore, to control the regions in the (g−2)µ integral where either two or all three

independent photon virtualities become large, additional constraints are required. In close

analogy to HVP, where perturbative QCD (pQCD) becomes applicable in the high-energy

tail of the dispersive integral, such constraints arise from the OPE and pQCD. In the regime

where all three virtualities are large it was shown recently [61] that the pQCD quark loop

indeed arises as the first term in a controlled OPE, with the next order suppressed by

small quark masses and condensates. For the case in which one virtuality remains small,

the leading OPE constraint was derived in ref. [62], by reducing the HLbL tensor in this

limit to the triangle anomaly and its known non-renormalization theorems [63–66].2

2These non-renormalization theorems strictly apply only in the chiral limit and to the non-singlet com-

ponents. Instances where additional corrections for the singlet component arise are pointed out throughout

the discussion of the various SDCs in sections 2 and 3.
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The latter constraint decomposes into longitudinal and transversal contributions. As

noted in ref. [62], the longitudinal part is intimately related to the pseudoscalar poles, but

cannot be saturated by π0, η, η′ alone, nor by any finite number of poles. As a remedy

it was suggested to drop the momentum dependence of the TFF at the vertex to which

the external photon is attached, see figure 2, which leads to a substantial increase of the

pseudoscalar-pole HLbL contribution. Based on an LMD+V model for the π0 and vector-

meson-dominance (VMD) models for η, η′ from ref. [51], this increase was found to be

13.5×10−11 for the π0 and 5×10−11 each for η and η′. This shift has been included, in one

way or another, in subsequent estimates of the total HLbL value [52, 67]. In fact, as we will

show below, with modern input for the TFFs the corresponding increase would become

even larger. While there is no doubt that the SDC is important — it is, in fact, one of the

few constraints on the mixed-energy regions in which one photon virtuality remains small

— modifying the expression for the pseudoscalar poles in this way is not compatible with

the dispersive description of the four-point HLbL tensor [31–35] and spoils consistency with

other intermediate states in the same framework.

In this work we address the question from a different standpoint: already in ref. [62]

it was observed that while a finite number of poles cannot saturate the SDC, an infinite

tower of them potentially can — dropping the TFF at the external vertex has in fact been

described in ref. [62] as a model for the resummation of the tower of pseudoscalar states.

Here we present explicit constructions that implement the Melnikov-Vainshtein (MV) con-

straint in terms of an infinite tower of excited pseudoscalars, constraining their properties

from Regge theory, all available SDCs, and phenomenology wherever possible [68]. Given

all these constraints the resulting models for the HLbL tensor prove remarkably rigid,

without altering the low-energy properties. Since phenomenological information on ex-

cited pseudoscalars, especially their TFFs, is scarce, we do not attempt to construct TFF

representations that apply for arbitrary kinematics, but concentrate on minimal models

that cover the space-like region needed for (g− 2)µ and at the same time are able to fulfill

all SDCs. Systematic uncertainties are estimated by comparing two such representations,

either based on a truncated or untruncated Regge sum for the TFFs themselves, as well as

the available phenomenological constraints, see appendices D and E. Moreover, our model

is only needed for the low-energy part of the (g− 2)µ integral: above the energy where the

matching occurs, we calculate the integral with the quark loop. This strategy also ensures

that the estimate of the asymptotic region still applies in the chiral limit, in which the

excited pseudoscalar states decouple, see section 5.3, while at low energies phenomenolog-

ical input is needed either way to account for the effect of quark-mass corrections. All this

leads to a more reliable estimate for the impact of the OPE constraints on the total HLbL

contribution. To this end, we first review the expression for the pQCD quark loop and the

known OPE constraints on the HLbL tensor in sections 2 and 3, adapting the conventions

to the language suitable for the decomposition of the HLbL tensor from refs. [33, 35], in

which the expressions for both the pseudoscalar poles and the pQCD quark loop become

remarkably simple. Next, we present in section 4 the explicit construction of large-Nc-
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inspired Regge models3 implementing the OPE constraints and derive the consequences

for HLbL scattering and (g − 2)µ. In section 5, we match the resulting expressions for the

HLbL tensor to the pQCD loop to obtain a first estimate of the scale where the description

of the HLbL tensor in terms of hadronic intermediate states and its asymptotic properties

should meet. A more detailed comparison to the results obtained with the MV model is

provided in section 6, before we summarize our main results and discuss future develop-

ments in section 7. Technical details and alternative evaluations that are used to estimate

the systematic uncertainty are collected in the appendices.

2 The hadronic light-by-light tensor

2.1 Lorentz decomposition and (g − 2)µ integral

Throughout, we follow the conventions for the decomposition of the HLbL tensor and its

contribution to (g − 2)µ from ref. [35]. Starting point is the HLbL tensor defined as the

four-point function

Πµνλσ(q1, q2, q3) = −i
∫

d4x d4y d4z e−i(q1·x+q2·y+q3·z)〈0|T{jµ(x)jν(y)jλ(z)jσ(0)}|0〉 (2.1)

of the electromagnetic current

jµ = ψ̄Qγµψ, ψ = (u, d, s)T , Q = diag

(
2

3
,−1

3
,−1

3

)

, (2.2)

and momenta assigned as q1+q2+q3 = q4 → 0. Its Lorentz decomposition in terms of scalar

functions Πi is written following the Bardeen-Tung-Tarrach (BTT) prescription [69, 70]

Πµνλσ =

54∑

i=1

Tµνλσ
i Πi, (2.3)

where the Πi are free of kinematic singularities and thus amenable to a dispersive treatment.

However, this decomposition does not allow for a projection onto independent Lorentz

structures, given that there are only 41 independent helicity amplitudes for fully off-shell

photon-photon scattering. Moreover, two of these redundancies only occur in four space-

time dimensions [71]. A given expression for the HLbL tensor is thus most conveniently

projected onto a subset of 43 Lorentz structures

Πµνλσ =

43∑

i=1

Bµνλσi Π̃i. (2.4)

The functions Π̃i are no longer free of kinematic singularities, but the form of their singu-

larities follows from the projection of the BTT decomposition. The necessary projectors

are provided in ref. [33]. Next, only a subset of the structures Tµνλσ
i actually contributes

to (g − 2)µ. To make this explicit it is convenient to perform another basis change

Πµνλσ =
54∑

i=1

Tµνλσ
i Πi =

54∑

i=1

T̂µνλσ
i Π̂i, (2.5)

3For brevity we call our large-Nc-inspired Regge models simply large-Nc Regge models.
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in such a way that in the limit q4 → 0 the derivative of 35 structures T̂µνλσ
i vanishes. The

19 structures T̂µνλσ
i that do contribute to (g − 2)µ can be chosen as [35]

T̂µνλσ
i = Tµνλσ

i , i = 1, . . . , 11, 13, 14, 16, 17, 50, 51, 54,

T̂µνλσ
39 =

1

3

(

Tµνλσ
39 + Tµνλσ

40 + Tµνλσ
46

)

. (2.6)

In this way, the 19 relevant linear combinations of scalar functions are

Π̂1 = Π1 + q1 · q2Π47,

Π̂4 = Π4 − q1 · q3 (Π19 −Π42)− q2 · q3 (Π20 −Π43) + q1 · q3q2 · q3Π31,

Π̂7 = Π7 −Π19 + q2 · q3Π31,

Π̂17 = Π17 +Π42 +Π43 −Π47,

Π̂39 = Π39 +Π40 +Π46,

Π̂54 = Π42 −Π43 +Π54, (2.7)

together with the crossed versions

Π̂2= C23
[
Π̂1

]
, Π̂3= C13

[
Π̂1

]
, Π̂5= C23

[
Π̂4

]
, Π̂6= C13

[
Π̂4

]
, Π̂8= C12

[
Π̂7

]
,

Π̂9= C12
[
C13
[
Π̂7

]]
, Π̂10= C23

[
Π̂7

]
, Π̂13= C13

[
Π̂7

]
, Π̂14= C12

[
C23
[
Π̂7

]]
,

Π̂11= C13
[
Π̂17

]
, Π̂16= C23

[
Π̂17

]
, Π̂50=−C23

[
Π̂54

]
, Π̂51= C13

[
Π̂54

]
, (2.8)

where the crossing operators Cij exchange momenta and Lorentz indices of the photons i

and j

C12[f ] := f(µ↔ ν, q1 ↔ q2), C14[f ] := f(µ↔ σ, q1 ↔ −q4), (2.9)

and multiple operations are understood to act as in the example C12[C23[f(q1, q2, q3, q4)]] =
C12[f(q1, q3, q2, q4)] = f(q2, q3, q1, q4). In addition, the Π̂i preserve the crossing symmetries

Π̂1 = C12
[
Π̂1

]
, Π̂4 = C12

[
Π̂4

]
, Π̂17 = C12

[
Π̂17

]
,

Π̂39 = C12
[
Π̂39

]
= C13

[
Π̂39

]
= . . . , Π̂54 = −C12

[
Π̂54

]
. (2.10)

The Π̂i defined in this way display all crossing symmetries that survive in the limit q4 → 0

and are thus particularly well suited for the HLbL application. In consequence, only the

six functions (2.7) need to be specified, with all the rest following from crossing symmetry.

In terms of these functions the HLbL contribution to (g − 2)µ becomes

aHLbL
µ =

2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ
√

1− τ2Q3
1Q

3
2

12∑

i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ), (2.11)

where Q1 = |Q1| and Q2 = |Q2| denote the norm of the Euclidean four-vectors and we

have used the symmetry of the kernel functions under q1 ↔ −q2 to reduce the sum to only

12 terms. The remaining kernel functions Ti(Q1, Q2, τ) are listed in ref. [35] and the 12

scalar function Π̄i simply correspond to a subset of the Π̂i

Π̄1 = Π̂1, Π̄2 = Π̂2, Π̄3 = Π̂4, Π̄4 = Π̂5,

Π̄5 = Π̂7, Π̄6 = Π̂9, Π̄7 = Π̂10, Π̄8 = Π̂11,

Π̄9 = Π̂17, Π̄10 = Π̂39, Π̄11 = Π̂50, Π̄12 = Π̂54. (2.12)
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They are evaluated for the kinematics

s = q23 = −Q2
3 = −Q2

1− 2Q1Q2τ −Q2
2, t = q22 = −Q2

2, u = q21 = −Q2
1, q24 = 0, (2.13)

where s, t, u are the Mandelstam variables of the original HLbL scattering process. Finally,

we quote an alternative formulation of (2.11) based on the parameterization [72]

Q2
1 =

Σ

3

(

1− r

2
cosφ− r

2

√
3 sinφ

)

,

Q2
2 =

Σ

3

(

1− r

2
cosφ+

r

2

√
3 sinφ

)

,

Q2
3 = Q2

1 + 2Q1Q2τ +Q2
2 =

Σ

3
(1 + r cosφ) . (2.14)

This variable transformation leads to

aHLbL
µ =

α3

432π2

∫ ∞

0
dΣΣ3

∫ 1

0
dr r

√

1− r2
∫ 2π

0
dφ

12∑

i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ), (2.15)

which often facilitates the numerical evaluation.

2.2 Pseudoscalar poles

The pseudoscalar poles only appear in Π̂1 (and by crossing symmetry in Π̂2,3)

Π̂P -pole
1 =

FPγ∗γ∗(q21, q
2
2)FPγγ∗(q23)

q23 −M2
P

, (2.16)

with FPγ∗γ∗(q21, q
2
2) the doubly-virtual TFF, FPγγ∗(q2) = FPγ∗γ∗(q2, 0) the singly-virtual

TFF, and P = π0, η, η′ (see ref. [33] for the detailed derivation). The TFFs are normalized

to the two-photon decays according to

Γ(P → γγ) =
πα2M3

P

4
F 2
Pγγ , FPγγ = FPγ∗γ∗(0, 0). (2.17)

They are defined by the matrix element

i

∫

d4x eiq1·x〈0|T {jµ(x)jν(0)}|P (q1 + q2)〉 = ǫµναβ q
α
1 q

β
2 FPγ∗γ∗(q21, q

2
2). (2.18)

In the chiral limit, the non-singlet normalizations are determined by the Adler-Bell-Jackiw

anomaly [73–75]
∑

P

F a
PFPγγ =

3

2π2
Ca, Ca =

1

2
Tr(Q2λa), (2.19)

with Gell-Mann matrices λa, λ0 =
√

2/31,

C3 =
1

6
, C8 =

1

6
√
3
, C0 =

2

3
√
6
, (2.20)

and decay constants defined through F a
P :

〈0|Aa
µ(0)|P (p)〉 =: ipµF

a
P , (2.21)
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which is in general a 3× 3 matrix. Ignoring for simplicity any possible mixing between the

π0 and the other two states, this takes the form:

F a
P =







F 3
π 0 0

0 F 8
η F 8

η′

0 F 0
η F 0

η′







=







F 3
π 0 0

0 F 8 cos θ8 F 8 sin θ8

0 −F 0 sin θ0 F
0 cos θ0






, (2.22)

where, after the second equality sign, we have already introduced the standard two-angle

mixing scheme between η and η′. For the pion a = 3, the corresponding low-energy theorem

Fπ0γγ =
3

2π2Fπ
C3 =

1

4π2Fπ
(2.23)

is very close to phenomenology, while for η, η′ chiral corrections and mixing effects need to

be taken into account. In particular, we stress that due to the renormalization of the singlet

current F 0
P is not actually an observable quantity, and the corresponding αs corrections [76,

77] need to be considered when relating the normalization, asymptotic constraints, and η–

η′ mixing parameters [78–82]. In the present work, we will take the η, η′ normalizations

from experiment, so that the singlet corrections become most relevant when comparing

the asymptotic constraints and η–η′ mixing parameters in different schemes. As described

in section 4.2, we studied the impact of different such determinations on the numerics,

with the result that the corresponding variations were numerically irrelevant in view of the

accuracy anticipated for the pseudoscalar TFF models discussed in the following sections.

In addition to the normalizations, the pseudoscalar TFFs are subject to the (leading)

asymptotic constraint [83–85]

FPγ∗γ∗(−Q2
1,−Q2

2) = 4
∑

a

CaF
a
P

∫ 1

0
dx

φaP (x)

xQ2
1 + (1− x)Q2

2

, (2.24)

which for the asymptotic wave function φaP (x) = 6x(1−x), and again ignoring αs corrections

for the singlet component, produces the limits4

lim
Q2→∞

Q2FPγγ∗(−Q2) = 12
∑

a

CaF
a
P ,

lim
Q2→∞

Q2FPγ∗γ∗(−Q2,−Q2) = 4
∑

a

CaF
a
P . (2.25)

In view of (2.19), multiplying these limits by FPγγ and summing over P one obtains an

expression which depends neither on decay constants nor on mixing angles. Moreover, the

block form of the matrix (2.22) leads to two separate combinations with such a property:

Fπ0γγ lim
Q2→∞

Q2Fπ0γ∗γ∗(−Q2,−Q2) =
6

π2
C2
3 =

1

6π2
,

∑

P=η,η′

FPγγ lim
Q2→∞

Q2FPγ∗γ∗(−Q2,−Q2) = 4
∑

P,a

F a
PFPγγCa =

6

π2

∑

a=0,8

C2
a =

1

2π2
, (2.26)

4As argued in ref. [86], the first limit goes beyond a strict OPE, but is consistent with the phenomenology

of the ground-state TFFs, see, e.g., refs. [47, 49].
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Figure 3. Quark-loop contribution to HLbL scattering.

and similarly for the asymptotic limit of the singly-virtual TFF. Beyond the singlet αs

corrections that describe the scale dependence of F 0
P [78–80], there are genuine pQCD cor-

rections to the TFFs suppressed by αs at scales related to the photon virtualities [87]. The

impact of such next-to-leading-order pQCD corrections was studied in ref. [47] in the con-

text of the pion TFF, with the result that even for the ground-state pion the effect is small

and safely covered by the uncertainty estimated from the onset of the asymptotic region.

2.3 The perturbative QCD quark loop

The quark-loop contribution to HLbL scattering is shown in figure 3, indicating the different

permutations that need to be considered. Compact expressions for the BTT scalar functions

can be obtained as follows: we use a Feynman parameterization for the loop integrals and

project the result onto the scalar basis functions Π̃i [33, 35]. We find all necessary BTT

functions Πi in the limit q4 → 0 by taking this limit in the appropriate order, so that the

Tarrach poles drop out. Then we combine the functions Πi according to (2.7) to obtain

the scalar functions Π̂i. Due to the limit q4 → 0, one integral can be carried out and we

are left with a two-dimensional Feynman-parameter integral. The result for the integrands

contains spurious kinematic singularities, but the residues of these poles vanish when the

Feynman integrals are carried out. Therefore, we can subtract these poles and obtain a

representation that is manifestly free of kinematic singularities

Π̂quark loop
i =

∑

q

NcQ
4
q

1

16π2

∫ 1

0
dx

∫ 1−x

0
dy Ii(x, y), (2.27)

where

I1(x, y) = −
16x(1− x− y)

∆2
132

− 16xy(1− 2x)(1− 2y)

∆132∆32
,

I4(x, y) =
32xy(1− 2x)(x+ y)(1− x− y)2(q21 − q22 + q23)

∆3
312

− 32(1− x)x(x+ y)(1− x− y)
∆2

312

− 32xy(1− 2x)(1− 2y)

∆312∆12
,

I7(x, y) = −
64xy2(1− x− y)(1− 2x)(1− y)

∆3
132

,

I17(x, y) = −
32x2y2(1− 2x)(1− 2y)

∆2
312∆12

,

I39(x, y) =
64xy(1− x− y)

(
(2x− 1)y2 + xy(2x− 3) + x(1− x) + y

)

∆3
132

,

I54(x, y) = −
16xy(1− x− y)(1− 2x)(1− 2y)(x− y)

∆312∆12

(
1

∆312
+

1

∆12

)

, (2.28)
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and

∆ijk = m2
q − xyq2i − x(1− x− y)q2j − y(1− x− y)q2k,

∆ij = m2
q − x(1− x)q2i − y(1− y)q2j . (2.29)

In principle, it is also possible to extract the results by projecting onto the singly-on-shell

basis Π̌i [35]. However, it turns out that this method is less straightforward, because

different spurious kinematic singularities appear, which have to be subtracted again and

make the calculation more complicated.

As a cross check of (2.28) we have evaluated light-quark loops for q = u, d, s with

(constituent) quark mass mq, including a factor Nc
∑

q=u,d,sQ
4
q = 2/3 as well as the lepton

loops. The latter agree well with the known analytic expressions [88], while apart from

the electron loop the results are well reproduced from the heavy-mass expansion [89].

Throughout, for the matching to our Regge models in section 5, we use the pQCD quark

loop with mq = 0, given that even in configurations where chiral corrections for the light

quarks q = u, d, s can be controlled within pQCD, they only enter at subleading orders.

As a first application, we consider the contribution from the charm quark. Assuming

that this contribution is fully perturbative, with mass mc = 1.27(2)GeV [90], the quark

loop evaluates to ac-loopµ = 3.1(1)×10−11. In analogy to the light quarks, one would expect

the most important non-perturbative effect to be related to the pole contribution from

the lowest-lying cc̄ resonance, the ηc(1S) with mass mηc(1S) = 2.9839(5)GeV and two-

photon width Γ(ηc(1S)→ γγ) = 5.0(4) keV [90]. Using a VMD-type form factor with scale

set by the J/Ψ (as suggested by a significant branching fraction BR(J/Ψ → ηc(1S)γ) =

1.7(4)% [90]), this leads to the estimate a
ηc(1S)
µ = 0.8 × 10−11 (this estimate agrees with

the LMD result a
ηc(1S)
µ = 0.9(1) × 10−11 from [91]). Given the relatively low scale set by

mc one may also expect αs corrections in a similar ballpark. Altogether, we estimate

ac-quarkµ = 3(1)× 10−11, (2.30)

while the b-quark contribution is already suppressed to the level of 10−13 and the t-quark

loop to 10−15.

3 OPE constraints for the hadronic light-by-light tensor

3.1 OPE for the asymptotic region

The first term in the OPE for the kinematic configuration in which all three momenta are

large coincides with the pQCD quark loop. This has long been suspected in the literature,

including ref. [62], but was only demonstrated recently in ref. [61], by working out the next

order in the expansion. While at leading order all quark masses can simply be put to zero,

this is no longer true at subleading orders. In fact, it is the presence of quark masses and

condensates that numerically suppresses the next-to-leading order corrections.
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In the limit q21 = q22 = q23 ≡ q2 the expressions for the pQCD quark loop simplify to

Π̂pQCD
1 = − 4

9π2q4
, Π̂pQCD

54 = 0,

Π̂pQCD
4 = − 8

243π2q4

[

33− 16
√
3Cl2

(π

3

)]

,

Π̂pQCD
7 =

4

243π2q6

[

33− 16
√
3Cl2

(π

3

)]

,

Π̂pQCD
17 =

16

81π2q6

[

3− 2
√
3Cl2

(π

3

)]

,

Π̂pQCD
39 = − 8

243π2q6

[

15− 4
√
3Cl2

(π

3

)]

, (3.1)

where the Clausen function is defined as

Cl2(x) = −
∫ x

0
dt log

∣
∣
∣
∣
2 sin

t

2

∣
∣
∣
∣
. (3.2)

This result again includes the factor 2/3 due to Nc and quark charges, after summing over

q = u, d, s.

3.2 OPE for the mixed regions

The OPE constraint derived in ref. [62] applies to the case where one virtuality remains

smaller than the others, Q2
3 ≪ Q2

1 ∼ Q2
2, also referred to as the mixed regions. This

constraint traces back to non-renormalization theorems for the V V A correlator [63, 64],

which had been used before in the context of the electroweak contributions to (g− 2)µ [65,

66]. Explicit pQCD calculations at two- and three-loop order exist [92, 93], but the main

argument in ref. [62] was that the non-renormalization theorems allow one to address

the regions in which both perturbative and non-perturbative aspects might be important.

We first review this derivation, while casting the results in a form suitable for the BTT

decomposition of the HLbL tensor.

The central object is the OPE for two electromagnetic currents:

Πµν(q1, q2) = i

∫

d4x d4y e−i(q1·x+q2·y)T{jµ(x)jν(y)}. (3.3)

We consider large momenta q̂ = (q1 − q2)/2 flowing through the currents and expand the

operator product into a series of local operators. For |q̂| ≫ ΛQCD, the coefficients can be

calculated in perturbation theory. At leading order in αs, only two-quark operators are

generated, hence the matching can be easily obtained by inserting the operator (3.3) into
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external quark states and expanding the diagrams for large momenta q̂:

i〈ψq(p2)|Πµν(q1, q2)|ψq(p1)〉

= (2π)4δ(4)(q1 + q2 + p1 − p2)
[

ūq(p2)i
2Q2

qγ
ν
i(/p1 + /q1 +mq)

(p1 + q1)2 −m2
q

γµuq(p1)

+ ūq(p2)i
2Q2

qγ
µ
i(/p2 − /q1 +mq)

(p2 − q1)2 −m2
q

γνuq(p1)

]

= (2π)4δ(4)(q1 + q2 + p1 − p2)ūq(p2)iQ2
q

[

− 2iǫµνλσ
q̂λ
q̂2
γσγ5 − 2gµν

mq

q̂2

− (γµgνσ + γνgµσ − γσgµν)
(

1

q̂2
(p1 + p2)σ −

2(p1 + p2) · q̂
(q̂2)2

q̂σ

)

+O
(
q̂−3
)

]

uq(p1), (3.4)

where we used

γµγαγν = gµαγν + gναγµ − gµνγα − iǫµανβγ5γβ (3.5)

with ǫ0123 = +1. Introducing the scalar density S(x), the axial vector jµ5 (x), and the

energy-momentum tensor θµν(x) with flavors weighted by the squared electric charges,

S(x) = ψ̄(x)Q2Mψ(x), jµ5 (x) = ψ̄(x)Q2γµγ5ψ(x), θµν(x) =
i

2
ψ̄(x)Q2γµ∂ν−ψ(x), (3.6)

with the quark-mass matrixM = diag(mu,md,ms) as well as the derivative ∂− =
−→
∂ −←−∂ ,

we read off the matching for the OPE:

Πµν(q1, q2) =

∫

d4z e−i(q1+q2)·z
[

− 2i

q̂2
ǫµναβ q̂

αjβ5 (z)−
2

q̂2

(

θµν(z) + θνµ(z)− gµνθαα(z)
)

+
4

(q̂2)2

(

q̂µq̂
αθνα + q̂ν q̂

αθµα − gµν q̂αq̂βθαβ
)

− 2

q̂2
gµνS(z) +O

(
q̂−3
)
]

. (3.7)

The first term reproduces the expansion given in ref. [62], but differs in sign just because

of different conventions (they use ǫ0123 = −1).
Applying the OPE to the HLbL tensor in the limit Q2

1 ∼ Q2
2 ≫ Q2

3, Q
2
4 we then find

at leading order

Πµνλσ(q1, q2, q3) =
2i

q̂2
ǫµναβ q̂

α

∫

d4x d4y e−i(q1+q2)·xe−iq3·y〈0|T{jβ5 (x)jλ(y)jσ(0)}|0〉

=
2i

q̂2
ǫµναβ q̂

α

∫

d4x d4y e−iq3·xeiq4·y〈0|T{jλ(x)jσ(y)jβ5 (0)}|0〉

=
2

q̂2
ǫµναβ q̂

αWλσ
β(−q3, q4), (3.8)

where the correlator Wµνρ is defined as

Wµνρ(q1, q2) = i

∫

d4x d4y ei(q1·x+q2·y)〈0|T{jµ(x)jν(y)j5ρ(0)}|0〉. (3.9)

Introducing the vector and axial-vector currents

V a
µ (x) = ψ̄(x)γµ

λa
2
ψ(x), Aa

µ(x) = ψ̄(x)γµγ5
λa
2
ψ(x), (3.10)
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where {λa, λb} = 4/3δab + 2dabcλc, we also define the correlator

W abc
µνρ(q1, q2) = i

∫

d4x d4y ei(q1·x+q2·y)〈0|T{V a
µ (x)V

b
ν (y)A

c
ρ(0)}|0〉. (3.11)

Performing the flavor decompositions

j5µ(x) =
∑

a=0,3,8

2CaA
a
µ(x), jµ(x) =

∑

a=3,8

2DaV
a
µ (x) (3.12)

with Ca defined in (2.19) and Da = 1
2Tr(Qλa), we write the correlator (3.9) as

Wµνρ(q1, q2) = 4
∑

a=0,3,8

C2
a W

(a)
µνρ(q1, q2), (3.13)

where

W (a)
µνρ(q1, q2) :=

2

Ca

∑

b,c=3,8

DbDcW
bca
µνρ(q1, q2). (3.14)

The Lorentz decomposition of the V V A correlator is chosen as [64]

W (a)
µνρ(q1, q2) = −

1

8π2

[

− w(a)
L

(
q21, q

2
2, (q1 + q2)

2
)
ǫµναβq

α
1 q

β
2 (q1 + q2)ρ

+ w
+(a)
T

(
q21, q

2
2, (q1 + q2)

2
)
t+µνρ + w

−(a)
T

(
q21, q

2
2, (q1 + q2)

2
)
t−µνρ

+ w̃
−(a)
T

(
q21, q

2
2, (q1 + q2)

2
)
t̃−µνρ

]

, (3.15)

with the following Lorentz structures:

t+µνρ = ǫµραβq1νq
α
1 q

β
2 − ǫνραβq2µqα1 qβ2 − q1 · q2ǫµνρα(q1 − q2)α

+
q21 + q22 − (q1 + q2)

2

(q1 + q2)2
ǫµναβq

α
1 q

β
2 (q1 + q2)ρ,

t−µνρ =

(

(q1 − q2)ρ −
q21 − q22

(q1 + q2)2
(q1 + q2)ρ

)

ǫµναβq
α
1 q

β
2 ,

t̃−µνρ = ǫµραβq1νq
α
1 q

β
2 + ǫνραβq2µq

α
1 q

β
2 − q1 · q2ǫµνρα(q1 + q2)

α. (3.16)

In the massless limit, one finds at one loop the contribution of the axial anomaly [73, 74]

w
(a)
L (q21, q

2
2, (q1 + q2)

2) =
2Nc

(q1 + q2)2
. (3.17)

For the non-singlet contributions a = 3, 8, this result is modified neither by higher-order

perturbative [94] nor non-perturbative contributions [95], while the singlet contribution is

affected by the gluonic U(1) anomaly.

In the chiral limit, the factor C2
a in (3.13) arises naturally due to the flavor decom-

position. One factor of Ca stems from (3.12), the second factor emerges as follows. We

consider singlet and octet parts of the axial current and define

W bc0
µνρ(q1, q2) =:

√

2

3
δbcWµνρ(q1, q2), W bca

µνρ(q1, q2) =: dabcWµνρ(q1, q2), (3.18)
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which implies

W (0)
µνρ =

2

C0

(√

2

3

∑

b=3,8

D2
b

)

Wµνρ, W (a 6=0)
µνρ =

2

Ca

( ∑

b,c=3,8

DbDcd
abc
)

Wµνρ. (3.19)

The coefficients can be simplified to

√

2

3

∑

b=3,8

D2
b =

1√
6

∑

b=3,8

DbTr(Qλb) =
1√
6
Tr(Q2) = C0,

∑

b,c=3,8

DbDcd
abc =

1

2

∑

b,c=3,8

DbTr(Qλc)dabc =
1

4

∑

b=3,8

DbTr

(

Q
(

{λa, λb} −
4

3
δab

))

=
1

4
Tr
(

Q{λa,Q}
)

= Ca, (3.20)

hence both singlet and octet components lead to another factor Ca.

In pQCD and in the chiral limit, the following non-renormalization theorems were

derived in [64] for the non-singlet part of the axial current:

0 = (w+
T + w−

T )
(
q21, q

2
2, (q1 + q2)

2
)
− (w+

T + w−
T )
(
(q1 + q2)

2, q22, q
2
1

)
,

0 = (w̃−
T + w−

T )
(
q21, q

2
2, (q1 + q2)

2
)
+ (w̃−

T + w−
T )
(
(q1 + q2)

2, q22, q
2
1

)
,

wL

(
(q1 + q2)

2, q22, q
2
1

)
= (w+

T + w̃−
T )
(
q21, q

2
2, (q1 + q2)

2
)
+ (w+

T + w̃−
T )
(
(q1 + q2)

2, q22, q
2
1

)

+
2q2 · (q1 + q2)

q21
w+
T

(
(q1 + q2)

2, q22, q
2
1

)

− 2q1 · q2
q21

w−
T

(
(q1 + q2)

2, q22, q
2
1

)
. (3.21)

The transversal functions in these relations are subject to non-perturbative corrections.

In the following, we will use the OPE constraints as they arise at leading order and

in the chiral limit. Both the anomaly constraint (3.17) and the non-renormalization theo-

rems (3.21) receive quark-mass corrections [96].

3.3 Projection onto BTT

In this section, we derive the asymptotic constraints that the leading-order expression (3.8)

of the OPE imposes on the scalar BTT functions Π̂i (2.7) entering the master formula for

aµ. One might be tempted to simply project the OPE expression (3.8) onto the BTT

scalar functions. However, there are several problems with such an approach. First of all,

the leading-order expression of the OPE is not manifestly gauge invariant: the contraction

with (q1− q2)µ vanishes, but the one with (q1+ q2)
µ does not. Due to q1 = −q2+O(1) this

does ensure gauge invariance at O(1/q̂), while for the subleading orders relations with the

matrix elements of the energy-momentum tensor are needed to restore gauge invariance.

At leading order, gauge invariance could be restored by applying a gauge projector

ǫµναβ(q
α
1 − qα2 )→ ǫµν′αβq

α
1

(

gν
′

ν −
q2νq

ν′
2

q22

)

− ǫµ′ναβq
α
2

(

gµ
′

µ −
q1µq

µ′

1

q21

)

, (3.22)
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which does not alter the O(q̂−1) terms of the OPE expression. The subsequent projection

onto BTT and extraction of the scalar functions Π̂i could then be performed immediately.

However, this procedure is not uniquely defined: the BTT structures themselves become

degenerate depending on the order of the expansion for large q̂. This implies that the

leading-order OPE only constrains certain linear combinations of scalar functions Π̂i. In

an assignment of these constraints to individual scalar functions ambiguities are introduced.

For the longitudinal amplitudes the linear combination of scalar functions that is uniquely

constrained happens to coincide with Π̂1–3, but for the transversal amplitudes the situation

becomes more complicated. We proceed as follows in order to determine this ambiguity ex-

plicitly and to work out the exact form of the OPE constraint at the level of BTT functions.

First, we remember that the HLbL tensor is linear in the external momentum q4. Due

to the relation

Πµνλρ = −qσ4
∂

∂qρ4
Πµνλσ (3.23)

following from gauge invariance, it is enough to consider the derivative with respect to qρ4
and then take the limit q4 → 0, as required for (g − 2)µ kinematics. The BTT functions

Π̂i in this limit are unambiguously defined, hence they have their own proper expansion

in 1/q̂, which we would like to constrain using the OPE. The derivatives of the Lorentz

structures T̂i multiplying the functions Π̂i in the tensor decomposition (2.5) however

contain several terms with different scaling for large q̂. For instance, for the tensor

structure T̂µνλσ
5 , one finds

∂

∂qρ4
T̂µνλσ
5

∣
∣
∣
∣
q4=0

=
1

4

(

qµ3 q
λ
3 − gµλq23

)(

qσ3 g
νρ − qρ3gνσ

)

+
1

2

(

qµ3 q
λ
3 − gµλq23

)(

q̂σgνρ − q̂ρgνσ
)

− 1

2

(

qµ3 q̂
λ − gµλq3 · q̂

)(

qσ3 g
νρ − qρ3gνσ

)

−
(

qµ3 q̂
λ − gµλq3 · q̂

)(

q̂σgνρ − q̂ρgνσ
)

, (3.24)

where the first term scales as O(q̂0), the second and third terms are of O(q̂), and the last

term is of O(q̂2). This illustrates that a certain coefficient of the expansion in 1/q̂ of a

scalar function Π̂i can contribute to different orders in the expansion in 1/q̂ of the full

HLbL tensor, i.e., to different orders of the OPE. Vice versa, in order to determine the

leading-order OPE constraint on the BTT functions, we e.g. have to consider terms up to

and including O(q̂−3) in Π̂5. We now write the scalar functions Π̂i as a generic expansion

in 1/q̂ and sum up the scalar functions times (derivatives of) tensor structures. Collecting

in the resulting tensor terms according to the scaling with q̂ and requiring equality with

the leading-order OPE limit (3.8) determines the expansion coefficients of the 19 BTT
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functions relevant in the (g − 2)µ limit as

Π̂1 = 2wL(q
2
3, 0, q

2
3)f(q̂

2) +O(q̂−3),

Π̂5 =
4

3

(
w+
T + w̃−

T

)
(q23, 0, q

2
3)f(q̂

2) + c
(2)
5 + c

(3)
5 +O(q̂−4),

Π̂6 =
4

3

(
w+
T + w̃−

T

)
(q23, 0, q

2
3)f(q̂

2) + c
(2)
6 + c

(3)
6 +O(q̂−4),

Π̂7 = c
(5)
7 +O(q̂−6),

Π̂8 = −c(5)7 +O(q̂−6),

Π̂9 = c
(3)
9 +O(q̂−4),

Π̂10 = −
4

3q̂2
(
w+
T + w̃−

T

)
(q23, 0, q

2
3)f(q̂

2)− 1

q̂2

(

c
(2)
5 + c

(3)
5

)

− c(5)16 − c
(5)
54 +O(q̂−6),

Π̂11 =
1

2q̂2

(

c
(2)
5 − c

(2)
6 − 2c

(3)
6

)

− c(5)14 + c
(5)
54 +O(q̂−6),

Π̂13 = −c(3)9 +O(q̂−4),

Π̂14 = −
4

3q̂2
(
w+
T + w̃−

T

)
(q23, 0, q

2
3)f(q̂

2)− 1

q̂2
c
(2)
6 + c

(5)
14 +O(q̂−6),

Π̂16 = −
1

2q̂2

(

c
(2)
5 − c

(2)
6

)

+ c
(5)
16 +O(q̂−6),

Π̂39 =
4

3q̂2
(
w+
T + w̃−

T

)
(q23, 0, q

2
3)f(q̂

2) +
1

2q̂2

(

c
(2)
5 + c

(2)
6

)

+O(q̂−5),

Π̂50 = Π̂51 =
2

3q̂2
(
w+
T + w̃−

T

)
(q23, 0, q

2
3)f(q̂

2)− 1

2q̂2

(

c
(2)
5 + c

(2)
6 − (q21 − q22)c(3)9

)

+O(q̂−5),

Π̂54 =
1

2q̂2

(

c
(2)
5 − c

(2)
6

)

+ c
(5)
54 +O(q̂−4),

Π̂i = O(q̂−4), i ∈ {2, 3, 4, 17}, (3.25)

where

f(q̂2) = − 1

2π2q̂2

∑

a

C2
a = − 1

18π2q̂2
(3.26)

and the remaining ambiguities are parameterized by functions c
(n)
i behaving as c

(n)
i ∼ 1/q̂n,

which are subject to certain crossing-symmetry relations following from (2.8) and (2.10).

Note that the small dimensional quantity that makes the expansion parameter dimen-

sionless can be any of the small scales, e.g., the small momentum or matrix elements of

the operators in (3.7). Due to the scaling of the tensor structures, the neglected terms

in (3.25) affect the HLbL tensor first at O(1/q̂2) and therefore cannot interfere with the

leading-order OPE. This result specifies the configuration Q2
1 ∼ Q2

2 ≡ −q2 = −q̂2 ≫ Q2
3.

The related limits for small q21 or q22 follow directly from crossing symmetry.

Since the longitudinal amplitude wL only contributes to Π̂1–3, we will refer to these

scalar functions as the longitudinal ones, and accordingly to the remaining Π̂i as the

transversal contribution. The non-trivial constraint on the non-singlet part of the latter

emerges from the corresponding limit of (3.21)

wL(q
2
3, 0, q

2
3) = 2

(
w+
T + w̃−

T

)
(q23, 0, q

2
3), (3.27)
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but in contrast to the anomaly condition (3.17), which is exact in the chiral limit, this

relation does receive non-perturbative corrections. As noted above, the projection (3.25)

shows that only the OPE constraints on the longitudinal amplitudes are free from ambigu-

ities, whereas all those on the transversal ones are affected by them. The presence of these

ambiguities is not a problem per se: it simply means that at leading order the OPE only

constrains certain linear combinations of BTT functions. We also note that the ambiguities

would be moved to higher orders if the next terms in the OPE were included.

For asymptotic values of q23, the OPE constraints can be compared with the pQCD

quark loop evaluated in the chiral limit and for q21 = q22 ≡ q2, q23/q2 → 0,

Π̂pQCD
1 = − 2

3π2q2q23
,

Π̂pQCD
5 = Π̂pQCD

6 = − 2

9π2q2q23
,

Π̂pQCD
10 = Π̂pQCD

14 = −Π̂pQCD
17 = −Π̂pQCD

39 = −2Π̂pQCD
50 = −2Π̂pQCD

51 =
2

9π2q4q23
. (3.28)

These expressions perfectly agree with (3.25) if we use the non-renormalization theorem in

the form (3.27) and set the ambiguities c
(n)
i to zero, which demonstrates that the OPE con-

straint and the pQCD quark loop coincide in the appropriate kinematic limit [97] (neither

chiral effects nor αs corrections related to the gluon anomaly in the singlet channel matter

in this limit). We stress that one could impose the OPE constraints on the transversal func-

tions without having to deal with these ambiguities by first building linear combinations of

the BTT functions that are free from them. In principle, one could even use the freedom

in the projection at a given order to simplify expressions, e.g., at leading order one could

choose the c
(n)
i in such a way that the only non-vanishing contribution arises in Π̂50 = Π̂51 =

2/q̂2
(
w+
T + w̃−

T

)
(q23, 0, q

2
3)f(q̂

2). However, such a simplification would no longer hold at sub-

leading orders, therefore, we keep here the general form (3.25) that shows directly how the

OPE limit corresponds to the pQCD quark loop (3.28) evaluated in the same kinematics.

In the following we will focus on the OPE constraint on the longitudinal contribution,

which can be unambiguously assigned to the BTT functions Π̂1−3 already at leading order.

3.4 Relation to pseudoscalar poles

Separating the longitudinal OPE constraint into flavor components one finds

Π̂3
1 = −

6

π2q2q23
C2
3 = − 1

6π2q2q23
, (3.29)

Π̂0,8
1 = − 6

π2q2q23

(
C2
8 + C2

0

)
= − 1

2π2q2q23
, (3.30)

which due to (2.26) matches precisely onto (2.16) when the meson masses and, crucially,

the momentum dependence of the singly-virtual form factor are neglected. This is the basic

premise of the model suggested in ref. [62]. We stress that for the non-singlet component

these relations are exact in the chiral limit, see section 5.3 for an extensive discussion of

this point. For non-vanishing quark masses and, in the case of the singlet, due to the gluon
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anomaly they do receive corrections. However, at low energies, where such corrections

matter most, we always use the full dispersive result that automatically corresponds to

physical quantities, while (3.29) and (3.30) are only implemented for asymptotic values of

the virtualities q2i .

The OPE constraint becomes potentially valuable in the context of the mixed-energy

regions, where both a description in terms of hadronic intermediate states and pQCD

have limited applicability. In practice, the constraint is rigorous once all momenta are

large compared to ΛQCD to ensure that quark-mass corrections can be neglected. The

Regge approach in the next section is our proposal for an explicit implementation of the

OPE constraint, following a remark made in ref. [62]: while the 1/q23 behavior in (3.29)

and (3.30) cannot be obtained with any finite number of pseudoscalar poles, an infinite

sum over excited states can produce the required asymptotics.

4 Regge models for the pseudoscalar-pole contribution

Assuming confinement, in the large-Nc limit of QCD [98] the spectrum of the theory in

any sector (set of quantum numbers) reduces to an infinite number of narrow resonances.

One should not expect the spectral functions in this limit to be close to those of QCD with

Nc = 3 locally: a series of δ-functions does not look like the continuum observed in nature

for any spectral function. On the other hand, one expects the large-Nc limit to provide a

good approximation to QCD on average, and in particular to reproduce to a reasonable

accuracy its global properties such as asymptotic limits. There is a vast literature on the

subject that shows that these theoretical considerations can be used with good success to

build large-Nc models that simultaneously satisfy low- and high-energy constraints [99–104].

The aim of the present section is to construct a large-Nc Regge model in the pseu-

doscalar and vector-meson sectors of QCD that allows us to satisfy the SDCs discussed

above via an infinite tower of pseudoscalar-pole contributions. The logic we follow in the

construction of the model is very simple: we seek minimal models, in terms of algebraic

form and number of free parameters, that are able to satisfy all known constraints, both

of experimental as well as of theoretical nature, i.e., phenomenological constraints wher-

ever available and all known high- and low-energy limits. Accordingly, we construct these

large-Nc Regge models with the application to HLbL scattering in mind and thus work

with physical quark masses. We will comment on the chiral limit and the potential role of

axial-vector resonances in section 5.3.

4.1 Large-Nc Regge model for the pion transition form factor

The pion TFF describes the transition of a pion into two photons. VMD, LMD, and

LMD+V models for the pseudoscalar TFFs are widely used [51, 105], cf. figures 4 and 8.

In this work, we use an untruncated large-Nc model for the TFF, in which the pion couples

to the photons through a tower of isovector, IG = 1+, and a tower of isoscalar, IG = 0−,

vector mesons, JPC = 1−−, e.g., the ρ and ω, respectively. Here, a tower of ρ (ω) mesons

means an infinite sum over radially-excited ρ (ω) mesons. The contributions from a φ

instead of an ω are subdominant, see appendix A, and thus will be neglected for the pion.
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Figure 4. Pion TFF in the large-Nc limit.

The standard large-Nc ansatz for the pion TFF (see refs. [106, 107]) reads:

Fπ0γ∗γ∗(−Q2
1,−Q2

2) =
∑

Vρ,Vω

GπVρVω FVρ FVω

[

1

D1
Vρ
D2

Vω

+
1

D1
Vω
D2

Vρ

]

, (4.1)

where

Di
X := Q2

i +M2
X , (4.2)

FVρ and FVω , represented by blue dots in figure 4, are the current-vector-meson couplings

and GπVρVω , the cyan dot in figure 4, is the coupling of two vector mesons to the neutral

pion. We stress that the couplings in (4.1) are Q2 independent as required by the large-

Nc approach (combined with analyticity): the contribution of a given intermediate state

is fixed by its imaginary part, which for narrow resonances is a δ-function, which freezes

any Q2 dependence. Indeed the latter could be interpreted as coming from the continuum

between resonances, which is suppressed in the large-Nc limit. Another potential source

of Q2-dependent corrections to (4.1) is related to subtraction terms: while (4.1) follows

from an unsubtracted double-spectral representation for the TFF, introducing subtrac-

tions would produce single-propagator terms and, eventually, a polynomial. However, for

a δ-function subtractions are not necessary, and even before taking the large-Nc limit the

pQCD behavior of the TFF implies that an unsubtracted representation holds. As argued

in ref. [47], the advantage of using an unsubtracted dispersion relation, in favor of a sub-

tracted variant that could suppress some of the high-energy input, is precisely that it allows

one to manifestly incorporate the correct pQCD asymptotics. The large-Nc ansatz (4.1)

corresponds to this scenario. In the following, the vector-meson spectra are assumed to

obey a radial Regge model, see figure 5:

M2
Vρ

=M2
ρ(nρ)

=M2
ρ + nρ σ

2
ρ,

M2
Vω

=M2
ω(nω)

=M2
ω + nω σ

2
ω, (4.3)

where σρ and σω are the slope parameters of the Regge trajectories, nρ and nω are radial

excitation numbers, and the ground-state masses are Mρ =Mρ(770) = 775.26(25)MeV and

Mω =Mω(782) = 782.65(12)MeV [90].

Having fixed the masses of the towers of vector resonances, our model for the pion TFF

still has an infinite number of parameters, namely the couplings GπVρVω , FVρ , and FVω . One

could in principle reduce the number of free parameters to a finite one by imposing a certain

algebraic dependence of these couplings on the excitation numbers nρ and nω, as has been
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Figure 5. Radial Regge trajectories of the isovector ρ and isoscalar ω and φ vector mesons.

The states ω(782), ω(1420), ρ(770), ρ(1450), φ(1020), φ(1680), and φ(2170) are from PDG [90].

The states ω(1960), ω(2205), ρ(1900), and ρ(2150) are extracted from ref. [108]. The errors are

defined as ∆M2 = ΓM [108]. The solid magenta lines are from ref. [109] with σ2
ω = 1.54, σ2

ρ =

1.39GeV2, and σ2
φ = 1.54GeV2. The turquoise bands are from ref. [108] with σ2

ω = 1.50(12)GeV2,

σ2
ρ = 1.43(13)GeV2, and σ2

φ = 1.84(6)GeV2. The green dotted lines with slope σ2 = 1.11GeV2 are

based on the lattice calculation of ref. [110]. The orange dot-dashed lines with slope σ2 = 1.87GeV2

are based on the ρ→ 2π decay [106, 111].

done for the masses. In doing so one would have to be able to satisfy low- and high-energy

constraints for the pion TFF, which we recollect here from (2.23) and (2.25):

chiral anomaly [73–75]: Fπ0γγ =
1

4π2Fπ
; (4.4)

BL limit [84, 85]: lim
Q2→∞

Q2Fπ0γγ∗(−Q2) = 2Fπ; (4.5)

symmetric pQCD limit [114]: lim
Q2→∞

Q2Fπ0γ∗γ∗(−Q2,−Q2) =
2Fπ

3
. (4.6)

One immediately notices that while the Q2 dependence of each individual term in (4.1) is

compatible with the Brodsky-Lepage (BL) limit, the symmetric pQCD limit can only be

satisfied after resumming the series of vector resonances. To this end, the coupling constants

must be arranged in such a way that the Q−4 behavior of the individual terms becomes a

Q−2 behavior after resummation. That this is possible was shown in refs. [106, 107].

In addition, the pion TFF has been measured quite well in the singly-virtual case [115–

118], and our model for the TFF would have to describe the data. For the doubly-virtual
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Figure 6. Radial Regge trajectories of the π, η, and η′ pseudoscalar mesons. The states π(140),

π(1300), π(1800), η(548), η(1295), η(1760), η′(958), η′(1475), X(1835), and η′(2225) are from

PDG [90]. Note that the states η(1760), X(1835), and η′(2225) are omitted from the PDG summary

tables. The state η(1440) is from PDG ’00 [112]. The states π(2070), π(2305), η(2100), η(2320),

and η′(2010) are extracted from ref. [108]. The state η′(2070) is taken from [113, table 26]. The

errors are defined as ∆M2 = ΓM [108]. The solid magenta lines are fits from ref. [109]: σ2
π = σ2

η =

σ2
η′ = 1.39GeV2. The turquoise bands are fits from ref. [108] which exclude the ground states of

the pion and the η: σ2
π = 1.27(27)GeV2 and M̂π = 766MeV as in (4.9), σ2

η = 1.33(11)GeV2 and

M̂η = 591MeV as in (4.38), and σ2
η′ = 1.36(14) GeV2. The η(1440), X(1835), and η′(2070) states

(purple squares) correspond to a different assignment of η(′) excitations suggested in ref. [113,

table 27]. The dot-dashed purple lines correspond to our fits of these alternative trajectories:

σ2
η = 1.38GeV2 with M̂η = 0.652 GeV, and σ2

η′ = 1.81GeV2.

case a recent dispersive analysis has shown that data for related processes and theoretical

arguments constrain the behavior of the TFF in that kinematical region [44, 46, 47]—a

constraint we will also take into account.

Imposing all these constraints on the model (4.1) by adjusting its free parameters is

technically cumbersome, especially if we consider that we must still add a third sum over

the tower of pseudoscalar mesons, JPC = 0−+, cf. figure 2, with which we aim to change

the large-Q2 behavior of the whole HLbL tensor. In particular, we will implement the
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SDCs on Π̂1 introduced in (3.1) and (3.29):5

SDC for the mixed region [62]: lim
Q2

3→∞
lim

Q2→∞

∞∑

n=0

Π̂
π(n)-pole
1 (−Q2,−Q2,−Q2

3)

=− lim
Q2

3→∞
lim

Q2→∞

∞∑

n=0

Fπ(n)γ∗γ∗(−Q2,−Q2)Fπ(n)γγ∗(−Q2
3)

Q2
3+M

2
π(n)

=− 1

6π2
1

Q2

1

Q2
3

; (4.7)

SDC for the asymptotic region: lim
Q2→∞

∞∑

n=0

Π̂
π(n)-pole
1 (−Q2,−Q2,−Q2)

=− lim
Q2→∞

∞∑

n=0

Fπ(n)γ∗γ∗(−Q2,−Q2)Fπ(n)γγ∗(−Q2)

Q2+M2
π(n)

=− 4

9π2
C2
3

∑

a=0,3,8C
2
a

1

Q4
. (4.8)

Here, Fπ(n)γ∗γ∗ is the TFF of the n-th radially-excited pion and a radial Regge model is

assumed for the pion masses starting from the first excitation, see figure 6:

M2
π(n) =

{

M2
π n = 0,

M̂2
π + nσ2π n ≥ 1,

(4.9)

where Mπ = 134.9770(5)MeV is the π0 mass [90].6 Given the complexity of implementing

all these constraints simultaneously in terms of the general couplings of the Regge model,

we therefore adopted a different approach:

1. we allow the ground-state pion to couple only to the ground-state ρ and ω mesons,

and the n-th pion excitation to couple only to the n-th ρ and ω excitations;

2. we subsume the effect of the vector-meson excitations that we have just eliminated

into a Q2
i dependence of the numerator multiplying the resonance propagators;

3. the latter Q2
i dependence will be parameterized in simple terms with as few free

parameters as necessary to satisfy the constraints listed above.

The first step is motivated by the fact that non-diagonal couplings are suppressed by the

reduced overlap of radial wave functions with different numbers of nodes [106]. For the same

reason we are only considering the leading S-wave vector-meson trajectories and neglecting

the D-wave daughter trajectories. In appendix B we will consider an alternative model that

already for the pQCD limit of the TFF itself, cf. (4.6), uses the Regge resummation from

5Note that while for the MV SDC, which is derived based on the V V A triangle, the flavor decomposition

into pion, η, and η′ is unambiguously given by C2
a, see (3.29), the decomposition presented here for the

SDC in the asymptotic region (3.1) is not unique. We choose to adopt the same separation as for the MV

constraint.
6Note that the ground-state is treated separately because for the Goldstone bosons a strong non-linearity

of the Regge trajectory is expected [119].
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ref. [106], but for the main text we restrict the presentation to the most economical form

sufficient to fulfill all constraints simultaneously. This strategy leads us to

Fπ(n)γ∗γ∗(−Q2
1,−Q2

2)=
1

8π2Fπ

{(

M2
ρM

2
ω

D1
ρ(n)D

2
ω(n)

+
M2

ρM
2
ω

D2
ρ(n)D

1
ω(n)

)

(4.10)

×
[

canom+cA
M2

+,n

Λ2
+cB

M2
−,n

Λ2
+cdiag

Q2
1Q

2
2

Λ2(Q2
++M2

diag)

]

+
Q2

−
Q2

+

(

M2
ρM

2
ω

D1
ρ(n)D

2
ω(n)

−
M2

ρM
2
ω

D2
ρ(n)D

1
ω(n)

) [

cBL+cA
M2

−,n

Λ2
+cB

M2
+,n

Λ2

]}

,

where

M2
±, n =

1

2

(

M2
ω(n) ±M2

ρ(n)

)

, Q2
± = Q2

1 ±Q2
2 , (4.11)

and Λ = O(1GeV) is a typical QCD scale introduced to make all model parameters (canom,

cA, cB, cdiag, cBL) dimensionless. The second mass scale Mdiag is determined by fitting the

experimental data, it parameterizes the doubly-virtual behavior of the TFF.

With this parameterization, the three conditions for the TFF of the ground-state pion

from (4.4)–(4.6) can be expressed as follows:

anomaly: 1 = canom +
1

Λ2

(
cAM

2
+, 0 + cBM

2
−, 0

)
; (4.12)

BL limit: 1 =
1

8π2F 2
π

(

canomM
2
+, 0 − cBLM

2
−, 0 + cA

M2
ωM

2
ρ

Λ2

)

; (4.13)

symmetric pQCD limit: 1 =
3M2

ωM
2
ρ

16π2F 2
πΛ

2
cdiag. (4.14)

Since the mass scales Mρ, Mω, M+, 0, and Λ as well as π2Fπ are of about the same order,

all coupling constants that appear in the constraint equations (4.12)–(4.14) multiplied by

ratios of these mass scales are expected to be of O(1). M−, 0, on the other hand, is much

smaller, so that the coupling constants multiplied by it (cBL and cB) are expected to be of

O(Λ2/M2
−, 0) ∼ 100, otherwise their role in the equations would become irrelevant.

Of course these three conditions are not sufficient to determine all five model pa-

rameters. Two more constraints follow from resumming the contributions of all excited

pseudoscalars to the HLbL amplitude, see (4.7) and (4.8). Details on the evaluation of

infinite sums over rational functions can be found in appendix C. The MV SDC for the

mixed region translates into:

1 =
M2

ωM
2
ρ

2Λ2

[

(cA + cB)
Lρπ

∆ρπ
+ (cA − cB)

Lωπ

∆ωπ

]

, (4.15)

where cdiag from (4.14) has been used and

Lij = log
σ2i
σ2j
, ∆ij := σ2i − σ2j . (4.16)

– 22 –



J
H
E
P
0
3
(
2
0
2
0
)
1
0
1

π η η′

canom −1.670 — —

cA 6.794 2.542 2.635

cB −252.346 −23.535 −23.706
cdiag 1.218 0.401 0.502

cBL 141.688 18.721 18.877

Mdiag 1.519 0.898 0.898

Table 1. “Natural” model parameters of the large-Nc Regge models for the pion, η, and η′ TFFs.

Note that here we rescaled the η(′) parameters cA, cB , and cBL with a factor of Cη(′)

φω /N .

The second SDC concerns the limit Q2
i = Q2 → ∞, for all i = 1, 2, 3. It also involves cA

and cB, but now in a different combination together with cdiag:

1 =
9

64π2F 2
πΛ

4

M4
ρM

4
ω

Ω2
ρωπ

{

c2A∆ρωΣρω

[

σ2π
(
∆2

ωπLρπ −∆2
ρπLωπ

)
+Ωρωπ

]

+ c2B ∆ρω

[ (
Σρωσ

2
π − 2σ4ρ

)
∆2

ωπLρπ −
(
Σρωσ

2
π − 2σ4ω

)
∆2

ρπLωπ + (∆ρπ +∆ωπ) Ωρωπ

]

− 2cAcB

[

σ2π
(
σ4ρ + σ4ω

) (
∆2

ωπLρπ −∆2
ρπLωπ

)
+Σρω

(
σ4ω∆

2
ρπLωπ − σ4ρ∆2

ωπLρπ

)

− Ωρωπ

(
σ2πΣρω − σ4ρ − σ4ω

) ]

− cdiagcB
[

σ2ρ
{
σ4ρ + σ2ω(σ

2
ρ − 2σ2π)

}
∆2

ωπLρπ

− σ2ω
{
σ4ω + σ2ρ(σ

2
ω − 2σ2π)

}
∆2

ρπLωπ +
(
σ2πΣρω − 2σ2ρσ

2
ω

)
Ωρωπ

]

+ cdiagcA∆ρω

[

σ2ρ(σ
2
ρ − 2σ2π)∆

2
ωπLρπ − σ2ω(σ2ω − 2σ2π)∆

2
ρπLωπ − σ2π Ωρωπ

]
}

, (4.17)

with

Ωijk := (σ2i − σ2j )(σ2k − σ2i )(σ2k − σ2j ), Σij := σ2i + σ2j . (4.18)

In appendix F.1, this system of equations is solved analytically. Here, we discuss

numerical values for all parameters, also summarized in table 1, based on the following

choice of Regge slopes [108]:7

σ2π = 1.27(27)GeV2, σ2ρ = 1.43(13)GeV2, σ2ω = 1.50(12)GeV2. (4.19)

Furthermore, we use Fπ = 92.28MeV, Λ = 1GeV, and other input from the PDG [90].

The constant cdiag is independent of all the others and is directly determined by (4.14):

cdiag = 1.218. (4.20)

Once this is fixed, equations (4.15) and (4.17) determine cA and cB. Since the second

equation is quadratic it has two solutions, but one can be readily discarded because the

7From figure 5 of ref. [108] we extracted M̂π = 766MeV.
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Figure 7. Singly-virtual π0 TFF. The large-Nc Regge model, “Model 1” (4.10), is indicated by

the dashed pink curve. Our alternative TFF model, “Model 2” (B.1), is indicated by the solid cyan

curve. The gray band with the dotted curve is the dispersive result from refs. [46, 47]. The data

are from CELLO [115], CLEO [116], BaBar [117], and Belle [118].

two-photon couplings of the excited pions become unreasonably large, and so do the values

of the constants cA and cB. The physical solution gives:

cA = 6.794, cB = −252.346. (4.21)

Having determined cA and cB, (4.12) determines canom to the value:

canom = −1.670, (4.22)

and finally (4.13) fixes the remaining parameter:

cBL = 141.688. (4.23)

As expected, all constants are of O(1), with the exception of cBL, cB ∼ O(100).
Since there is no direct empirical information on the doubly-virtual π0 TFF available,

we fit our model parameterMdiag to the dispersive description of the π0 TFF from refs. [46,

47]. To find the best fit, we minimize the estimated variance:

χ2 =
1

jmax − p

jmax∑

j=1

(

f(−Q2
1, j ,−Q2

2, j)− fdata(−Q2
1, j ,−Q2

2, j)

∆fdata(−Q2
1, j ,−Q2

2, j)

)2

, (4.24)

where jmax is the length of the data set and p is the number of fit parameters. Here, f is

our model and fdata is the dispersive TFF.8 The sum is over jmax = O(2×104) selected

8Since the error band of the dispersive TFF is asymmetric, for each kinematic point its smallest value

was extracted to obtain ∆fdata(−Q2
1, j ,−Q2

2, j).
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Figure 8. η and η′ TFFs in the large-Nc limit.

points in the region of 0 < Q1 ≤ Q2, where Q
2
2 ∈ [0, 40]GeV2. As a result, we obtain

Mdiag = 1.519GeV with χ2 ∼ 0.37.

The singly-virtual TFF of the ground-state pion is shown in figure 7. The large-Nc

Regge model presented above is labeled as “Model 1.” In appendix B, an alternative TFF

model, to which we refer as “Model 2,” is introduced, based on a Regge resummation

for the TFF itself. Both models give a reasonable description of the experimental data,

while Model 1 shows better agreement with the dispersive TFF in the intermediate-Q

region. In appendix F.2, both models are shown also in the doubly-virtual region and

further compared to the dispersive TFF [44, 46, 47], a prediction from lattice QCD [48],

and a result from DSE [50]. We stress that neither model should be evaluated for other

than purely space-like virtualities, both are constructed in such a way as to provide an

efficient implementation of all constraints relevant for the space-like region, but do not

properly incorporate the analytic structure required to continue to time-like virtualities.

In addition to our fits to the dispersive π0 TFF, we also checked that the π0 contribution

to (g − 2)µ is reproduced correctly

aπ
0-pole

µ

∣
∣
Model 1

= 64.3× 10−11, aπ
0-pole

µ

∣
∣
Model 2

= 64.5× 10−11,

aπ
0-pole

µ

∣
∣
[46, 47]

= 62.6+3.0
−2.5 × 10−11. (4.25)

Finally, as detailed in ref. [47], effective-field-theory constraints on the pseudoscalar-pole

contributions [120, 121] are automatically encoded in the TFF phenomenology, for the lead-

ing constraint in its normalization, for the subleading one in the momentum dependence.

4.2 Large-Nc Regge model for the η and η′ transition form factors

Analogously to the pion case, our large-Nc Regge model for the η and η′ TFFs shall satisfy

the following five low- and high-energy constraints, cf. (2.17), (2.25), (3.1), and (3.29):

normalization: F exp
ηγγ =0.2739(48)GeV−1 [90],

F exp
η′γγ=0.3413(76)GeV−1 [90]; (4.26)

BL limit [84, 85]: lim
Q2→∞

Q2Fηγγ∗(−Q2)=12C8Fη,

lim
Q2→∞

Q2Fη′γγ∗(−Q2)=12C0Fη′ ; (4.27)

symmetric pQCD limit [114]: lim
Q2→∞

Q2Fηγ∗γ∗(−Q2,−Q2)=4C8Fη,

lim
Q2→∞

Q2Fη′γ∗γ∗(−Q2,−Q2)=4C0Fη′ ; (4.28)
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SDC for the mixed region [62]: lim
Q2

3→∞
lim

Q2→∞

∞∑

n=0

Π̂
η(′)(n)-pole
1 (−Q2,−Q2,−Q2

3)

=− lim
Q2

3→∞
lim

Q2→∞

∞∑

n=0

Fη(′)(n)γ∗γ∗(−Q2,−Q2)Fη(′)(n)γγ∗(−Q2
3)

Q2
3+M

2
η(′)(n)

=−
6C2

η(′)

π2
1

Q2

1

Q2
3

; (4.29)

SDC for the asymptotic region: lim
Q2→∞

∞∑

n=0

Π̂
η(′)(n)-pole
1 (−Q2,−Q2,−Q2)

=− lim
Q2→∞

∞∑

n=0

Fη(′)(n)γ∗γ∗(−Q2,−Q2)Fη(′)(n)γγ∗(−Q2)

Q2+M2
η(′)(n)

=− 4

9π2

C2
η(′)

∑

a=0,3,8C
2
a

1

Q4
. (4.30)

Here, as compared to (2.25), we now use the notation

Fη =
1

C8

∑

a

CaF
a
η , Fη′ =

1

C0

∑

a

CaF
a
η′ . (4.31)

Furthermore, we introduced:

C2
η =

(
F 8 cos θ8 − 2

√
2F 0 sin θ0

) (
F 0 cos θ0 − 2

√
2F 8 sin θ8

)

108F 0F 8 cos (θ0 − θ8)
,

C2
η′ =

(
2
√
2F 8 cos θ8 + F 0 sin θ0

) (
2
√
2F 0 cos θ0 + F 8 sin θ8

)

108F 0F 8 cos (θ0 − θ8)
, (4.32)

as follow by separating the η and η′ contributions to (2.26) according to (2.22). These

coefficients fulfill C2
η + C2

η′ = C2
0 + C2

8 = 1/12.

Switching to the η and η′ we face the problem that, since these are I = 0 mesons, they

couple to isovector-isovector and isoscalar-isoscalar vector mesons, so to same-mass vector

mesons only (ignoring φ–ω mixing), see figure 8. Taking the limit Mω(n) =Mρ(n) =MV (n)

in our parameterization of the pion TFF (4.10), we obtain a significant simplification:

Fπ(n)γ∗γ∗(−Q2
1,−Q2

2)
∝ M4

V

D1
V (n)D

2
V (n)

[

canom + cA
M2

V (n)

Λ2
+ cdiag

Q2
1Q

2
2

Λ2(Q2
+ +M2

diag)

]

. (4.33)

Since two free parameters dropped out, this parameterization cannot satisfy all relevant

low- and high-energy constraints.

Fortunately, via vector-meson mixing in the isoscalar sector, there is a possible con-

tribution of a mixed φ–ω term to the TFFs of the η(′), which would be absent in the case

of ideal mixing. The φ–ω coupling to η(′) will certainly be small when compared to the

same-mass vector-meson couplings, see table 2, but since it contributes where the others

cannot, it is important to retain.
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π η η′

ρω 1.154 — —

ρφ 0.032 — —

ρρ — 1.248 1.022

ωω — 0.139 0.114

φφ — −0.256 0.314

φω — 0.015 −0.002

Table 2. Pseudoscalar-vector-vector couplings derived in appendix A: CP
V1V2

with P = π, η, η′ and

Vi = ρ, ω, φ as defined in (A.9) and (A.10).

In summary, our large-Nc Regge model for the η(′) TFFs reads:

Fη(′)(n)γ∗γ∗(−Q2
1,−Q2

2) =
Fη(′)γγ

N
[

F
(a)

η(′)(n)γ∗γ∗
(−Q2

1,−Q2
2) + F

(b)

η(′)(n)γ∗γ∗
(−Q2

1,−Q2
2)
]

,

(4.34)

where the two parts parameterize the same-mass and mixed vector-meson contributions,

respectively:

F
(a)

η(′)(n)γ∗γ∗
(−Q2

1,−Q2
2) =

∑

V=ρ,ω,φ

Cη(′)

V V

[

1 + cdiag
Λ2

M4
V

Q2
1Q

2
2

(Q2
+ +M2

diag)

]

M4
V

D1
V (n)D

2
V (n)

, (4.35)

F
(b)

η(′)(n)γ∗γ∗
(−Q2

1,−Q2
2) = Cη(′)

φω

{[

1 + cA
M2

+, n −M2
+, 0

Λ2
+ cB

M2
−, n −M2

−, 0

Λ2

]

×
(

M2
φM

2
ω

D1
ω(n)D

2
φ(n)

+
M2

φM
2
ω

D2
ω(n)D

1
φ(n)

)

+

[

cBL + cA
M2

−, n

Λ2
+ cB

M2
+, n

Λ2

]

× Q2
−

Q2
+

(

M2
φM

2
ω

D1
ω(n)D

2
φ(n)

−
M2

φM
2
ω

D2
ω(n)D

1
φ(n)

)}

. (4.36)

Here we again use the short-hand notations from (4.11), with the modification that

M2
±, n =

1

2

(

M2
φ(n) ±M2

ω(n)

)

. (4.37)

All meson spectra are assumed to follow a radial Regge model. For the φ meson, we use

the analog of (4.3). For the η and η′ mesons, we distinguish:

M2
η(n) =

{

M2
η n = 0,

M̂2
η + nσ2η n ≥ 1,

, (4.38)

and

M2
η′(n) =M2

η′ + nσ2η′ (4.39)

with the ground-state masses Mη = 547.862(17)MeV and Mη′ = 957.78(6)MeV [90].

– 27 –



J
H
E
P
0
3
(
2
0
2
0
)
1
0
1

■

■

■

■

■

■

■

■

■

■

■ BaBarModel 1

Model 2

(6.5,6.5) (16.9,16.9) (14.8,4.3) (38.1,15.0) (45.6,45.6)

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

(Q1
2,Q2

2) (GeV2)

F
η'
γ
*
γ
*
(-

Q
12
,-

Q
22
)
(G

e
V
-

1
)

Figure 9. Comparison to the doubly-virtual η′ TFF data from BaBar [122]. The large-Nc Regge

model, “Model 1” (4.34), is indicated by the pink bands with the dashed lines. Our alternative

TFF model, “Model 2” (B.1), is indicated by the solid cyan lines.

The normalization coefficient is defined as:

N = Cη
ρρ + Cη

ωω + Cη
φφ + 2Cη

φω, (4.40)

where CP
V1V2

are the pseudoscalar-vector-vector couplings derived in appendix A, and Cη
φω

is the parameter that measures the deviation from ideal mixing. By construction, each

vector-meson pair contributes (up to normalization) exactly CP
V1V2

to Fη(′)γγ .

To simplify the parameterization, equation (4.36) only contains terms which are unique

to the φ–ω contribution, and the n-dependence has been removed from the numerator

of (4.35). In this way, (4.36) is used to satisfy the BL limit for the ground-state η(′) TFF

as well as the two SDCs on the HLbL tensor.

The constraint equations following from (4.27) and (4.28) read:

BL limit: 1 =
1

N
Fηγγ

12C8Fη

[

Cη
ρρM

2
ρ + Cη

ωωM
2
ω + Cη

φφM
2
φ (4.41)

+ 2Cη
φω

(

M2
+, 0 − cBLM

2
−, 0 − cA

M4
−, 0

Λ2
− cB

M2
+, 0M

2
−, 0

Λ2

)]

;

symmetric pQCD limit: 1 =
Cη
ρρ + Cη

ωω + Cη
φφ

N
Λ2Fηγγ

8C8Fη
cdiag; (4.42)

where the same equations hold for the η′ with the obvious replacements (including C8 →
C0). The MV SDC for the HLbL tensor in the mixed region translates to:

1 =
Cη
φω

N
2π2C8FηFηγγM

2
φM

2
ω

3C2
ηΛ

2

[

(cA + cB)
Lωη

∆ωη
+ (cA − cB)

Lφη

∆φη

]

, (4.43)
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where cdiag has already been inserted. The SDC for the HLbL tensor in the asymptotic

region becomes more complicated due to the presence of additional mass scales:

1 =
Cη
φω

N 2

π2F 2
ηγγM

2
φM

2
ω

16C2
ηΛ

4

[

4Cη
φωM

2
φM

2
ω

Ω2
φωη

{

c2A∆φωΣφω

[

Ωφωη + σ2η
(
∆2

ωηLφη −∆2
φηLωη

) ]

+ c2B∆φω

[ (
Σφωσ

2
η − 2σ4φ

)
∆2

ωηLφη −
(
Σφωσ

2
η − 2σ4ω

)
∆2

φηLωη + (∆φη +∆ωη) Ωφωη

]

+ 2cAcB

[

σ2η
(
σ4φ + σ4ω

) (
∆2

ωηLφη −∆2
φηLωη

)
+Σφω

(
σ4ω∆

2
φηLωη − σ4φ∆2

ωηLφη

)

− Ωφωη

(
σ2ηΣφω − σ4φ − σ4ω

) ]
}

+ cdiagcA Λ4

(

2Cη
ρρ

∆ρφ∆ρω

{

σ2ρ (∆ρφ +∆ρω)

∆ρη

+
1

ΩρφηΩρωηΩφωη

[

Ωφωησ
4
η∆

2
ρφ∆

2
ρω (∆φη +∆ωη)Lρη −∆φω

(
Ω2
ρωησ

4
φ∆φηLρφ

+Ω2
ρφησ

4
ω∆ωηLρω

) ]
}

+
Cη
φφ∆ωη

Ω2
φωη∆φη

[

2σ4η∆
2
φω (∆φη +∆ωη)Lφη − 2σ4ω∆

3
φηLφω

+Ωφωη

(
3σ4φ − σ2φσ2ω − 5σ2φσ

2
η + 3σ2ωσ

2
η

) ]

+
Cη
ωω∆φη

Ω2
φωη∆ωη

[

2σ4φ∆
3
ωηLφω

+ 2σ4η∆
2
φω (∆φη +∆ωη)Lωη +Ωφωη

(
σ2φσ

2
ω − 3σ4ω − 3σ2φσ

2
η + 5σ2ωσ

2
η

) ]
)

− cdiagcB Λ4

(

2Cη
ρρ

∆ρφ∆ρω

{

σ2ρ∆φω

∆ρη
− 1

ΩρφηΩρωηΩφωη

[

Ω2
ρωησ

4
φ∆φω∆φηLρφ

− Ω2
ρφησ

4
ω∆φω∆ωηLρω +Ω2

ρφωσ
4
η∆φη∆ωηLρη

]
}

− Cη
ωω∆φη

Ω2
φωη∆ωη

[

2
(
σ4φ∆

3
ωη + σ4η∆

3
φω

)
Lωη

− 2σ4φ∆
3
ωηLφη +Ωφωη

(
σ2φσ

2
ω + σ4ω − 3σ2φσ

2
η + σ2ωσ

2
η

) ]

−
Cη
φφ∆ωη

Ω2
φωη∆φη

[

2σ4ω∆
3
φηLωη

− 2
(
σ4ω∆

3
φη − σ4η∆3

φω

)
Lφη +Ωφωη

(
σ4φ + σ2φσ

2
ω + σ2φσ

2
η − 3σ2ωσ

2
η

) ]
)]

. (4.44)

In appendix G.1, the above system of equations is solved analytically. In the following,

we discuss numerical values for all input parameters. The couplings Cη(′)

V1V2
are collected

in table 2. They are calculated based on (A.9) with the phenomenological η–η′ mixing

parameters [123, 124]:

F 8 = 1.26(4)Fπ, F 0 = 1.17(3)Fπ, θ8 = −21.2(1.6)◦, θ0 = −9.2(1.7)◦, (4.45)

and the φ–ω mixing angle θV = 36.4◦ [90]. The parameters C2
η(′)

, which describe our choice

for the splitting of the SDCs on the HLbL tensor into η and η′ contributions, evaluate to:

C2
η ∼ 0.027 C2

η′ ∼ 0.057, (4.46)

as follows from (4.32) with the η–η′ mixing parameters in (4.45). The decay constants

Fη(′) , on the other hand, are not deduced from the η–η′ mixing parameters, but fit to
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Figure 10. Singly-virtual η TFF. The large-Nc Regge model, “Model 1” (4.34), is indicated by

the pink band with the dashed curve. Our alternative TFF model, “Model 2” (B.1), is indicated by

the solid cyan curve. The purple band is the CA result from ref. [49]. The dark blue dotted curve

is the RCST result from ref. [125]. The data are from CELLO [115], CLEO [116], and BaBar [126].

experimental data for the singly-virtual η(′) TFFs:

Fη = 139+27
−2 MeV,

Fη′ = 79+3
−5MeV, (4.47)

with an estimated variance of χ2 ∼ 1.1 and χ2 ∼ 0.9, respectively. The errors are increased

in order to cover the Padé approximant predictions from refs. [49] and [81] for η and η′,

respectively. The large error on Fη may be partly due to the fact that it is not clear when

the asymptotic BL limit sets in, accordingly, we will keep the full range in the error analysis.

Mdiag is fit to the recent BaBar data for the doubly-virtual η′ TFF [122], see figure 9. The

resulting value Mdiag = 898MeV (with χ2 ∼ 1.6) is used for both the η and η′ large-Nc

Regge model. Furthermore, we use the Regge slopes collected in (4.19) as well as [108]:9

σ2η = 1.33(11)GeV2, σ2η′ = 1.36(14)GeV2, σ2φ = 1.84(6)GeV2. (4.48)

The final model parameters (cA, cB, cdiag, cBL) are summarized in table 1, where we

rescaled the numerical values with Cη
φω/N ∼ 0.0129 and Cη′

φω/N ∼ −0.0017, respectively,
to show that all parameters are of “natural” size.

The singly-virtual TFFs of the ground-state η and η′ are shown in figures 10 and 11.

The large-Nc Regge model presented above is labeled as “Model 1.” The alternative TFF

9From figure 3 of ref. [108] we extracted M̂η = 591MeV.
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Figure 11. Singly-virtual η′ TFF. The large-Nc Regge model, “Model 1” (4.34), is indicated by

the pink band with the dashed curve. Our alternative TFF model, “Model 2” (B.1), is indicated

by the solid cyan curve. The purple band is the CA result from ref. [49]. The dark blue dotted

curve is the RCST result from ref. [125]. The data are from L3 [127], CELLO [115], CLEO [116],

and BaBar [126].

model, introduced in appendix B, is referred to as “Model 2.” The model error of the

large-Nc Regge TFFs is propagated from the errors of the input parameters σP , σV , FPγγ ,

FP , as well as the η–η′ mixing parameters, see (4.19), (4.26), (4.48), (4.45), and (4.47).

While Model 2, for which we do not provide an error estimate, runs outside the error band

of the Model 1 η′ (η) TFF for some low (intermediate) values of Q2, both models give a

good description of the experimental data and, thus, come out close to the results from

CAs [49] and fits within resonance chiral symmetric theory (RCST) [125].10 In appen-

dices G.2 and G.3, both models are further compared to CA, RCST, and DSE [50], and

the decomposition of Model 1 into 2ρ, 2φ, 2ω, and φω contributions is illustrated. We stress

again that neither model should be evaluated for other than purely space-like virtualities.

Both the ground-state η contribution to (g − 2)µ,

aη-poleµ

∣
∣
Model 1

= 16.4+1.3
−0.5 × 10−11, aη-poleµ

∣
∣
Model 2

= 17.8× 10−11,

aη-poleµ

∣
∣
[49, 128]

= 16.3(1.4)× 10−11, (4.49)

10The RCST result is reproduced from fit 2 in ref. [125] and PDG input for the masses of ρ(770), ρ(1450),

ρ(1700), ω(782), ω(1420), ω(1650), φ(1020), φ(1680), and φ(2170) [90].
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n η η′

Assignment 1 Assignment 2 Assignment 1 Assignment 2

1 η(1295) 0.0354 η(1440) 0.0351 η′(1475) 0.0594 X(1835) 0.0561

2 η(1760) 0.0171 η(1760) 0.0169 η′(2010) 0.0305 η′(2070) 0.0281

3 η(2100) 0.0111 0.0110 η′(2225) 0.0203 0.0185

4 η(2320) 0.0082 0.0081 0.0151 0.0137

Table 3. Two-photon couplings, FPγγ , of excited η
(′) states from the large-Nc Regge model (4.34),

in units of GeV−1. “Assignment 1” and “Assignment 2” refer to the assignments of η(′) excitations

shown in figure 6 and suggested in refs. [90, 108] and [113, table 27], respectively.

and the ground-state η′ contribution to (g − 2)µ

aη
′-pole

µ

∣
∣
Model 1

= 14.8+0.6
−0.7 × 10−11, aη

′-pole
µ

∣
∣
Model 2

= 16.1× 10−11,

aη
′-pole

µ

∣
∣
[49, 128]

= 14.5(1.9)× 10−11, (4.50)

are reproduced correctly with our η(′) TFF models.

4.3 Comparison of two-photon couplings

Apart from the Regge slopes for the trajectories of pion, η, η′, as well the vector mesons,

phenomenological input for the excited-pseudoscalar contributions could in principle be

provided by their TFFs. Even though the normalizations are poorly known, it is still

important to verify that the two-photon couplings implied by our Regge models compare

reasonably to the available phenomenological constraints. For the first excited state in the

pion trajectory, there is a limit

Fπ(1300)γγ < 0.0544(71)GeV−1, (4.51)

see appendix D, which is indeed satisfied by Fπ(1300)γγ = 0.050GeV−1 from our Regge

model. Nothing is known about the two-photon coupling of the π(1800) and even heavier

excited pions.

The situation is more involved in the η(′) sector. As alluded to in the caption of

figure 6, the spectroscopy of excited η(′) states is contentious, especially regarding the role

of the states below 1500MeV. Table 3 collects two possible assignments of states to Regge

trajectories. The first interpretation, favored by ref. [90], considers the η(1295) the lowest

η excitation and differentiates between η(1405) and η(1475) states. The latter is considered

as the first η′ excitation, while the η(1405) is described as a glueball candidate. In contrast,

ref. [113] argues that there is only a single state below 1500MeV, the η(1440), which should

be interpreted as the first η excitation. The X(1835) is identified as suitable candidate for

the first η′ excitation, although its quantum numbers are not yet established. In both

cases, the η(1760) emerges as the second η excitation.

The available constraints on the two-photon couplings of η(′) are collected in table 4,

see appendix D for details. The results from the second column are valid under the assump-

tion that the branching fractions listed in the PDG are accurate, while the third column
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FPγγ [ GeV−1]

P direct indirect assuming dominance of

η(1295) — < 0.030 ηππ, KK̄π

η(1405) < 0.122 < 0.033 ηππ, KK̄π

η(1475) < 0.195, > 0.041(6) = 0.041(6) KK̄π

η(1760) > 0.014(2) = 0.014(2) η′ππ

X(1835) < 0.235 < 0.022 η′ππ

Table 4. Constraints on the two-photon couplings of excited η(′) states, as collected in appendix D.

The column labeled “direct” includes constraints that follow directly from branching fractions listed

in the PDG, while the column labeled “indirect” lists results obtained when assuming that the

channels from the last column are dominant.

assumes, in addition, dominance by some decay channels (given in the last column). For

the η(1295) only an indirect limit is available, in the first assignment the two-photon cou-

pling of the η(1295) comes out slightly larger. Note, however, that the very existence

of the η(1295) is called into question in ref. [113], with the fact that in contrast to the

η(1475) this resonance has not been seen in the γγ reaction as one of the arguments.

The η(1405) is discarded in either assignment of Regge trajectories. However, in the sec-

ond assignment the η(1440) would be interpreted as a single state instead of η(1405) and

η(1475), see also ref. [129], in such a way that for the comparison the two-photon couplings

of both states should be considered. Remarkably, the measured value for the η(1475),

Fη(1475)γγ = 0.041(6)GeV−1, agrees perfectly with Fη(1440)γγ = 0.035GeV−1 from Assign-

ment 2. In Assignment 1, where the η(1475) is considered the first η′ excitation, there is

still reasonable agreement. Next, the experimental result for the η(1760) nicely confirms

the two-photon coupling implied by both assignments, since a tiny correction beyond the

dominant η′ππ channel would suffice to bring the numbers into complete agreement. Fi-

nally, the two-photon coupling of the X(1835) in Assignment 2 fulfills the direct limit but

not the one assuming dominance of η′ππ, which may indicate that in case this assignment

is correct, other channels besides η′ππ may play a role (as indeed suggested by other de-

cay channels listed in the PDG). Moreover, the significance of the two-resonance fit from

ref. [130] used to obtain the much stricter limit is only quoted at 2.8σ. Taken together with

the fact that not even the quantum numbers of the X(1835) are firmly established, it thus

seems difficult to draw meaningful conclusions on its two-photon coupling at this point.

Altogether, we conclude that the two-photon couplings implied by our large-Nc Regge

models are well compatible with the phenomenological constraints. In particular, for the

cases where measurements and not just limits exist, the η(1475) and the η(1760), the

resulting couplings are close to the ones that our large-Nc Regge models would imply. The

same is true for our alternative TFF model (B.1), see figure 19, whose couplings are similar

to the ones of the large-Nc Regge models. We stress that the detailed comparison depends

on the assignment of observed states to Regge trajectories, but in both variants considered

there is reasonable agreement with the two-photon phenomenology of excited η(′) states.
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Figure 12. Sum over radially-excited pion, η, and η′ contributions to (g−2)µ, as defined in (4.53).

The dotted curves are the extrapolated values ∆aP -poles
µ corresponding to the limit nmax →∞. The

gray lines indicate the contributions from the lowest (observed) pseudoscalar excitations shown in

figure 6. All results are calculated with the Model 2 TFFs (B.1).

4.4 Excited-pseudoscalar contributions to (g − 2)µ

The ground-state pseudoscalar-pole contributions to (g−2)µ, calculated based on our TFF

models, are given in (4.25), (4.49), and (4.50). The uncertainty on the predictions from

Model 1 is the propagated error from the input parameters σP , σV , FPγγ , FP , and the η–η′

mixing parameters. In all cases we observe good agreement with the literature [46, 47, 49,

128], which demonstrates that in addition to fulfilling the various SDCs, our Regge models

capture the properties of the TFFs most relevant for the g − 2 integral.

In the following, we derive the contribution to (g−2)µ originating from radially-excited

pseudoscalar mesons. The large-Nc Regge models introduced in the preceding sections and

the alternative model discussed in appendix B are constructed in such a way as to describe

not only the ground-state pseudoscalar TFFs, but also the TFFs of excited pseudoscalar

mesons. Phenomenological input on these excited states enters mainly in terms of their

masses as contained in the Regge parameters, while the infinite sum restores the correct

asymptotic properties of the HLbL tensor, which cannot be achieved with a finite number

of pseudoscalar-pole contributions. Moreover, for some of the excited states limits on their

two-photon couplings are available, see appendix D as well as the discussion in the previous

subsection, which shows that the couplings implied by our Regge model are consistent with

the available constraints from phenomenology.

With the large-Nc Regge model, we can calculate the pseudoscalar-meson tower ex-

actly, i.e., we can perform the infinite sum over pseudoscalar-pole diagrams with excited

pseudoscalars. For Model 2, we sum over the lowest n = 100 radially-excited pseudoscalars
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(P = π, η, η′) and then fit a saturation curve,

∆aP -poles
µ (nmax) = ∆aP -poles − (∆aP -poles − a0) e−b (nmax)c , (4.52)

in order to extrapolate to infinity. Here, we defined:

∆aP -poles
µ (nmax) =

nmax∑

n=1

aP (n)-pole
µ , (4.53)

with the infinite-summation result denoted as:

∆aP -poles
µ := ∆aP -poles

µ (∞). (4.54)

The saturation curve procedure is illustrated in figure 12, where for reasons of clarity only

every other data point is plotted above n = 4. The fits start from nmax = 1 and describe

the data perfectly. The dotted lines indicate the extrapolated values for ∆aP -poles
µ and

illustrate the good convergence of the summation already at nmax = 100. This procedure

has been verified with the large-Nc Regge model, for which the sum is already saturated

at nmax = 100.

For the full pseudoscalar-pole contributions to (g − 2)µ, we obtain:

∞∑

n=0

aπ(n)-poleµ

∣
∣
Model 1

= 67.1(0.4)× 10−11,

∞∑

n=0

aπ(n)-poleµ

∣
∣
Model 2

= 68.4× 10−11,

∞∑

n=0

aη(n)-poleµ

∣
∣
Model 1

= 19.9+1.1
−0.9 × 10−11,

∞∑

n=0

aη(n)-poleµ

∣
∣
Model 2

= 22.1× 10−11,

∞∑

n=0

aη
′(n)-pole

µ

∣
∣
Model 1

= 21.3(1.2)× 10−11,
∞∑

n=0

aη
′(n)-pole

µ

∣
∣
Model 2

= 24.2× 10−11,

∞∑

n=0

aπ(n)-poleµ + aη(n)-poleµ + aη
′(n)-pole

µ

∣
∣
Model 1

= 108.3+1.8
−1.7 × 10−11, (4.55)

where the uncertainty of the Model 1 prediction is solely estimated based on the error

propagated from the input parameters on
∑100

n=0 a
P (n)-pole
µ . Isolating the contribution from

excited pseudoscalars, one finds:

∆aπ-polesµ

∣
∣
Model 1

= 2.7(0.4)× 10−11, ∆aπ-polesµ

∣
∣
Model 2

= 3.9× 10−11,

∆aη-polesµ

∣
∣
Model 1

= 3.4+0.9
−0.7 × 10−11, ∆aη-polesµ

∣
∣
Model 2

= 4.3× 10−11,

∆aη
′-poles

µ

∣
∣
Model 1

= 6.5(1.1)× 10−11, ∆aη
′-poles

µ

∣
∣
Model 2

= 8.2× 10−11. (4.56)

The difference between the ∆aP -poles
µ results from Model 1 and Model 2 can be used to

quantify the systematic uncertainty of our prediction:

∆aπ-polesµ = 2.7 (0.4)Model 1 (1.2)syst × 10−11 = 2.7 (1.3)× 10−11,

∆aη-polesµ = 3.4+0.9
−0.7

∣
∣
Model 1

(0.9)syst × 10−11 = 3.4+1.3
−1.1 × 10−11,

∆aη
′-poles

µ = 6.5 (1.1)Model 1 (1.7)syst × 10−11 = 6.5 (2.0)× 10−11. (4.57)
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Figure 13. Contribution of the pQCD quark loop (with vanishing quark mass) to aµ from the

region Q1,2 ≥ Qmin with the contribution from Q3 below Qmin damped by Q2
3/(Q

2
3 + Λ2) (plus

crossed). The total contribution from Π̄1–12 is shown in black, together with the partial ones

from Π̄1–2 (red) and Π̄3–12 (blue). The pQCD contribution with common lower cutoff in all Qi is

reproduced in the limit Λ→∞.

With the alternative assignment of η(′) excitations in the radial Regge trajectories [113],

see dot-dashed purple lines in figure 6, we obtain:

∆aη-polesµ = 3.4× 10−11, ∆aη
′-poles

µ = 6.4× 10−11, (4.58)

indicating that the net effect is remarkably insensitive to the assignment of the η, η′ Regge

trajectories. Expressing C2
η(′)

through the experimental Fη(′)γγ and Fη(′) , see left-hand side

of (2.26), instead of the η–η′ mixing parameters, leads to a decrease of aη
(′)-poles

µ that is

well within the uncertainty quoted in (4.57). Our final result for the sum of pion, η, and

η′ states is:

∆aPS-polesµ = ∆aπ-polesµ +∆aη-polesµ +∆aη
′-poles

µ

= 12.6+1.6
−1.5

∣
∣
Model 1

(3.8)syst × 10−11

= 12.6(4.1)× 10−11. (4.59)

For Model 2 (Model 1) roughly 50% (80%) of ∆aPS-polesµ is generated by the lowest (ob-

served) pseudoscalar excitations listed in figure 6. This can be seen in figure 12 where

∆aP -poles
µ (nmax) is shown for Model 2.

5 Matching quark loop and Regge model

5.1 Matching at the level of (g − 2)µ

The simplest and most instructive matching to the massless pQCD quark loop proceeds

at the level of the (g − 2)µ integral. The asymptotic pQCD region where all Qi are large
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can be captured by imposing the condition that all Qi be larger than Qmin. To be able

to add the mixed regions, where one virtuality is smaller than Qmin, in the quark-loop

integration, one needs to dampen the contribution in the additional integration region,

since it is already partly covered by the ground-state pseudoscalar poles. To this end, we

introduce the suppression factor Q2/(Q2+Λ2) for the virtuality Q < Qmin, while retaining

the cut that at least two Qi ≥ Qmin. In this way, the limit Λ →∞ reproduces a common

lower cutoff on all Qi. The results are shown in figure 13 for the total (Π̄1–12) as well as

for longitudinal (Π̄1–2) and transversal (Π̄3–12) contributions separately.

The Regge models in the preceding section predict a ratio ∆aη,η
′

µ /∆aπ
0

µ near the ex-

pectation (C2
0 + C2

8 )/C
2
3 = 3. Similarly, we obtain ∆aη

′

µ /∆a
η
µ close to 2, as suggested by

the scaling with C2
η′/C

2
η (4.32). To first approximation, the implementation of the various

asymptotic constraints on the HLbL tensor thus reproduces the simple scaling that origi-

nates from the weight factors (2.20) appearing in the V V A triangle. For the mixed regions

this behavior is exact due to (4.7) and (4.29), as long as the low-energy properties of the

HLbL tensor are not disturbed, while for the asymptotic region it is a consequence of the fla-

vor decomposition chosen in (4.8) and (4.30). The fact that the results from the summation

of excited pseudoscalars confirm these expectations indicates that the pQCD quark loop

dictates, if not the overall size of the effect, at least its decomposition in the various isospin

channels. This is an encouraging sign that the model dependence which is intrinsic in the

approach we are following here is mitigated by the QCD constraints. To understand even

better the extent to which this mitigation occurs we analyze here in detail the matching be-

tween the Regge models and the quark loop integral, after introducing appropriate cutoffs.

For ∆aPS-polesµ ∼ 13×10−11 figure 13 suggests scales Λ and Qmin around 1.4GeV. In ad-

dition, the pQCD quark loop would predict an additional increase from the transversal am-

plitudes around 4×10−11, but for these scales the interplay with axial-vector resonance con-

tributions needs to be studied in more detail. In the following, we will instead focus on the

comparison of our Regge model and the pQCD quark loop in the longitudinal amplitudes.

5.2 Matching of short-distance contributions

Beyond the matching at the level of (g − 2)µ, it could be instructive to also compare the

specific contributions to the BTT functions in the various kinematic domains. However,

once the respective scaling with the virtualities is factored out, we find that the coefficient

converges relatively slowly to its asymptotic value. We conclude that it is rather the

convolution with the kernel functions Ti that becomes important to assess the relevant

scales of the SDCs for the HLbL contribution.

This is illustrated in figure 14, which shows various contributions to aµ as a function of a

lower cutoff on all three virtualities Qi, as well as in figure 15, which shows the opposite case

of an upper cutoff on all three virtualities Qi. The ground-state pseudoscalars are saturated

by 90% for Qmax = 1.5GeV, while for the excited pseudoscalars only about 25% of the total

contribution comes from this energy region. By construction, their contribution asymptot-

ically matches onto the one from the pQCD quark loop, and figure 14 shows how fast that

asymptotic limit is reached after convolution with the (g−2)µ integral kernels: at 1.5GeV it

is saturated by 70%, or about 80% if the tail of the ground-state pseudoscalars is included.
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Figure 14. Contribution to aµ for Qi ≥ Qmin: the longitudinal part of the massless pQCD quark

loop (dotted black), the ground-state pseudoscalars (long-dashed red), their excitations from the

large-Nc Regge model (blue), the sum of both (orange), and the short-distance implementation

from the MV model (dot-dashed green). The blue dot-dashed curve refers the sum of the first three

excited pseudoscalars in each trajectory.
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Figure 15. Same as figure 14, but for Qi ≤ Qmax.
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The mixed region is more difficult to illustrate, especially for the corresponding OPE

constraint, because in addition to the hierarchy Q2
3 ≪ Q2

1 ∼ Q2
2 the small virtuality still

needs to be large compared to ΛQCD, otherwise chiral corrections will become important.

For that reason, the low-energy part of the integration region was suppressed by the second

cutoff Λ in figure 13. To obtain some measure of the size of the mixed-region contribution,

figure 16 shows the remainder if for a given cutoff Qcut both the regions where all Qi ≤ Qcut

and all Qi ≥ Qcut are subtracted. For the ground-state pseudoscalars at Qcut = 1.5GeV,

this produces the remaining 10% beyond the low-energy region, while the asymptotic re-

gion Qi ≥ Qcut is already largely negligible. For the sum of excited pseudoscalars, it is

instructive to further scrutinize the decomposition at this scale into low-energy (25%),

mixed (40%), and asymptotic (35%) regions. As concerns the contribution from the lowest

excitations, in Model 1, the low-energy region is entirely saturated by the sum of the first

three excitations, the mixed region by 80%, but for the asymptotic part of the integral

the higher excitations make up about 50%. This pattern suggests the interpretation that

indeed the lowest excitations are most important for the low-energy and mixed regions,

while the infinite tower of resonances restores the correct asymptotic behavior. In fact,

we find that the numerical impact of the integration regions where the OPE constraint

strictly applies, i.e., where both Q3 ≪ Q1,2 and Qi ≫ ΛQCD, is already very small, so that

in practice its main effect lies in constraining the TFF Regge models.

Altogether, this discussion indicates that at some point around 1.5GeV the descrip-

tion of the HLbL tensor in terms of hadronic intermediate states should be matched onto

the one from pQCD. In particular, the implementation of the SDCs in terms of excited

pseudoscalars gives an indication how big an impact the intermediate regime may have (in

the longitudinal amplitudes): while from pQCD alone one may have guessed a contribution

around 5 × 10−11 from the asymptotic region, for a value of Qmin chosen at 1.5GeV, the

excited pseudoscalars with masses in the same region will add a contribution of similar

size, covering also the mixed regions of the (g − 2)µ integral.

To quantify the matching between the quark loop and the description in terms of

hadronic states, one would need to define a concrete criterion for the matching scale. One

way to define an optimal scale could be to consider the difference between Regge model and

quark loop as a function of Qmin in combination with the uncertainties of each description

for a particular cutoff. For the Regge model, we can estimate this uncertainty as before,

but for the quark loop one would need to know the αs corrections and/or higher orders

in the OPE, which when compared to the leading-order quark loop would already entail

information about the scale where pQCD becomes an efficient description of the HLbL

tensor. Absent such calculations, we may obtain a first estimate by comparison to similar

pQCD uncertainties in inclusive τ decays [131–136], given that we expect a matching scale

not too far off the τ mass, which would suggest an uncertainty around 20%. Based on

the combined uncertainties of the Regge model and the pQCD quark loop, we then find a
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Figure 16. Mixed-region contribution to aµ, defined as the full integral minus the contributions

from the low-energy (all Qi ≤ Qcut) and high-energy (all Qi ≥ Qcut) regions.

preference for a matching scale around Qmatch = 1.7GeV, leading to the decomposition

∆aPS-polesµ − aPS-polesµ

∣
∣
Qmin=Qmatch

= 8.7(3.6)× 10−11,

aq-loopµ

∣
∣
Qmin=Qmatch

= 4.6(9)× 10−11, (5.1)

Note that, in the first line, we also subtracted the very small contribution from the ground-

state pseudoscalars from the integration region Qi ≥ Qmatch to avoid any double counting.

As expected, the comparison to (4.59) confirms that for the asymptotic part of the integral

it does not matter whether a description based on hadronic intermediate states or pQCD

is employed: this means that about one third (i.e., the second line) of (5.1) is a model-

independent part of the effect we have calculated. But how model dependent is the rest

and can we adequately cover this model dependence with our uncertainty estimate? There

are different uncertainties which need to be considered and we summarize all of them here:

• 3.6 units coming from the uncertainties in the parameters of Model 1, as given in (5.1),

obtained by stretching the uncertainties in the Regge slopes by a factor three;11

• 1.7 units are obtained by varying the matching point by 0.5GeV (the main effect

comes from the lowest Qmatch, which we vary to as low as 1.2GeV);

• 3.8 estimated from the difference between Model 1 and 2, cf. (4.59).

All these uncertainties concern essentially the contribution below the matching point of

Qmatch = 1.7GeV, as estimated in the previous section. The outcome of our analysis for

11We thereby aim to cover scenarios in which other hadronic states could be used to implement the SDCs,

in which case the Regge slopes would differ; e.g., according to ref. [108], the Regge slopes of the axial-vector

a1 and f1 trajectories are σ2
a1

= 1.36(49)GeV2 and σ2
f1

= 1.27(64)GeV2.
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this part therefore reads:

∆aPS-polesµ − aPS-polesµ

∣
∣
Qmin=Qmatch

= 8.7(3.6)excited PS
+1.7
−0.4

∣
∣
Qmatch

(3.8)syst × 10−11

= 8.7(5.5)× 10−11, (5.2)

with a 65% uncertainty, which we consider as sufficiently conservative and, in addition,

covers the systematic effects related to the asymptotic behavior of the excited-state TFFs

as discussed in appendix E. Another observation corroborating this conclusion is that the

contribution to the central value due to the first three pseudoscalar excitations (whose

masses and, in part, two-photon couplings are constrained by phenomenology) amounts to

7.8 units out of 8.7. On the basis of these considerations we give as our final estimate

∆aLSDC
µ = [8.7(5.5)PS-poles + 4.6(9)q-loop]× 10−11 = 13(6)× 10−11, (5.3)

and stress that the contribution of the higher excitations (n > 3), which has been cal-

culated with our Regge model and is the most uncertain and model-dependent part of

our calculation, amounts to only less than 10% of the total. We conclude that our final

result (5.3) has a generously estimated uncertainty that we expect to cover the remaining

model dependence.

5.3 Chiral limit and role of axial-vector mesons

One may ask whether the implementation of the longitudinal SDCs adopted here would

work in the chiral limit: in this limit, excited pseudoscalars have a vanishing coupling to the

axial current and therefore would not be able to contribute to the fulfillment of the OPE

constraint.12 However, there are known cases in which the chiral and the large-Nc limits

do not commute, most notably in the context of baryon chiral perturbation theory. For

instance, if one first takes Nc →∞ and then mq → 0, the entire tower of excited baryons

contributes to the first non-analytic term in the quark-mass expansion of the nucleon mass,

while in the opposite order only nucleon intermediate states appear [137, 138], and similar

subtleties arise elsewhere due to mass splittings of order 1/Nc [139]. Further subtleties in

the order of the chiral limit have been pointed out before even for the V V A anomaly itself:

the discontinuity of the fermion triangle loop function in the axial-vector virtuality vanishes

with the fermion mass, but in a dispersion relation the mass dependence is canceled and

produces the anomaly that survives in the chiral limit [140, 141]. While these examples

show that care is required when exchanging the limits, at least the implementation of the

large-Nc Regge models described here does not allow any such subtleties to occur and is

meant to be used only away from the chiral limit.

If the excited pseudoscalar poles were to decouple in the chiral limit, an alternative

solution could be provided by axial-vector intermediate states, which do contribute in the

chiral and large-Nc limits. For these mesons, however, only model-dependent calculations

are available in the literature so far,13 whereas a calculation based on a dispersive framework

12We thank Arkady Vainshtein for calling our attention to this point.
13They are either based on the relation to transversal SDCs [62, 142] or proceed in terms of Lagrangian

models [143, 144].
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is still lacking. Such a framework would allow one to express the contribution to HLbL

scattering in the most general way in terms of all TFFs of the axial vectors (which admit

three), as is the case for the pseudoscalars (which admit only one). Another significant

difference is that while for pseudoscalars the sum rules that guarantee the absence of

ambiguities in the evaluation of the HLbL contribution [35] are automatically satisfied,

this is not the case for axial-vector mesons. We believe that at present it is fair to say that

even the ground-state contributions of the latter are poorly understood.

Besides these theoretical reasons, there are also phenomenological ones that favor a

discussion in terms of pseudoscalars: while for the most relevant excited pseudoscalar reso-

nances, those in the energy range between 1–2GeV, there is at least some information on the

phenomenology relevant for HLbL, the situation is even worse for the known axial-vector

resonances in the same mass range. This is related to the fact that for axial vectors a decay

into two real photons is forbidden by the Landau-Yang theorem [145, 146]: hadronic chan-

nels such as three pions are dominant with respect to suppressed decays to virtual photons,

which have been observed only for two ground-state axial-vector resonances [147, 148].

If a viable implementation of the longitudinal SDCs in terms of axial-vector resonances

were possible, it would have to look quite different from ours in terms of pseudoscalars ex-

citations. Besides the fact that different TFFs contribute, we observe that the axial-vector

contribution to Π̂1–3 does not resemble the pseudoscalar-pole contribution (2.16), in fact,

both in a Lagrangian-based approach and in dispersion theory the pole in q23 −m2
A cancels

in the longitudinal BTT amplitudes. Based on what is known about the axial-vector TFFs,

we cannot preclude the possibility that a finite number of axial vectors could be used to

construct such a solution. If that were possible while being consistent with phenomenology

and the SDCs on the axial-vector TFFs, this would be an appealing solution, but the

necessary theoretical framework for carrying out such an analysis is not yet available. For

the moment we took the pragmatic point of view that we implement the longitudinal SDCs

in terms of the hadronic intermediate states that we can control best, both theoretically

as well as phenomenologically. Having adopted this strategy, we need to address the

question of whether our estimate of the systematic uncertainty is large enough to cover

the possibility of implementing the SDCs in terms of other hadronic intermediate states.

We believe that we can answer positively this question under the reasonable assumption

that even in an alternative scenario the matching to pQCD will occur in the range we have

considered. In this case the contribution from the quark loop will remain unchanged and

all we need to discuss is the excited-pseudoscalar-pole contribution estimated as 8.7(5.5)×
10−11. About one unit out of nine comes from excited states with n > 3: if these were

not needed to satisfy the SDCs, this contribution would have to be dropped, a possibility

amply covered by our uncertainties. The bulk of the contribution comes from excited states

with n ≤ 3, and as we have discussed in section 4.3 and in appendix D, the estimate of

their two-photon couplings we have obtained by requiring that the longitudinal SDCs be

satisfied is compatible with what is know from phenomenology. Our uncertainty estimate

covers the present phenomenological uncertainties on these couplings and could be reduced

if the phenomenological information on them were improved. In the end, even if the SDCs

were to be implemented using axial-vector states, the first few pseudoscalar excitations
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would need to be included regardless, it is just that the pseudoscalar TFFs would not be

constrained by the HLbL SDCs.

In conclusion, we believe that the uncertainty related to the nature of the hadronic

states used in the implementation of the SDCs should be covered by the error assigned

in (5.2), an expectation that has been supported more recently by models in holographic

QCD [149, 150], in which the SDCs are implemented by summation of an infinite tower

of axial-vector resonances instead. Beyond the model context, assessing the role of axial-

vector resonances in the context of SDCs, especially the transversal ones, will first of all

require an improved understanding of their ground-state contributions.

6 Comparison to the Melnikov-Vainshtein model

In this section, we compare our implementation of the longitudinal SDCs to the one from

ref. [62], which is based on the observation that the modification

Π̂P -pole
1 =

FPγ∗γ∗(q21, q
2
2)FPγγ∗(q23)

q23 −M2
P

→ Π̂1

∣
∣
MV

=
FPγ∗γ∗(q21, q

2
2)FPγγ

q23 −M2
P

(6.1)

of (2.16) ensures that both the normalization and the mixed-region OPE constraint (3.30)

are fulfilled.14 Since the form (2.16) of the pseudoscalar poles is a direct consequence of the

dispersion relation for the HLbL tensor, which we suggested in refs. [31–35] for the case of

general four-point kinematics, this modification is not compatible with the description of

other intermediate states in the same framework. However, the replacement (6.1) could be

justified by a dispersion relation for the HLbL amplitudes directly in the kinematic limit

relevant for (g−2)µ, i.e., for q4 = 0. In this limit it is not possible to work with a dispersion

relation in the Mandelstam variables s, t, and u at fixed q2i , because they cease to be

independent: s = q23, t = q22, and u = q21. This means that when writing dispersion relations

in the q2i for g − 2 kinematics, there is no clear separation between the singularities of the

HLbL amplitude and those generated by hadronic intermediate states directly coupling to

individual electromagnetic currents, e.g., two-pion states as in figure 17: in this framework

the pseudoscalar TFFs can no longer be treated as external input quantities. The same

holds for higher intermediate states, so that in general the factorization of form factors and

scattering amplitudes of the intermediate state in question would cease to apply.

Nevertheless, we observe that, in principle, both forms of dispersion relations are per-

fectly legitimate — the transition from the dispersion relation for the four-point func-

tion [31–35] to a dispersion relation in the photon virtualities in the (g − 2)µ kinematic

limit amounts to a relabeling of contributions from different principal cuts. This is illus-

trated by writing the pseudoscalar pole (2.16) in our framework as

Π̂P -pole
1 =

FPγ∗γ∗(q21, q
2
2)FPγγ∗(M2

P )

q23 −M2
P

+
FPγ∗γ∗(q21, q

2
2)
(
FPγγ∗(q23)− FPγγ∗(M2

P )
)

q23 −M2
P

, (6.2)

where the first term reproduces the pole in the alternative dispersive framework for (g−2)µ
kinematics, while the second term does not contain a pole at q23 =M2

P . More precisely, the

14A reply to the preprint [151], which appeared in response to our paper, is provided in appendix H.
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Figure 17. Dispersion relation for the HLbL tensor in the (g−2)µ kinematic limit with singularities

from primary and secondary channels (2π state and pseudoscalar pole).

second term is the contribution due to intermediate states X in a cut through the TFF,

with the discontinuity determined by the sub-processes γ∗(q3)→ X and a pseudoscalar-pole

contribution to γ∗(q1)γ∗(q2) → γX, as illustrated in figure 17. This piece is present even

in the alternative dispersive framework, which demonstrates that changing the dispersive

framework simply amounts to a reshuffling of contributions between different principal cuts.

Due to the mixed-region SDC, for large q21 ∼ q22 the second piece in (6.2) has to cancel

against the contribution from the infinite tower of higher intermediate states up to chiral

corrections. Since this is a key point in ref. [62], and the basis for the construction of the

MV model, it is worthwhile discussing in detail how this cancellation has to work. For

simplicity we concentrate on the pion contribution only (isospin-triplet component) and

include all other contributions other than the pion pole to Π̂3
1 into a single function G:

Π̂3
1 = Π̂π-pole

1 (q21, q
2
2, q

2
3) +G(q21, q

2
2, q

2
3). (6.3)

From the requirement that (3.29) provide the leading term for asymptotic q21 ∼ q22, but

that it be exact (in the chiral limit) as far as the q23 dependence is concerned, it follows

that the function G must have the following asymptotic behavior:

lim
q̂2→∞

q̂2G(q̂2, q̂2, q23)
∣
∣
∣
mq=0

=
2Fπ

3

Fπγγ∗(q23)− Fπγγ

q23

∣
∣
∣
∣
mq=0

. (6.4)

We stress that (6.4) is exact in the chiral limit, a property inherited from (3.29), which is

a remarkable and interesting result. The MV model (6.1) consists of taking the pion pole

as the only contribution to Π̂3
1. This effectively amounts to promoting (6.4) to an equation

valid for any value of q21 and q22:

G(q21, q
2
2, q

2
3)
∣
∣
∣
mq=0

= −Fπγ∗γ∗(q21, q
2
2)
Fπγγ∗(q23)− Fπγγ

q23

∣
∣
∣
∣
mq=0

. (6.5)

While this provides a simple way to exactly satisfy (6.4), there is no physical justification

in support of such a very strong assumption. It is therefore not surprising that this leads

to uncontrolled numerical effects, which we have been able to quantify here. In addition,

we note that away from the chiral limit the residue in (6.2) contains FPγγ∗(M2
P ) instead of

FPγγ , which at least for η(′) entails significant chiral corrections.
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Numerically, ref. [62] concluded an increase of 13.5× 10−11 for the pion and 5× 10−11

each for η(′), based on the modification in (6.1) and the TFFs from ref. [51] (LMD+V for

the pion and VMD for η(′)):

∆aPS-polesµ

∣
∣
MV

= 23.5× 10−11. (6.6)

However, we note that with modern input for the TFFs this number would increase substan-

tially: for the pion, our Model 1 implies an increase of 16.2× 10−11, which would increase

to 17.3×10−11 if one used the dispersive TFF instead. Here, the change to the original MV

number mainly reflects the differences between the LMD+V model from ref. [51] and the

dispersive result for the π0 TFF [46, 47]. For η(′), the differences are more severe because the

incorrect asymptotic behavior of the VMD form factors in the pQCD limit suppresses the

impact of taking the singly-virtual form factor to a constant. We find 10.0×10−11 and 12.1×
10−11 for η and η′, respectively, which in total produces an increase of 38 × 10−11 beyond

the pseudoscalar ground-state contributions, nearly three times the result given in (4.59).

Apart from the overall size, another key difference in our implementation concerns

the hierarchy ∆aπ-polesµ < ∆aη-polesµ < ∆aη
′-poles

µ found with the excited pseudoscalars,

see (4.57), while in ref. [62] the largest effect was found for the pion. The fact that

∆aη-polesµ comes out much smaller than ∆aη
′-poles

µ can be partly explained by the two-

photon couplings, Fη(n)γγ < Fη′(n)γγ , and also through the scaling of the excited state

TFFs in the BL limit, see figure 19.

This observation also has consequences for the matching to the quark loop. While

in our case the scaling of the flavor components follows essentially the expectation from

the weights C2
a , this is not the case for the MV model, and therefore it is less clear how

the matching to pQCD should proceed. In fact, as shown in figure 14, despite not being

implemented explicitly, the MV model also comes close to the pQCD asymptotics: the main

difference to our Regge model occurs in the low-energy region below 1GeV. This matching

onto pQCD asymptotics is coincidental, however: by construction, the model saturates the

MV constraint also in the limit in which all virtualities are large and therefore exceeds the

proper pQCD limit by a factor of 3/2. Since the asymptotic value is approached rather

slowly, the resulting curve happens to be close to the pQCD quark loop for the range of

Qmin displayed in figure 14.

Figures 14–16 also illustrate the origin of the difference between our implementations.

For the reference scale of 1.5GeV, the low-, mixed-, and high-energy regions contribute

75%, 20%, and 5%, respectively, which demonstrates that indeed the approximations of the

MV model manifest themselves primarily in the low-energy region, where the dispersive

framework provides the best constraints and the contribution of higher states only leads

to a moderate uncertainty.

7 Summary and outlook

In this work, we studied short-distance constraints (SDCs) for the hadronic light-by-light

(HLbL) contribution to (g − 2)µ. We concentrated on the longitudinal constraints that

are intimately related to pseudoscalar-pole contributions. Since the HLbL tensor can only
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be constrained from data in the low-energy region, but not in the mixed- and high-energy

regions, SDCs are important for a model-independent approach towards HLbL scattering.

In sections 2 and 3, the Lorentz decomposition of the HLbL tensor from refs. [33, 35] was

used to formulate the known expressions for the perturbative QCD (pQCD) quark loop and

the operator-product-expansion (OPE) constraints on the HLbL tensor, respectively. The

OPE constraint in the symmetric region with Q2
1 = Q2

2 = Q2
3 ≡ Q2 is given in (3.1), the

Melnikov-Vainshtein constraint [62] for the mixed region with Q2
3 ≪ Q2

1 ∼ Q2
2 in (3.25).

Both are implemented including the singlet component, for which in addition to chiral

corrections also perturbative corrections arise.

Subsequently, we focused on the longitudinal SDCs, related to the pseudoscalar-pole

diagrams (2.16) by means of (3.30). While a finite number of poles cannot saturate the

SDCs, an infinite tower of them can [62]. To that end, we have constructed two models

for the transition form factors (TFFs) of ground-state and radially-excited pseudoscalar

mesons: our large-Nc Regge model for pion, η, and η′ is described in sections 4.1 and 4.2,

and an alternative model using the Regge resummation from ref. [106] is introduced in

appendix B to estimate the systematic uncertainty (see also appendix E). While applicable

only in the space-like region as relevant for (g−2)µ, both models satisfy all relevant low- and

high-energy constraints for the TFFs — the chiral anomaly (normalization), the Brodsky-

Lepage limit, and the symmetric pQCD limit, see (4.12)–(4.14) and (4.26)–(4.28)—give

a good description of the experimental data, and reproduce the established results for

the ground-state contributions to (g − 2)µ. In addition, with an infinite tower of excited

pseudoscalars, they restore the correct asymptotic Q2-behavior of the HLbL tensor in the

mixed- and high-energy regions, see (4.7) and (4.8), as well as (4.29) and (4.30).

Thus, it has been shown that the SDCs on the HLbL tensor, and in particular the

MV constraint, can indeed be satisfied with an infinite sum over excited pseudoscalar-pole

diagrams, while maintaining the correct low-energy behavior. Our result (4.59)

∆aPS-polesµ = ∆aπ-polesµ +∆aη-polesµ +∆aη
′-poles

µ = 12.6(4.1)× 10−11, (7.1)

derived from the large-Nc Regge models alone, is significantly smaller than the original

estimate ∆aµ|MV = 23.5 × 10−11 from ref. [62], which was obtained by removing the

momentum dependence of the TFF at the external photon vertex. In fact, with modern

input for the pseudoscalar TFFs this effect would increase further to ∆aµ|MV ∼ 38×10−11,

demonstrating the dangers of ad-hoc modifications of the low-energy properties of the HLbL

tensor. Indeed, we observe that by far the main part of the difference to our implementation

originates from the low-energy part of the g − 2 integral.

Furthermore, in contrast to ref. [62], we find ∆aπ-polesµ < ∆aη-polesµ < ∆aη
′-poles

µ . Accord-

ingly, the flavor decomposition into excited π0, η, η′ states follows roughly the expectation

from the coefficients determining the SDCs, motivating a matching of our hadronic imple-

mentation onto a description in terms of the pQCD quark loop. This matching, illustrated

in figures 13–16, shows that, as expected, the ground-state pseudoscalars are relevant only

at low energies, but about half the excited-state contribution comes from the integration

region of Qi ≥ 1GeV, while the other half could be interpreted as an estimate of the mixed

regions. Since, by construction, the excited-state contribution asymptotically matches onto
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the one from pQCD, we then replaced the hadronic formulation in favor of the quark loop

in the asymptotic part of the integral, at a matching scale of Qmatch = 1.7GeV obtained

from our best estimates of the uncertainties in the Regge models and pQCD corrections.

Due to the assumed pQCD uncertainties and variation of the matching scale, as well as

the inflated errors for the Regge slopes in Model 1, see discussion between (5.1) and (5.2),

the uncertainty of our final result (5.3)

∆aLSDC
µ = [8.7(5.5)PS-poles + 4.6(9)q-loop]× 10−11 = 13(6)× 10−11, (7.2)

slightly increases with respect to (7.1), the advantage being that the asymptotic part of

the result is manifestly independent of the nature of the hadronic states in terms of which

the correct asymptotic behavior was restored. In this way, our final result mainly relies

on the Regge models for an estimate of potential contributions for which the asymptotic

constraints do not yet apply, and, while data is scarce, this is the energy region where at

least some phenomenological guidance for the excited pseudoscalar states is available. In

particular, this strategy ensures that since the excited pseudoscalars decouple in the chiral

limit, see section 5.3, our implementation of the asymptotic part of the integral remains

valid for vanishing quark masses, while for the low-energy phenomenology chiral corrections

are essential.

In the future, the matching to pQCD could be improved if explicit calculations of pQCD

corrections became available, a first step in this direction was already taken in ref. [61].

Moreover, the phenomenological analysis would profit from further experimental informa-

tion on the two-photon physics of hadronic resonances in the 1–2GeV region, which holds

true not only for the longitudinal amplitudes but in general. In fact, to address the transver-

sal amplitudes, the effects of axial-vector resonances need to be understood in the context of

dispersion relations, especially given that their masses are much closer to the typical match-

ing scale found for the longitudinal SDCs in this paper. Work along these lines is in progress.
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A Anomalous pseudoscalar-vector-vector coupling

For the pion TFF, we only considered the coupling of the pion to a ρω pair, see figure 4,

and neglected the contribution given by a ρφ pair. In the following, we motivate why the
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ρφ pair can be neglected for the pion, and derive the relative strength of 2ρ, 2ω, 2φ, and

φω contributions to the TFFs of the η and η′, see figure 8.

In ref. [152], we find the Lagrangians for the anomalous pseudoscalar-vector-vector

coupling,

LVVΦ = −gVVΦ ǫ
µναβ Tr (∂µVν∂αVβΦ) , (A.1)

with gVVΦ = 3g2/32π2F 2
π , and the electromagnetic photon-vector interaction,

Lem =

√
2 e

g
Aµ

(

m2
ρρµ +

1

3
m2

ωωµ −
√
2

3
m2

φφµ

)

= Aµ(gργ ρµ + gωγ ωµ + gφγ φµ) , (A.2)

with gV γ the individual coupling strengths. Φ stands for the neutral ground-state pseu-

doscalar mesons, denoted by π0, η(8) and η(0):

Φ =
1√
2








π0 + 1√
3
η(8) +

√
2
3 η

(0) 0 0

0 −π0 + 1√
3
η(8) +

√
2
3 η

(0) 0

0 0 − 2√
3
η(8) +

√
2
3 η

(0)







, (A.3)

and Vµ stands for the neutral ground-state vector mesons, denoted by ρµ, φ
(8)
µ , and φ

(0)
µ :

Vµ =
1√
2








ρµ + 1√
3
φ
(8)
µ +

√
2
3 φ

(0)
µ 0 0

0 −ρµ + 1√
3
φ
(8)
µ +

√
2
3 φ

(0)
µ 0

0 0 − 2√
3
φ
(8)
µ +

√
2
3 φ

(0)
µ







. (A.4)

Note that the latter Lagrangian (A.2) for the neutral vector mesons is given in the ideal

mixing situation: ρ ∼ 1/
√
2
(
uū− dd̄

)
, ω ∼ 1/

√
2
(
uū+ dd̄

)
and φ ∼ −ss̄. In general, we

use a φ–ω mixing:
(

φ8

φ0

)

=

(

cos θV sin θV

− sin θV cos θV

)(

φ

ω

)

, (A.5)

with θV = 36.4◦ [90] which, however, almost corresponds to the ideal case (θidealV =

arctan 1/
√
2 ∼ 35.3◦). For the η–η′ mixing, we use the short-hand notation:

(

η8

η1

)

= T

(

η

η′

)

=

(

T11 T12

T21 T22

)(

η

η′

)

, (A.6)

where the mixing matrix in the standard two-angle mixing scheme is given by:

T := Fπ

(

F 8 cos θ8 −F 0 sin θ0

F 8 sin θ8 F 0 cos θ0

)−1

, (A.7)

with the mixing parameters introduced in (2.22).
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The coupling strengths of the pseudoscalar meson to two-photon interactions in the

VMD picture, see figures 4 and 8, can be reconstructed from the above Lagrangians, taking

into account the φ–ω and η–η′ mixings:

ΓΦγγ ∝
3α

4πF 2
π

ǫµναβ

{ √
2

3
√
3
π0
[

∂µρν ∂αωβ

(√
2 cos θV + sin θV

)

−
√
2∂µρν ∂αφβ

(

cos θV −
√
2 sin θV

)]

+
1

2
√
6
η

[

2 ∂µρν ∂αρβ

(

T11 +
√
2T21

)

+
1

9

(

2
√
2T21 − T11

)

(∂µων ∂αωβ + 2∂µφν ∂αφβ)

+
1

9
T11

(

cos 2θV + 2
√
2 sin 2θV

)

(∂µων ∂αωβ − 2∂µφν ∂αφβ)

− 2
√
2

9
T11

(

2
√
2 cos 2θV − sin 2θV

)

∂µων ∂αφβ

]

+
1

2
√
6
η′
[

2 ∂µρν ∂αρβ

(

T12 +
√
2T22

)

+
1

9

(

2
√
2T22 − T12

)

(∂µων ∂αωβ + 2∂µφν ∂αφβ)

+
1

9
T12

(

cos 2θV + 2
√
2 sin 2θV

)

(∂µων ∂αωβ − 2∂µφν ∂αφβ)

− 2
√
2

9
T12

(

2
√
2 cos 2θV − sin 2θV

)

∂µων ∂αφβ

]}

. (A.8)

A similar approach is chosen in ref. [153], where the contributions to the singly-virtual TFFs

are analyzed through the combination of pseudoscalar-photon-vector and photon-vector

interactions. The dependence of the electromagnetic photon-vector interactions (A.2) on

the vector-meson masses are canceled out by the vector-meson propagators. Our final

couplings read, for P = η, η′:

CP
ρρ = T1IP +

√
2T2IP ,

CP
ωω =

1

18

[

(cos 2θV + 2
√
2 sin 2θV − 1)T1IP + 2

√
2T2IP

]

,

CP
φφ = −1

9

[

(cos 2θV + 2
√
2 sin 2θV + 1)T1IP − 2

√
2T2IP

]

,

CP
ωφ =

√
2

9
(sin 2θV − 2

√
2 cos 2θV )T1IP , (A.9)

with Iη = 1, Iη′ = 2, and TIJ given in (A.7). Similarly, we define for the pion:

Cπ
ρω =

2

3

(√
2 cos θV + sin θV

)

,

Cπ
ρφ = −2

√
2

3

(

cos θV −
√
2 sin θV

)

. (A.10)

Note that in (A.9) and (A.10) we divided all couplings by a common factor:√
3α/(4

√
2πF 2

π ). This is allowed because the relative strength of the different couplings
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π η η′

MV1 [MeV] 779 774 859

MV2 [MeV] 585 404 452

σ2V1
[GeV2] 1.252 1.593 1.577

σ2V2
[GeV2] 0.076 0.034 0.060

Λ [GeV] 1.318 1.318 1.318

Table 5. Parameters of the alternative model for pion, η, and η′ TFFs.

does not change. The large-Nc Regge model for the η(′) TFFs is then constructed such

that each vector-meson pair contributes exactly CP
V1V2

/N to Fη(′)γγ , where N is the nor-

malization (4.40).

Numerical values for CP
V1V2

can be found in table 2. One can clearly see that Cπ
ρω ≫ Cπ

ρφ,

which is why we neglected the ρφ contribution to the pion TFF. Furthermore, one can see

that the ground-state η(′) TFFs are dominated by the 2ρ, while the contribution from φ–ω

mixing is small. This is also illustrated in figures 30 and 33, where we show the 2ρ, 2ω,

2φ, and φω contributions to the singly-virtual and doubly-virtual η(′) TFFs.

B Alternative model for pion, η, and η′ transition form factors

In this appendix, we present an alternative model for the pseudoscalar TFFs, which will

help us to study the systematic uncertainty of our g−2 result. This alternative model uses

the Regge resummation from ref. [106] to satisfy the pQCD limit of the TFF, cf. (2.25). It

reads:

FP (n)γ∗γ∗(−Q2
1,−Q2

2) =
∞∑

i=0

∫ 1

0
dx







c1 e
−(Q2

1+Q2
2)/Λ

2

[

M2
V1(n+i) +Q2

1 x+Q2
2 (1− x)

]2

+
c2

[

1− e−(Q2
1+Q2

2)/Λ
2
]

x(1− x)
[

M2
V2(n+i) +Q2

1 x+Q2
2 (1− x)

]2







, (B.1)

where P = π, η, η′ and the introduced mass spectra again follow a radial Regge ansatz:

M2
V1(i)

=M2
V1

+ i σ2V1
,

M2
V2(i)

=M2
V2

+ i σ2V2
. (B.2)

The first term in (B.1), proportional to c1, corresponds to a variant of a large-Nc Regge

TFF model with equal mass spectra for all vector mesons. The second term in (B.1),

proportional to c2, has an additional factor of x(1− x) in the numerator, originating from

the asymptotic wave function, cf. (2.24). This term is crucial for the model to satisfy the

BL limit (2.25):

lim
Q2→∞

Q2FPγγ∗(−Q2) =
c2

2σ2V2

, (B.3)
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with

c2 =







4Fπ σ
2
V2

for π,

24C8Fη σ
2
V2

for η,

24C0Fη′ σ
2
V2

for η′,

(B.4)

and the fit Fη, Fη′ from (4.47). The exponential functions in the numerator, e−(Q2
1+Q2

2)/Λ
2
,

shall support the VMD in the region of small momentum transfers, and suppress the

x(1 − x) correction which is only needed in the asymptotic region. Therefore, the real-

photon limit (2.17) is proportional to c1:

FPγγ =
c1
σ4V1

ψ(1)

(

M2
V1

σ2V1

)

, (B.5)

with ψ(1) the trigamma function and

c1 =







σ4V1
Fπγγ

[

ψ(1)

(
M2

V1

σ2
V1

)]−1

for π,

σ4V1
Fηγγ

[

ψ(1)

(
M2

V1

σ2
V1

)]−1

for η,

σ4V1
Fη′γγ

[

ψ(1)

(
M2

V1

σ2
V1

)]−1

for η′,

(B.6)

whereas the symmetric pQCD limit (2.25), to leading order in Q2, is proportional to c2:

lim
Q2→∞

Q2FPγ∗γ∗(−Q2,−Q2) =
c2

6σ2V2

. (B.7)

In this way, c1 and c2 are fixed and the TFF model reproduces the chiral anomaly, the BL

limit, and the symmetric pQCD limit exactly.

Evaluating the SDCs of the HLbL tensor, cf. (3.1) and (3.29), we obtain for the mixed

region:

− lim
Q2

3→∞
lim

Q2→∞

∞∑

n=0

FP (n)γ∗γ∗(−Q2,−Q2)FP (n)γγ∗(−Q2
3)

Q2
3 +M2

P (n)

=
1

Q2Q2
3

c22
24σ6Pσ

4
V2

{

2σ2P
(
2σ2V2

− σ2P
)
LPV2 − σ2P

(
4σ2V2

− 3σ2P
)

− 4σ2V2
∆PV2

[

π2

6
− Li2

(

1− σ2P
σ2V2

)]}

, (B.8)

with Li2 the dilogarithm, and for the asymptotic region:

− lim
Q2→∞

∞∑

n=0

FP (n)γ∗γ∗(−Q2,−Q2)FP (n)γγ∗(−Q2)

Q2 +M2
P (n)

=
1

Q4

c22
12σ4Pσ

4
V2
∆PV2

{

σ2P
(
2σ2V2

− σ2P
)
LPV2 + 2σ2P∆PV2

− 2σ2V2
∆PV2

[

π2

6
− Li2

(

1− σ2P
σ2V2

)]}

. (B.9)
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Thus, both the mixed region and the asymptotic region acquire the correct Q2 behavior,

as is discussed in detail in appendix C.

The model parameters MVi
, σVi

, and Λ are determined as follows, see table 5:

• For the pion TFF we use MV1 = 1
2

[
Mρ(770) +Mω(782)

]
= 0.779GeV; for the η and η′

TFFs we use for MV1 the pole-mass parameters of a VMD ansatz fit to the CLEO

data [116].

• For reasons of comparison, σV1 is chosen to reproduce the values of the two-photon

couplings to the first excited pseudoscalars obtain with our large-Nc Regge model:

Fπ(1)γγ ∼ 0.0500GeV−1, Fη(1)γγ ∼ 0.0354GeV−1, Fη′(1)γγ ∼ 0.0594GeV−1.

Alternatively, one could use the phenomenological constraints on the two-photon

couplings listed in table 4;

• σV2 is chosen to satisfy the MV SDC;

• For the pion TFF Λ and MV2 are adjusted to bring the model in line with the

dispersive description of the π0 TFF [44, 46, 47];15 for the η and η′ TFFs the same

Λ as in the pion case is used, while MV2 is fit to the available experimental data.

With the parameters in table 5, the MV SDC is satisfied to about ∼ 2 × 10−3 rel-

ative accuracy or better, and the two-photon couplings of our large-Nc Regge model are

reproduced to about ∼ 3× 10−4 relative accuracy or better. The SDC for the asymptotic

region, cf. (4.8) and (4.30), is not implemented in our alternative TFF model, however,

even without further adjustments it is reproduced to 117% for the pion, 124% for the η,

and 120% for the η′. Of course, one could also choose the model parameters differently and

implement the SDC for the asymptotic region precisely and the MV limit approximately.

Note that the parametersMV1 and σV1 are close to the physical values for the masses of the

lightest vector mesons and the slopes of their radial Regge trajectories, cf. figure 5. These

physical values assure that the first term in (B.1) indeed resembles a large-Nc Regge model.

In figure 18, the TFF presented in this appendix (Model 2) is compared to the large-

Nc Regge model (Model 1) from section 4 for the lowest radial excitations of pion, η, and

η′. A comparison to experimental data for the ground-state pseudoscalars is postponed

to appendices F.2, G.2, and G.3. The two-photon couplings FP (n)γγ of the excited states

come out in close agreement between both models, see also figure 19. For Model 2, we

observe an enhancement of the excited-state TFFs in the low-Q region, especially for the

doubly-virtual kinematics. This enhancement becomes weaker with increasing Λ, since it

is an artefact of the interplay between the two terms in (B.1). Fitting both MV2 and Λ to

data for the ground-state η and η′ TFFs would lead to Λ < 1GeV, and thus, exacerbate

the enhancement of the excited-state TFFs at low Q. Therefore, we decided to use Λ =

1.318GeV, as obtained for the pion, also for η and η′.

15We find Λ = 1.318GeV and MV2 = 585MeV with estimated variance χ2 ∼ 0.33 for a fit of O(2×104)

selected points in the region of Q1 ≤ Q2 and Q2
2 ∈ [0, 40]GeV2.
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Figure 18. TFFs of the first n = 1, . . . 5 radially excited pion, η, and η′ states. Comparison of

the large-Nc Regge models from section 4, indicated by the solid curves, and our alternative TFF

model (B.1), indicated by the dotted curves. The left panel shows the TFFs in the singly-virtual

limit, the right panel shows the doubly-virtual region with Q2
1 = Q2

2 = Q2.

Note that for Model 1 the derivatives of the TFFs in the limit of zero momentum

transfer are not unique but depend on the direction, a consequence of the construction

in terms of Q2
−/Q

2
+ in (4.10) as a minimal way to implement the different asymptotic

limits. This can be seen when comparing the slopes of the singly-virtual and symmetric

doubly-virtual TFFs in the left and right panels of figure 18. The modifications of Model 1

described in (E.3) and (E.4) reduce the direction-dependence of the derivative at the origin.

However, the derivative of the TFFs is not needed for the evaluation of (g − 2)µ and the

alternative implementation in Model 2 does not exhibit this issue: in figure 18, the slopes

for Model 2 are always positive, but for Model 1 they change sign between the left and right

panels. Accordingly, this will be another systematic effect estimated by the comparison
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Figure 19. Two-photon couplings and BL limits of the excited-state pion, η, and η′ TFFs. The

blue, green, and red points (stars) are from the large-Nc Regge model (alternative model) for

pion, η, and η′, respectively. The blue bar indicates values excluded for Fπ(1)γγ by the empirical

estimate (D.1).

of the two models. We stress again that neither model has the required good analytic

properties to remain valid outside the space-like region relevant for (g − 2)µ, of which the

zero-momentum-transfer limit of the derivatives in Model 1 is one particular manifestation.

In the right panel of figure 19, the BL limits of the excited-state TFFs are shown. For

Model 1 this limit increases with the excitation number n until it reaches an asymptotic

value, but for Model 2 it remains constant. Since the true asymptotic behavior for radially-

excited pseudoscalar TFFs in the BL limit is unknown, the two models with different

asymptotics will allow us to understand the systematic uncertainty of our prediction for

the excited-state contributions to (g−2)µ. The symmetric pQCD limit of the TFFs, on the

other hand, is independent of the excitation number n for both models. The two-photon

couplings, which enter dominantly into the (g − 2)µ integral, agree by default for n = 0

and n = 1, and also match perfectly for n > 2.

C Verifying short-distance constraints for the HLbL tensor

In this appendix, the mathematical formalism used to derive the behavior of the HLbL

tensor in the mixed-energy region, cf. (4.15), (4.43), and (B.8), and the high-energy region,

cf. (4.17), (4.44), and (B.9), is presented.

C.1 Polygamma functions and infinite sums over rational functions

The gamma function is defined on R
∗
+ as [154]:

Γ(z) =

∫ ∞

0
dt tz−1e−t. (C.1)

It can be analytically continued to a meromorphic function in the complex plane, with

poles at non-positive integers. In order to deal with the infinite sums over pseudoscalar and

vector-meson poles, we use the polygamma functions, which are defined on C as derivatives
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of the logarithm of the gamma function:

ψ(m)(z) :=
dm+1

dzm+1
log Γ(z). (C.2)

They are meromorphic in the complex plane and admit the following series representa-

tion [154]:

ψ(n)(z) =







−γ +
∑∞

k=0

(
1

k+1 − 1
k+z

)

n = 0,

(−1)n+1 n!
∑∞

k=0
1

(z+k)n+1 n > 0,
(C.3)

which is converging for any z ∈ C except negative integers. With this, we can express an

infinite sum over rational functions. Let {fn}n∈N be a sequence of the form fn = p(n)
q(n) where

p(n) and q(n) are polynomials in n with deg(p(n)) < deg(q(n)). Let αk be the roots of

the denominator q(n). If all the roots are simple, the fraction fn can be written as (partial

fraction decomposition):

fn =

m∑

k=1

Ak

n− αk
, (C.4)

where m = deg(q(n)). In general, if one or more roots αk have multiplicity mk ≥ 2, the

formula becomes:

fn =

m̃∑

k=1

mk∑

rk=1

Ak,rk

(n− αk)rk
, (C.5)

where m̃ ≤ deg(q(n)) is the number of distinct roots. It follows that:

∞∑

n=0

fn =

∞∑

n=0

m̃∑

k=1

mk∑

rk=1

Ak,rk

(n− αk)rk
=

m̃∑

k=1

mk∑

rk=1

(−1)rk
(rk − 1)!

Ak,rk ψ
(rk−1)(−αk), (C.6)

provided that the series based on the sequence {fn}n∈N is converging. This can be used to

compute the infinite sum over pseudoscalar poles,
∑∞

n=0 Π̂
P (n)-pole
1 (−Q2

1,−Q2
2,−Q2

3), within

our large-Nc Regge model for the TFFs.

C.2 Euler-Maclaurin summation formula

A key ingredient in the discussion of the SDCs for the HLbL tensor is the Euler-Maclaurin

summation formula, which describes the difference between an integral and a related sum,

see for instance ref. [155, chapter 8]. Notably, it can be used to derive asymptotic expan-

sions.

Let a < b and m > 0 be integers, and f be a function whose derivatives f (2m)(x) are

absolutely integrable over the interval (a, b). Then the Euler-Maclaurin formula reads:

b∑

k=a

f(k) =

∫ b

a
dx f(x)+

1

2
[f(a) + f(b)]+

m−1∑

s=1

B2s

(2s)!

[

f (2s−1)(b)− f (2s−1)(a)
]

+Rm(b), (C.7)

where the remainder is given by:

Rm(n) =

∫ b

a
dx

B2m −B2m(x− ⌊x⌋)
(2m)!

f (2m)(x), (C.8)

– 55 –



J
H
E
P
0
3
(
2
0
2
0
)
1
0
1

where ⌊x⌋ is the greatest integer smaller or equal to x, Bs are the Bernoulli numbers,

and Bs(x) are the Bernoulli polynomials.16 Using (C.11), we can find a bound for the

remainder:

|Rm(b)| ≤
(
2− 21−2m

) |B2m|
(2m)!

∫ b

a
dx |f (2m)(x)|. (C.12)

In particular, if f (2m)(x) does not change sign in the considered interval, the remainder is

bounded by
(
2− 21−2m

)
times the first neglected term in (C.7).

The Euler-Maclaurin formula can be used to derive the asymptotic expansion of the

polygamma functions (C.2) at large z ∈ R. To illustrate, consider the trigamma function

ψ(1)(z) =
∑∞

k=0
1

(z+k)2
. Inserting f(x) = 1

(z+x)2
, a = 0, b =∞, and m = 1 into (C.7) leads

to the asymptotic expansion:

ψ(1)(z) =

∫ ∞

0
dx

1

(z + x)2
+

1

2z2
+R1(∞, z) =

1

z
+

1

2z2
+R1(∞, z), (C.13)

where the notation of the remainder has been slightly modified compared to (C.7) in order

to highlight the additional z-dependence. The derivatives f (2m)(x) = (2m+1)!
(x+z)2m+2 do not

change sign and the first neglected term in (C.13) is given by B2
2! (0+

2
z3
) = 1

6z3
. This implies

that |R1(∞, z)| ≤ (2− 21−2) 1
6z3

= 1
4z3

. In the next subsection, we will be interested in the

remainder generated by truncating the asymptotic expansion in (C.13) after the first term:

ψ(1)(z) =:
1

z
+R0(∞, z). (C.14)

It follows from (C.13) that:

|R0(∞, z)| =
∣
∣
∣
∣

1

2z2
+R1(∞, z)

∣
∣
∣
∣
≤
∣
∣
∣
∣

1

2z2

∣
∣
∣
∣
+ |R1(∞, z)|

≤ 1

2z2
+

1

4z3
≤ 1

2z2
+

1

4z2
=

3

4z2
, (C.15)

where the last inequality holds when z ≥ 1. For a general n ∈ N, a similar procedure leads

to [154]:

ψ(n)(z) ∼







log(z)− 1
2z −

∑∞
k=2

Bk

kzk
n = 0,

(−1)n+1
(
(n−1)!
zn + n!

2zn+1 +
∑∞

k=2
(k+n−1)!

k!
Bk

zk+n

)

n > 0.
(C.16)

16The Bernoulli numbers can be generated through:

Bs =

{

1 s = 0,

− 1
s+1

∑s−1
j=0

(

s+1
j

)

Bj s ≥ 1,
(C.9)

and the Bernoulli polynomials can be constructed according to:

Bs(x) =

∞
∑

j=0

(

s

j

)

Bs−jx
j . (C.10)

For 0 ≤ x ≤ 1, they satisfy [155]:

|B2s(x)−B2s| ≤ (2− 21−2s)|B2s|. (C.11)
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The asymptotic expansion (C.16) in combination with (C.3) is sufficient to de-

rive (4.15), (4.17), (4.43), and (4.44), and thereby fix the parameters of the large-Nc Regge

models to satisfy the required SDCs on the HLbL tensor.

C.3 Short-distance constraints for the alternative transition form factor model

For the alternative TFF model, introduced in appendix B, the situation is more compli-

cated, because the summation over the pseudoscalar-pole diagrams involves three infinite

sums — one additional sum over vector-meson towers per TFF (B.1)—and only two of them

can be performed analytically. Therefore, one needs to use the Euler-Maclaurin formula to

extract the asymptotic behavior.

We first consider the mixed-energy region Q2
1 ≈ Q2

2 ≫ Q2
3. The terms in our TFF

model (B.1) with exponential weights in the numerator are suppressed and do not con-

tribute to the MV limit:

∞∑

n=0

Π̂
P (n)-pole
1 (−Q2,−Q2,−Q2

3)

∼ c22
∞∑

n=0

∞∑

i=0

∞∑

j=0

∫ 1

0
dy

∫ 1

0
dx

y(1− y)x(1− x)
[

Q2
3 +M2

P (n)

] [

M2
V2(n+i) +Q2

]2 [

M2
V2(n+j) +Q2

3 y
]2

=
c22
6

∫ 1

0
dy

∞∑

n=0

∞∑

i=0

∞∑

j=0

y(1− y)x(1− x)
[

Q2
3 +M2

P (n)

] [

M2
V2(n+i) +Q2

]2 [

M2
V2(n+j) +Q2

3 y
]2

︸ ︷︷ ︸

:=fnij(y)

. (C.17)

The integration over the Feynman parameter x is trivial. Since the fnij(y) in (C.17) do not

contain any singularities in the space-like region and the integration domains are bounded,

the convergence is uniform and the commutation of integrations and summations is justi-

fied.17 Using (C.3), we can express the sums over i and j in (C.17) with trigamma functions:

∞∑

n=0

Π̂
P (n)-pole
1 (−Q2,−Q2,−Q2

3)

∼ c22
6σ8V2

∫ 1

0
dy

∞∑

n=0

y(1− y)
Q2

3 +M2
P (n)

ψ(1)

(
M2

V2(n)
+Q2

σ2V2

)

ψ(1)

(
M2

V2(n)
+Q2

3 y

σ2V2

)

, (C.18)

where we use the notations from (4.9), (4.38), (4.39), and (B.2), assuming for simplicity

that M̂P = MP . The remaining sum over n cannot be performed analytically. We can,

17Formally, we use the dominated convergence theorem (in the setting of Riemann integrals) [155,

p. 54]:

Let (a, b) ⊂ R be an open, finite or infinite interval. Let {fn}n∈N be a sequence of real or complex functions

which are continuous on (a, b) and satisfy:

1. The series
∑

∞

n=1 fn(x) converges uniformly in any compact interval in (a, b)

2. Either
∫ b

a
dx
∑

∞

n=1 |fn(x)| < ∞ or
∑

∞

n=1

∫ b

a
dx |fn(x)| < ∞

Then
∫ b

a
dx
∑

∞

n=1 fn(x) =
∑

∞

n=1

∫ b

a
dx fn(x) .
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however, rewrite the trigamma function as the first term in its asymptotic expansion and

a remainder, see (C.14):

∞∑

n=0

Π̂
P (n)−pole
1 (−Q2,−Q2,−Q2

3)

=
c22

6σ8V2

∫ 1

0
dy

∞∑

n=0

y(1− y)
Q2

3 +M2
P (n)

{

σ2V2

M2
V2(n)

+Q2
+R0

(

∞,
M2

V2(n)
+Q2

σ2V2

)}

×
{

σ2V2

M2
V2(n)

+Q2
3 y

+R0

(

∞,
M2

V2(n)
+Q2

3 y

σ2V2

)}

=: HP
MV(Q

2, Q2
3) + δHP

MV(Q
2, Q2

3). (C.19)

Here, we defined:

HP
MV(Q

2, Q2
3) =

c22
6σ4V2

∫ 1

0
dy

∞∑

n=0

y(1− y)
[

M2
V2(n)

+Q2
] [

Q2
3 +M2

P (n)

] [

M2
V2(n)

+Q2
3 y
] , (C.20)

and included the remaining terms of (C.19) in δHP
MV. The sum over n in (C.20) can

now be expressed in terms of polygamma functions, but the integral over the Feynman

parameter y is difficult to perform analytically. Therefore, we expand in Q2 and Q2
3 before

integrating over y. The assumption that the two operations commute will be checked a

posteriori. We find (Q2 ≫ Q2
3):

HP
MV(Q

2, Q2
3) =

∫ 1

0
dy

{
fPMV(y)

Q2Q2
3

+O
(

1

Q2Q4
3

)}

=
aPMV

Q2Q2
3

+O
(

1

Q2Q4
3

)

, (C.21)

with

aPMV =
c22

24σ6Pσ
4
V2

{

2σ2P
(
2σ2V2

− σ2P
)
LPV2 − σ2P

(
4σ2V2

− 3σ2P
)

− 4σ2V2
∆PV2

[

π2

6
− Li2

(

1− σ2P
σ2V2

)]}

. (C.22)

An appropriate choice of σV2 in aPMV therefore reproduces the MV limit.

Let us now verify that expanding before integrating in (C.21) was justified and that

δHP
MV(Q

2, Q2
3) is subleading. The first issue can be addressed numerically. We use the co-

ordinates defined in (2.14). The kinematics corresponding to the MV limit can be expressed

in those coordinates by setting φ = π,

Q2
1 = Q2

2 = Q2 =
Σ

3

(

1 +
r

2

)

, Q2
3 =

Σ

3
(1− r) , (C.23)

then considering r close to 1, and finally taking the limit Σ → ∞. In figure 20a, we

study the function Q2Q2
3H

P
MV(Q

2, Q2
3) in (C.20) for different values of r using a numerical

integration over y. One can see that with r getting closer to 1 the curves tend to aPMV and

this justifies the commutation of expansion and integration in this case.
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(a) Numerical check of (C.21).
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(b) Numerical check of (C.25).
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(c) Numerical check of (C.26).
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(d) Numerical check of (C.27).

Figure 20. Numerical checks for the validity of commuting the expansion in Q2 and Q2
3, and the

integration over y in (C.19). In all cases, we can see that when r → 1 (MV kinematics), the curves

tend to the coefficients obtained by expanding in the virtualities first and then integrating over the

Feynman parameter y. Note that the scales on the y-axis vary between the plots.

We are left to study the error made by considering only HP
MV and not the remainder

δHP
MV, which can be decomposed into three terms:

δHP
MV(Q

2, Q2
3) = δHP

MV(0,1)(Q
2, Q2

3) + δHP
MV(1,0)(Q

2, Q2
3) + δHP

MV(1,1)(Q
2, Q2

3). (C.24)

The notation can be understood as follows. From (C.18) to (C.19), two trigamma functions,

which stem from the doubly-virtual TFF FPγ∗γ∗(Q2, Q2) (first index) and the singly-virtual

TFF FPγγ∗(Q2
3) (second index), were expanded in a leading piece (0) and a remainder (1).

In other words, δHP
MV(1,0) combines the remainder of the trigamma function in Q2 with

the leading term in the expansion of the trigamma function in Q2
3:

δHP
MV(1,0)(Q

2, Q2
3)

=
c22

6σ6V2

∫ 1

0
dy

∞∑

n=0

R0

(

∞,
M2

V2(n)
+Q2

σ2V2

)

y(1− y)
[

Q2
3 +M2

P (n)

] [

M2
V2(n)

+Q2
3 y
]
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≤ c22
8σ6V2

∫ 1

0
dy

∞∑

n=0

σ4V2
[

M2
V2(n)

+Q2
]2

y(1− y)
[

Q2
3 +M2

P (n)

] [

M2
V2(n)

+Q2
3 y
]

=

∫ 1

0
dy

{
fPMV(0,1)(y)

Q4Q2
3

+O
(

1

Q4Q4
3

)}

=
aPMV (0,1)

Q4Q2
3

+O
(

1

Q4Q4
3

)

. (C.25)

Here, we used (C.12) to show that the term is bounded from above, as can be done for each

term in (C.24). As before, it can be checked numerically that HP
MV(0,1) indeed tends to

the result obtained by expanding first and integrating second, see figure 20b. We proceed

analogously for the two remaining terms:

δHP
MV(0,1)(Q

2, Q2
3)

=
c22

6σ6V2

∫ 1

0
dy

∞∑

n=0

y(1− y)
[

M2
V2(n)

+Q2
] [

Q2
3 +M2

P (n)

] R0

(

∞,
M2

V2(n)
+Q2

3 y

σ2V2

)

≤ c22
8σ6V2

∫ 1

0
dy

∞∑

n=0

y(1− y)
[

M2
V2(n)

+Q2
] [

Q2
3 +M2

P (n)

]
σ4V2

[

M2
V2(n)

+Q2
3 y
]2

=

∫ 1

0
dy

{
fPMV(1,0)(y)

Q2Q4
3

+O
(

1

Q2Q6
3

)}

=
aPMV(1,0)

Q2Q4
3

+O
(

1

Q2Q6
3

)

, (C.26)

which is checked numerically in figure 20c and:

δHP
MV(1,1)(Q

2, Q2
3)

=
c22

6σ8V2

∫ 1

0
dy

∞∑

n=0

R0

(

∞,
M2

V2(n)
+Q2

σ2V2

)

y(1− y)
Q2

3 +M2
P (n)

R0

(

∞,
M2

V2(n)
+Q2

3 y

σ2V2

)

≤ 3c22
32σ8V2

∫ 1

0
dy

∞∑

n=0

y(1− y)
Q2

3 +M2
P (n)

σ8V2
[

M2
V2(n)

+Q2
]2 [

M2
V2(n)

+Q2
3 y
]2

=

∫ 1

0
dy

{
fPMV(1,1)(y)

Q4Q4
3

+O
(

1

Q4Q6
3

)}

=
aPMV(1,1)

Q4Q4
3

+O
(

1

Q4Q6
3

)

, (C.27)

see figure 20d. The above considerations add up to:

δHP
MV(Q

2, Q2
3) = O

(
1

Q2Q4
3

)

, (C.28)

i.e., the error we make by keeping only the leading term in the expansion of the ψ(1)

in (C.19) is subdominant.

When considering the high-energy region Q2
1 ≈ Q2

2 ≈ Q2
3 = Q2, the same technique

can be applied, but the situation simplifies slightly, since there is only one large scale. The
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pQCD constraint on the HLbL tensor reads:

∞∑

n=0

Π̂
P (n)-pole
1 (−Q2,−Q2,−Q2)

∼ c22
6σ8V2

∫ 1

0
dy

∞∑

n=0

y(1− y)
Q2 +M2

P (n)

ψ(1)

(
M2

V2(n)
+Q2

σ2V2

)

ψ(1)

(
M2

V2(n)
+Q2 y

σ2V2

)

. (C.29)

Similarly to the previous case, since the sum over n cannot be performed analytically,

we rewrite the polygamma function as the first term in its asymptotic expansion and a

remainder. This leads to:

HP
pQCD(Q

2) :=
c22

6σ4V2

∫ 1

0
dy

∞∑

n=0

y(1− y)
[

Q2 +M2
P (n)

] [

M2
V2(n)

+Q2
] [

M2
V2(n)

+Q2 y
] ,

δHP
pQCD(1,0)(Q

2) :=
c22

6σ6V2

∫ 1

0
dy

∞∑

n=0

R0

(

∞,
M2

V2(n)
+Q2

σ2V2

)
y(1− y)

[

Q2 +M2
P (n)

] [

M2
V2(n)

+Q2 y
] ,

δHP
pQCD(0,1)(Q

2) :=
c22

6σ6V2

∫ 1

0
dy

∞∑

n=0

y(1− y)
[

Q2 +M2
P (n)

] [

M2
V2(n)

+Q2
] R0

(

∞,
M2

V2(n)
+Q2 y

σ2V2

)

,

δHP
pQCD(1,1)(Q

2) :=
c22

6σ8V2

∫ 1

0
dy

∞∑

n=0

y(1− y)
Q2 +M2

P (n)

R0

(

∞,
M2

V2(n)
+Q2

σ2V2

)

×R0

(

∞,
M2

V2(n)
+Q2 y

σ2V2

)

. (C.30)

Analogously toHP
MV, the termHP

pQCD is treated as follows: the sum over n is performed, the

expression is expanded in Q2, and the integration over y is carried out. The commutation

of the expansion and integration is checked numerically in figure 21. For the other terms,

δHP
pQCD(i,j), we use (C.15) and then proceed analogously to the leading term, see figure 21

for the numerical checks.

D Two-photon couplings of excited pseudoscalars

In this appendix we collect the phenomenological information that is available on the two-

photon couplings of the excited pseudoscalars listed in the PDG [90], in comparison to

the two-photon couplings of the first radially-excited pion, η, and η′ states as shown in

figure 19 for both the large-Nc Regge and the alternative TFF model.

Phenomenologically, the two-photon couplings of the excited pseudoscalars are un-

known, but for many states some information on these couplings can be extracted either

from direct limits on the two-photon channel or from measurements of particular branching

fractions. For the excited pion states, the only available information concerns the π(1300).

The blue bar in the left panel of figure 19 indicates values excluded by the limit

Fπ(1300)γγ < 0.0544(71)GeV−1. (D.1)
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Figure 21. Numerical checks for the validity of commuting the expansion in Q2 and the integration

over y in (C.30). In all cases, we can see that the curves tend to the coefficients obtained by

expanding in the virtualities first and then integrating over the Feynman parameter y. Note that

the scales on the y-axis vary between the plots.

Since at present there is no measurement of the π(1300) width and the two-photon branch-

ing ratio, the above bound is an estimate based on the available empirical information.

The π(1300) decays predominantly into 3π, e.g., into ρπ:18

Γ(γγ)Γ(ρπ)

Γtotal
< 85 eV [159],

Γ(π(ππ)S-wave)

Γ(ρπ)
= 2.2(4) [157], (D.2)

whereas the πf0(1300) and γγ decays are suppressed [160]. Assuming

Γtotal ∼ Γ(ρπ) + Γ(π(ππ)S-wave), (D.3)

this leads to:

Γ(π(1300)→ γγ) < 272(34) eV, (D.4)

where the error is propagated from (D.2). The bound in (D.1) follows from (2.17) with (D.4)

and Mπ(1300) = 1300(100)MeV. As one can see from figure 19, the large-Nc Regge model

18Note that the role of the S-wave component is not settled: while Γ(π(ππ)S-wave/Γ(ρπ) = 2.12 from

ref. [156] agrees with ref. [157], ref. [158] found a negligible S-wave component Γ(π(ππ)S-wave/Γ(ρπ) < 0.15.

In the latter case the limit on the two-photon decay width Fπ(1300)γγ would become stricter by a factor√
3.2 ∼ 1.8, in which case there would be some mild tension with Fπ(1300)γγ implied by our Regge models.
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indeed satisfies the bound (D.1), it has Fπ(1300)γγ = 0.0500GeV−1. Thus, even though it

is not possible to generate a suppression by inverse powers of the pseudoscalar mass in

our models, as seen in (2.17), the two-photon couplings of the excited pseudoscalars are

sufficiently suppressed by inverse powers of the excited vector-meson masses.

Similar constraints exist for several excited η, η′ states. As discussed in the main

text, the assignment of Regge trajectories is not settled, so here we simply reproduce the

listing according to the PDG, see section 4.3 for a discussion of the phenomenological

implications. We stress that given that even the identification of states is contentious, the

experimental limits should be treated with caution and mainly serve as guidance that our

Regge models do not assume implausible values for the two-photon couplings. For the

η(1295), Mη(1295) = 1294(4)MeV, we have

Γ(γγ)Γ(ηππ)

Γtotal
< 66 eV [161],

Γ(γγ)Γ(KK̄π)

Γtotal
< 14 eV [162]. (D.5)

Assuming that the branching fraction into other channels can be neglected,19 we would

conclude Γ(γγ) < 80 eV and thus

Fη(1295)γγ < 0.030GeV−1. (D.6)

For the η(1405), Mη(1405) = 1408.8(2.0)MeV, we have

Γ(γγ)Γ(KK̄π)

Γtotal
< 35 eV [162],

Γ(γγ)Γ(ηππ)

Γtotal
< 95 eV [161],

Γ(γγ)

Γ(KK̄π)
< 1.78× 10−3 [163]. (D.7)

Using the total width Γη(1405) = 48(4)MeV as measured in the KK̄π channel, the two

limits involving this channel imply Γ(γγ) < 1.73 keV, while assuming that KK̄π and

ηππ constitute the dominant decay channels would lead to a much stronger constraint

Γ(γγ) < 130 eV. The two limits on the two-photon coupling are

Fη(1405)γγ < 0.122GeV−1, Fη(1405)γγ < 0.033GeV−1, (D.8)

respectively. Similarly, for the η(1475), Mη(1475) = 1475(4)MeV, the PDG lists

Γ(γγ)Γ(KK̄π)

Γtotal
= 230(71) eV [148],

Γ(γγ)

Γ(KK̄π)
< 1.27× 10−3 [163], (D.9)

which together with Γη(1475) = 90(9)MeV implies the limit Γ(γγ) < 5.13 keV or, assuming

the KK̄π channel to be dominant, Γ(γγ) = 230(71) eV, leading to

Fη(1475)γγ < 0.195GeV−1, Fη(1475)γγ = 0.041(6)GeV−1. (D.10)

Next, for the η(1760), Mη(1760) = 1751(15)MeV, we have

Γ(γγ)Γ(η′π+π−)

Γtotal
= 28.2(8.7) eV [130], (D.11)

19The limit from ref. [161] already includes the conversion factor Γ(ηπ+π−)/(Γ(ηπ+π−) + Γ(ηπ0π0)) =

2/3, which emerges from the combination of isospin and symmetry factors in Γ(ηπ0π0)/Γ(ηπ+π−) = 1/2.
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which, assuming dominance of η′ππ and including the neutral channel by means of the

relation Γ(η′π0π0)/Γ(η′π+π−) = 1/2, translates into

Fη(1760)γγ = 0.014(2)GeV−1. (D.12)

In case other channels do contribute, this number would have to be considered a lower

limit.

Finally, there is some information available on the two-photon couplings of the

X(1835),

Γ(γγ)Γ(η′π+π−)

Γtotal
< 83 eV [130],

Γ(γγ)

Γ(η′π+π−)
< 9.80× 10−3 [163], (D.13)

where the two-resonance fit from ref. [130] only quotes a significance of 2.8σ. The combi-

nation of the two produces the limit Γ(γγ) < 14.0 keV, again a lot weaker than the limit

Γ(γγ) < 124.5 eV obtained when assuming dominance of the η′ππ channel. The resulting

two-photon couplings are

FX(1835)γγ < 0.235GeV−1, FX(1835)γγ < 0.022GeV−1. (D.14)

The above phenomenological constraints on the two-photon couplings are collected in

table 4, while the couplings from our large-Nc Regge models with different Regge trajectory

assignments are listed in table 3.

E Systematic uncertainties and decay constants of excited pseudoscalars

The systematic errors quoted for ∆aµ in section 5.2 are based on comparing results from

two different models for the pseudoscalar TFFs introduced in section 4 and appendix B,

respectively. This has then been added to a conservatively estimated uncertainty coming

directly from the parameters of our models. By construction, our models link the TFFs

of the different pion, η, or η′ states such that a resummation is at all possible, but it is

clear that the details of the TFFs so obtained may turn out not to be realistic, at least for

the lowest lying excited pseudoscalars. Here, we explore this specific question in particular

for the first excited pseudoscalars, on which some information from the phenomenology is

indeed available. As we will show, if we adapt the parameters of our models presented in

sections 4.1 and 4.2 to be in agreement with phenomenology, or theoretical expectations,

we obtain shifts in our results which are well covered by the present error budget.

In section 4.3 and appendix D, we confirmed that our TFF models are well compat-

ible with phenomenological constraints for the two-photon couplings of η(1295), η(1405),

η(1475), η(1760), and X(1835). In the following, we will be interested in the leptonic

decay constants, FP (n), of the excited pseudoscalars, limiting our analysis to n ≤ 3 states.

Since all pseudoscalar mesons, except for the Goldstone mode, decouple from the axial-

vector current in the chiral limit, the corresponding decay constants, defined in (2.21),

are suppressed. Note that contrary to the decay constants, the two-photon couplings are

non-vanishing in the chiral limit. At low Q2 it is the latter that are most relevant.
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There are several theoretical studies of the leptonic decay constants of excited pions,

e.g., based on lattice QCD [164, 165], QCD sum rules [166], quark models [167, 168],

or finite-energy sum rules [169, 170]. Experimentally, Fπ(1300) can be measured in τ

decays. Presently, there is only an upper bound |Fπ(1300)| < 8.4MeV [171], deduced

from the branching fraction Br(τ → π(1300)ντ ) < 10−4 [112]. The predictions in

refs. [166–170] are all in agreement with this bound. In the following, we will work with

Fπ(1300) = 2.20(46)MeV [169], which implies Fπ(1300)/Fπ ≈ 2%. For the η(′), the suppres-

sion is expected to be weaker as it is given by the SU(3) chiral limit, thus, we assume

Fη(′)(1)/Fη(′) ≈ 20%. Furthermore, it is expected that the decay constants of the excited

states, FP (n), are inversely proportional to the excited-state masses, MP (n), or the masses

squared [166, 170], which generates an additionally suppression for the decay constants of

the higher excitations.

We start by considering the symmetric pQCD limit of the TFFs, which for the ground-

state pseudoscalars is given in (4.6) and (4.28). The same relations also hold for the

excited pseudoscalars, replacing only the ground-state decay constants, i.e., FP → FP (n).

To change the asymptotic limit of FP (n)γ∗γ∗(−Q2,−Q2) for n = 1, 2, 3, we modify cdiag by

replacing (F.1) with

cdiag → cdiag +
16Λ2π2Fπ

3M2
ρM

2
ω

[
Fπ(1300) − Fπ

]
, (E.1)

and (G.1) with

cdiag → cdiag +
N

Cη
ρρ + Cη

ωω + Cη
φφ

8C8

Λ2Fηγγ

[
Fη(1) − Fη

]
, (E.2)

and analogously for η′, while keeping all other model parameters the same, cf. table 1.

Varying only the TFFs of the lowest excitations n ≤ 3, it is ensured that the SDCs remain

intact. Applying this modification for n = 1 decreases ∆aµ by (0.22 + 0.27 + 0.45) ×
10−11 = 0.94× 10−11, where the individual numbers are the pion, η, and η′ contributions,

respectively. Note that we are removing the contribution from Qi ≥ Qmatch, as this region

is described by the pQCD quark loop, cf. section 5.2.

The BL limit of the pseudoscalar TFFs is not known for general n. Presently,

this limit is therefore not fine-tuned in our large-Nc Regge models, as can be seen

in the right panel of figure 19. Here, we want to assume a BL limit constant in n,

limQ2→∞ FP (n)γγ∗ = limQ2→∞ FPγγ∗ , which is also found for the alternative TFF model

introduced in appendix B. Replacing (F.3) with

cBL =
1

M2
−, n

[

canomM
2
+, n +M2

ρ(n)M
2
ω(n)

(
cA
Λ2
− 8π2F 2

π

M2
ρM

2
ω

)]

, (E.3)

and (G.2) with

cBL =

(

1

M2
φ(n)

− 1

M2
ω(n)

)−1{

1

Cη
φωM

2
φM

2
ω

[

12C8FηN
Fηγγ

−
Cη
ρρM4

ρ

M2
ρ(n)

− Cη
ωωM4

ω

M2
ω(n)

−
Cη
φφM

4
φ

M2
φ(n)

]

−2cA
Λ2
−
(

1

M2
φ(n)

+
1

M2
ω(n)

)
(

1 +
cB
2Λ2

(M2
ω −M2

φ)−
cA
2Λ2

(M2
φ +M2

ω)
)
}

, (E.4)
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while keeping all other model parameters the same, this is achieved without changing

the two-photon couplings or other SDCs. Looking at the n = 1 case, ∆aµ decreases by

(0.49+1.18+1.92)× 10−11 = 3.59× 10−11. This shift predominantly comes from a change

of the low-Q2 shape of the TFFs and not from the different asymptotic limits.

Combining the changes in (E.1) and (E.3), as well as (E.2) and (E.4), the total decrease

of ∆aµ amounts to (0.62 + 1.27 + 2.10) × 10−11 = 3.99 × 10−11 if only n = 1 is modified,

5.26× 10−11 if also n = 2 is modified, and 5.82× 10−11 if n = 1, 2, 3 are modified.

As a last point, we study the effect of non-diagonal couplings. To be more precise, in

our large-Nc Regge models from section 4, we allowed the n-th pion, η, or η′ excitation

to couple only to the n-th ρ, ω, and φ excitations, whereas now we allow the first excited

pseudoscalars to couple to the ground-state vector mesons. For the π(1300), we modify

Fπ(1)γ∗γ∗(−Q2
1,−Q2

2)→ Fπ(1)γ∗γ∗(−Q2
1,−Q2

2)−
Fπ(1)γγ

2

[

M2
ρM

2
ω

(
1

D1
ρD

2
ω

+
1

D1
ωD

2
ρ

)

−M2
ρ(1)M

2
ω(1)

(

1

D1
ρ(1)D

2
ω(1)

+
1

D1
ω(1)D

2
ρ(1)

)]

, (E.5)

and generate the two-photon coupling through ρ(770) and ω(782). For the first excited η(′),

we only express the dominant isovector-isovector part of the two-photon coupling through

ρ(770):

Fη(′)(1)γ∗γ∗(−Q2
1,−Q2

2)→ Fη(′)(1)γ∗γ∗(−Q2
1,−Q2

2)

−
Fη(′)(1)γγC

η(′)
ρρ

N

[

M4
ρ

D1
ρD

2
ρ

−
M4

ρ(1)

D1
ρ(1)D

2
ρ(1)

]

. (E.6)

These modifications lead to a decrease of (0.53 + 0.54 + 0.72) × 10−11 = 1.79 × 10−11.

Such non-diagonal couplings are also present in the alternative TFF model introduced in

appendix B.

All these modifications affect in one way or another the low-Q2 behavior of the excited-

state TFFs, which could be constrained more rigorously if data were available. At present,

we observe that the corresponding changes, which tend to lower ∆aµ, are well covered

by our final uncertainty estimate in (5.2). Since, on the other hand, the consideration of

Model 2 suggests systematic effects in the opposite direction, we leave the central value as

derived from Model 1, with uncertainties as assigned in (5.2).

F Pion transition form factors Fπ(n)γ∗γ∗

F.1 Large-Nc Regge model

In this appendix, we describe the large-Nc Regge model for the pion TFF, given in (4.10),

in more details. A comparison to experimental data and other parameterizations avail-

able from the literature is postponed to section F.2. Based on the constraint equations
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Figure 22. π0 TFF in the full space-like region for Q2
1, Q

2
2 < 10GeV2. The large-Nc Regge

model, (4.10), is shown in the left panel, and our alternative model, (B.1), is shown in the right panel.

in (4.14), (4.15), and (4.17), the model parameters should be replaced by:

cdiag =
16π2F 2

πΛ
2

3M2
ωM

2
ρ

, (F.1)

canom = 1− 1

Λ2

(
cAM

2
+, 0 + cBM

2
−, 0

)
, (F.2)

cBL = −8π2F 2
π

M2
−, 0

+
M2

+, 0

M2
−, 0

− 1

Λ2

(
cAM

2
−, 0 + cBM

2
+, 0

)
, (F.3)

where the parameters related to the asymptotic limits of the HLbL tensor simplify to:

cA
B

=
Λ2

M2
ωM

2
ρ

[

∆πρ

Lπρ
− 4π2Fπ

(
∆πρLπω

∆πωLπρ
∓ 1

)(
b

2a
+

√
(
b

2a

)2

− 1

a

(

c− 1

9π2

))]

, (F.4)

with

a =
∆πρ

Ω2
ρωπ

[

f2(σπ, σρ, σω)−
Lπω

Lπρ
f2(σπ, σω, σρ)

](

σ2ρ − σ2ω
∆πρLπω

∆πωLπρ

)

,

b =
∆πρ

Ω2
ρωπ

{

− 2Fπ

3

[

f1(σπ, σω, σρ)−
Lπω

Lπρ
f1(σπ, σρ, σω)

]

− 1

4π2Fπ

∆πω

Lπρ

[

σ2ρ f2(σπ, σω, σρ) +
∆πρ

∆πω
σ2ω

(

f2(σπ, σρ, σω)−
2Lπω

Lπρ
f2(σπ, σω, σρ)

)]}

,

c =
∆πρ

Ω2
ρωπ

∆πω

Lπρ

[
1

(4π2Fπ)2
∆πρσ

2
ω

Lπρ
f2(σπ, σω, σρ) +

f1(σπ, σρ, σω)

6π2

]

, (F.5)

and the auxiliary functions

g1(σP , σV1 , σV2) := σ2P
(
σ4V1
− σ4V2

)
−∆V1V2

(
σ4P + σ2V1

σ2V2

)
+ σ4V2

σ2V1
LV1V2 , (F.6)

g2(σP , σV1 , σV2) := σ2P∆
2
V1V2

LPV1 ,

f1(σP , σV1 , σV2) := σ2V1
g1(σP , σV1 , σV2) + σ2P g2(σP , σV1 , σV2) +

(
σ2P − 2σ2V1

)
σ4V2

σ2P LV1V2 ,

f2(σP , σV1 , σV2) := g1(σP , σV1 , σV2)− g2(σP , σV1 , σV2) +
(
σ2Pσ

2
V1
− σ4V1

− σ4V2

)
σ2P LV1V2 .

Here, the definitions from (4.16) and (4.18) are used.
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Figure 23. Singly-virtual π0 TFF in the low-Q region. The large-Nc Regge model, “Model

1” (4.10), is indicated by the dashed pink curve. Our alternative TFF model, “Model 2” (B.1), is

indicated by the solid cyan curve. The gray band with the dotted curve is the dispersive result from

refs. [46, 47]. The blue band with the long-dotted curve is the lattice QCD result from ref. [48].

The green band with the dot-dashed curve is the DSE result from ref. [50]. The data are from

CELLO [115] and CLEO [116].

F.2 Comparison of data and literature: Fπ(n)γ∗γ∗

In this appendix, we compare our large-Nc Regge model, “Model 1” (4.10), and our alter-

native model, “Model 2” (B.1), for Fπ(n)γ∗γ∗ to data and other parameterizations available

from the literature.

In figure 7, the singly-virtual π0 TFF is shown for Q2 ∈ [0, 35]GeV2. In figure 23,

we focus on the low-Q region and include a comparison to the recent lattice QCD [48]

and DSE [50] results. Our π0 TFF models, for which we do not display error estimates,

are in good agreement with the dispersive and lattice QCD TFFs, while we observe some

deviation of our Model 1 from the DSE prediction. However, the error quoted for the

DSE result in ref. [50], as pointed out therein, is only a rough estimate based on the

variation of their one model parameter and does not account for the total truncation error.

Therefore, we conclude that our π0 TFF models also agree with the DSE prediction in the

singly-virtual region.

In figure 24, we show the doubly-virtual π0 TFF in the low-Q region. Both lattice

QCD and DSE are able to give much more accurate predictions of the (pseudoscalar)

TFFs for doubly-virtual than for singly-virtual kinematics, as is obvious by comparing the

error bands in figures 23 and 24. In the symmetric region, Q2
1 = Q2

2 = Q2, starting from

∼ 1GeV2, the DSE predict a slightly larger π0 TFF than lattice QCD, see left panel in

figure 24. Our models for the π0 TFF run just between these DSE and lattice QCD pre-
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Figure 24. Doubly-virtual π0 TFF in the symmetric region Q2
1 = Q2

2 = Q2 (left) and in the region

where Q2
1 = Q2 and Q2

2 = 2Q2 (right). Legend is the same as in figure 23.
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Figure 25. Doubly-virtual π0 TFF in the symmetric region Q2
1 = Q2

2 = Q2 for Q2 ∈ [0, 40]GeV2.

Legend is the same as in figure 23.

dictions. Note, however, that the discrepancy in figure 24 is visually enhanced by showing

Q2Fπ0γ∗γ∗(−Q2,−Q2) instead of Fπ0γ∗γ∗(−Q2,−Q2). For doubly-virtual kinematics away

from the symmetric limit, see for instance Q2
1 = Q2 and Q2

2 = 2Q2 in the right panel of

figure 24, our π0 TFF models are in closer agreement with the lattice QCD prediction.

In figure 25, we show the doubly-virtual π0 TFF in the symmetric region for Q2 ∈
[0, 40]GeV2. Both models, but in particular Model 1, are in perfect agreement with the

dispersive description [46, 47]. In figure 22, Model 1 and 2 are shown in the full space-like

region for Q2
1, Q

2
2 < 10GeV2. One can see that their main difference is in the regions where

at least one of the photon virtualities is small.

G η and η′ transition form factors Fη(′)(n)γ∗γ∗

G.1 Large-Nc Regge model

In this appendix, we describe the large-Nc Regge model for the η and η′ TFFs, introduced

in section 4.2, in more details. A comparison to experimental data and other parameteri-

zations available from the literature is postponed to appendices G.2 and G.3.

All expressions are given for the η, but hold as well for the η′ after obvious replacements

(including C8 → C0). Based on the constraint equations in (4.42), (4.43), and (4.44) the

– 69 –



J
H
E
P
0
3
(
2
0
2
0
)
1
0
1

Figure 26. η TFF in the full space-like region for Q2
1, Q

2
2 < 10GeV2. The large-Nc Regge

model, (4.34), is shown in the left panel, and our alternative model, (B.1), is shown in the right panel.

Figure 27. η′ TFF in the full space-like region for Q2
1, Q

2
2 < 10GeV2. The large-Nc Regge

model, (4.34), is shown in the left panel, and our alternative model, (B.1), is shown in the right panel.

model parameters should be replaced by:

cdiag =
N

Cη
ρρ + Cη

ωω + Cη
φφ

8C8Fη

Λ2Fηγγ
, (G.1)

cBL =
1

M2
−, 0

[

Cη
ρρM2

ρ + Cη
ωωM2

ω + Cη
φφM

2
φ

2Cη
φω

− N
Cη
φω

6C8Fη

Fηγγ
+M2

+, 0 − cA
M4

−, 0

Λ2

− cB
M2

+, 0M
2
−, 0

Λ2

]

, (G.2)

where the parameters related to the asymptotic limits of the HLbL tensor simplify to:

cA
B

=
Λ2

2

[

∆ωη

Lωη

N
Cη
φω

3C2
η

2π2C8FηFηγγM2
φM

2
ω

+

(
∆ωηLφη

∆φηLωη
∓ 1

)(

b

2a
−
√
(
b

2a

)2

− 1

a

(

c−
4C2

η

π2

))]

, (G.3)
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with

a=

(

Cη
φωFηγγM

2
φM

2
ω

N

)2
∆ωη

Ω2
φωη

[

f2(ση,σω,σφ)−
Lφη

Lωη
f2(ση,σφ,σω)

](

σ2φ
∆ωηLφη

∆φηLωη
−σ2ω

)

,

b=−
Cη
φωFηγγM

2
φM

2
ω

N∆φηLωη

{

−4C8Fη

Cη
ρρ+C

η
φφ+C

η
ωω

[

Cη
ρρ

∆2
ρη

(

Lφη

∆2
ρω

f1(ση,σρ,σω)−
Lωη

∆2
ρφ

f1(ση,σρ,σφ)

)

+
Cη
φφ

∆2
φη

(

Lφη

∆2
φω

f1(ση,σφ,σω)+
Lωη

2
f3(ση,σφ)

)

− C
η
ωω

∆2
ωη

(

Lωη

∆2
φω

f1(ση,σω,σφ)

+
Lφη

2
f3(ση,σω)

)]

−
3C2

η

2π2C8FηΩφωη∆φω

[(

2σ2φ∆ωη
Lφη

Lωη
−σ2ω∆φη

)

f2(ση,σφ,σω)

−σ2φ∆ωηf2(ση,σω,σφ)

]}

,

c=−
3C2

η

2π2C8Fη∆φηLωη

[

3C2
η

2π2C8Fη

σ2φ
∆2

φωLωη
f2(ση,σφ,σω)−

4C8Fη∆φη

Cη
ρρ+C

η
φφ+C

η
ωω

×
(

Cη
ωω

2∆2
ωη

f3(ση,σω)−
Cη
ρρ

∆2
ρω∆

2
ρη

f1(ση,σρ,σω)−
Cη
φφ

∆2
φω∆

2
φη

f1(ση,σφ,σω)

)]

. (G.4)

Here, the definitions from (4.16) and (4.18), the auxiliary functions from (F.6), as well as

f3(σP , σV ) := 3σ4P − 4σ2Pσ
2
V + σ4V − 2σ4P LPV , (G.5)

are used. Note that for the η′ one has to instead choose:

cA
B

=
Λ2

2

[

∆ωη′

Lωη′

N
Cη′

φω

3C2
η′

2π2C0Fη′Fη′γγM
2
φM

2
ω

+

(
∆ωη′Lφη′

∆φη′Lωη′
∓ 1

)(

b

2a
+

√
(
b

2a

)2

− 1

a

(

c−
4C2

η′

π2

))]

, (G.6)

as the physical solution for the quadratic equation (4.44).

G.2 Comparison of data and literature: Fη(n)γ∗γ∗

In this appendix, we compare our large-Nc Regge model, “Model 1” (4.34), and our alter-

native model, “Model 2” (B.1), for Fη(n)γ∗γ∗ to data and other parameterizations available

from the literature. The error band shown for Model 1 is generated by propagating the

errors of the input parameters σP , σV , Fηγγ , Fη, F
8, F 0, θ8, θ0.

In figure 10, the singly-virtual TFF of the ground-state η is shown forQ2 ∈ [0, 40]GeV2.

In figure 28, we focus on the low-Q region and include a comparison to the DSE result [50].

One can see that our models agree with the experimental data from CELLO [115] and

CLEO [116], but tend to a larger η TFF than CA [49] and DSE. In addition, Model

2 is larger than Model 1 for Q2 < 2.4GeV2. This low-Q enhancement explains why

aη-poleµ |Model 2 > aη-poleµ |Model 1, see (4.49).
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Figure 28. Singly-virtual η TFF in the low-Q region. The large-Nc Regge model, “Model 1” (4.34),

is indicated by the pink band with the dashed curve. Our alternative TFF model, “Model 2” (B.1),

is indicated by the solid cyan curve. The purple band is the CA result from ref. [49]. The green

band with the dot-dashed curve is the DSE result from ref. [50]. The data are from CELLO [115]

and CLEO [116].
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Figure 29. Doubly-virtual η TFF in the symmetric region Q2
1 = Q2

2 = Q2 (left) and in the region

where Q2
1 = Q2 and Q2

2 = 2Q2 (right). Legend is the same as in figure 28.

In figure 29, the doubly-virtual η TFF is shown for two kinematic situations: symmetric

momenta, and Q2
1 = Q2 and Q2

2 = 2Q2. Considering Model 1, we observe a slight tension

with the DSE prediction in the region of Q2 ∈ [0.2, 0.8]GeV2. This tension should, however,

not be taken too serious, because both the DSE and our error band are only based on the

variation of input parameters and do not take into account all possible error sources.

In figure 26, Model 1 and 2 are shown in the full space-like region for Q2
1, Q

2
2 < 10GeV2.

One can see that their main difference lies, similarly as for the π0 TFF, in the regions where

at least one of the photon virtualities is small.
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Figure 30. 2ρ, 2ω, 2φ, and φω contributions to the singly-virtual (top) and doubly-virtual (bottom)

η ground state (left) and first excited state (bottom).

In the left panel of figure 30, the ground-state η TFF is decomposed into the contribu-

tions from 2ρ, 2ω, 2φ, and φω vector mesons. As expected, the TFF is dominated by the

isovector-isovector 2ρ contribution, followed by the isoscalar-isoscalar 2φ contribution. The

φω contribution (4.36), which was needed to generate enough freedom in our large-Nc Regge

model to satisfy the BL limit of the TFF and the two SDCs on the HLbL tensor, is small.

In the right panel of figure 30, we show the TFF of the first (n = 1) radially-excited η

state. In the doubly-virtual region, the relative strength of vector-meson pairs is compa-

rable to what one finds for the ground-state η. The 2ρ contribution is now slightly smaller

than the total TFF, and the φω contribution is now larger than the 2ω contribution. In

contrast, the singly-virtual TFFs of the radially-excited η states will be dominated by the

φω contribution. This enhancement is generated by the n-dependence in the numerator

of (4.36) through terms proportional to M+, n. The two-photon couplings and BL limits of

the excited-state η TFFs are shown in figure 19.

G.3 Comparison of data and literature: Fη′(n)γ∗γ∗

In this appendix, we compare our large-Nc Regge model, “Model 1” (4.34), and our alter-

native model, “Model 2” (B.1), for Fη(n)γ∗γ∗ to data and other parameterizations available

from the literature. The error band shown for Model 1 is generated by propagating the

errors of the input parameters σP , σV , Fη′γγ , Fη′ , F
8, F 0, θ8, θ0.

In figure 11, the singly-virtual TFF of the ground-state η′ is shown for Q2 ∈
[0, 40]GeV2. In figure 31, we focus on the low-Q region and include a comparison to
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Figure 31. Singly-virtual η′ TFF in the low-Q region. The large-Nc Regge model, “Model

1” (4.34), is indicated by the pink band with the dashed curve. Our alternative TFF model,

“Model 2” (B.1), is indicated by the solid cyan curve. The purple band is the CA result from

ref. [49]. The green band with the dot-dashed curve is the DSE result from ref. [50]. The data are

from L3 [127], CELLO [115], and CLEO [116].
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Figure 32. Doubly-virtual η′ TFF in the symmetric region Q2
1 = Q2

2 = Q2 (left) and in the region

where Q2
1 = Q2 and Q2

2 = 2Q2 (right). Legend is the same as in figure 31.

the DSE result [50]. One can see that Model 1 agrees with the experimental data from

L3 [127], CELLO [115], and CLEO [116], as well as the CA [49] and DSE results. Model

2 tends to a larger η TFF for Q2 < 2GeV2. This low-Q enhancement explains why

aη
′-pole

µ |Model 2 > aη
′-pole

µ |Model 1, see (4.50).

In figure 32, the doubly-virtual η′ TFF is shown for two kinematic situations: sym-

metric momenta, and Q2
1 = Q2 and Q2

2 = 2Q2. Model 1 is in slight tension with the DSE

prediction for Q2 ∈ [0.2, 1.6]GeV2. This tension should, however, not be taken too serious.

A comparison of our models with the CA result shows perfect agreement for symmetric
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Figure 33. 2ρ, 2ω, 2φ, and φω contributions to the singly-virtual (top) and doubly-virtual (bottom)

η′ ground state (left) and first excited state (bottom).

momenta. For large photon virtualities, both models agree with each other and give a

reasonably good description of the recent doubly-virtual η′ TFF data from BaBar [122],

see figure 9.

In figure 27, Model 1 and 2 are shown in the full space-like region for Q2
1, Q

2
2 < 10GeV2.

One can see that their main difference is, similar as for the η TFF, in the regions where at

least one of the photon virtualities is small.

In the left panel of figure 33, the ground-state η′ TFF is decomposed into the contribu-

tions from 2ρ, 2ω, 2φ, and φω vector mesons. As expected, the largest contribution to the

TFF is coming from the isovector-isovector 2ρmesons, followed by the isoscalar-isoscalar 2φ

mesons. Unlike in the case of the η TFF, the 2φ mesons gives a positive contribution to the

η′ TFF, just like the 2ρ, 2ω, and φω mesons. Thus, since the 2ρ contribution does not need

to cancel out a negative 2φ contribution as it does in the η TFF, it appears to be smaller

than the total η′ TFF. The φω contribution (4.36), generated through φ–ω mixing, is small.

In the right panel of figure 33, we show the TFF of the first (n = 1) radially-excited

η′ state. In the doubly-virtual region, the relative strength of vector-meson pairs is similar

to what one finds for the ground-state η′. The φω contribution is now larger than the

2ω contribution, and the 2φ contribution at low Q. In contrast, the singly-virtual TFFs

of the radially-excited η′ states will be dominated by the φω contribution, while all other

contributions are of negligible size. This enhancement is generated by the n-dependence in

the numerator of (4.36) through terms proportional to M+, n. The two-photon couplings

and BL limits of the excited-state η′ TFFs are shown in figure 19.
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H Reply to arXiv:1911.05874

The analysis presented here has been criticized in a preprint by MV [151], which appeared

during the review process of this manuscript. In this appendix we refute the main objections

raised therein:

1. We disagree with the claim that in the pion-pole contribution to HLbL the second

form factor has to be taken at q23 = M2
π , see discussion in the paragraphs from (3)

to (5). The claim is a consequence of the statement in the paragraph after (5) in

ref. [151]: “with obvious constraints on q1,...,4 in the form factors s = (q1 + q2)
2 =

(q3+ q4)
2 =M2

π .” This statement is incorrect. We recall that in the definition of the

TFF (2.18), translation invariance has already been applied and the resulting overall

delta function is not part of the TFF. In the unitarity relation for HLbL, the single-

pion intermediate state generates an imaginary part proportional to δ(s−M2
π), which

however disappears when it is put into the dispersion integral to generate the pion

pole, i.e., no constraint on s is left. The independent variables in the HLbL process

are q21, q
2
2, q

2
3, q

2
4, s, and t and the residue of the pion pole, i.e., the product of two pion

TFFs, can only depend on the first four. If one takes the limit q4 → 0 this implies

s = q23 and t = q22, but by no means does it imply q23 = M2
π . Of course one is free at

that point to separate the pure pole in q23 (with only its residue in the numerator)

from non-pole terms. Between the two different dispersive representations, a simple

reshuffling takes place, see (6.2) and the whole discussion in section 6.

2. As discussed in section 6, the MV model is based on an unjustified extrapolation

to low q21,2 of the constraint at high q21,2. We have called this a “distortion” of

the low-energy behavior of the HLbL tensor in ref. [68], a description considered

unjustified in ref. [151]. Figures 14 and 15 very clearly illustrate this distortion.

An alternative solution to the SDCs based on a tower of axial-vector mesons in

holographic QCD has been presented in two papers [149, 150], which appeared after

ref. [151]. These alternative solutions to the SDCs have a very similar behavior as

the curves corresponding to our model in figures 14 and 15, and confirm that the

MV model [62] leads to a low-q2 behavior of the HLbL amplitude that cannot be

explained in terms of any other physical states — in other words, a “distortion.”

3. After (18) in ref. [151] it is stated that: the model in the present manuscript “violates

the above equation and claims, effectively, that cρL ∼ 1 also in the chiral limit.” This

statement is incorrect: in our model we are not able to take the chiral limit simply

because it is formulated in terms of effective parameters that are fit to data or the-

oretical constraints. It is not the point of the model to make any claim about the

behavior in the chiral limit. The underlying philosophy is to fulfill the SDCs only for

large q23, where the chiral limit becomes irrelevant, and not to rely on it at low q23,

because it would be a bad approximation and we can instead use known phenomeno-

logical constraints. Such a strategy is best carried out with excited pseudoscalars

because, unlike for axial-vector resonances, there are no ambiguities regarding their
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dispersive definition and because at least some information from phenomenology is

available. Section 5.3 explicitly discusses the issue of the chiral limit in our model.

4. The conclusion of ref. [151] contains the following three statements: “there is no doubt

that: (a) this region (Q2
1,2 ≫ Q2

3) provides the largest contribution to aHLbL
µ ; (b) it

allows for an exact non-perturbative analysis of the longitudinal structure function

in the chiral limit and (c) it supplies strong evidence that corrections to the chiral

limit are small.” The first statement is plainly wrong, in particular for the model by

MV, which actually receives most of its corrections from the region Q2
1,2,3 < Q2

match,

as can be clearly seen from figure 14. It is precisely this observation that leads to

the conclusion that the modifications in the low-q2 region are unphysical. Point (b)

is correct, by construction, but the question is whether the chiral limit is a useful

approximation at low q2, which is the most important region for aµ. This is claim

(c), which, unfortunately, is also not correct: the difference between the original MV

model (6.1) and the first term in (6.2) is such a quark-mass correction. In the case

of the pion the two expressions give contributions to aHLbL
µ that indeed differ by a

small amount (about 10%), but in the case of η and η′ the difference is much larger,

about 100%, as anticipated in section 6.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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