
 Open access Proceedings Article DOI:10.1145/1821748.1821787

LooCI: a loosely-coupled component infrastructure for networked embedded systems
— Source link

Danny Hughes, Klaas Thoelen, Wouter Horré, Nelson Matthys ...+4 more authors

Institutions: Katholieke Universiteit Leuven

Published on: 14 Dec 2009 - Advances in Mobile Multimedia

Topics: Component (UML), Component-based software engineering, Wireless sensor network, Overhead (computing) and
Remote procedure call

Related papers:

 A generic component model for building systems software

 Contiki - a lightweight and flexible operating system for tiny networked sensors

 The nesC language: a holistic approach to networked embedded systems

 System architecture directions for networked sensors

 The RUNES Middleware for Networked Embedded Systems and its Application in a Disaster Management Scenario

Share this paper:

View more about this paper here: https://typeset.io/papers/looci-a-loosely-coupled-component-infrastructure-for-
4bymsp0q9y

https://typeset.io/
https://www.doi.org/10.1145/1821748.1821787
https://typeset.io/papers/looci-a-loosely-coupled-component-infrastructure-for-4bymsp0q9y
https://typeset.io/authors/danny-hughes-2tf9vy75b1
https://typeset.io/authors/klaas-thoelen-3rv889wyew
https://typeset.io/authors/wouter-horre-50biu7mw7r
https://typeset.io/authors/nelson-matthys-27jv6iwxc4
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/conferences/advances-in-mobile-multimedia-15j23so6
https://typeset.io/topics/component-uml-3bq2ifwa
https://typeset.io/topics/component-based-software-engineering-34zosnte
https://typeset.io/topics/wireless-sensor-network-2eic5t0n
https://typeset.io/topics/overhead-computing-1ddqien5
https://typeset.io/topics/remote-procedure-call-36841h3h
https://typeset.io/papers/a-generic-component-model-for-building-systems-software-3o5nz94x4b
https://typeset.io/papers/contiki-a-lightweight-and-flexible-operating-system-for-tiny-17ra90mhum
https://typeset.io/papers/the-nesc-language-a-holistic-approach-to-networked-embedded-3nbdmnogzq
https://typeset.io/papers/system-architecture-directions-for-networked-sensors-dm8wnczmkp
https://typeset.io/papers/the-runes-middleware-for-networked-embedded-systems-and-its-4yg4kigws9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/looci-a-loosely-coupled-component-infrastructure-for-4bymsp0q9y
https://twitter.com/intent/tweet?text=LooCI:%20a%20loosely-coupled%20component%20infrastructure%20for%20networked%20embedded%20systems&url=https://typeset.io/papers/looci-a-loosely-coupled-component-infrastructure-for-4bymsp0q9y
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/looci-a-loosely-coupled-component-infrastructure-for-4bymsp0q9y
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/looci-a-loosely-coupled-component-infrastructure-for-4bymsp0q9y
https://typeset.io/papers/looci-a-loosely-coupled-component-infrastructure-for-4bymsp0q9y

LooCI: a Loosely-coupled Component Infrastructure for
Networked Embedded Systems

Danny Hughes, Klaas Thoelen, Wouter Horré, Nelson Matthys, Javier Del Cid,

Sam Michiels, Christophe Huygens, Wouter Joosen

IBBT-Distrinet, Department of Computer Science, Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001, Heverlee, Leuven, Belgium.

{ firstname.lastname } @ cs.kuleuven.be

ABSTRACT

Considerable research has been performed in applying run-time
reconfigurable component models to the domain of wireless
sensor networks. The ability to dynamically deploy and
reconfigure software components has clear advantages in sensor
network deployments, which are typically large in scale and
expected to operate for long periods in the face of node mobility,
dynamic environmental conditions and changing application
requirements. To date, research on component and binding models
for sensor networks has primarily focused on the development of
specialized component models that are optimized for use in
resource-constrained environments. However, current approaches
impose significant overhead upon developers and tend to use
inflexible binding models based on remote procedure calls. To
address these concerns, we introduce a novel component and
binding model for networked embedded systems (LooCI). LooCI
components are designed to impose minimal additional overhead
on developers. Furthermore, LooCI components use a novel
event-based binding model that allows developers to model rich
component interactions, while providing support for easy
interception, re-wiring and re-use. A prototype implementation of
our component and binding model has been realised for the
SunSPOT platform. Our preliminary evaluation shows that LooCI
has an acceptable memory footprint and imposes minimal
overhead on developers.

Keywords
Wireless Sensor Networks, Component Models, Binding Models,
Publish-Subscribe

1. INTRODUCTION
Wireless Sensor Networks (WSNs), composed of embedded
computers equipped with low power radios and low-cost sensors
are being employed to support a growing range of fixed and
mobile applications such as habitat monitoring [1], flood warning
[2], industrial process control [3] and disaster management [4].
WSNs are typically large in scale, subject to unreliable
networking, node mobility, high risk of node failure and are
expected to operate unattended for long periods. Recently,
lightweight component models [4] [5] [6] [7] have emerged as a

promising approach to managing complexity in WSN
environments. However, these models have a steep learning curve
and impose a significant burden on the developer. Furthermore,
the binding models used in these systems are primarily based on
traditional Remote Procedure Call (RPC) approaches, which do
not adequately reflect the dynamism of sensor network
environments. RPC approaches also require that developers
explicitly specify relationships between single nodes, rather than
modelling interactions between implicit groups (e.g. neighbours
or networks) and explicit groups (e.g. nodes belonging to a
specific organisation). Thus, RPC-style communication does not
scale effectively in unreliable network environments. In addition,
in mobile scenarios with high rates of churn, RPC interaction
models require that developers deploy complex fault-tolerance
functionality to deal with intermittent connectivity.

This paper introduces the Loosely-coupled Component
Infrastructure (LooCI), which features a loosely-coupled, event-

based binding model inspired by event-driven programming
models [6], Service Oriented Architectures (SOA) [8], publish-
subscribe interaction models [9] and pluggable networking
support [10]. The resulting architecture is light-weight and
promotes a loose coupling between software components while
facilitating advanced features. The remainder of this paper is
structured as follows. Section 2 discusses component models for
WSNs. Section 3 discusses interaction models for WSNs. Section
4 presents the LooCI middleware. Section 5 evaluates an initial
implementation of LooCI. Section 6 discusses directions for
future work. Finally, section 7 concludes.

2. COMPONENT MODELS FOR WSN
A number of lightweight component models have been proposed
for networked embedded scenarios including: NesC [6],
OpenCOM [7], RUNES [4] and OSGi [5]. We discuss each of
these component models below.

NesC [6] is perhaps the best known and most widely deployed
component model for WSN and is used to implement the TinyOS
operating system [12]. NesC provides an event-driven
programming approach together with a static component model.
The NesC binding model is based upon statically declared
bidirectional component interfaces. Unlike OpenCOM [7],
RUNES [4] or OSGi [5], NesC components cannot be
dynamically rewired to support reconfiguration and adaptation.
However, the static programming approach used in NesC allows
for whole program analysis and optimization [6], which is
advantageous in resource constrained WSN environments. In
terms of remote communication, TinyOS provides an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MoMM2009, December 14–16, 2009, Kuala Lumpur, Malaysia.
Copyright 2009 ACM 978-1-60558-659-5/09/0012...$10.00.

implementation of the Active Messages paradigm [13]. Active
Messages integrate communication and computation by
incorporating a reference to a user-handler in each message. This
allows for an event-based handler invocation model and prevents
processes blocking while waiting for incoming messages. While
TinyOS itself provides no support for remote bindings, extensions
have been proposed to support traditional RPC-type bindings
[14].

OpenCOM [7] is a general purpose, run-time reconfigurable
component model. While OpenCOM does not target WSN
applications specifically, it is used to implement the GridStix [15]
sensor network platform. OpenCOM features a compact run-time
kernel that supports both static and dynamic compositions. In
dynamic systems, the kernel persists and may be used to support
rich runtime reconfiguration. OpenCOM also offers a higher level
of abstraction, known as Component Frameworks (CFs) [7],
which are used to model interactions between cooperating
components. CFs may be local or distributed and can be used as a
tool to support dynamic reconfiguration. In the case of distributed
component frameworks, a Meta Object Protocol (MOP) allows
reconfiguration actions to be applied to groups of components.
While OpenCOM notionally supports diverse binding types, all
current instantiations use RPC bindings. Furthermore, while the
OpenCOM component model is rich, the OpenCOMJ component
model alone consumes 52KB of RAM and the complete WSN
profile consumes 104KB [10], significantly more memory than is
available on popular embedded sensor motes such as the T-Mote
[16] or Mica-Z [17] platforms.

The RUNES [4] middleware brings OpenCOM functionality to
more embedded devices. The RUNES model has been realized in
C and Java and as with OpenCOM, RUNES allows for the use of
different binding types, however, all current implementations use
RPC. RUNES also adds a number of introspection API calls to
the OpenCOM kernel and has achieved a significantly smaller
footprint than OpenCOMJ, as reported in [10]. The C and Java
versions of RUNES consume less than 20KB [4] of memory.

The OSGi component model [5] targets powerful embedded
devices such as smart phones and network gateways along with
desktop and enterprise computers. OSGi provides a secure
execution environment, support for run-time reconfiguration,
lifecycle management and various system services. OSGi
interfaces are modeled using SCA [23] and, as with OpenCOM
[7] and RUNES [4], OSGi offers RPC-based bindings.
Unfortunately, while OSGi is suitable for powerful embedded
devices, the smallest implementation, Concierge [5] consumes
more than 80KB, making it unsuitable for very resource
constrained devices.

3. INTERACTION MODELS FOR WSN
In [19] Parlavantzas et al. present a component-based model that
can be used to define diverse forms of component binding
including: RPC, publish/subscribe, shared data spaces and pipes.
In this model, binding types are expressed as UML collaborations
which are modeled using 11 standard components. While this
model is very flexible, this comes at a significant cost in terms of
complexity and, as will be argued in section 4.4, only a subset of
binding are a good fit with WSN environments.

In [14] May et al. present an RPC extension to NesC [6] which
allows for remote procedure calls (RPC) with similar semantics to
local NesC calls. These RPC calls also support a simple one-hop
service discovery scheme. This scheme allows developers to call
methods on a neighbor, rather than targeting calls to a specific
mote address. This reduces the burden on developers, who need
not deal solely in terms of individual motes, and allows for simple
fault tolerance in the presence of node failure or high levels of
mobility. When an RPC call is made to a node’s neighbors, the
call will be served by exactly one neighbor, in an anycast fashion.
This approach however has a number of significant limitations.
Firstly, the lack of a common event or service description model
complicates discovery of third party services and monitoring of
interactions. Secondly, this approach still requires that developers
model component interactions primarily on a mote-by-mote basis,
which we believe is inefficient, if not infeasible, in large-scale or
mobile WSNs.

Jini [26] provides an event based service oriented architecture for
Java which leverages on RMI. Jini improves on the RMI registry
by making the lookup service distributed and allowing clients to
search for services based on their type, name or description. While
Jini promotes service discovery and re-use, the underlying
network implementation is based on RMI and TCP/IP, which are
a poor fit with unreliable WSN network environments.
Furthermore, the smallest Jini implementation [26] has a footprint
of over 1MB, making it unsuitable for highly resource constrained
devices.

TeenyLIME [27] provides a tuple space abstraction in which
processes communicate by writing and reading tuples into a
shared virtual memory space. To support mobile applications, the
tuple space in TeenyLIME is only shared by one-hop neighbours.
Although multi-hop communication is possible by traversing
multiple tuple-spaces, this limits the scope of possible interactions
between software components. Furthermore, in contrast with
event based approaches, tuple spaces require active polling to
receive data updates. This leads to higher communication
overhead than event based approaches.

4. THE LOOCI MIDDLEWARE

The LooCI middleware is designed for Java devices such as the
Sun SPOT [11] and Sentilla Perk [21]. As these platforms support
standard Java ME [22], they reduce the burden on developers
compared to bespoke WSN technologies such as TinyOS [12] or
Contiki [18]. In a broader sense, the new generation of Java
sensor motes opens the field of WSN development to millions of
existing Java ME developers [22]. LooCI aims to bring the many
advantages of reconfigurable, component-based software to Java-
based WSN platforms, while preserving the benefits of familiarity
and ease-of-use that Java ME offers. LooCI accomplishes this
through the introduction of an easy-to-use component model, a
simple yet extensible networking framework and a common event
bus abstraction. The event bus provides a common mechanism to
connect software components for any kind of data exchange.
These features are discussed in sections 4.1 to 4.3 respectively.
Section 4.4 then discusses how LooCI may be used to compose
distributed applications. A simplified overview of the LooCI
middleware is shown in Figure 1.

Figure 1: The Loosely Coupled Component Infrastructure (LooCI). LooCI Microcomponents provide and use the same interfaces as

Macrocomponents but are directly connected to the LooCI runtime (for clarity reasons, these connections are not drawn).

4.1 The LooCI Component Model

LooCI offers support for two component types, macrocomponents
and microcomponents:

Macrocomponents are coarse-grained and service-like, building
upon the notion of Isolates [25] inherent in the Sentilla [21] and
SQUAWK [11] virtual machines. Isolates are process-like units of
encapsulation and provide varying levels of control over their
execution (exactly what is provided is dependant on the specific
JVM). LooCI standardizes and extends the functionality offered
by Isolates. Each macrocomponent runs in a separate isolate and
communicates with the run-time middleware via Inter Isolate RPC
(IIRPC), which is offered by the underlying VM. Unlike
microcomponents, macrocomponents may use multiple threads
and utility libraries.

Microcomponents are fine-grained and self-contained. All
microcomponents run in the master Isolate alongside the LooCI
runtime. Unlike macrocomponents, microcomponents must be
single threaded and self contained, using no utility libraries. Aside
from these restrictions, microcomponents offer identical
functionality to macrocomponents with lower memory
consumption.

Both macrocomponents and microcomponents offer run-time

reconfiguration, interface definitions, introspection and support
for the re-wiring of bindings. Each LooCI component has a
unique identifier which is generated based upon the interfaces and
dependencies of the component (see sections 4.1.2).

4.1.1 Run-time Reconfiguration and Introspection
In order to implement a LooCI component, developers extend a
generic component base-class, which provides standard methods
to START and STOP a component as well as to place the
component into quiescent state (MAKE_QUIESCENT) and
RESUME operation from quiescent mode. For simple component

implementations the control methods provided by the base-class
are sufficient, however, for components with more complex
requirements, developers may override these methods with their
own implementations of START, STOP, MAKE_QUIESCENT
and RESUME. Extending the component base-class also provides
implicit access to the LooCI Network Framework and Event Bus.
LooCI components may be deployed on demand via a LooCI
application known as the Network Manager (see Figure 2), a
maintenance application that has responsibility for every node in
its associated WSN. Upon deployment, all LooCI components
register with the per-node Reconfiguration Engine. The
Reconfiguration Engine maintains a reference to all LooCI
components running on the node and exposes a remote
reconfiguration interface on the event bus. Thus, run-time
reconfiguration may be easily enacted by LooCI components
running on sensor nodes, gateways or back-end devices.

Figure 2: WSN and Back-End Integration

As LooCI components extend and build upon common Java
concepts, they have a significantly reduced learning curve for
standard Java or Java ME developers. Indeed, in the simplest case,
converting a standard Java ME CLDC 1.1 application into a

LooCI component requires only that a single ‘extends’ statement
be modified and that one method call - initialize() be added.

The Reconfiguration Engine provides introspection at the node,
component and binding level. At the node level, it is possible to
inspect the LooCI components that are deployed on a mote. At the
component level, the state of components can be inspected
(STARTED, STOPPED, QUIESCENT etc.). At the binding level,
the addresses to which a component is bound can be inspected. As
with run-time reconfiguration, introspective information is
accessed via the Reconfiguration Engine over the event bus.

4.1.2 Interface Definitions and Wiring

LooCI components define their provided interfaces as the set of
LooCI events that they publish. The receptacles of a LooCI
component are similarly defined as the events to which they
subscribe. Each LooCI event has a globally unique identifier
which classifies the event in terms of a global descriptive
hierarchy (described in section 4.3).

Wiring of components occurs after deployment via the LooCI
Reconfiguration Engine, which exposes WIRE and UNWIRE
operations. These mechanisms take as their argument a LooCI
Component ID, an Event ID and a network address to which the
specified event should be bound or unbound. LooCI addresses
may map to a single node, a group of nodes, or an entire WSN.
Wiring can be inspected at any time through the introspection API
and re-wiring may be enacted by any element on the event bus.

As LooCI components communicate indirectly over the event bus,
it is easy to build complex and flexible relationships between
individual nodes, groups of nodes, or entire networks.
Furthermore, re-wiring operations are low cost and easily enacted.
As stated previously, this loose coupling is well suited to mobile
environments.

4.2 Supporting Network Framework
The LooCI Network Framework abstracts over and extends the
networking services provided by the various underlying sensor
platforms [11] [21] and provides a simple, uniform API to the
upper middleware layers and applications. This abstraction is
supported by an extensible set of networking components, as
shown in Figure 3.

The initial set of networking components consists of a
UnicastComponent (UC) which provides both reliable and
unreliable point-to-point multi-hop communication, a
BroadcastComponent (BC) which implements network-wide
broadcast and a NeighbourcastComponent (NC) which
implements one-hop broadcast. The interface to the upper layers is
agnostic to the various underlying communication paradigms and
provides a simple send(message, destination) interface. Based
upon the address provided and flags in the message header, the
Network Framework automatically selects the most appropriate
networking component to dispatch the message, as shown in
Figure 3.

Incoming messages are passed from the underlying JVM to the
Receiver component which in the case of reliable unicast responds
with an ACK. As with Active Messages [13], LooCI messages are
dispatched to the upper layers using an event-based handler
invocation model. This approach avoids the need for connection
setup and encourages programmers to think in an event-based
fashion that we believe is appropriate for WSN (we explore this

issue further in section 4.4). In the future, we intend to provide a
more detailed description of the LooCI Network Framework,
however, we consider such a description outside of the scope of
this paper.

����������	

��	����	���

���������������

��

	���

�����
��	����	�

�� �� �� ����

� !��
"��

���

� !��
"��

���

#$%����&����"!� ���
� ���&��������
� ���&��	���
�

�����' �����

��#

Figure 3: Supporting Network Framework

4.3 The LooCI Event Model
The LooCI Event Model embodies a generic communication
substrate for disseminating events of any kind. This includes, but
is not limited to: sensor readings, reconfiguration messages and
state information. In concert with the networking framework
described in the previous section, the Event Manager forms a
distributed ‘Event Bus’ to which all LooCI components are
connected. A per-node instance of the LooCI Event Manager
implements a simple topic-based publish-subscribe event model,
wherein events are disseminated to subscribers based upon their
type. For example, a software element may subscribe to events of
type 'TEMPERATURE' and may then be wired to a component at
a given network location (local, a remote node or a remote group
of nodes) that produces these events. The interface to the event
bus is simple and lightweight, however, in concert with LooCI’s
global, hierarchical type system, the Event Manager allows for
rich modeling of interactions between nodes.

Available components and event publishers may be discovered
directly, by interrogating the introspection interface of individual
nodes or, more commonly, through the Network Manager of a
WSN (a LooCI application which provides aggregated
information about, and control over, all nodes in the associated
WSN).

LooCI events are defined based upon a global, hierarchical name
space, or taxonomy, represented by a spanning tree. The root of
the tree is the base ‘EVENT’ type and each successive layer of
child nodes describes events with increased specificity. Each node
in this tree is assigned a unique two-byte identifier based upon the
order in which this event was added to the hierarchy. The
disadvantage of our current scheme is that it limits the size of the

LooCI name-space to 65,536 unique events. However, the
overhead of transmitting event IDs is predictable and acceptable
at 2 bytes per event. In a general sense, hierarchical classification
has a number of advantages in terms of component re-use and
binding flexibility. In terms of re-use, a global type system makes
it possible for developers to easily discover deployed third-party
components suitable for use in their compositions. This prevents
the unnecessary deployment of redundant functionality and is thus
critical to conserving resources in an embedded environment. In
terms of binding flexibility, the hierarchical classification allows
developers to easily subscribe to groups of events. For example, a
temperature monitoring component may include temperature
conversion functionality, and thus would subscribe to all events of
type TEMP, rather than specifying TEMP_°C and TEMP_°F. In
the future, we hope to transition to a more efficient taxonomy
encoding scheme such as that presented in [29].

A hierarchical classification also allows for automatic
optimization of compositions at deploy-time. For example, as part
of a composition, a developer may request deployment of a
TEMP_°C component, however, a TEMP_°F component already
exists at the desired location. In this case the deploying entity may
choose not to deploy the requested component (which would
consume additional resources), but instead to wire a lightweight
TEMP_CONVERSION component into the provided
composition and connect this to the existing TEMP_°F
component. While this example is trivial, we believe that in an
infrastructure sensor network which supports multiple
applications, automatic optimization of compositions may hold
significant benefits.

4.4 The LooCI Binding Model

Section 4.1 – 4.3 introduced the supporting elements of the LooCI
binding model in which interfaces specify relationships between
components on the event bus. This section now specifically
discusses the suitability of this binding model for supporting
programming in WSN and other networked embedded systems.
Section 4.4.1 makes the case for loosely coupled, standardized
bindings. Section 4.4.2 gives examples of how this binding model
may be used.

4.4.1 The Argument for Event-Based Bindings

As previously described, LooCI bindings are formed by the
subscription of one component to the events generated by another
component. Combined with our flexible addressing scheme and
connectionless network model, the result is a very loose coupling
between components. LooCI bindings are implicit, asynchronous,
distributed and multi-party.

� Implicit: while concrete, bindings need not be represented by
a specific component as interfaces are defined by the event
types that a component publishes and subscribes to.

� Asynchronous: event publishers do not block while
producing events and subscribers are notified
asynchronously when an event is received. This is an
excellent fit with unreliable, resource constrained WSNs.

� Distributed: local or remote bindings are semantically
identical, allowing components to be easily bound to local or

remote resources, whether this is a single node, a group of
nodes or a whole network.

� Multi-party: unlike traditional RPC-based approaches, which
require that relationships be modeled between single nodes,
LooCI bindings allow for rich interactions between nodes,
groups and networks.

The implicit nature of LooCI interfaces reduces the burden on
developers. This somewhat reduces the learning curve inherent in
writing LooCI components and brings our model closer to
standard Java ME CLDC 1.1. The distributed nature of our
bindings allows for rich interactions between network entities to
be modeled. This is in contrast to the static, local component
model of NesC [6] and a significant improvement over the RPC-
like bindings offered by OpenCOM and RUNES which can be
used to build relationships only between single motes. LooCI
components support group-bindings that are richer than those
provided by May et al. [14], and more lightweight than the web
services approach employed by Pohl et al. [3].

In a general sense, we believe that the characteristics of WSN data
flows are a good fit with the features of publish-subscribe
interaction models [9]. However, unlike traditional publish-
subscribe systems such as Jini [25] that require specialized service
brokers, LooCI is entirely decentralized, allowing any node to act
as an event broker, which is critical in mobile environments where
network segmentation is possible. Through the provision of a per-
WSN ‘Network Manager’, that supports aggregate control and
introspection, we believe that LooCI balances the benefits of
publish-subscribe systems with the characteristics of real world
WSNs and is a clear improvement over previous interaction
models.

4.4.2 Example Bindings

This section provides some simple examples which show how our
binding model can be used to support the creation of distributed
software compositions for a mobile warehouse monitoring
scenario. Each example shows how the necessary bindings may be
realized using LooCI API calls. Each binding is illustrated in
Figure 5.

In this scenario, a company, ‘STORAGE_CO’ uses a WSN to
monitor the location of packages stored in their warehouse using
RF-based localization. A sensor mote is installed in each package
and the LooCI middleware runs on both WSN motes and the
back-end systems of STORAGE_CO.

Example 1 - Tracking a Suspicious Package: In this example, a
specific package has been tagged as ‘suspicious’ by a
STORAGE_CO employee and its location will thus be monitored
as it moves through the warehouse, until a customs officer arrives
to inspect it. To support this, the SUSPECT_TRACKING
component will dispatch a WIRE event to the address of the mote
in the identified package. This event specifies that the
LOCATION_EVENT that is produced by a
LOCATION_COMPONENT running on this mote should be
wired to the address of the mote hosting the
VISUALISATION_COMPONENT, which will then begin to
receive location telemetry from the suspect package. This is an
example of how a simple one-to-one binding may be created:

wire(TARGET_ADDRESS, LOCATION_COMPONENT,

 LOCATION_EVENT, VISUALISATION_ADDRESS,

 VISUALISATION COMPONENT);

Example 2 – Emergency Data Logging: In this example,
STORAGE_CO has been tasked to safely store sensitive
materials, for which they must provide an unbroken location audit
trail. To handle the possibility of disconnection from back-end
logging systems during periods of mobility, STORAGE_CO also
deploys an in-network LOGGING_COMPONENT which logs
SENSOR events, storing them to flash. When the node moves out
of range, the LOCATION_COMPONENT will use LooCI’s
introspection facilities to discover all
LOGGING_COMPONENTs available on neighboring nodes,
storing them to an array of addresses (logAddresses). The
LOCATION_COMPONENT will then wire its LOCATION
events to the addresses of each discovered
LOGGING_COMPONENT:

for (each address in logAddresses) {

 wire(local_address, LOCATION_COMPONENT,

 LOCATION_EVENT, remote_address,

 LOGGING_COMPONENT);

 }

As a ‘LOCATION’ event is a child of the ‘SENSOR’ event type
in the global event classification (described in section 4.3), the
LOGGING_COMPONENT is implicitly subscribed to
LOCATION events. This is an example of how introspection,
coupled with a global type system can be used to support
decentralized service discovery and re-use. It is also an example
of a one-to-many binding. Furthermore, the
LOGGING_COMPONENT provides a simple example of how
hierarchical event types allow for the creation of flexible
components, such as a generic logging service.

Example 3 – Filtering location data: Following deployment of a
WSN and location-tracking software, STORAGE_CO discovers
that their location data is subject to intermittent interference and
thus inaccuracy. STORAGE_CO software engineers develop a
filtering algorithm that can weed-out bogus location data. In order
to install the filtering component, the Network Manager is used to
discover the address of LOCATION_COMPONENTs, which is
stored to an array (publishers). The Network Manager then
discovers all addresses to which these
LOCATION_COMPONENTs are bound:

for (each pub_address in publishers) {

 subscribers = discoverBindings(pub_address,

 LOCATION_COMPONENT, LOCATION_EVENT);

 }

A FILTER_COMPONENT is then deployed on each mote
hosting a LOCATION_COMPONENT (The
FILTER_COMPONENT depends upon, and produces
LOCATION events) and the LOCATION_COMPONENT is then
rewired to the FILTER_COMPONENT:

 deploy(pub_address, FILTER_COMPONENT);

 wire(pub_address, FILTER_COMPONENT,

 LOCATION_EVENT, pub_address,

 LOCATION_COMPONENT);

Figure 5: Example LooCI bindings

Each subscriber is then unwired from all current bindings and re-
connected to the deployed FILTER_COMPONENT:

for (each sub_address in subscribers) {

 unwire(sub_address, LOCATION_COMPONENT,

 LOCATION_EVENT, pub_address,

 sub_component);

 wire(sub_address, FILTER_COMPONENT,

 LOCATION_EVENT, pub_address,

 LOCATION_COMPONENT);

 }

Thus all components that were previously bound to a
LOCATION_COMPONENT and receiving unfiltered
LOCATION events are now bound to a FILTER_COMPONENT
producing filtered LOCATION events. This is an example of how
dynamic component re-wiring can be used to modify the
functionality of an existing composition. This example also shows
how the loosely coupled event-bus abstraction supports easy
interception of events.

Each of these simple case-study examples has been implemented.
The compactness of their implementation is analyzed in terms of
source lines of code in section 5.3. Each example binding is
illustrated in Figure 5.

5. EVALUATION
A prototype implementation of LooCI has been realized in Java
ME for the Sun SPOT platform, running the ‘BLUE’ version of
the SQUAWK JVM, which implements the Java ME CLDC 1.1
standard. This section now provides a preliminary evaluation of
LooCI. Section 5.1 examines the footprint of LooCI. Section 5.2
examines the performance of LooCI. Finally, section 5.3
investigates the overhead that working with LooCI components
imposes on developers.

5.1 Memory Footprint
It is particularly critical that middleware for embedded systems
maintains a minimal memory footprint. This section compares
LooCI to the GridKit middleware [10] (which uses OpenCOMJ
[7]) and RUNES [4].

The complete LooCI implementation may be most directly
compared to the GridKit WSN middleware [10] which, like
LooCI, offers network functionality along with support for
component based software development and dynamic
reconfiguration through OpenCOMJ [10]. However, it is also
possible to compare a subset of the LooCI implementation
(component model and reconfiguration support) to the Java
implementation of the RUNES [4] component model. Table 1
below compares the footprint of LooCI with GridKit and RUNES
as reported in [10] and [4] respectively.

Table 1 – LooCI Memory Footprint Comparison to GridKit

and RUNES

 LooCI GridKit RUNES

Core: 20.8 kB 52.4 kB 15.5 kB

Networking: 23.4 kB 51.8 kB N/A

Total: 44.3 kB 104.2 kB N/A

As Table 1 shows, the LooCI component model has a footprint of
just 20.8 kB, slightly more than the RUNES component model at
15.5 kB but significantly smaller than OpenCOMJ at 52.4 kB.
Furthermore, the event bus network abstraction offered by LooCI
consumes less than half of the memory of the GridKit networking
framework while offering a more flexible communication
abstraction. We anticipate that through further optimization, it
will be possible to significantly reduce the footprint of LooCI
while offering the same functionality.

LooCI components also have a minimal footprint. A null LooCI
macrocomponent requires 686 bytes of disk space, while a null

microcomponent consumes just 587 bytes, which is similar to a
RUNES component at 544 bytes (figures are not available for an
equivalent OpenCOMJ component). We anticipate that further
reductions in LooCI component size may be possible through
optimization of the base component class.

Table 2 compares the memory consumption of the LooCI
middleware to the standard SunSPOT SDK (‘BLUE’ version).
The memory consumed by a dummy component running in the
master isolate (a) may be directly compared to the LooCI
middleware (core and networking) running with no components
registered. Thus it can be seen from the table that the LooCI run-
time consumes only 7K of RAM. The table also shows that
running a standard SunSPOT component in a child isolate (b)
increases memory consumption by 21K. As macrocomponents are
instantiations of an isolate, we can expect a similar increase for
each macrocomponent added. Our evaluation however shows an
increase of 39K for the first macrocomponent and 26K for each
additional macrocomponent. The disparity in overhead between
SunSPOT applications and macrocomponents can be explained by
the instantiation process of the inter-isolate RPC server and its
proxies. Table 2 also shows that microcomponents have a much
smaller memory footprint at 2K per component. Finally, it should
be noted that these experiments were performed using the
Solarium management tool provided as part of the SunSPOT
SDK. As Solarium provides over the air monitoring of motes, it
would be expected to consume a non-negligible amount of
memory on each mote. However, Solarium memory consumption
is constant for all experiments and thus the relative differences in
memory usage shown in Table 2 remain accurate.

Table 2 – LooCI Memory Usage

 Total RAM Used

(a) No Applications 77 kB
SunSPOT SDK:

(b) 1 Application 98 kB

 Macro. Micro.

No components 84 kB 84 kB

1 component 123 kB 86 kB

2 components 150 Kb 88 kB

LooCI:

3 components 176 kB 90 kB

5.2 Performance
We evaluated LooCI on a standard SunSPOT mote (180MHz
ARM9 CPU, 512KB RAM, SQUAWK VM ‘BLUE’ version)
using the Solarium management application. We logged the time
required to initialize the LooCI run-time, the time required to
initialize a null LooCI component and the time required to send
and receive an event. In each case, we performed 10 experiments.
Table 3 shows the average performance characteristics observed
in these experiments.

From Table 3 it is clear that even on an embedded platform such
as the Sun SPOT, the time required to initialize the LooCI
runtime and LooCI components is not prohibitive, especially as
such operations are likely to be infrequent. Microcomponents take
significantly longer to initialize as they are delivered in an isolate
and must first be transferred to the master isolate for execution.

The performance of event dissemination for microcomponents is
good; however, the performance of event publication for
macrocomponents is lower due to the overhead of IIRPC calls in
the SQUAWK ‘BLUE’ JVM.

Table 3 – LooCI Performance

 Time (ms)

Run-time Init: 498ms

 Macro. Micro.

Null-component Init: 35ms 738ms

Event Publication: 14ms 4ms

Event Reception: 14ms 4ms

5.3 Overhead for Developers
In this section, we revisit the example components and bindings
introduced in section 4.4.2. Each component is analyzed in terms
of Source Lines of Code (SLoC). While SLoC is an imperfect
metric for assessing development overhead, we believe that the
results we have obtained are fair and representative. In brief, the
functionality of each component is summarized below:
� NULL_COMPONENT: the null component contains no

functional code and has no interfaces or receptacles.
� LOCATION_COMPONENT: the location component

publishes a LOCATION_EVENT on the event bus.
� VISUALISATION_COMPONENT: the visualization

component subscribes to the LOCATION_EVENT,
displaying location data.

� LOG_COMPONENT: the log component subscribes to the
SENSOR_EVENT, storing it to flash.

� LOCATION_FILTER_COMPONENT: the location filter
component subscribes to LOCATION_EVENT and
publishes a filtered LOCATION_EVENT.

Table 4 – SLOC of Example Components

Source Lines of Code
Component

Functional Component

NULL 0 8

LOCATION 12 8

LOCATION_VIEW 10 8

LOG_COMPONENT 11 8

LOCATION_FILTER 21 11

As can be seen from Table 4, implementing LooCI components
does not impose unreasonable overhead on developers in terms of
source lines of code.

6. FUTURE WORK
Our future work will focus upon three major areas: (i) extension
of the LooCI network framework, (ii) porting LooCI to the
Sentilla Perk platform and (iii) development of a component
parameterization model. The current implementation of the LooCI
networking framework provides support for unicast, broadcast

and neighbourcast as discussed in section 4.2. However, we
believe that support for more flexible group messaging and
multicast are essential to support efficient communication in
challenging network environments. We also intend to develop an
implementation of LooCI for the Sentilla Perk platform which has
more challenging resource constraints [21]. We will then deploy a
large test-bed of heterogeneous LooCI nodes (Sun SPOTS [11]
and Perk motes [21]) in order to test the performance of loose
event couplings in such a large scale setting with simulated node
mobility. These approaches will be evaluated in terms of their
network overhead and potential benefits in realistic case-studies.
Perhaps the most critical area of future work is that of developing
a model for component parameterization, which is necessary to
deal with the differing requirements of dependent components. A
simple example of the need for parameterization becomes
apparent if one considers the case of two components which
depend on temperature readings. COMPONENT_A requires that
readings be produced every minute while COMPONENT_B
requires that readings be produced every 10 seconds. Clearly,
modeling this functionality as two separate components is
wasteful. To avoid this, a common method is required to
parameterize component behavior and to negotiate an optimal
configuration where remote components request conflicting
parameterizations.

7. CONCLUSIONS
This paper introduced LooCI, a novel component and binding
model for WSNs and other network embedded systems. Key
features of LooCI are support for run-time reconfiguration,
introspection and low-overhead for Java developers.

LooCI bindings are loosely coupled and indirect, operating over
the LooCI event bus. We have shown how the proposed
component and binding model may be used to model rich
interactions between single motes, groups of motes or entire
WSNs. We argue that a loosely coupled, globally typed event bus
is a good fit for implementing bindings in WSN environments that
are inherently asynchronous and unreliable.

LooCI accomplishes these goals while maintaining minimal
memory footprint and offering good performance. We show that
realizing LooCI components requires very little additional
overhead when compared to writing standard Java ME code,
which we hope will promote the adoption of LooCI with Java ME
developers.

8. ACKNOWLEDGEMENTS
Research for this paper was partially funded by IMEC and the
Instituut voor de Aanmoeding van Innovatie door Wetenschap en
Technologie in Vlaanderen (IWT). This research is conducted in
the context of the IWT-STADIUM project No. 80037 [28].
Wouter Horré is a PhD fellow of the Research Foundation –
Flanders (FWO).

9. REFERENCES

[1] Mainwaring A., Polastre J., Szewczyk R., Anderson J., Wireless

Sensor Networks for Habitat Monitoring, in Proc. of 1st ACM

International Workshop on Wireless Sensor Networks and

Applications, Atlanta, Georgia, USA, 2002, pp 88 – 97.

[2] Hughes D., Greenwood P., Coulson G., Blair G., Pappenberger

F., Smith P., Beven K., An Experiment with Reflective

Middleware to Support Grid-based Flood Monitoring, in Wiley

Inter-Science Journal on Concurrency and Computation: Practice

and Experience, vol. 20, no 11, November 2007, pp 1303-1316.

[3] Pohl A., Krumm H., Holland F., Stewing F. J., Lueck I.,

Service-Orientation and Flexible Service Binding in Distributed

Automation and Control Systems, in Proc. of the 22nd

International Conference on Advanced Information Networking

and Applications – Workshops (IANA), Okinawa, Japan, March

2008, pp. 1393 - 1398

[4] Costa P., Coulson G., Gold R., Lad M., Mascolo C., Mottola L.,

Picco G.P., Sivaharan T., Weerasinghe N., Zachariadis S., The

RUNES Middleware for Networked Embedded Systems and its

Application in a Disaster Management Scenario, in Proc. of the

5th Annual IEEE International Conference on Pervasive

Computing and Comunications (PerCom’07), White Plains, New

York, March 2007, pp. 69 – 78.

[5] Rellermeyer J., Alonso G., Concierge: A Service Platform for

Resource-Constrained Devices, in ACM SIGOPS Operating

Systems Review, Vol. 41, No. 3, June 2007, pp. 245 - 258

[6] Gay D., Levis P., Von Behren R., Welsh M., Brewer E., Culler

D., The NesC Language: A Holistic Approach to Networked

Embedded Systems, in Proc. of the conference on Programming

Language Design and Implementation, ACM SIGPLAN 2003,

San Diego, California, USA, pp. 1 – 11.

[7] Coulson G., Blair G., Grace P., Taiani F., Joolia A., Lee K.,

Ueyama J. and Sivaharan T, A Generic Component Model for

Building Systems Software, in ACM Transactions on Computer

Systems, Vol. 26, No. 1, Feb 2008.

[8] Bell M., Introduction to Service-Oriented Modeling, Service-

Oriented Modeling: Service Analysis, Design, and Architecture,

Wiley & Sons, 2008, pp. 1 - 27.

[9] Eugster P. T., Felber P. A., Guerraoui R., Kermarrec A. M., The

Many Faces of Publish Subscribe, in ACM Computing Surveys

(CSUR), Vol. 35 , No. 2, June 2003, pp. 114 – 131.

[10] Grace P., Hughes D., Porter B., Blair G., Coulson G., Taiani F.,

Experiences with Open Overlays: A Middleware Approach to

Network Heterogeneity, in Proc. of the European Conference on

Computer Systems (EuroSys’08), Glasgow, Scotland, UK,

March 2008, pp. 123-136.

[11] Sun Microsystems, Small Programmable Object Technology,

Inspiring Java developers to create a whole new breed of devices

and technologies - and accelerating the growth of the ‘Internet of

Things’: http://www.sunspotworld.com/vision.html

[12] Hill J., Szewczyk R., Woo A., Hollar S., Culler D., Pister K.,

System Architecture Directions for Networked Sensors, in ACM

SIGPLAN, Vol. 35, No. 11, November 2000, pp. 93-104.

[13] Buonadonna P., Hill J., Culler D., Active Message

Communication for Tiny Networked Sensors, in Proc. of the 20th

annual Joint Conference of the IEEE Computer and

Communications Societies (InfoCom'01), Anchorage, Alaska,

USA, April 2001, pp. 1-11.

[14] May T. D., Dunning S. H., Hallstrom J. O., An RPC Design for

Wireless Sensor Networks, in Proc. of the IEEE International

Mobile Adhoc and Sensor Systems Conference, (MASS’05),

Washington, DC, USA, November 2005, pp. 138-146.

[15] Smith P., Hughes D., Beven K., Cross P., Tych W., Coulson G.,

Blair G., Towards the Provision of Site Specific Flood Warnings

using Wireless Sensor Networks, in Wiley Inter-Science journal

on Meteorological Applications, Vol. 16, No.1, January 2009,

pp. 57 – 64.

[16] MoteIV, T-MOTE Sky Ultra-low Power Wireless Module Data

Sheet: http://www.cs.uvm.edu/~crobinso/mote/tmote-sky-

datasheet-102.pdf

[17] Crossbow, MICA-Z Wireless Measurement System, Data Sheet:

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf

/MICAz_Datasheet.pdf

[18] Dunkels A., Grönvall B., Voigt T., Contiki - a Lightweight and

Flexible Operating System for Tiny Networked Sensors, in Proc.

of 29th IEEE International Conference on Local Computer

Networks (LCN’04), Tampa, FL, USA, November 2004, pp.

455 – 462.

[19] Parlavantzas N., Coulson G., Blair G., An Extensible Binding

Framework for Component-Based Middleware, in Proc. of the

7th IEEE International Enterprise Distributed Object Computing

Conference (EDOC’03), Brisbane, Australia, September 2003,

pp 252 - 263.

[20] Huygens C., Joosen W., Federated and Shared Use of Sensor

Networks through Security Middleware, in Proc. of the 6th

International Conference on Information Technology: New

Generations (ITNG’09), Las Vegas, Nevada, USA, April 2009,

pp. 1005-1011.

[21] Sentilla, Perk Platform Frequently Asked Questions:

http://www.sentilla.com/perk_faq.html

[22] Sun Microsystems, Java ME - the Most Ubiquitous Application

Platform for Mobile Devices:

http://java.sun.com/javame/index.jsp

[23] IONA et al., Service Component Architecture: Building Systems

using a Service Oriented Architecture:

www.iona.com/devcenter/sca/SCA_White_Paper1_09.pdf

[24] Grace P., Coulson G., Blair G., Porter B., Hughes D., Dynamic

Reconfiguration in Sensor Middleware, in Proc. of the 1st

International Workshop on Middleware for Sensor Networks

(MidSens'06), Melbourne, Australia, November 2006, pp. 1 – 6.

[25] Simon D., Cifuentes C., Cleal D., Daniels J., White D., Java on

the Bare Metal of Wireless Sensor Devices: the Squawk Java

Virtual Machine, in Proc. of the 2nd International Conference on

Virtual Execution Environments, Ottawa, Canada, June 2006, pp

78 – 88.

[26] Jini-Based Ubiquitous Computing Middleware Supporting Event

and Context Management Services in Lecture Notes in Computer

Science, Vol. 4159 No. 2006, pp. 786-795

[27] Costa P., Mottola L., Murphy A.L., Picco G.P , Programming

Wireless Sensor Networks With the TeenyLime Middleware, in

Proc. of the ACM/IFIP/USENIX International Conference on

Middleware, (Middleware’07), Newport Beach, California,

December 2007, pp. 429-449.

[28] IWT Stadium project 80037, software technology for adaptable
distributed middleware:
http://distrinet.cs.kuleuven.be/projects/stadium/

[29] Preuveneers D., Berbers Y., Encoding Semantic Awareness in
Resource-Constrained Devices, in IEEE Intelligent Systems,
March 2008, Vol. 23, No. 2, pp. 26-33

