
 Open access Proceedings Article DOI:10.1109/NCA.2012.30

LooCI: The Loosely-coupled Component Infrastructure — Source link

Danny Hughes, Klaas Thoelen, Jef Maerien, Nelson Matthys ...+5 more authors

Institutions: Katholieke Universiteit Leuven

Published on: 23 Aug 2012 - Network Computing and Applications

Topics: Middleware (distributed applications), Middleware, Component (UML), Message passing and
Wireless sensor network

Related papers:

 Contiki - a lightweight and flexible operating system for tiny networked sensors

 The RUNES Middleware for Networked Embedded Systems and its Application in a Disaster Management Scenario

 A generic component model for building systems software

 Programming sensor networks using REMORA component model

 A Survey on Middleware Challenges and Approaches for Wireless Sensor Networks

Share this paper:

View more about this paper here: https://typeset.io/papers/looci-the-loosely-coupled-component-infrastructure-
4mh8xipjxx

https://typeset.io/
https://www.doi.org/10.1109/NCA.2012.30
https://typeset.io/papers/looci-the-loosely-coupled-component-infrastructure-4mh8xipjxx
https://typeset.io/authors/danny-hughes-2tf9vy75b1
https://typeset.io/authors/klaas-thoelen-3rv889wyew
https://typeset.io/authors/jef-maerien-35tpmf9jm7
https://typeset.io/authors/nelson-matthys-27jv6iwxc4
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/conferences/network-computing-and-applications-2lo14c3k
https://typeset.io/topics/middleware-distributed-applications-114spjtl
https://typeset.io/topics/middleware-1iarmroc
https://typeset.io/topics/component-uml-3bq2ifwa
https://typeset.io/topics/message-passing-34eyoz7s
https://typeset.io/topics/wireless-sensor-network-2eic5t0n
https://typeset.io/papers/contiki-a-lightweight-and-flexible-operating-system-for-tiny-17ra90mhum
https://typeset.io/papers/the-runes-middleware-for-networked-embedded-systems-and-its-4yg4kigws9
https://typeset.io/papers/a-generic-component-model-for-building-systems-software-3o5nz94x4b
https://typeset.io/papers/programming-sensor-networks-using-remora-component-model-4w94ph0ju9
https://typeset.io/papers/a-survey-on-middleware-challenges-and-approaches-for-2uuj4p0w3c
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/looci-the-loosely-coupled-component-infrastructure-4mh8xipjxx
https://twitter.com/intent/tweet?text=LooCI:%20The%20Loosely-coupled%20Component%20Infrastructure&url=https://typeset.io/papers/looci-the-loosely-coupled-component-infrastructure-4mh8xipjxx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/looci-the-loosely-coupled-component-infrastructure-4mh8xipjxx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/looci-the-loosely-coupled-component-infrastructure-4mh8xipjxx
https://typeset.io/papers/looci-the-loosely-coupled-component-infrastructure-4mh8xipjxx

LooCI: the Loosely-coupled Component Infrastructure

Danny Hughes, Klaas Thoelen, Jef Maerien, Nelson Matthys, Javier Del Cid, Wouter Horré, Christophe Huygens,

Sam Michiels and Wouter Joosen

IBBT-DistriNet, KU Leuven, Leuven, B-3001, Belgium.

{firstname.lastname}@cs.kuleuven.be

Abstract— Creating and managing applications for Wireless

Sensor Networks (WSNs) is complicated by large scale,

resource constraints and network dynamics. Reconfigurable

component models minimize these complexities throughout the

application lifecycle. However, contemporary component

based middleware for WSNs is limited by its poor support for

distribution. This paper introduces the Loosely-coupled

Component Infrastructure (LooCI), a middleware for building

distributed component-based WSN applications. LooCI

advances the state-of-the-art by cleanly separating distributed

concerns from component implementation, supporting

application-level interoperability between heterogeneous WSN

platforms and providing compatibility testing of bindings at

runtime. Together, these features promote the safe and

efficient composition and reconfiguration of distributed WSN

applications. We evaluate the performance of LooCI on three

classes of sensor nodes and demonstrate that these features can

be provided with minimal overhead in terms of computation,

memory and message passing.

Keywords: WSN, Components, Middleware

I. INTRODUCTION

Contemporary Wireless Sensor Network (WSN)
applications are typically large in scale, requiring the
coordination of tens to hundreds of embedded sensor nodes,
or ‘motes’. Examples of such applications include habitat
monitoring [1,2], flood prediction [3], emergency response
[4] and surveillance [5]. Future WSN scenarios are expected
to involve thousands of nodes. The complexity of WSN
environments necessitates middleware support for efficiently
developing, deploying and managing large-scale WSN
applications. Functionally, WSN middleware needs to play a
role in managing application dynamism, which arises from
evolving requirements, changing environmental conditions,
mobility and unreliable networking. Non-functionally, the
resource-constraints of motes [6] must be respected, while
the resources that are available on more capable devices [7]
and network gateways [8] need to be optimally exploited.

Component models have a strong track record of
managing the complexity of developing WSN applications.
NesC [9] was the first component model for WSN and is
used to implement TinyOS [10], a leading WSN Operating
System (OS). The static model of NesC, however, provides
poor support for runtime reconfiguration. More recent run-
time reconfigurable component models such as OpenCOM
[11], RUNES [4], OSGI [17] and REMORA [13] allow for
runtime inspection, management and reconfiguration of
applications. These reconfigurable component models form
part of what we refer to as component infrastructure

middleware, which also includes a binding model and
execution environment.

Contemporary component infrastructure middleware
[3,13,14,17] has a number of shortcomings in WSN
scenarios. Firstly, distribution concerns are poorly separated
from those of component implementation, which limits the
extent to which components can be reused in different
distributed contexts. Secondly, contemporary component
infrastructures offer poor support for analyzing and
modifying relationships between cooperating components,
which complicates network management. Thirdly, current
component models pay little attention to the problem of
promoting interoperability between heterogeneous WSN
platforms. Finally the discovery and re-use of components is
complicated by a lack of support for compatibility testing
between component interfaces at runtime.

This paper introduces LooCI: the Loosely-coupled
Component Infrastructure (the acronym is pronounced
‘Lucy’). LooCI is comprised of a runtime reconfigurable
application level component model, a hierarchical type
system and a distributed event bus. It provides a clean
separation of distribution concerns from component
implementation, supports multiple languages and operating
systems and provides compatibility testing between
component interfaces at bind time. Together, these features
promote safe and efficient application development,
management and reconfiguration. Building on our previous
research [12,18], this paper offers the following unique
contributions: (i) a complete description of the platform-
independent LooCI component model, (ii) implementations
of LooCI for three archetypal WSN platforms, (iii) a detailed
memory and performance evaluation of each LooCI
implementation and (iv) a quantification of the network
overhead of LooCI.

The remainder of this paper is structured as follows:
Section II discusses related work, which leads to a set of
requirements presented in Section III. In Section IV we
describe the design of LooCI, which is evaluated in Section
V. We conclude in section VI and discuss future work.

II. RELATED WORK

This section reviews related work in the area of
component models for WSNs. Section II.A provides an
overview of static component models while Section II.B
discusses runtime reconfigurable component models.

A. Static Component Models

NesC [9] is used to implement TinyOS [10]. NesC
extends the C language with an event-driven programming

model and mechanisms for explicitly specifying component
interfaces. The NesC extensions thus allow the application
developer to compose applications from generic and re-
usable building blocks. At compile-time, a NesC
composition is optimized and compiled to a monolithic block
of executable code that can neither be inspected nor modified
at runtime. Thus, NesC is a static model and provides poor
support for scenarios with high levels of dynamism. In terms
of distribution, TinyOS [10] provides Active Messages [23],
which connects communication and computation by
incorporating a reference to an event handler in each
message. However, it is not possible to inspect or
reconfigure distributed relationships, as these are hard-coded
into NesC components. Ports of NesC and TinyOS are
available for a range of WSN platforms [19,29], but not for
mobile or back-end devices.

B. Reconfigurable Component Models

OpenCOM [11] is a run-time reconfigurable component
model that has been applied to build WSN applications [3].
Unlike NesC [9], OpenCOM components remain
independent throughout the application lifecycle, which
allows the application composition to be inspected and
modified after deployment. In terms of distribution,
OpenCOM is a strictly local component model. To address
this, a number of extensions to the core have been proposed
such as the GridKit [3] middleware, which provides support
for distribution using the Open Overlays [20] pattern. Open
Overlays allows for the creation of flexible distributed
interactions. However, the mechanics of distribution are not
made explicit to the developer. For example, GridKit [3]
uses Java Remote Method Invocation (RMI) [25] to provide
distribution, but this introduces an implicit dependency on
the RMI registry, which forms a single point of failure that is
invisible to the application developer. Ports of OpenCOM
are available for a range of mote platforms [8,19,29], mobile
devices and standard PCs.

The RUNES component model [4] is a branch of
OpenCOM [11] that provides support for WSNs, including
additional introspection support in the kernel. RUNES
supports the creation of dynamic application compositions
but it is a local component model that provides no support
for the creation of distributed relationships. Instead,
developers must implement their own distribution
mechanisms within RUNES components. This limits the
extent to which distributed relationships may be
reconfigured. As with OpenCOM, RUNES is available for a
range of mote platforms, mobile devices and standard PCs.

OSGi [17] provides support for modeling components
and application compositions using the Service Component
Architecture (SCA) [26]. Components may be inspected and
reconfigured at runtime and in addition OSGi provides a
secure execution environment. OSGi is a local component
model and is tightly coupled with the Java language making
it unsuitable for embedded mote platforms that lack a JVM.

REMORA [13] provides a C-like programming language
for implementing components and uses SCA [26] to specify
component interfaces and application compositions.
REMORA supports introspection and reconfiguration,

however, it is a local component model that provides no
specific support for the creation of distributed relationships.
At compile time, the REMORA component implementation
language is compiled to byte-code that is executed on the
REMORA platform abstraction layer. In comparison to
platform agnostic component models [4,11], this prevents the
developer from exploiting useful platform-specific features.

III. REQUIREMENTS

Based on a review of a number of prototypical WSN
deployments [1,2,3,5], and the related work presented in
Section II, we define the following set of requirements for
WSN component infrastructure middleware.

Heterogeneity. In WSN scenarios, heterogeneous sets of
hardware are used, including motes [1,2,5], smart phones [1]
and embedded Linux boards [3]. Component infrastructure
middleware must thus provide common abstractions for
application development on heterogeneous platforms, while
allowing the strengths of each platform to be fully exploited.

Interoperability. Interoperability is required between
different sensor nodes [1,2] and back-end computational
facilities [1,2,3,5]. Component infrastructure middleware
must therefore facilitate composition of components running
on heterogeneous devices into coherent applications through
the use of common networking and data exchange standards.

Reconfiguration. WSN scenarios demand support for
reconfiguration including fine-grained software evolution
[1,2,3,5], radical application re-tasking [1,2] and self-
adaptation in response to changing environmental conditions
[3,5] and application requirements [1,2,3,5]. Component
infrastructure middleware must therefore support
reconfiguration of software functionality and allow efficient
reification of the current state (i.e. discovery and analysis).

Distributed Relationships. To maximize component
reuse in changing topologies [1,2,3,5], a strong separation is
necessary between local component implementation and
distributed concerns. A lack thereof would after all limit the
usefulness of a component to a single network context.
Component infrastructure middleware must thus support
flexible binding modalities, support for reification of
distributed relationships and a clean separation between
local and distributed functionality.

Performance. Component infrastructure middleware for
WSNs should consume minimal memory and offer good
performance, even on embedded mote platforms [6,19,29]. It
should allow for full exploitation of heterogeneous resources,
while imposing minimal burden on the component and
application developer. Such middleware must also promote
the development of components that are themselves efficient.

In the following section we introduce LooCI; a WSN
component infrastructure middleware designed to handle
these requirements.

IV. A LOOSELY-COUPLED COMPONENT INFRASTRUCTURE

LooCI is a platform-independent component

infrastructure middleware. The architecture of LooCI is

shown in Figure 1.

Figure 1: LooCI architecture and bindings.

LooCI allows individual components to be deployed on

motes at runtime. Components are managed by a

Reconfiguration Manager and communicate only over a

Distributed Event Bus. The Reconfiguration Manager

maintains references to all local components and enacts

incoming deployment, control, introspection and binding

commands that are received over the event bus. Using

introspection one can discover which components are

present on a node along with their interfaces, current state

and bindings.

To realize the Distributed Event Bus, each LooCI node

implements a local Event Manager. The Event Manager

maintains local and remote binding tables, containing

entries that specify to which local and/or remote

components events are forwarded. All subscriptions are

locally maintained, eliminating the need for distributed

coordination or specialized brokers. While logically

components communicate directly by exchanging events via

their interfaces, these events actually pass via the Event

Manager and, if sent to a remote node, the Network

Framework and Underlying Platform.

The Network Framework standardizes the networking

services offered by the Underlying Platform [15,16,17] and

offers a uniform API to the upper layers. An extensible set

of networking services is provided including network-wide

broadcast, one-hop broadcast and unicast. This renders the

event bus agnostic to underlying network protocols. It is

important to note however that components do not use the

Network Framework directly and instead solely

communicate over the event bus.

The reconfigurable platform provided by LooCI allows

runtime deployment and reconfiguration of components and

bindings. To prevent malicious parties from exploiting these

features to attack or eavesdrop on the WSN, we have

developed a secure deployment protocol [31] [32] and a

mechanism for implementing access constraints at the level

of component interfaces [27]. Due to space constraints, we

refer the interested readers to the original papers.

As LooCI is a platform-independent middleware

specification, it provides interoperability across various

underlying execution environments. At the time of writing

LooCI supports Contiki [15], Squawk [16] and OSGi [17].

A. The LooCI Reconfigurable Component Model

LooCI components are individually deployable units of

functionality. They are managed via a control API and

connect to the event bus through a simple communication

API. LooCI components build upon the unit of deployment

of the underlying platform (e.g. a Contiki module, a Squawk

suite or an OSGi bundle). This allows developers to exploit

all features offered by various languages, operating systems

and hardware platforms while providing standardized

encapsulation, discovery and lifecycle management for

components. LooCI should therefore be viewed as an

interoperability layer that allows the application developer

to compose together software resources that may be

distributed across heterogeneous nodes.

Two identifiers are used to specify LooCI components;

(1) a user-defined name for the component, and (2) an ID

provided by the LooCI runtime that is unique in the context

of the hosting node. LooCI components are thus uniquely

identified by a <node address, component ID> tuple.

LooCI components typically implement fine-grained

application level functionality and are composed together

into a distributed application via bindings over the event

bus. For this purpose, each component includes a number of

interfaces, which constitute their communication API.

Provided interfaces describe the events a component may

publish to the bus, while required interfaces describe events

that a component may read from the bus. These interfaces

are typed according to the type system discussed in Section

IV.B. Bindings logically connect provided interfaces to

required interfaces.

Listing 1: Java LooCI Component for Squawk/OSGi
public class Aggregator extends LooCIComponent {
 // Declare component
 public Aggregator() {
 super("Aggregator",
 // Declare interfaces
 new byte[]{Types.AGG_SENSOR};// Provided If.
 new byte[]{Types.SENSOR});// Required If.
 }

 //Event handler method
 public void receive(Event event) {}
}

Listing 2: C LooCI Component for Contiki
//Declare interfaces
COMPONENT_PRO_IFACE(aggregator, AGG_SENSOR);
COMPONENT_REQ_IFACE(aggregator, SENSOR);

//Declare component
COMPONENT(aggregator, "Aggregator");
LOOCI_COMPONENTS(&aggregator);

//Event handler method
COMPONENT_THREAD(temp_filter, ev, data) {
 COMPONENT_BEGIN();
 while(1) {
 LOOCI_EVENT_RECEIVE(&sensor);
 }
 COMPONENT_END(); }
}

Listings 1 and 2 provide example code for a LooCI

component providing aggregation. Listing 1 shows Java

code, which is compatible with the Squawk [16] and OSGi

[17] ports of LooCI. Listing 2 shows a C component for

Contiki. To save space, functional code and library imports

are omitted. The aggregator component has one required

interface of type SENSOR and one provided interface of

type AGG_SENSOR. As we build upon existing languages

and operating systems, we have been careful to minimize

the effort required to declare LooCI components. As shown

in Listing 1, the Java-based LooCI ports require 1 line of

code to declare a component with interfaces and receptacles.

In contrast, the C/Contiki version of LooCI requires 2 lines

of code to declare a component, plus one additional line for

required interfaces and one line for provided interfaces. On

all platforms, components that specify a required interface

must also implement an event handler to deal with incoming

events.

B. LooCI’s Hierarchical Type System

LooCI provides an extensible type system (described

fully in [22]) that allows developers to create a shared

conceptualization of event types. The LooCI type system

organizes all events into a taxonomy that gives semantic

meaning to each event. Hierarchical classification also

allows for reasoning over groups of functionally equivalent

events. The LooCI type system provides the following

advantages:

§ Type-safe reconfiguration. Each interface embeds its

position in the type hierarchy. At bind-time, this is used

to check type safety and prevent the binding of

incompatible interfaces. As compatibility testing is

available on all LooCI nodes, this functionality can be

used to build self-adaptive systems.

§ Service discovery. To discover services meeting the

dependencies (required interfaces) of a component, a

getProvidedInterfaces command containing

the required type is sent to a single node or group.

Nodes that receive this query respond by returning

references to all local provided interfaces that are a

subtype of that specified in the request.
§ Reduced overhead. The hierarchical type system reduces

the overhead of binding and introspection by allowing

the developer to refer to services by class (e,g all

SENSOR components on a node may be bound to a

logger using a single wiring operation, rather than

multiple operations to bind each sub-type of SENSOR).

The LooCI type system uses an efficient encoding

scheme based upon prime numbers, wherein all event types

ei are classified in a hierarchical taxonomy and are

associated with a prime number pi. When an event type ej is

added as a child of ei, we store a unique identifier uidj,

computed as the product of pj and uidi. As such, uidj

uniquely encodes the position of ej in the hierarchy in

relation to its ancestors. At run-time, we can efficiently

compute whether an event of type ej and corresponding uidj

is a subtype of ei by dividing uidj by uidi. If the result of this

operation has no remainder, then due to the unique

properties of prime numbers, ej must be a subtype of ei (a

formal proof of this property is provided in [21]). The uid of

each type is only transmitted during deployment, binding

and introspection.

C. LooCI’s Distributed Event Bus

The LooCI event-bus is an asynchronous, event based

communication medium that follows a decentralized topic-

based publish-subscribe model. Events are typed according

to the type system described in Section IV.B and can only

be published and received by interfaces of compatible types.

Application of the publish-subscribe model in LooCI

provides loose coupling between components and eliminates

the need for costly distributed quiescence protocols [24].

In order to communicate, components must be bound

together. This occurs at runtime after deployment of the

involved components. Bindings are artefacts that are stored

in the binding tables of the Event Manager and which

explicitly connect provided interfaces of publishing

components with compatible required interfaces of

subscribing components. Event Managers contain two

binding tables; a local binding table for bindings between

two local components, and a remote binding table for

distributed bindings between a local and a remote

component. Example remote binding tables can be seen in

Figure 1. In general, bindings are defined by a <source
event type, source component ID, source

address, destination event type, destination

component ID, destination address> tuple.

Bindings are only allowed between compatible interfaces, as

determined by their types as described in Section IV.B.

LooCI supports the following binding modalities:

§ A one-to-one binding is enacted by sending a wireTo

event to the source node that identifies a unique

provided-interface and a remote destination. A

wireFrom event is sent to the destination node that

identifies the unique source interface and the local

destination interface.

§ A one-to-many binding is enacted by sending a wireTo

event to the source node that identifies a unique

provided-interface and a wild-card destination (network

broadcast or one-hop broadcast). A wireFrom event is

then broadcast to all destination nodes that specifies the

source address, a unique source interface and the local

destination interface. (Note: a many-to-one binding is

established using the inverse set of operations.)

§ Opportunistic bindings are enacted by sending a

wireTo event to all source nodes that specifies a

provided-interface type and the 1-hop broadcast

wildcard. A wireFrom event is then sent to the

destination node(s) that specifies a wild-card source

address, a wild-card source component id, the source

interface type and a local destination interface.

It is important to note that components neither send nor

receive events until they have been bound and activated. As

data is semantically typed and all communication occurs via

explicit bindings, introspection may be used to reify

distributed relationships and reconfiguration may be used to

modify data flows at runtime.

D. API and Management Support

To deploy or reconfigure components and bindings at
runtime, the core LooCI API is provided as shown in Listing
3. The Control, Introspection and Binding APIs are exposed
by the Reconfiguration Manager over the event bus and
made available to back-end system elements via the gateway.
As nodes do not have direct access to the component
repository, the Deployment API is made available only to
back-end system elements via the gateway. The core API
contains the minimum functionality that is required to
manage a network of LooCI nodes and while it may be used
directly by the developer, we expect that it will more
commonly be used to build higher-level services. Examples
of such tools include the Quality Aware Reconfiguration
Infrastructure (QARI) [28] and the Policy-based
Management Architecture (PMA) [27].

Listing 3: The core LooCI API

Deployment
CompID deploy(ComponentFile, NodeID)
Boolean removeComponent(CompID, NodeID)

Control
Boolean deactivate(CompID, NodeID)
Boolean activate(CompoID, NodeID)

Introspection
CompID[] getComponents(NodeID, ComponentType)
String getComponentType(NodeID, CompID)
State getComponentState(NodeID, CompID)
Event[] getProvidedInterfaces(NodeID, CompID, UID)
Event[] getRequiredInterfaces(NodeID, CompID, UID)
NodeID[] getOutWires(NodeID, CompID, EventTypeOut)
NodeID[] getInWires(NodeID, CompID, EventTypeIn)

Binding
Boolean wireFrom(EventTypeOut, SrcCompID,

SrcNodeID, EventTypeIn, DestCompID,
DestNodeID)

Boolean wireTo(EventTypeOut, SrcCompID,
SrcNodeID, DestNodeID)

V. IMPLEMENTATION AND EVALUATION

In this section we introduce three implementations of

LooCI and use these to evaluate the design of LooCI.

Section V.A quantifies the overhead of LooCI on each of

the three evaluation platforms, Section V.B compares LooCI

to other reconfigurable component based middleware for

WSN and Section V.C assesses the network overhead of

LooCI.

Implementations of LooCI are currently available for

Contiki, Squawk and OSGi. Table 1 summarizes each

LooCI implementation and the hardware platform that was

used in this evaluation. All implementations faithfully

realize the design described in Section IV. The common

type system and event-bus ensures that all ports of LooCI

interact seamlessly, allowing for compositions that integrate

Contiki [15], Squawk [16] and OSGi [17] motes.

Table 1: LooCI Implementations and Test Platforms
 Contiki Squawk OSGi

Language C Java ME Java SE / OSGi

Environment Contiki 2.4 [15]
Squawk

[16].
Java v1.6

Test

Platform

Raven [7]

20MHz

ATmega1284p

16K RAM

128KB Flash

SPOT [8]

180MHz

ARM920T

512K RAM

4MB Flash

GumStix [9]

400MHz

XScale_PXA255

16MB RAM

16MB Flash

A. Memory and Performance Overhead of LooCI

The memory overhead of LooCI itself is comprised of

the additional flash memory and RAM that is consumed by

the execution environment. As can be seen from Table 2,

LooCI runs comfortably on all of our test platforms. In the

worst case, on the Raven [6], the combined LooCI and

Contiki image leaves over 54% of flash memory and 38% of

RAM free for application development. On SPOT [7] and

GumStix [8], the vast majority of flash and RAM remain

available. Along with a compact middleware footprint, it is

also important that application components are compact.

Table 3 compares the size of functionally equivalent

implementations of a LooCI temperature sensor component

for Contiki [7], Squawk [8] and OSGi [9].

Table 2: LooCI Middleware Memory Consumption

Static Memory Consumption (Flash)
 Contiki/Raven Squawk/SPOT OSGi/GumStix

LooCI 16884 bytes 45363 bytes 49987 bytes

Underlying

Platform
43180 bytes 616048 bytes 87044 bytes

Flash Overhead + 39.10% + 7.36% +57.42%

Total Flash Used 45.83% 15.77% 0.82%

Dynamic Memory Consumption (RAM)
 Contiki/Raven Squawk/SPOT OSGi/GumStix

LooCI 1561 bytes 31744 bytes 84992 bytes

Underlying

Platform
8885 bytes 78848 bytes 445440 bytes

RAM Overhead + 17.57% + 40.26% + 19.08%

Total RAM Used 61.12% 21.09% 3.16%

Table 3 shows that LooCI-Contiki and LooCI-OSGi

components consume less RAM than an equivalent Contiki

or OSGi module. This is because distribution support is

included in the LooCI middleware and does not need to be

embedded in the component. LooCI-Contiki also consumes

less flash memory while LooCI-OSGi consumes marginally

more. In the case of LooCI-Squawk, componentization adds

minimal flash overhead, but significant RAM overhead as

each component runs an Inter-Isolate RPC [16] server to

communicate with the LooCI runtime. However, the 5120

byte RAM overhead is constant and thus becomes less

significant as component size increases.

Table 3: LooCI Temperature Sensor Component

Memory Consumption
 Contiki/Raven Squawk/SPOT OSGi/GumStix

 Static Memory Overhead (Flash)
 Native

Application
281 bytes 1740 bytes 1511 bytes

 LooCI

Component
220 bytes 1843 bytes 1750 bytes

 % Change - 21.71% + 5.92% + 15.82%

 Dynamic Memory Overhead (RAM)
Native

Application
63 21504 bytes 4588 bytes

LooCI

Component
59 26624 bytes 2304 bytes

% Change - 6.35% + 23.81% - 49.78%

We define performance overhead as the time required to

instantiate and bind components. Table 4 summarizes the

LooCI performance timings in milliseconds. Initialization

and binding operations on LooCI components are fast on all

evaluation platforms. Furthermore the LooCI type system

allows for checking of type safety at bind time with low

performance overhead (in the worst case, 4.8% of bind

time).

Table 4: LooCI Middleware Performance Timings
 Contiki/Raven Squawk/SPOT OSGi/GumStix

Component

Initialization:
0.26 ms 35 ms 1050 ms

Component

Binding:
0.15 ms 12 ms 0.12 ms

Component

Unbinding:
0.15 ms 12 ms 0.12 ms

Checking Type

Safety:
0.03 ms 0.29 ms 0.05 ms

B. Performance Comparison against Reconfigurable

Component-based Middleware for WSNs

In Table 5 we identify the distribution mechanisms,

languages and hardware platforms supported by competing

middleware as well as relevant evaluation metrics that have

been reported in the literature.

Table 5: Features of Component-based WSN

Middleware
 Distribution Languages Hardware Metrics

GridKit [3] RPC-based Java SE GumStix [8]
Memory &

Perf.

Lorien [14] NONE C Telos B [29]
Memory &

Perf.

RUNES [4] NONE

Java ME,

C &

Contiki

Telos B [29]
Memory &

Perf.

OSGi [17]

NONE Java SE Various Memory

LooCI
Event Based

Bindings

Java SE,

Squawk

& Contiki

Raven [7],

SPOT [8] &

GumStix [9]

Memory &

Perf.

As NesC produces a monolithic system image it cannot

be meaningfully compared to LooCI and it is therefore

omitted. It should be noted from Table 5, that LooCI is the

only reconfigurable WSN middleware that provides

distribution support and platform independence.

Table 6 compares the memory footprint of LooCI with

other component based WSN middleware [3,4,13,14,17].

While each middleware provides a subtly different feature

set, LooCI-Contiki is the smallest C based component

model for WSN and LooCI-Squawk is the smallest Java-

based component model. Compared to GridKit [3], the only

other component-based middleware that supports

distribution, all versions of LooCI have a smaller memory

footprint.

Table 6: Flash Footprint of WSN Component Models

 Language Size (Bytes)

Lorien C 21794

RUNES C 20000

LooCI-Contiki C 16884

LooCI-Squawk Java ME 45363

LooCI-OSGi Java SE 49987

OSGi Java SE 76800

GridKit Java SE 106700

Table 7 compares the performance of component-based

WSN middleware in terms of component initialization and

binding as reported in [3,4,14]. Note: these timings were

obtained on a variety of hardware platforms as outlined in

Table 5 and therefore should not be directly compared

without taking into account platform capability. Where

performance data is omitted, it was not provided in the

source paper.

Table 7: Performance of WSN Component Models

 Language Bind Init.

Lorien C N/A 799ms

RUNES C N/A 0.98ms

LooCI-Contiki C 0.26ms 0.30ms

LooCI-Squawk Java ME 35ms 24ms

LooCI-OSGi Java SE 0.24ms 1050ms

GridKit Java SE 80ms 118ms

Compared to the C-based component models,

instantiation in LooCI-Contiki is three times faster than

RUNES [4] and three orders of magnitude faster than Lorien

[14]. However the compute power of the LooCI test

platform (Raven [7] at 20 MIPS) is 25% greater than the

Lorien and RUNES evaluation platforms (Telos B [29] at 16

MIPS).

Compared to the Java-based GridKit middleware [3],

LooCI-Squawk [8] offers faster component initialization

and binding, despite being evaluated on a mote providing

less than half of the compute power (SPOT [8] provides 180

MIPS, while GumStix [9] provides 400 MIPS), however

caution is again warranted due to differences in the

supporting operating system. Comparing the performance of

LooCI-OSGi to GridKit on GumStix [9], the results are

mixed. LooCI offers two orders of magnitude faster

component binding, but one order of magnitude slower

component instantiation (due to start up of inter-isolate RPC

[16]). In our view, instantiation speed is less important than

binding speed, as instantiation is typically infrequent

compared to binding operations.

C. Overhead of LooCI Networking Approach

In this section we quantify the worst-case network

overhead (i.e. with the maximum possible size of message

payloads) introduced by LooCI in terms of number of bytes

that must be transmitted to enact each LooCI command.

This analysis does not take into account network dynamics

and thus represents the worst-case scenario for an ideal one-

hop network with no collisions or packet loss. In terms of

the application messages that are transmitted between

components, the LooCI messaging format adds a fixed

overhead of 4 bytes per message. As all commands in the

LooCI API (provided in Listing 3) are implemented using a

simple request/reply scheme, the worst-case number of

bytes transmitted to enact any LooCI command is given by:

Bytes = n * (PRQ + PRP). Where n is the number of nodes

targeted, PRQ is the size of the request message and PRP is

the size of the reply message. Table 8 provides the PRQ and

PRP costs for all commands in the LooCI API and can thus

be used to calculate the worst-case number of bytes

transmitted for all commands.

Table 8: Network Overhead of LooCI Commands

 PRQ (Bytes) PRP (Bytes)
deploy() CS +4 5
activate() 5 5
deactivate() 5 5
removeComponent() 5 5
getComponents() 28 C+6
getComponentType() 5 29
getComponentState() 5 6
getProvidedIfaces()[TU] 5 2I + 6
getProvidedIfaces()[TS] ST+4 I (ST+2)+6
getRequiredIfaces()[TU] 5 2I+6
getRequiredIfaces()[TS] ST+4 I(ST+2)+6
getOutWires() 7 IA+6
getInWires() 7 T(A+1)+6
getLocalWires() 7 I+6
wireFrom()[TU] A+8 5
wireFrom()[TS] A+TS+8 5
wireTo()[TU] A+7 5
wireTo()[TS] A+TS+7 5

CS is the size of the component to be deployed, C is the

number of components matching an associated query, I is

the number of interfaces matching the associated query, A is

the size of a network address in bytes and ST is the worst

case size of a semnatic type description. As type safety in

discovery and binding may be deactivated, the overhead of

both type unsafe [TU] and type safe [TS] operations is

provided. For current implementations, the maximum size

of A is 16 bytes for a full IPv6 address and the maximum

size of TS is 22 bytes for a 65,000 element type system (in

realistic scenarios, TS is likely to be far smaller [22]). All

LooCI commands are compact and in normal cicumstances

requests and responses will fit comfortably within a single

802.15.4 packet, with the possible exception of type safe

discovery messages that return a large number of matching

interface descriptions.

As taxonomic data and component names are only used

to support discovery and binding, this data is not stored in

the binding table of the Event Manager. Thus, each

incoming wiring entry in this table consumes only 5+A

bytes, while each outgoing wiring entry consumes only 4+A

bytes. This allows complex patterns of component

communication to be created, inspected and reconfigured

while working within the resource constraints of

contemporary mote platforms.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced the Loosely-coupled Component

Infrastructure (LooCI). LooCI is the first platform

independent, distributed component infrastructure

middleware for WSN. LooCI offers a language independent

reconfigurable component model and standard support for:

encapsulation of functionality, runtime reconfiguration and

management of software components running on

heterogeneous platforms. LooCI strongly separates the

concerns of component implementation and distribution,

allowing components to be safely reused in a range of

distributed contexts. Our analysis shows that LooCI

provides a richer feature set than other reconfigurable WSN

middleware, with minimal performance overhead.

Our primary avenue of future work will be to validate

LooCI in a large-scale WSN application using

heterogeneous motes. We have previously implemented

applications using prototypes of LooCI [12], but these were

of small scale and implemented on a homogeneous

hardware deployment [18]. We believe that large-scale,

heterogeneous LooCI deployments are now required to

validate the LooCI model and to evaluate our networking

approach in a realistic environment.

ACKNOWLEDGEMENTS

This research is partially funded by the Inter-University

Attraction Poles Programme Belgian State, Belgian Science

Policy and by the Research Fund KU Leuven.

REFERENCES

[1] R. Szewczyk, A. M. Mainwaring, J. Polastre, J. Anderson and D. E.
Culler, “An analysis of a large scale habitat monitoring application”,

in proc. of 2
nd

 ACM conference on Embedded Network Sensor
Systems (SenSys’04), Baltimore, MD, USA, pp. 214-226, Nov. 3

rd
-5

th

2004.

[2] V. Dyo, S. A. Ellwood, D. W. Macdonald, A. Markham, C. Mascolo,
B. Pasztor and S. Scellato, N. Trigoni, R. Wohlers, K. Yousef,

“Evolution and sustainability of a wildlife monitoring sensor
network”, in proc of 8

th
 ACM Conference on Embedded Networked

Sensor Systems (Sensys’10), Zurich, Switzerland, pp. 127-140, Nov.
3

rd
-5

th
 2010.

[3] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F. Pappenberger, P.
Smith and K. Beven, “An Experiment with Reflective Middleware to

Support Grid-based Flood Monitoring”, in Inter-Science Journal on
Concurrency and Computation: Practice and Experience, Vol. 20, No.

11, pp. 1303-1316, 2008.

[4] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola, G.P.

Picco, T. Sivaharan, N. Weerasinghe and S. Zachariadis, The RUNES
Middleware for Networked Embedded Systems and its Application in

a Disaster Management Scenario, in proc. of 5
th
 IEEE conference on

Pervasive Computing (PerCom’07), White Plains, NY, pp. 69–78, ,

Mar. 19
th
-23

rd
 2007.

[5] N. Finne, J. Eriksson, A. Dunkels and T. Voigt, “Experiences from

two sensor network deployments: self-monitoring and self-
configuration keys to success”, in proc. of 6

th
 international conference

on Wired/wireless internet communications (WWIC'08), Tampere,
Finland, pp.189-200, May 28

th
-30

th
 2008.

[6] AVR RZ Raven Data Sheet, available online at:

http://www.atmel.com/dyn/resources/prod_documents/doc7911.pdf,
[retrieved 18

th
 Jan. 2012].

[7] SUN SPOT, Theory of Operation, available online at:

http://www.sunspotworld.com/docs/Yellow/SunSPOT-
TheoryOfOperation.pdf, [retrieved 18

th
 Jan. 2012].

[8] GumStix Connex, Legacy Product Information, available online at:

http://www.gumstix.org/hardware-design/legacy-products.html,
[retrieved 18

th
 Jan. 2012].

[9] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer and D. Culler,

“The NesC Language: A Holistic Approach to Networked Embedded
Systems”, in proc. of the ACM confernece on Programming

Language Design and Implementation, SIGPLAN PLDI’03, San
Diego, CA, USA, pp. 1 – 11, Jun. 9

th
-11

th
 2003.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,

“System architecture directions for networked sensors”, in ACM SIG-
PLAN, Vol. 35, No. 11, pp. 93–104, 2004.

[11] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J.
Ueyama and T. Sivaharan T, “A generic component model for

building systems software”, in ACM Transactions on Computer
Systems, Vol. 26, No. 1, pp. 1-42, 2008.

[12] D. Hughes, K. Thoelen, W. Horré, N. Matthys, S. Michiels, C.

Huygens and W. Joosen, “LooCI: a loosely-coupled component
infrastructure for networked embedded systems”, in proc. of 7th

international conference on advances in mobile computing &
multimedia (MoMM’09). Kuala Lumpur, Malaysia, pp. 195-203,

Dec. 14
th
-16

th
 2009.

[13] A. Taherkordi, F. Loiret, R. Rouvoy, A. Abdolrazaghi, Q. Le-Trung
and F. Eliassen, “Programming Sensor Networks Using REMORA

Component Model”, in proc. of 6th IEEE/ACM Conference on
Distributed Computing in Sensor Systems (DCOSS’10), Santa

Barbara, CA, USA, pp. 22-28, Jun. 21
st
-23

rd
 2010,

[14] B. Porter, U. Roedig and G. Coulson, “Type-Safe Updating for
Modular WSN Software”, in proc. of 7th IEEE conference on

Distributed Computing in Sensor Systems (DCOSS '11), Barcelona,
Spain, pp. 1-8, Jun. 27

th
-29

th
 2011.

[15] A. Dunkels, B. Grönvall and T. Voigt, “Contiki - a Lightweight and

Flexible Operating System for Tiny Networked Sensors”, in proc. of
29th IEEE conference on Local Computer Networks (LCN’04),

Tampa, FL, USA, pp. 455–462, Nov. 16
th
-18

th
 2004.

[16] D. Simon, C. Cifuentes, D. Cleal, J. Daniels and D. White, “Java on
the Bare Metal of Wireless Sensor Devices: the Squawk Java Virtual

Machine”, in proc. of the 2
nd

 International Conference on Virtual
Execution Environments, Ottawa, Canada, pp. 78–88, Jun. 14

th
-16

th

2006.

[17] J. Rellermeyer and G. Alonso, “Concierge: A Service Platform for

Resource-Constrained Devices”, in ACM SIGOPS Operating
Systems Review, Vol. 41, No. 3, pp. 245–258, 2007.

[18] D. Hughes, K. Thoelen, W. Horré, N. Matthys, S. Michiels, C.

Huygens, W. Joosen and J. Ueyama, “Building Wireless Sensor

Network Applications with LooCI”, in International Journal of

Mobile Computing and Multimedia Communications (IJMCMC),
Vol. 2, No. 4, pp. 38-64, 2010.

[19] J. Hill and D. Culler, “A wireless embedded sensor architecture for
system-level optimization”, in UC Berkeley Technical Report, 2002.

[20] P. Grace, D. Hughes, B. Porter, G. Blair, G. Coulson and F. Taiani,

“Experiences with Open Overlays: A Middleware Approach to
Network Heterogeneity”, in proc. of the European Conference on

Computer Systems (EuroSys’08), Glasgow, UK, pp. 123-136, Mar.
31

st
- Apr. 1

tst
 2008.

[21] D. Preuveneers and Y. Berbers, Encoding Semantic Awareness in

Resource-Constrained Devices, in IEEE Intelligent Systems, Vol. 23,
No. 2, pages 26-33, pp. 1541-1672, 2008

[22] K. Thoelen, N. Matthys, W. Horré, C. Huygens, W. Joosen, D.

Hughes, L. Fang and S. Guan, “Supporting Reconfiguration and Re-
use through Self-Describing Component Interfaces”, in proc. of

international Workshop on Middleware for Sensor Networks
(MidSens’10), Bangalore, India, pp. 29-34, Nov. 29

th
 - Dec. 3

rd
 2010.

[23] P. Buonadonna, J.Hill and D. Culler, “Active Message

Communication for Tiny Networked Sensors”, in proc. of the 20
th

annual Joint Conference of the IEEE Computer and Communications

Societies (InfoCom'01), Anchorage, Alaska, USA, pp. 1-11, Apr.
22

nd
-26

th
 2001.

[24] P. Grace, G. Coulson, G.S. Blair, B. Porter and D. Hughes, “Dynamic

Reconfiguration in Sensor Middleware”, in proc. of 1
st
 International

Workshop on Middleware for Sensor Networks (MidSens ‘06),

Melbourne, Australia, pp. 1-6, Nov. 28
th
 2006.

[25] Java Remote Method Invocation (RMI), available online at:

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-
136424.html, [retrieved 18

th
 Jan. 2012].

[26] Service Component Architecture (SCA), available online at:

http://osoa.org/pages/viewpage.action?pageId=46, [retrieved 18
th
 Jan.

2012].

[27] N. Matthys, R.S. Afzal, C. Huygens, D. Hughes S. Michiels, W.

Joosen, “Towards fine-grained and application-centric access control
for wireless sensor networks”, in proc. of 25

th
Symposium on Applied

Computing, Sierra, Switzerland, pp. 793-794, Mar. 22
nd

-26
th
 2010.

[28] W. Horré, D. Hughes, S. Michiels, W. Joosen, “Advanced sensor
network software deployment using application-level quality goals”

in Journal of Software, Vol. 6, No. 4, pp. 528-535, 2011.

[29] MoteIV, T-Mote Sky Data Sheet, available online at:
http://www.snm.ethz.ch/Projects/TmoteSky, [retrieved 18

th
 Jan.

2012].

[30] G. Coulson, D. Hughes, G. Blair, P. Grace, "The Evolution of the
GridStix Wireless Sensor Network Platform" in proc. of the

International Workshop on Sensor Network Engineering (IWSNE
'08), co-located with DCOSS '08, Santorini, Greece, June 2008, pp. 1-

6.

[31] J. Maerien, S. Michiels, C. Huygens, W. Joosen,, “MASY:

Management of secret keys in federated wireless sensor networks”, in
proc. of 6

th
 Int. Conf. on Wireless and Mobile Computing,

Networking and Communications (WiMob ’10), vol., no., pp.121-
128, 11-13 Oct. 2010

[32] J. Maerien, S. Michiels, C. Huygens, W. Joosen, “Sasha: A

distributed protocol for secure application deployment in shared ad-
hoc wireless sensor networks”, in proc. of 8th IEEE conference on

Mobile Adhoc and Sensor Systems (MASS ‘11), vol., no., pp.43-48,
17-22 Oct. 2011.

