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Abstract

Human identification by fingerprints is based on the fundamental premise that (i) a ridge pattern of a
finger is distinct from the ridge patterns from any other fingers (uniqueness) and (ii) a fingerprint pattern
does not change over time (persistence). While the uniqueness of fingerprints has been investigated by
developing statistical models to estimate the probability of error in comparing two random samples of
fingerprints, the persistence of fingerprints has remained a general belief based on only a few case studies.
In this study, the fingerprint match (similarity) scores of genuine and impostor pairs are analyzed by
multilevel statistical model based on an operational fingerprint database containing longitudinal records
of 15,597 subjects with a maximum time span of 12 years. The longitudinal analysis of this dataset
shows that (i) the genuine match scores tend to significantly decrease when time interval between two
fingerprints being compared and subject’s age increase and fingerprint image quality decreases, while the
decrease in impostor match scores is negligible, (ii) the fingerprint recognition accuracy, nevertheless,
remains stable as the time interval between fingerprints in comparison increases up to 12 years, the
maximum time span in the database, and (iii) the fingerprint image quality, rather than time interval
and subject’s age, is the best covariate to explain the variation in genuine match scores. Furthermore,
the analysis of the fingerprint match scores obtained by fusing all ten fingers of each subject in this
database reinforces that the fingerprint recognition accuracy does not change over time.

1 Introduction

Friction ridge skin on fingers and palms has been purportedly known to be a physical characteristic of an
individual that does not change over time (i.e., persistence or permanence of friction ridge pattern) and can
be used as a person’s “seal” or “signature” (i.e., uniqueness or individuality of ridge pattern). Starting with
the first known case where the latent fingerprints found at a crime scene in Argentina in 1893 were officially
accepted as evidence to convict a suspect [1], friction ridge analysis has become one of the most crucial
methods in crime scene investigations worldwide. The decision made in Frye v. United States in 1923 [2]
is widely cited as the basis for the admissibility of forensic evidence, including friction ridge pattern; Frye
standard states that a scientific principle or discovery which has gained a general acceptance in the relevant
field is admissible in the courts.

In Daubert v. Merrell Dow Pharmaceuticals, Inc. in 1993 [3], however, the general acceptance test
of Frye was superseded by the Federal Rules of Evidence. The Daubert ruling established a guideline for
admitting forensic evidence which consists of the following factors: (i) empirical testing, (ii) peer review
and publication, (iii) known or potential error rate, (iv) standards controlling the operation, and (v) the
Frye standard of general acceptance. The Daubert standard provoked challenges to admissibility of friction
ridge evidence in the courts. Although all of about 40 such challenges resulted in a decision that friction
ridge analysis is acceptable as forensic evidence, the Daubert case highlighted a lack of scientific basis of
persistence and uniqueness and standards that can be universally referred to in friction ridge analysis.

Along with the development of standards and guidelines for friction ridge analysis [4] and retraining of
latent examiners [5] as a result of the Daubert ruling, a body of research to demonstrate uniqueness and
persistence of friction ridge patterns has emerged. While the uniqueness of fingerprints has been studied by
(i) estimating the probability of a random correspondence (i.e., two different fingerprints selected at random
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will be sufficiently similar to be claimed as genuine mates) [6, 7, 8] or (ii) measuring the evidential value
(see Supporting Information S1) of latent fingerprint comparisons [9], the persistence of fingerprints has
been generally accepted based on anecdotal evidence, including case studies conducted by Herschel [28] and
Galton [11] (see Supporting Information S3), and the anatomical structure of friction ridge skin—the ridge
pattern formed in the inner (dermal) layer during gestation remains unchanged with the protection of the
outer (epidermal) layer [12].

The persistence of fingerprints typically refers to the invariance of friction ridge pattern itself. How-
ever, the pertinent question of interest is whether the fingerprint recognition methodology (see Supporting
Information S2) maintains high recognition accuracy as the time interval between two fingerprints being
compared increases. The 2009 National Research Council report on “Strengthening Forensic Science in the
United States: A Path Forward” [13] pointed out that “Uniqueness and persistence are necessary conditions
for friction ridge identification to be feasible, but those conditions do not imply that anyone can reliably dis-
cern whether or not two friction ridge impressions were made by the same person.” Fingerprint recognition
exhibits two types of comparison errors: (i) false rejection: two impressions of the same finger (a genuine
fingerprint pair) are declared as a non-match due to large intra-finger variability, and (ii) false acceptance:
impressions from two distinct fingers (an impostor fingerprint pair) are declared as a match due to large
inter-finger similarity. The intra-finger variability is observed due to changes in intrinsic skin condition
(e.g., finger skin dryness, cuts, and abrasions) and extrinsic acquisition process (e.g., finger pressure and
placement), and sensing technology (known as the interoperability problem [14]). The inter-finger similarity
is observed when the partial fingerprint impressions from two distinct fingers coincide.

In the biometric recognition literature, a phenomenon called template aging has been reported, which
refers to an increase in the error rate in biometrics recognition with respect to the time gap between the
query and the template (or reference) [15]. A study comparing groups of fingerprint pairs with respect to
time gap reported that the fingerprint comparisons with less than 5-year time gap show lower error rate than
comparisons with a larger time gap [16]. Similar studies on face and iris recognition observed a decrease in
matching accuracy as the time interval between two acquisitions of a person’s face or iris increases. However,
the conclusions drawn in these studies cannot be trusted since their statistical analysis was not suitable for
the datasets used in the studies (see Supporting Information S3).

In order to determine the trend of fingerprint recognition accuracy with respect to time interval between
fingerprint acquisitions, we need to (i) collect longitudinal data (see Supporting Information S1) consisting
of multiple acquisitions of fingerprints from a sampled population over a reasonably long period of time,
and (ii) conduct an appropriate statistical analysis, considering the characteristics of the longitudinal data.
If the longitudinal dataset is balanced and time structured (see Supporting Information S1), cross-sectional
analysis can be applied by grouping the longitudinal data according to cohort (for example, short-term and
long-term fingerprint comparison groups) under the assumption of compound symmetry (see Supporting
Information S1). In reality, however, it is not feasible to collect longitudinal fingerprint data by following
an identical measurement schedule over a large number of subjects in the sample satisfying the compound
symmetry. To handle the unbalanced and/or time-unstructured longitudinal data, several statistical models
have been developed, including multilevel statistical models [17, 18].

In this study, we obtained a longitudinal database of fingerprints collected from 15,597 subjects booked
by the Michigan State Police multiple times (at least five different time points) over at least a 5-year time
span. A multilevel statistical model is used to analyze this longitudinal dataset which is unbalanced and
time unstructured. This paper addresses the following specific issues pertaining to the longitudinal study of
fingerprint recognition:

• Trend of fingerprint match scores of genuine and impostor pairs with respect to various covariates,
including time interval between fingerprints in comparison, subject’s demographic factors (age, gender,
and race), and fingerprint image quality

• Assessment and comparison of the multilevel models with various combinations of the covariates

• Correlations and interactions among covariates
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Figure 1: Six different impressions of the right index finger of a subject in the longitudinal fingerprint
database used in this study

• Temporal trend of fingerprint recognition accuracy in terms of probabilities of true acceptance and
false acceptance

• Trend of fingerprint match scores and recognition accuracy when a subject’s all ten fingers are used
for recognition, a prevailing practice in law enforcement and forensics.

2 Longitudinal Fingerprint Database

A longitudinal database of fingerprints was collected from the records of repeat offenders booked by the
Michigan State Police. Fig. 1 shows an example of six fingerprint impressions of the right index finger of
a subject in the database acquired between June 2001 and October 2008. A total of 15,597 subjects were
randomly selected who had at least 5 fingerprint acquisitions from all ten fingers on a formatted fingerprint
card (called tenprint card) over a minimum of 5-year time span. The tenprint impressions of each subject are
ordered according to the time sequence; a set of tenprints of subject i (i = 1, . . . , N ; N is the total number
of subjects in the database) is labeled as follows: Fi = {Fi,1, · · · , Fi,ni

}, such that Ti,1 < . . . < Ti,ni
, where

Ti,j is the time stamp of the j-th tenprint impression of subject i, and ni denotes the number of tenprints
of subject i.

A summary of the database is as follows:

• Each of the 15,597 subjects has at least 5 tenprint cards, providing 122,685 tenprint cards in total.
The average number of tenprints per subject in the database is 8, with the maximum of 26 cards for
one of the subjects.

• The tenprint impressions of a subject have a minimum of 5-year time span (the time difference between
the first and the last fingerprint acquisitions of a subject); that is, △Ti,1ni

≥ 5 years for i = 1, . . . , N .
The average time span is 9 years, and the maximum time span in the database is 12 years.

• Any two consecutive tenprint impressions of a subject are obtained with at least a 2-month time gap;
(Ti,j+1 − Ti,j) ≥ 2 months.

• Along with tenprint images, the following demographic information is also available for each subject:

– Gender: Male or female

– Race: White/Hispanic, Black, American Indian/Eskimo, or Asian/Pacific Islander

– Age at the time of tenprint acquisition: The youngest subject’s age at the time of the first
impression is 8 years; the oldest subject’s age at the time of the last impression is 78 years.

Two commercial off-the-shelf (COTS) fingerprint matchers (denoted as COTS-1 and COTS-2) are used to
compute match scores. For subject i with ni fingerprint impressions, we conduct all pairwise comparisons1;

1The pairwise comparisons of the fingerprint records of a subject result in correlations among the genuine match scores of
the subject.



Technical Report MSU-CSE-14-3 4

Table 1: Multilevel models with different combinations of covariates

Model Level-1 Model Level-2 Model

Model A yijk = ϕ0i + εijk ϕ0i = β00 + b0i
Model BT yijk = ϕ0i + ϕ1i△Tijk + εijk ϕ0i = β00 + b0i, ϕ1i = β10 + b1i
Model BA yijk = ϕ0i + ϕ1iAGEijk + εijk ϕ0i = β00 + b0i, ϕ1i = β10 + b1i
Model BQ yijk = ϕ0i + ϕ1iQijk + εijk ϕ0i = β00 + b0i, ϕ1i = β10 + b1i
Model CG yijk = ϕ0i + ϕ1i△Tijk + εijk ϕ0i = β00 + β01bMi + b0i,

ϕ1i = β10 + β11bMi + b1i
Model CR yijk = ϕ0i + ϕ1i△Tijk + εijk ϕ0i = β00 + β01bWi + b0i,

ϕ1i = β10 + β11bWi + b1i
Model D yijk = ϕ0i + ϕ1i△Tijk + ϕ2iAGEijk + ϕ3iQijk ϕ0i = β00 + b0i, ϕ1i = β10 + b1i,

+εijk ϕ2i = β20 + b2i, ϕ3i = β30 + b3i
Model E yijk = ϕ0i + ϕ1i△Tijk + ϕ2iAGEijk + ϕ3iQijk ϕ0i = β00 + b0i, ϕ1i = β10 + b1i,

+ϕ4i△TijkQijk + ϕ5iAGEijkQijk + εijk ϕ2i = β20 + b2i, ϕ3i = β30 + b3i,
ϕ4i = β40, ϕ5i = β50

that is, ni
C2 genuine match scores are generated from each matcher. This is because law enforcement

agencies often store all the tenprint records for every booked subject and compare a query fingerprint to
all the records in the database. To obtain impostor match scores of a subject, 10 tenprint cards from 10
different subjects are randomly selected and compared to each of the tenprint cards of the subject. The
analysis utilizes 481,181 genuine match scores and 1,226,850 impostor match scores obtained by each of the
COTS matchers.

3 Multilevel Statistical Model

With multilevel modeling for longitudinal data analysis [17, 18], this study aims at analyzing the following
observed responses (yijk):

• Case I: A single finger2 is used for recognition

– Normalized genuine match score obtained by:

s̃i,jk =
si,jk − µ

σ
, (1)

where si,jk is the genuine match score between the j-th and k-th fingerprint impressions of the
right index finger of subject i, and µ and σ are the mean and standard deviation of {si,jk},
respectively

– Binary identification decision made on a genuine pair with match score of si,jk by applying a
decision threshold (Th) corresponding to a false acceptance rate of 0.01%:

s∗i,jk =

{

1, if si,jk > Th

0, otherwise
(2)

– Normalized impostor match score (s̃ij,k) between the k-th fingerprint impression of the right index
finger of subject i and the right index finger impression in the first tenprint of subject j, for i 6= j

and k = 1, . . . , ni

2We carry out the analysis on the right index finger of the subjects that is typically chosen as the primary finger in the
single-finger based recognition systems.
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– Binary identification decision (s∗ij,k) made on an impostor pair with match score of sij,k by ap-
plying the decision threshold Th

• Case II: All ten fingers are used for recognition

– Normalized genuine fusion score obtained by a sum rule as follows:

Si,jk =

10
∑

m=1

s
(m)
i,jk, (3)

where s
(m)
i,jk is the genuine match score between the impressions from finger m in the j-th and k-th

tenprint cards of subject i

– Binary identification decision made on a pair of genuine tenprint cards with fusion score of Si,jk

by applying a decision threshold (Th†) corresponding to a false acceptance rate of 0.01%:

S∗
i,jk =

{

1, if Si,jk > Th†

0, otherwise
(4)

– Normalized impostor fusion score (S̃ij,k) between the k-th tenprint of subject i and the first
tenprint of subject j

– Binary identification decision (S∗
ij,k) made on an impostor pair of tenprints with fusion match

score of Sij,k by applying the decision threshold Th†.

The covariates (xijk)
3 investigated in the study are:

• △Ti,jk for genuine fingerprint comparisons: Time interval between the j-th and k-th fingerprint im-
pressions of subject i; △Ti,jk = Ti,k − Ti,j , for k > j

• △Tij,k for impostor fingerprint comparisons: Time elapsed after the first tenprint of subject i is
obtained; △Tij,k = Ti,k − Ti,1, k = 1, . . . , ni

• AGEi,jk for genuine fingerprint comparisons: Age of subject i when the latter of the j-the and k-th
tenprint impressions was made, where Ti,j < Ti,k

• AGEij,k for impostor fingerprint comparisons: Age of subject i when the k-th tenprint impression was
made; the age of impostor subject j is not considered

• Qi,jk: The value corresponding to the lower of the qualities of the j-th and k-th fingerprint impressions
of subject i. In this study, NIST Fingerprint Image Quality (NFIQ) measure [19] is used, which assigns
one of the five discrete values ranging from 1 (the highest quality) to 5 (the lowest quality), to define
fingerprint image quality. According to the definition of NFIQ, Qi,jk = max(Qi,j , Qi,k), where Qi,j is
the NFIQ value of fingerprint impression j of subject i

• bMi: A binary indicator of gender of subject i; 1 for male, and 0 for female

• bWi: A binary indicator of race of subject i; 1 for whites, and otherwise 0.

As a fingerprint comparison essentially involves two fingerprint impressions to generate a single match
score, a simple linear 2-level model with a single covariate for continuous match scores can be represented by:

Level-1 Model (Intra-subject variability):

yijk = ϕ0i + ϕ1ixijk + εijk, εijk ∼ N (0, σ2
ε ), (5)

3Qi,jk, bMi, and bWi are used only for genuine fingerprint comparisons.
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(a) Model BT

0 20 40 60 80

−3

−2

−1

0

1

2

Age in Years
M

a
tc

h
 S

c
o
re

 

 

Bootstrap Mean

95% Confidence Interval

(b) Model BA
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(c) Model BQ

Figure 2: Population-mean trends of genuine match scores obtained by COTS-1 matcher along with 95%
confidence intervals with respect to (a) △Ti,jk, (b) AGEi,jk , and (c) Qi,jk, when a single finger is used for
recognition. The confidence intervals for models BT and BQ are too tight along the mean to be visible.

Level-2 Model (Inter-subject variability):

ϕ0i = β00 + b0i, ϕ1i = β10 + b1i,
[

b0i
b1i

]

= N

([

0
0

]

,

[

σ2
0 σ01

σ10 σ2
1

])

. (6)

The level-1 model in Eq. (5) is regressed to the repeated measurements taken from each subject, and
accounts for the intra-subject variability. The variables and parameters in the level-1 model are defined as
follows: yijk is the subject i’s observed response of match score when two fingerprints (j and k) are compared,
xijk is the explanatory variable, ϕ0i and ϕ1i are the true parameters representing the intercept and slope of
the linear model for subject i, and εijk is the error in the observed response yijk from the model fit. The
error is assumed to be normally distributed with a zero mean and a variance of σ2

ε .
In the level-2 model (Eq. (6)) where the population-averaged tendency and deviations of subjects from

the mean trend are modeled to account for the inter-subject variability, the true parameters for subject i

(ϕ0i and ϕ1i) can be modeled by a mixture of fixed and random effects: fixed-effects parameters β00 and
β10 represent the grand means of intercept and slope across all N subjects in the data, and random-effects
parameters b0i and b1i represent the deviations of subject i’s intercept and slope from β00 and β10. The
random effects are assumed to follow a Gaussian distribution.

In order to determine whether two fingerprint impressions are from the same finger, a binary decision
for a fingerprint pair is made by applying a predetermined decision threshold to the match score. If the
match score of a fingerprint pair is greater than the threshold, the two fingerprints are determined to be a
genuine match; otherwise, they are determined to be an impostor match. If a fingerprint pair is determined
to be a genuine pair and they are indeed from the same finger, the binary decision is a true acceptance.
If a genuine-match decision is made on a fingerprint pair which are in fact from two different fingers, the
decision is a false acceptance. In multilevel model, a binary response is viewed as a Bernoulli trial with the
probability of true (or false) acceptance πijk , and the expected πijk is modeled after being transformed by
a logit link function.

Level-1 Model: g(πijk) = ϕ0i + ϕ1ixijk + εijk,

y∗ijk ∼ Bin(1, πijk),

Level-2 Model: ϕ0i = β00 + b0i,

ϕ1i = β10 + b1i, (7)
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Figure 3: Population-mean trend of fingerprint matching accuracy along with 95% confidence interval with
respect to △Ti,jk. (a) Probability of true acceptance and (b) probability of false acceptance with respect
to △Ti,jk. Match scores are obtained by COTS-1 matcher when a single (right index) finger is used for
recognition. The confidence interval in (b) is too tight along the mean to be visible.

where g(·) is a logit link function; g(πijk) = log
(

πijk

1−πijk

)

. The 2-level linear models investigated in this

study are listed in Table 1.
The maximum likelihood (ML) and generalized least-squares (GLS) estimations are widely used to es-

timate parameters in the multilevel model [18]. Under the assumption that the residuals are normally
distributed, the ML estimates of the parameters are typically obtained by iterative GLS [17].

4 Results

4.1 Population-mean Trend of Genuine Fingerprint Match Scores

Given that the normality assumptions of the residuals and random effects in the multilevel model fit to the
data are violated (see Supporting Information S5), the parameters in the multilevel models are estimated by
a fully nonparametric bootstrap [17]. We generate 1,000 bootstrap samples, where each bootstrap sample is
obtained by a cluster bootstrap—N subjects with replacement are resampled at level 1 and all the level-2
data belonging to those subjects are included in the sample—to preserve the hierarchy in the longitudinal
data. The mean of the parameter estimates of the bootstrap samples and the percentile confidence intervals
are reported in Tables S3 and S4.

The population-mean trends of Models BT, BA, and BQ based on the fixed-effects parameter estimates
(β00 and β10) show that the genuine match scores tend to decrease when △Ti,jk, AGEi,jk, and Qi,jk increase
(see Figs. 2 and S5). The null hypothesis—β10 = 0 in Models BT, BA, and BQ (i.e., the slope of the linear
model is zero)—is rejected for all three models at the significance level of 0.05 since the 95% confidence
interval for β10 does not contain zero.

Models D and E incorporate all three covariates (△Ti,jk, AGEi,jk , and Qi,jk) into the model; Model
E includes interaction terms (△Ti,jkQi,jk and AGEi,jkQi,jk) while Model D does not have any interaction
terms. The covariance matrix in Model D shows that the correlations between (i) △Ti,jk and Qi,jk and
(ii) AGEi,jk and Qi,jk are very small (see Supporting Information S6). Also, the population-mean trends
of Models D and E and their 95% confidence intervals indicate that the impact of the interactions between
(i) △Ti,jk and Qi,jk and (ii) AGEi,jk and Qi,jk on genuine match scores is not significant (see Supporting
Information S6).
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4.2 Outlier Subjects in Model BT

The random effects (bri, r = 0, 1, 2, 3) at level 2 in the multilevel model represent the deviation of subject
i from the population-mean trend (βri). The parameter estimates of (ϕ0i, ϕ1i) for each subject in Model
BT are shown in Fig. S9 in addition to the population-mean trend (β00, β11). The parameter estimates
associated with several outlier subjects whose trend for genuine match scores markedly deviate from the
population-mean trend are also indicated. Figs. S10–S14 show the individual trends of the outlier subjects
and their fingerprint impressions.

• Outlier case 1 (Fig. S10): The estimated intercept of this subject is very small. The subject consistently
gives low genuine match scores since his fingerprints are severely scarred. This subject can be called a
“goat” in the Doddington’s biometric zoo nomenclature [20] which refers to subjects that are susceptible
to false rejections.

• Outlier case 2 (Fig. S11): The intercept of the fitted model for this subject is rather large while
the slope is negative. This subject consistently gives high genuine match scores because his fingerprint
impressions are of good quality. This subject can be viewed as a “sheep” in the Doddington’s biometric
zoo who is easy to successfully verify.

• Outlier case 3 (Fig. S12): This subject shows a very sharp decrease in genuine match scores as
a function of time interval. In Fig. S12(a), the genuine match scores involving the first fingerprint
impression are very low. This fingerprint impression is indeed an impostor fingerprint (see Fig. S12(b))
since it is of tented arch type while the actual pattern of this finger is a right loop. This shows that
the operational fingerprint data can be mislabeled.

• Outlier case 4 (Fig. S13): This subject also has a steep slope. It turns out that the fingerprint
impressions of this subject were collected during his adolescence (starting at the age of 11 until the
age of 21). This explains the sharp decrease in genuine match scores due to growth in finger size [21].

• Outlier case 5 (Fig. S14): A positive slope is observed for this subject since the comparisons involving
a lower quality fingerprint were made in shorter time interval than the comparisons with higher quality
fingerprints. This example illustrates that the fingerprint image quality is not necessarily variable with
respect to time elapsed.

4.3 Model Assessment and Comparison

Goodness-of-fit of a model evaluates how well the model fits the data. Furthermore, the impact of covariates
on the observed responses can be assessed by comparing the goodness-of-fit of different models. The following
three criteria are used to measure the goodness-of-fit: (i) Deviance, (ii) Akaike Information Criterion (AIC),
and (iii) Bayesian Information Criterion (BIC). While the deviance measure is used to compare nested
models, AIC and BIC add a constant term to the deviance for the sake of comparing non-nested models (see
Supporting Information S4). The smaller the deviance (AIC or BIC), the better the model fit.

Table S2 shows the goodness-of-fit measures of the multilevel models fit to genuine match scores obtained
by the two COTS matchers. The model comparisons based on the goodness-of-fit lead to the following
observations:

• A decrease in deviance is observed when Models BT, BA, and BQ are compared to Model A. This
means that each individual covariate used in Model B (△Ti,jk, AGEi,jk , and Qi,jk) can explain some
of the variation in genuine match scores.

• Model BQ provides a better fit to the data than Models BT and BA. This implies that fingerprint
quality (Qi,jk) is the best covariate to explain the variation in genuine match scores among the three
covariates used in Model B.

• Gender and race are not important factors to explain the variation in genuine match scores since the
deviance barely decreases from Model BT to Models CG or CR.
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• Models D and E show significantly smaller goodness-of-fit values than the other models. In other words,
including all the three covariates (△Ti,jk, AGEi,jk , and Qi,jk) in the multilevel model better explains
the trend in genuine match scores compared to including only a single covariate. The additional
interaction terms in Model E further improve the model fit.

4.4 Population-mean Trend of Impostor Fingerprint Match Scores

The impact of △Tij,k and AGEij,k on impostor match scores is evaluated in Models BT and BA. Although
the hypothesis test (H0 : β10 = 0) is rejected in both Models BT and BA (see Table S5), the population-mean
trends of impostor match scores with respect to △Ti,jk and AGEi,jk show that the impostor match scores
remain almost the same even as △Ti,jk and AGEi,jk increase (see Fig. S15).

4.5 Population-mean Trend of Probability of True Acceptance

The binary decisions are made on genuine match scores according to Eq. (2), and the probability of
making a correct decision on a genuine fingerprint pair (true acceptance) is modeled by the multilevel
model as shown in Eq. (7). The population-mean trends of the probability of true acceptance (πi,jk) of
the two COTS matchers with respect to △Ti,jk (Figs. 3(a) and S16(a)) indicate that the probability of
true acceptance tends to remain close to 1 even though the time interval between the two fingerprints in
comparison increases up to 12 years, the maximum time span in the longitudinal fingerprint dataset used
in this study. This demonstrates that the genuine fingerprint pairs can be correctly recognized despite the
increase in time interval between the fingerprints.

4.6 Population-mean Trend of Probability of False Acceptance

The probability of making an incorrect genuine-match decision on an impostor fingerprint pair (false
acceptance) is also investigated. Figs. 3(b) and S16(b) indicate that the probability of false acceptance
tends to remain close to 0 regardless of the time interval between the two fingerprints in comparison (within
the 12-year time gap).

4.7 Results When Using All Ten Fingers for Recognition

Models BT and BA are fit to the genuine match scores from subject’s all ten fingers fused by a sum
rule according to Eq. (3). We observe a negative relationship between genuine match scores and the two
covariates (△Ti,jk and AGEi,jk); the null hypothesis (β10 = 0 in Model B) is rejected for both the models
(see Fig. S17 and Table S6).

The population-mean trends of impostor match scores with respect to △Ti,jk and AGEi,jk (Fig. S18
and Table S7), probability of true acceptance (Figs. S19(a) and S20(a)), and probability of false acceptance
(Figs. S19(b) and S20(b)) show the same behavior as the single-finger experiments. The 95% confidence
intervals of the ten-finger fusion case become negligibly small, compared to using a single finger.

5 Conclusions

Since ancient times, fingerprints have been accepted as persistent and unique to an individual. Early scientific
studies on fingerprint recognition in the late 19th century claimed that there is no significant change in the
friction ridge structure over time by examining small sets of genuine fingerprint pairs captured over a large
time interval. Although fingerprint recognition is now prevalent in distinguishing an extremely large number
of individuals (for example, India’s Aadhar program [22] involving over 1 billion residents), acceptance of
the persistence of fingerprints has been only solely based on anecdotal evidence.

To understand the temporal behavior of fingerprint recognition accuracy, multiple fingerprint records
of 15,597 subjects booked by the Michigan State Police over a duration of 5–12 years were collected. The
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genuine and impostor match scores obtained by two COTS fingerprint matchers were analyzed by linear
multilevel statistical models with various covariates, including time interval between the two fingerprints be-
ing compared, subject’s age, and fingerprint image quality. Our longitudinal study of fingerprint recognition
led to the following conclusions:

• The hypothesis test for the slope of a linear model indicates that the genuine and impostor match
scores tend to decrease as the time interval between two fingerprints being compared increases. While
a significant decrease in genuine match scores is observed, the decrease in impostor match scores is
negligible.

• The genuine match scores also tend to decrease as the subject’s age increases or when the fingerprint
image quality decreases. However, the impostor match scores for the two COTS matchers show incon-
sistent tendencies over subject’s age. Nevertheless, the change in impostor match scores with respect
to subject’s age is small.

• A comparison among the models with different covariates fit to the genuine match scores shows that:

– Time interval, subject’s age, and fingerprint image quality best explain the variation in genuine
match scores; subject’s gender and race are not significant covariates.

– Among the three significant covariates (time interval, subject’s age, and fingerprint image quality),
fingerprint image quality is the most influential covariate.

– The correlations (i) between time interval and fingerprint image quality and (ii) between subject’s
age and fingerprint image quality are negligibly small.

– The impact of the interactions (i) between time interval and fingerprint image quality and (ii)
between subject’s age and fingerprint image quality on genuine match scores is not significant.

• It is observed that several subjects in the database do not conform to the population-mean trend as
determined by model fit. These outlier subjects illustrate (i) subjects that follow the nomenclature in
the Doddington’s biometric zoo, (ii) a degradation in genuine match scores when a juvenile fingerprint is
compared to the corresponding adult fingerprint, and (iii) presence of labeling errors in the operational
fingerprint database.

• Despite the downward trend in genuine match scores over time, the probability of true acceptance, at
a predetermined decision threshold, remains close to 1 (up to 12 years, the maximum time span in
our database). On the other hand, the probability of false acceptance at the same decision threshold
remains at 0 regardless of the time interval between two fingerprints. This demonstrates that fingerprint
recognition accuracy tends to be stable even though the time interval between a fingerprint pair being
compared increases.

• The inference made with a single finger (impressions from the right index finger) applies to the inference
from ten-finger score fusion results.

• The results from two different COTS fingerprint matchers used in the study coincide, except for the
tendency of impostor match scores with respect to subject’s age.

The future work includes: (i) given that we make all pairwise comparisons of the fingerprint impressions
from each subject, the correlation among the genuine match scores of a subject needs to be reflected in the
model, and (ii) nonlinear multilevel models will be investigated and compared to the linear models presented
in this study.
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Supporting Information

S1 Definitions

The terminologies used in this article are defined as follows.

S1.1 Evidential value

Evidential value of a comparison of two fingerprints refers to the strength of the fingerprint comparison as
evidence to claim whether or not they come from the same finger [9, 11].

S1.2 Longitudinal data

Longitudinal data refers to repeated measurements on a collection of individuals sampled from a population
over time. This is in contrast to cross-sectional data, where a single measurement is made on each individual
[17].

S1.3 Balanced and time-structured data

A longitudinal dataset is characterized by (i) the number of measurements per individual and (ii) the time
schedule used to make the measurements [18]. Balanced dataset means that every subject has the same
number of measurements. Time-structured dataset consists of the repeated measurements following an
identical time schedule across individuals. The sequence of measurements for each individual can be spaced
either regularly or irregularly.

S1.4 Compound symmetry

The compound symmetry requires (i) homoscedasticity of variance: the variance of the measurements at a
time instance across all subjects is the same as that of the measurements at another time instance, and (ii)
constant covariance: the correlation between the measurements at the first and second time instances, for
example, is the same as that between the measurements at the first and third time instances, and so on.

S2 Fingerprint Recognition

A fingerprint pattern consists of intervening ridge lines that are equidistantly spaced. Fingerprint features
used for matching, both by forensic experts and machines (i.e., Automated Fingerprint Identification Systems
(AFIS)), are typically represented at three different levels: (i) level-1 features (orientation field and singular
points) describe ridge flow and pattern type (e.g., arch, loop, and whorl), (ii) level-2 features (minutiae)
represent ridge details such as ridge ending and bifurcation points, and (iii) level-3 features (pore, incipient
ridges, etc.) represent the finest details in fingerprints [23].

A comparison between two fingerprints is primarily based on the spatial configurations of minutiae in
the corresponding impressions. If two fingerprint impressions show a high degree of agreement in minutiae
configurations (resulting in high match score), the fingerprints are deemed to be a genuine pair, originating
from the same finger (Fig. S1(a)). Otherwise, they are deemed to be an impostor pair (Fig. S1(b)).

Starting around 1900, the Scotland Yard included fingerprints in anthropometric identification cards
which recorded measurements of various physical attributes of criminals [24]. Since then, the use of fin-
gerprints has spread rapidly worldwide primarily for the purpose of tracking habitual criminals (repeat
offenders) and identifying suspects based on partial fingerprints (latent fingerprints) found at crime scenes.
With a phenomenal and continual increase in the size of fingerprint databases held by various law enforce-
ment agencies, fingerprint recognition technology has made great strides both in terms of matching accuracy
and matching speed (throughput). The Federal Bureau of Investigation (FBI) alone currently holds tenprint
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(a)

(b)

Figure S1: Fingerprint comparison using minutiae configuration. Minutiae correspondences are shown for
(a) a genuine fingerprint pair and (b) an impostor fingerprint pair. The fingerprint match (similarity) scores
obtained by the COTS-2 matcher are (a) 389 and (b) 11 (note that the match score corresponding to false
acceptance rate of 0.01% is 32).

records of over 75 million apprehended criminals and 39 million civilian government job applicants as of
November 2013 [25]. The FBI’s Integrated Automated Fingerprint Identification System (IAFIS) responds
to a tenprint record of arrests and prosecutions (RAP) sheet request in 1 minute and 9 seconds, on average
(97% of the requests are completed within 15 seconds) [25]. In the 2003 Fingerprint Vendor Technology
Evaluation (FpVTE), the best performing commercial matcher achieved a 99.4% verification rate in search-
ing against a database with 10,000 fingerprints [26]. When latent fingerprints are analyzed, human experts
are inevitably involved in the latent search procedure to compensate for the limitations of state-of-the-art
AFIS in reliable feature extraction and identification [27].

Improvements in fingerprint acquisition technology have led to the prevalent use of fingerprint recognition
in various applications beyond law enforcement and forensics. Fingerprint impressions that were traditionally
obtained by smearing fingers with ink and pressing them on paper are now acquired by optical sensors (e.g.,
at immigration counters in U.S. airports) and solid state sensors (e.g., in iPhone 5S), and these digital images
of fingerprints can be readily processed by AFIS.



Technical Report MSU-CSE-14-3 15

(a) (b)

Figure S2: Fingerprint pairs with minutiae correspondences labeled by Galton in his study on fingerprint
persistence (image excerpt from [11]). (a) A pair of fingerprints with 13-year time interval showing perfect
minutiae correspondences, and (b) a pair of fingerprints from another finger of the same subject with one
minutia missing in the later age impression (denoted as ‘A’).

S3 Persistence Study of Biometrics Traits

Early studies on persistence of fingerprints focused on demonstrating the invariance of ridge structure in
fingerprints with respect to time. Herschel collected three fingerprints of his son when he was 7, 17, and 40
years old and verified that all ridge details in the three fingerprints did not change over time [28]. Galton
collected 11 pairs of fingerprints from six different individuals at two different time instances [11]. The time
interval between a pair of fingerprints in Galton’s collection ranged from 11 years to 31 years. The six
subjects in his study were selected from different age groups; the age of the subject at the second impression
was as young as 15 years and as old as 79 years. Among the 389 minutiae pairs that were manually labeled
by Galton, only a single minutia was missing in a fingerprint pair (see Fig. S2).

More recently, a number of published studies have claimed template aging—an increase in the error rate
in biometrics recognition with respect to the time gap between the query and the template [15]—for major
biometrics modalities, including fingerprint [16], iris [29, 30], and face [31]. The biometric template is a
compact representation of a subject’s biometric data that is captured at the time of his initial enrollment in
the system. A template then becomes the reference against which subsequent acquisitions of the subject are
compared for authentication. The question these studies raised is essentially the following: “does the stored
biometric template remain adequate for person authentication over time or should the template be updated
to account for possible changes in a person’s biometric trait?”

These prior studies used cross-sectional analysis by grouping the longitudinal data according to time
interval between two acquisitions of a biometric trait and comparing the groups. However, cross-sectional
analysis is not suitable for the longitudinal datasets used in studies which are unbalanced and time unstruc-
tured. Fig. S3 shows a hypothetical example which illustrates that if the dataset is unbalanced and/or time
unstructured, cross-sectional analysis makes incorrect inference against the actual longitudinal behavior.

The longitudinal study on iris recognition by the National Institute of Standards and Technology (NIST)
[32] properly used a nonlinear mixed-effects model to show the relationship between genuine iris match
scores and covariates such as time elapsed after enrollment and the difference in iris dilation. However,
the NIST study suffers from the following drawbacks: (i) the dataset used was truncated in the sense that
the iris match scores from falsely rejected genuine comparisons were not included, and (ii) the validity of
some of the assumptions in the mixed-effects model (i.e., normality of residuals and random effects) was
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Figure S3: Cross-sectional analysis versus longitudinal analysis of balanced but time-unstructured longi-
tudinal data (adapted from [33]). For this dataset (two measurements for each of 5 subjects), (a) the
cross-sectional analysis that discards subject labels on data makes an inference that the measurement values
tend to decrease with respect to subject’s age, while (b) the longitudinal analysis interprets the data as the
measurement values tend to increase with respect to age.

not reported. The truncated data is problematic because the truncated portion of the data—erroneous
identification decisions—is the very target of the analysis to determine the tendency of error rate with
respect to time. Also, unless all model assumptions are satisfied, the analysis and inferences from the data
cannot be trusted.

S4 Assessment of Goodness-of-Fit

The details of the goodness-of-fit measures used in this study are as follows.

• Deviance (D): Deviance can be used to compare the goodness-of-fit of nested models. The nested
property is easily determined by checking if one model becomes equivalent to the other by setting the
coefficients for some of the covariates to zero. For example, whereas Models A and BT are nested and
Models A and BQ are nested, Models BT and BQ are not nested. The deviance is defined as:

D = −2 log(L), (S1)

where L is the maximum value of the likelihood function for the model.

• AIC: AIC can be used for any model comparison task (models do not need to be nested). AIC is
defined as:

AIC = 2k − 2 log(L), (S2)

where k is the number of parameters in the model, and L is the maximum value of the likelihood
function for the model.

• BIC: Under the assumption that the data distribution is in the exponential family, BIC is defined as:

BIC = k log(n)− 2 log(L), (S3)

where k is the number of parameters in the model, n is the number of data points, and L is the
maximum value of the likelihood function for the model. BIC also can be used for comparisons of
non-nested models.
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Table S2: Goodness-of-fit of the models shown in Table 1

COTS-1 COTS-2
Model Deviance AIC BIC Deviance AIC BIC

Model A 1,114,948 1,114,954 1,114,988 1,142,532 1,142,538 1,142,571
Model BT 1,099,980 1,099,992 1,100,058 1,115,191 1,115,203 1,115,269
Model BA 1,100,979 1,100,991 1,101,057 1,120,911 1,120,923 1,120,990
Model BQ 1,028,899 1,028,911 1,028,978 1,060,037 1,060,049 1,060,115
Model CG 1,099,969 1,099,985 1,100,074 1,115,117 1,115,133 1,115,222
Model CR 1,099,817 1,099,833 1,099,921 1,114,378 1,114,394 1,114,483
Model D 1,003,908 1,003,938 1,004,105 1,019,412 1,019,442 1,019,608
Model E 1,003,839 1,003,873 1,004,062 1,018,986 1,019,020 1,019,209

S5 Validation of Normality Assumptions in Multilevel Model

The multilevel model assumes that the residuals (εi,jk) and random effects (bri) follow normal distributions.
The inference made based on the model fitting is valid only if the underlying assumptions of the multilevel
model are satisfied. The normal probability plot is a way to visually verify the normality of the data. If
the normal probability plot is linear, one can ascertain that the data is from a normal distribution. Fig. S4
shows the normal probability plots of εi,jk, b0i, and b1i when Model BT is fit to the genuine match scores
obtained from the two COTS matchers.

While the residuals generally follow normal distributions, significant departures from normality are ob-
served at the tails for the scores output by both the matchers. A possible cause of non-normality at the tails
is that the scores from the COTS fingerprint matchers are typically censored, i.e., very low and high match
scores are trimmed so that the output scores are in a finite range.

When the model assumptions are violated, the parameter estimates for fixed and random effects tend to
be reliable while the standard errors (consequently, the confidence intervals) tend to be underestimated [34].
In this case, bootstrapping is a useful way to estimate parameters and confidence intervals [35].

S6 Parameter Estimates and Hypothesis Tests

In Models D and E, the fixed-effects parameter estimates for △Ti,jk (β10), AGEi,jk (β20), and Qi,jk (β30)
remain negative, similar to Models BT, BA, and BQ. The correlations between any two covariates can be
calculated from the estimated covariance matrices in Models D and E. In particular, we are interested in (i)
σ13 which gives the correlation between △Ti,jk and Qi,jk and (ii) σ23 which gives the correlation between
AGEi,jk and Qi,jk. Although the estimated values for σ13 and σ23 are negative, the correlations among
the covariates are very small—in Model D, the correlation coefficients for σ13 and σ23 based on COTS-1
match scores are -0.0324 and -0.0464; for COTS-2 matcher, they are -0.0174 and -0.1035. Moreover, σ13 in
Models D and E with COTS-2 matcher cannot be claimed to be significantly different from 0 since the null
hypothesis σ13 = 0 is not rejected at the 0.05 significance level.

The impact of the interactions between (i) △Ti,jk and Qi,jk and (ii) AGEi,jk and Qi,jk on genuine match
scores is assessed by comparing the population-mean trends of genuine match scores with respect to △Ti,jk

at different values of AGEi,jk and Qi,jk in Models D and E (see Fig. S6). As the 95% confidence intervals
in Models D and E are overlapped, it cannot be said that these interactions significantly affect the variation
in genuine match scores with respect to △Ti,jk.

The temporal trend of genuine match scores is analyzed by fixing one of the covariates AGEi,jk and Qi,jk

in Model E (see Figs. S7 and S8). In Fig. S7, the population-mean trends of genuine match scores with
respect to △Ti,jk for each subject’s age group (AGEi,jk is (a) 20, (b) 40, (c) 60, and (d) 78) are shown.
For the age group of 20, the NFIQ reliably predicts the genuine match scores since the the population-mean
trends at different values of Qi,jk are separable at the 0.05 significance level. However, for subjects at older
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Figure S4: Normal probability plots of (a) and (d) residuals at level 1 (εi,jk), (b) and (e) random-effects
for intercept at level 2 (b0i), and (c) and (f) random-effects for slope at level 2 (b1i) of Model BT fit to the
genuine match scores obtained from the two COTS matchers.

ages, the reliability of NFIQ in predicting genuine match score reduces. On the other hand, the population-
mean trends of genuine match scores with respect to △Ti,jk for each fingerprint quality group (Qi,jk is (a)
1, (b) 3, and (c) 5) are shown in Fig. S8). At any level of fingerprint quality, the impact of subject’s age is
not significant on genuine match scores since the 95% confidence intervals of all age groups are completely
overlapped.
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Table S3: Parameter estimates and 95% confidence intervals of genuine match scores obtained by COTS-1 matcher when a single finger is used
for recognition

Parameters Model BT Model BA Model BQ Model D Model E

Fixed Effects

β00 0.1496 0.5682 0.7087 0.9137 1.1472
(0.1406; 0.1590) (0.5335; 0.6020) (0.6954; 0.7221) (0.8765; 0.9471) (1.0828; 1.2100)

β10 -0.0440 -0.0175 -0.2750 -0.0368 -0.0283
(-0.0450; -0.0430) (-0.0185; -0.0164) (-0.2798; -0.2702) (-0.0378; -0.0358) (-0.0313; -0.0255)

β20 -0.0030 -0.0110
(-0.0042, -0.0019) (-0.0130; -0.0090)

β30 -0.2509 -0.3486
(-0.2558, -0.2463) (-0.3739; -0.3242)

β40 -0.2509 -0.0035
(-0.2558, -0.2463) (-0.0045; -0.0024)

β50 -0.2509 0.0033
(-0.2558, -0.2463) (0.0026; 0.0041)

Variance Components

σ2
ε 0.7057 0.6998 0.6489 0.6033 0.6032

σ2
0 0.5298 5.6003 0.9096 6.6328 6.6570

σ2
1 0.0034 0.0050 0.1163 0.0041 0.0041

σ01 -0.0134 -0.1574 -0.2543 0.0944 0.0950
σ2
2 0.0068 0.0068

σ02 -0.1941 -0.1945
σ12 -0.0036 -0.0036
σ2
3 0.1165 0.1181

σ03 -0.2092 -0.2207
σ13 -0.0007 -0.0011
σ23 -0.0013 -0.0010
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Table S4: Parameter estimates and 95% confidence intervals of genuine match scores obtained by COTS-2 matcher when a single finger is used
for recognition

Parameters Model BT Model BA Model BQ Model D Model E

Fixed Effects

β00 0.2032 0.7447 0.8456 1.0353 1.4399
(0.1939; 0.2127) (0.7072; 0.7843) (0.8316; 0.8595) (0.9947; 1.0750) (1.3706; 1.5103)

β10 -0.0616 -0.0243 -0.3439 -0.0533 -0.0654
(-0.0625; -0.0606) (-0.0254; -0.0231) (-0.3489; -0.3385) (-0.0543; -0.0522) (-0.0679; -0.0629)

β20 -0.0024 -0.0130
(-0.0036, -0.0011) (-0.0152; -0.0107)

β30 -0.3064 -0.4694
(-0.3112, -0.3015) (-0.4925; -0.4466)

β40 -0.3064 0.0048
(-0.3112, -0.3015) (0.0039; 0.0057)

β50 -0.3064 0.0043
(-0.3112, -0.3015) (0.0036; 0.0050)

Variance Components

σ2
ε 0.7185 0.7120 0.6738 0.6127 0.6125

σ2
0 0.5744 7.5575 0.9105 7.8996 7.8362

σ2
1 0.0039 0.0066 0.1027 0.0040 0.0040

σ01 -0.0277 -0.2136 -0.2473 0.0800 0.0825
σ2
2 0.0082 0.0081

σ02 -0.2335 -0.2314
σ12 -0.0033 -0.0033
σ2
3 0.1039 0.1077

σ03 -0.1466 -0.1646
σ13 -0.0004 ∗ -0.0005*

σ23 -0.0030 -0.0027
* The hypothesis test gives that the null hypothesis that the parameter is zero is not rejected at a significance level of 0.05.
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(a) AGEi,jk = 20, Qi,jk = 1
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(b) AGEi,jk = 20, Qi,jk = 3
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(c) AGEi,jk = 20, Qi,jk = 5
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(d) AGEi,jk = 40, Qi,jk = 1

0 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

1

Time Interval in Years

M
a
tc

h
 S

c
o
re

 

 

Model D

Model E

(e) AGEi,jk = 40, Qi,jk = 3
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(f) AGEi,jk = 40, Qi,jk = 5
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(g) AGEi,jk = 60, Qi,jk = 1
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(h) AGEi,jk = 60, Qi,jk = 3
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(i) AGEi,jk = 60, Qi,jk = 5
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(j) AGEi,jk = 78, Qi,jk = 1
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(k) AGEi,jk = 78, Qi,jk = 3
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(l) AGEi,jk = 78, Qi,jk = 5

Figure S6: Comparison between Models D and E. Population-mean trends of genuine match scores with
respect to △Ti,jk are shown when AGEi,jk varies from 20 to 78 and Qi,jk varies from 1 to 5 in Models D
and E. Solid lines are the bootstrap means, and the shaded areas represent the 95% confidence intervals. A
single finger is used for recognition and match scores are obtained from COTS-1 matcher.
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(a) AGEi,jk = 20
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(b) AGEi,jk = 40
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(c) AGEi,jk = 60
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(d) AGEi,jk = 78

Figure S7: Population-mean trends of genuine match scores with respect to △Ti,jk when AGEi,jk is fixed
and Qi,jk varies from 1 to 5 in Model E. Solid lines are the bootstrap means, and the shaded areas represent
the 95% confidence intervals. A single finger is used for recognition and match scores are obtained from
COTS-1 matcher.
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(a) Qi,jk = 1
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(b) Qi,jk = 3

0 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

1

Time Interval in Years

M
a
tc

h
 S

c
o
re

 

 

AGE
ijk

 = 20

AGE
ijk

 = 40

AGE
ijk

 = 60

AGE
ijk

 = 78

(c) Qi,jk = 5

Figure S8: Population-mean trends of genuine match scores with respect to △Ti,jk when Qi,jk is fixed
and AGEi,jk varies from 20 to 78 in Model E. Solid lines are the bootstrap means, and the shaded areas
represent the 95% confidence intervals. A single finger is used for recognition and match scores are obtained
from COTS-1 matcher.
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Figure S9: Parameter estimates of Model BT with genuine match scores provided by two COTS matchers.
The estimates for the population-mean parameters (β00, β10) and the parameters for each subject (ϕ0i, ϕ1i)
are represented as red triangle and blue dots, respectively. The parameters associated with five outlier
subjects are marked as green squares in (a).
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(a) (ϕ0i, ϕ1i) = (−3.2326, 0.0016)
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(b)

Figure S10: A subject whose intercept in Model BT is very small due to the severe alteration (i.e., scarring)
of the fingerprint pattern (outlier case 1). (a) The observed responses and fitting result of the subject, and
(b) fingerprint impressions of the subject at different ages.
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(a) (ϕ0i, ϕ1i) = (2.0281,−0.1167)
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Figure S11: A subject with high quality ridge pattern resulting in the large intercept in Model BT (outlier
case 2). (a) The observed responses and fitting result of the subject, and (b) fingerprint impressions of the
subject at different ages.
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Figure S12: A subject with steep negative slope (outlier case 3) resulting from a mislabeled fingerprint (the
first impression). (a) The observed responses and fitting result of the subject, and (b) fingerprint impressions
of the subject at different ages.
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(a) (ϕ0i, ϕ1i) = (0.3443,−0.2491)
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Figure S13: A subject with steep negative slope due to fingerprint impressions made during his adolescence
(outlier case 4). (a) The observed responses and fitting result of the subject, and (b) fingerprint impressions
of the subject at different ages.
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Figure S14: A subject with positive slope (outlier case 5) where the comparisons involving a lower quality
fingerprint (at age 25) have short time intervals. (a) The observed responses and fitting result of the subject,
and (b) fingerprint impressions of the subject at different ages.
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(a) Model BT, COTS-1
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(b) Model BA, COTS-1
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(c) Model BT, COTS-2
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(d) Model BA, COTS-2

Figure S15: Population-mean trends of impostor match scores obtained by two COTS matchers and 95%
confidence intervals with respect to (a) and (c) △Ti,jk, and (b) and (d) AGEi,jk, when a single finger is used
for recognition.
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Table S5: Parameter estimates and 95% confidence intervals of impostor match scores obtained by two COTS matchers when a single finger
is used for recognition

COTS-1 COTS-2
Parameters Model BT Model BA Model BT Model BA

Fixed Effects

β00 0.0004 -0.0589 0.0220 0.1057

(-0.0044; 5.4390e-03)* (-0.0711; -0.0475) (0.0183; 0.0257) (0.0946; 0.1162)
β10 -0.0005 0.0019 -0.0056 -0.0035

(-0.0009; -6.3655e-07) (0.0016; 0.0023) (-0.0061; -0.0051) (-0.0038; -0.0032)

Variance Components

σ2
ε 0.9292 0.9299 0.9673 0.9690

σ2
0 0.1479 0.4347 0.0720 0.2949

σ2
1 0.0004 0.0002 0.0008 0.0002

σ01 -0.0028 -0.0088 -0.0036 -0.0076
* The hypothesis test gives that the null hypothesis that the parameter is zero is not rejected at a significance level of 0.05.
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(b)

Figure S16: Population-mean trend of fingerprint matching accuracy and 95% confidence interval with
respect to △Ti,jk. (a) Probability of true acceptance and (b) probability of false acceptance with respect
to △Ti,jk. Match scores are obtained by COTS-2 matcher when a single (right index) finger is used for
recognition.
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(a) Model BT, COTS-1
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(b) Model BA, COTS-1
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(c) Model BT, COTS-2
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(d) Model BA, COTS-2

Figure S17: Population-mean trends of genuine match scores obtained by two COTS matchers and 95%
confidence intervals with respect to (a) and (c) △Ti,jk and (b) and (d) AGEi,jk , when the scores from ten
fingers are fused.
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Table S6: Parameter estimates and 95% confidence intervals when the genuine match scores from ten fingers obtained by two COTS matchers
are fused by a sum rule.

COTS-1 COTS-2
Parameters Model BT Model BA Model BT Model BA

Fixed Effects

β00 0.1896 0.5867 0.2258 0.7537
(0.1800; 0.1995) (0.5231; 0.6841) (0.2159; 0.2360) (0.7056; 0.8996)

β10 -0.0603 -0.0185 -0.0726 -0.0249
(-0.0612; -0.0594) (-0.0223; -0.0163) (-0.0736; -0.0717) (-0.0295; -0.0235)

Variance Components

σ2
ε 0.6562 0.6651 0.6615 0.6602

σ2
0 0.5986 5.0636∗ 0.6599 8.6870

σ2
1 0.0037 0.0046 0.0040 0.0074

σ01 -0.0144 -0.1409* -0.0304 -0.2423
* The hypothesis test gives that the null hypothesis that the parameter is zero is not rejected at a significance level of
0.05.
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(a) Model BT, COTS-1
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(b) Model BA, COTS-1
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(c) Model BT, COTS-2

0 20 40 60 80

−8

−6

−4

−2

0

2

4

Age in Years

M
a

tc
h

 S
c
o

re

 

 

Bootstrap Mean

95% Confidence Interval

(d) Model BA, COTS-2

Figure S18: Population-mean trends of impostor match scores obtained by two COTS matchers and 95%
confidence intervals with respect to (a) and (c) △Ti,jk and (b) and (d) AGEi,jk , when the scores from ten
fingers are fused.
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Table S7: Parameter estimates and 95% confidence intervals when the impostor match scores from ten fingers obtained by two COTS matchers
are fused by a sum rule.

COTS-1 COTS-2
Parameters Model BT Model BA Model BT Model BA

Fixed Effects

β00 0.0133 0.0290 0.0633 0.4013
(0.0065; 0.0202) (0.0134; 0.0456) (0.0575; 0.0689) (0.3850; 0.4176)

β10 -0.0044 -0.0009 -0.0155 -0.0133
(-0.0050; -0.0039) (-0.0014; -0.0004) (-0.0161; -0.0149) (-0.0138; -0.0128)

Variance Components

σ2
ε 0.8520 0.8527 0.9037 0.9049

σ2
0 0.3004 0.9797 0.1966 1.0748

σ2
1 0.0009 0.0007 0.0016 0.0010

σ01 -0.0058 -0.0216 -0.0071 -0.0298
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(b)

Figure S19: Fingerprint matching accuracy with respect to △Ti,jk. (a) Probability of true acceptance and
(b) probability of false acceptance with respect to △Ti,jk. Match scores are obtained by COTS-1 matcher
when the match scores from all ten fingers are fused by the sum rule.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Time Interval in Years

P
ro

b
a

b
ili

ty
 o

f 
T

ru
e

 A
c
c
e

p
ta

n
c
e

 

 

Bootstrap Mean

95% Confidence Interval

(a)

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

Time Interval in Years

P
ro

b
a

b
ili

ty
 o

f 
F

a
ls

e
 A

c
c
e

p
ta

n
c
e

 

 

Bootstrap Mean

95% Confidence Interval

(b)

Figure S20: Fingerprint matching accuracy with respect to △Ti,jk. (a) Probability of true acceptance and
(b) probability of false acceptance with respect to △Ti,jk. Match scores are obtained by COTS-2 matcher
when the match scores from all ten fingers are fused by the sum rule.


