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Abstract— Creating and managing applications for Wireless 

Sensor Networks (WSNs) is complicated by large scale, 

resource constraints and network dynamics. Reconfigurable 

component models minimize these complexities throughout the 

application lifecycle. However, contemporary component 

based middleware for WSNs is limited by its poor support for 

distribution. This paper introduces the Loosely-coupled 

Component Infrastructure (LooCI), a middleware for building 

distributed component-based WSN applications. LooCI 

advances the state-of-the-art by cleanly separating distributed 

concerns from component implementation, supporting 

application-level interoperability between heterogeneous WSN 

platforms and providing compatibility testing of bindings at 

runtime. Together, these features promote the safe and 

efficient composition and reconfiguration of distributed WSN 

applications. We evaluate the performance of LooCI on three 

classes of sensor nodes and demonstrate that these features can 

be provided with minimal overhead in terms of computation, 

memory and message passing. 
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I.  INTRODUCTION 

Contemporary Wireless Sensor Network (WSN) 
applications are typically large in scale, requiring the 
coordination of tens to hundreds of embedded sensor nodes, 
or ‘motes’. Examples of such applications include habitat 
monitoring [1,2], flood prediction [3], emergency response 
[4] and surveillance [5]. Future WSN scenarios are expected 
to involve thousands of nodes. The complexity of WSN 
environments necessitates middleware support for efficiently 
developing, deploying and managing large-scale WSN 
applications. Functionally, WSN middleware needs to play a 
role in managing application dynamism, which arises from 
evolving requirements, changing environmental conditions, 
mobility and unreliable networking. Non-functionally, the 
resource-constraints of motes [6] must be respected, while 
the resources that are available on more capable devices [7] 
and network gateways [8] need to be optimally exploited.  

Component models have a strong track record of 
managing the complexity of developing WSN applications. 
NesC [9] was the first component model for WSN and is 
used to implement TinyOS [10], a leading WSN Operating 
System (OS). The static model of NesC, however, provides 
poor support for runtime reconfiguration. More recent run-
time reconfigurable component models such as OpenCOM 
[11], RUNES [4], OSGI [17] and REMORA [13] allow for 
runtime inspection, management and reconfiguration of 
applications. These reconfigurable component models form 
part of what we refer to as component infrastructure 

middleware, which also includes a binding model and 
execution environment. 

Contemporary component infrastructure middleware 
[3,13,14,17] has a number of shortcomings in WSN 
scenarios. Firstly, distribution concerns are poorly separated 
from those of component implementation, which limits the 
extent to which components can be reused in different 
distributed contexts. Secondly, contemporary component 
infrastructures offer poor support for analyzing and 
modifying relationships between cooperating components, 
which complicates network management. Thirdly, current 
component models pay little attention to the problem of 
promoting interoperability between heterogeneous WSN 
platforms. Finally the discovery and re-use of components is 
complicated by a lack of support for compatibility testing 
between component interfaces at runtime. 

This paper introduces LooCI: the Loosely-coupled 
Component Infrastructure (the acronym is pronounced 
‘Lucy’). LooCI is comprised of a runtime reconfigurable 
application level component model, a hierarchical type 
system and a distributed event bus. It provides a clean 
separation of distribution concerns from component 
implementation, supports multiple languages and operating 
systems and provides compatibility testing between 
component interfaces at bind time. Together, these features 
promote safe and efficient application development, 
management and reconfiguration. Building on our previous 
research [12,18], this paper offers the following unique 
contributions: (i) a complete description of the platform-
independent LooCI component model, (ii) implementations 
of LooCI for three archetypal WSN platforms, (iii) a detailed 
memory and performance evaluation of each LooCI 
implementation and (iv) a quantification of the network 
overhead of LooCI. 

The remainder of this paper is structured as follows: 
Section II discusses related work, which leads to a set of 
requirements presented in Section III. In Section IV we 
describe the design of LooCI, which is evaluated in Section 
V. We conclude in section VI and discuss future work. 

II. RELATED WORK 

This section reviews related work in the area of 
component models for WSNs. Section II.A provides an 
overview of static component models while Section II.B 
discusses runtime reconfigurable component models. 

A. Static Component Models 

NesC [9] is used to implement TinyOS [10]. NesC 
extends the C language with an event-driven programming 



model and mechanisms for explicitly specifying component 
interfaces. The NesC extensions thus allow the application 
developer to compose applications from generic and re-
usable building blocks. At compile-time, a NesC 
composition is optimized and compiled to a monolithic block 
of executable code that can neither be inspected nor modified 
at runtime. Thus, NesC is a static model and provides poor 
support for scenarios with high levels of dynamism. In terms 
of distribution, TinyOS [10] provides Active Messages [23], 
which connects communication and computation by 
incorporating a reference to an event handler in each 
message. However, it is not possible to inspect or 
reconfigure distributed relationships, as these are hard-coded 
into NesC components. Ports of NesC and TinyOS are 
available for a range of WSN platforms [19,29], but not for 
mobile or back-end devices. 

B. Reconfigurable Component Models 

OpenCOM [11] is a run-time reconfigurable component 
model that has been applied to build WSN applications [3]. 
Unlike NesC [9], OpenCOM components remain 
independent throughout the application lifecycle, which 
allows the application composition to be inspected and 
modified after deployment.  In terms of distribution, 
OpenCOM is a strictly local component model. To address 
this, a number of extensions to the core have been proposed 
such as the GridKit [3] middleware, which provides support 
for distribution using the Open Overlays [20] pattern. Open 
Overlays allows for the creation of flexible distributed 
interactions. However, the mechanics of distribution are not 
made explicit to the developer. For example, GridKit [3] 
uses Java Remote Method Invocation (RMI) [25] to provide 
distribution, but this introduces an implicit dependency on 
the RMI registry, which forms a single point of failure that is 
invisible to the application developer. Ports of OpenCOM 
are available for a range of mote platforms [8,19,29], mobile 
devices and standard PCs. 

The RUNES component model [4] is a branch of 
OpenCOM [11] that provides support for WSNs, including 
additional introspection support in the kernel. RUNES 
supports the creation of dynamic application compositions 
but it is a local component model that provides no support 
for the creation of distributed relationships. Instead, 
developers must implement their own distribution 
mechanisms within RUNES components. This limits the 
extent to which distributed relationships may be 
reconfigured. As with OpenCOM, RUNES is available for a 
range of mote platforms, mobile devices and standard PCs. 

OSGi [17] provides support for modeling components 
and application compositions using the Service Component 
Architecture (SCA) [26].  Components may be inspected and 
reconfigured at runtime and in addition OSGi provides a 
secure execution environment. OSGi is a local component 
model and is tightly coupled with the Java language making 
it unsuitable for embedded mote platforms that lack a JVM. 

REMORA [13] provides a C-like programming language 
for implementing components and uses SCA [26] to specify 
component interfaces and application compositions. 
REMORA supports introspection and reconfiguration, 

however, it is a local component model that provides no 
specific support for the creation of distributed relationships. 
At compile time, the REMORA component implementation 
language is compiled to byte-code that is executed on the 
REMORA platform abstraction layer. In comparison to 
platform agnostic component models [4,11], this prevents the 
developer from exploiting useful platform-specific features. 

III. REQUIREMENTS 

Based on a review of a number of prototypical WSN 
deployments [1,2,3,5], and the related work presented in 
Section II, we define the following set of requirements for 
WSN component infrastructure middleware. 

Heterogeneity. In WSN scenarios, heterogeneous sets of 
hardware are used, including motes [1,2,5], smart phones [1] 
and embedded Linux boards [3]. Component infrastructure 
middleware must thus provide common abstractions for 
application development on heterogeneous platforms, while 
allowing the strengths of each platform to be fully exploited. 

Interoperability.  Interoperability is required between 
different sensor nodes [1,2] and back-end computational 
facilities [1,2,3,5]. Component infrastructure middleware 
must therefore facilitate composition of components running 
on heterogeneous devices into coherent applications through 
the use of common networking and data exchange standards. 

Reconfiguration. WSN scenarios demand support for 
reconfiguration including fine-grained software evolution 
[1,2,3,5], radical application re-tasking [1,2] and self-
adaptation in response to changing environmental conditions 
[3,5] and application requirements [1,2,3,5]. Component 
infrastructure middleware must therefore support 
reconfiguration of software functionality and allow efficient 
reification of the current state (i.e. discovery and analysis). 

Distributed Relationships. To maximize component 
reuse in changing topologies [1,2,3,5], a strong separation is 
necessary between local component implementation and 
distributed concerns. A lack thereof would after all limit the 
usefulness of a component to a single network context. 
Component infrastructure middleware must thus support 
flexible binding modalities, support for reification of 
distributed relationships and a clean separation between 
local and distributed functionality. 

Performance. Component infrastructure middleware for 
WSNs should consume minimal memory and offer good 
performance, even on embedded mote platforms [6,19,29]. It 
should allow for full exploitation of heterogeneous resources, 
while imposing minimal burden on the component and 
application developer. Such middleware must also promote 
the development of components that are themselves efficient. 

In the following section we introduce LooCI; a WSN 
component infrastructure middleware designed to handle 
these requirements. 

IV. A LOOSELY-COUPLED COMPONENT INFRASTRUCTURE 

LooCI is a platform-independent component 

infrastructure middleware. The architecture of LooCI is 

shown in Figure 1. 



 
Figure 1: LooCI architecture and bindings. 

 

LooCI allows individual components to be deployed on 

motes at runtime. Components are managed by a 

Reconfiguration Manager and communicate only over a 

Distributed Event Bus. The Reconfiguration Manager 

maintains references to all local components and enacts 

incoming deployment, control, introspection and binding 

commands that are received over the event bus. Using 

introspection one can discover which components are 

present on a node along with their interfaces, current state 

and bindings.  

To realize the Distributed Event Bus, each LooCI node 

implements a local Event Manager. The Event Manager 

maintains local and remote binding tables, containing 

entries that specify to which local and/or remote 

components events are forwarded. All subscriptions are 

locally maintained, eliminating the need for distributed 

coordination or specialized brokers. While logically 

components communicate directly by exchanging events via 

their interfaces, these events actually pass via the Event 

Manager and, if sent to a remote node, the Network 

Framework and Underlying Platform.  

The Network Framework standardizes the networking 

services offered by the Underlying Platform [15,16,17] and 

offers a uniform API to the upper layers. An extensible set 

of networking services is provided including network-wide 

broadcast, one-hop broadcast and unicast. This renders the 

event bus agnostic to underlying network protocols. It is 

important to note however that components do not use the 

Network Framework directly and instead solely 

communicate over the event bus.  

The reconfigurable platform provided by LooCI allows 

runtime deployment and reconfiguration of components and 

bindings. To prevent malicious parties from exploiting these 

features to attack or eavesdrop on the WSN, we have 

developed a secure deployment protocol [31] [32] and a 

mechanism for implementing access constraints at the level 

of component interfaces [27]. Due to space constraints, we 

refer the interested readers to the original papers. 

As LooCI is a platform-independent middleware 

specification, it provides interoperability across various 

underlying execution environments. At the time of writing 

LooCI supports Contiki [15], Squawk [16] and OSGi [17]. 

A. The LooCI Reconfigurable Component Model 

LooCI components are individually deployable units of 

functionality. They are managed via a control API and 

connect to the event bus through a simple communication 

API. LooCI components build upon the unit of deployment 

of the underlying platform (e.g. a Contiki module, a Squawk 

suite or an OSGi bundle). This allows developers to exploit 

all features offered by various languages, operating systems 

and hardware platforms while providing standardized 

encapsulation, discovery and lifecycle management for 

components. LooCI should therefore be viewed as an 

interoperability layer that allows the application developer 

to compose together software resources that may be 

distributed across heterogeneous nodes.  

Two identifiers are used to specify LooCI components; 

(1) a user-defined name for the component, and (2) an ID 

provided by the LooCI runtime that is unique in the context 

of the hosting node. LooCI components are thus uniquely 

identified by a <node address, component ID> tuple. 

LooCI components typically implement fine-grained 

application level functionality and are composed together 

into a distributed application via bindings over the event 

bus. For this purpose, each component includes a number of 

interfaces, which constitute their communication API. 

Provided interfaces describe the events a component may 

publish to the bus, while required interfaces describe events 

that a component may read from the bus. These interfaces 

are typed according to the type system discussed in Section 

IV.B. Bindings logically connect provided interfaces to 

required interfaces.  
 

Listing 1: Java LooCI Component for Squawk/OSGi 
public class Aggregator extends LooCIComponent { 
  // Declare component 
  public Aggregator() { 
    super("Aggregator",               
      // Declare interfaces                     
      new byte[]{Types.AGG_SENSOR};// Provided If. 
      new byte[]{Types.SENSOR});// Required If. 
  } 
 

  //Event handler method 
  public void receive(Event event) {}  
} 

Listing 2: C LooCI Component for Contiki 
//Declare interfaces 
COMPONENT_PRO_IFACE(aggregator, AGG_SENSOR); 
COMPONENT_REQ_IFACE(aggregator, SENSOR); 
 

//Declare component 
COMPONENT(aggregator, "Aggregator"); 
LOOCI_COMPONENTS(&aggregator); 
 

//Event handler method 
COMPONENT_THREAD(temp_filter, ev, data)  { 
  COMPONENT_BEGIN(); 
  while(1) { 
    LOOCI_EVENT_RECEIVE(&sensor); 
    } 
  COMPONENT_END(); }  
} 



Listings 1 and 2 provide example code for a LooCI 

component providing aggregation. Listing 1 shows Java 

code, which is compatible with the Squawk [16] and OSGi 

[17] ports of LooCI. Listing 2 shows a C component for 

Contiki. To save space, functional code and library imports 

are omitted. The aggregator component has one required 

interface of type SENSOR and one provided interface of 

type AGG_SENSOR. As we build upon existing languages 

and operating systems, we have been careful to minimize 

the effort required to declare LooCI components. As shown 

in Listing 1, the Java-based LooCI ports require 1 line of 

code to declare a component with interfaces and receptacles. 

In contrast, the C/Contiki version of LooCI requires 2 lines 

of code to declare a component, plus one additional line for 

required interfaces and one line for provided interfaces. On 

all platforms, components that specify a required interface 

must also implement an event handler to deal with incoming 

events. 

B. LooCI’s Hierarchical Type System 

LooCI provides an extensible type system (described 

fully in [22]) that allows developers to create a shared 

conceptualization of event types. The LooCI type system 

organizes all events into a taxonomy that gives semantic 

meaning to each event. Hierarchical classification also 

allows for reasoning over groups of functionally equivalent 

events. The LooCI type system provides the following 

advantages: 

§ Type-safe reconfiguration. Each interface embeds its 

position in the type hierarchy. At bind-time, this is used 

to check type safety and prevent the binding of 

incompatible interfaces. As compatibility testing is 

available on all LooCI nodes, this functionality can be 

used to build self-adaptive systems. 

§ Service discovery. To discover services meeting the 

dependencies (required interfaces) of a component, a 

getProvidedInterfaces command containing 

the required type is sent to a single node or group. 

Nodes that receive this query respond by returning 

references to all local provided interfaces that are a 

subtype of that specified in the request. 
§ Reduced overhead. The hierarchical type system reduces 

the overhead of binding and introspection by allowing 

the developer to refer to services by class (e,g all 

SENSOR components on a node may be bound to a 

logger using a single wiring operation, rather than 

multiple operations to bind each sub-type of SENSOR). 

The LooCI type system uses an efficient encoding 

scheme based upon prime numbers, wherein all event types 

ei are classified in a hierarchical taxonomy and are 

associated with a prime number pi. When an event type ej is 

added as a child of ei, we store a unique identifier uidj, 

computed as the product of pj and uidi. As such, uidj 

uniquely encodes the position of ej in the hierarchy in 

relation to its ancestors. At run-time, we can efficiently 

compute whether an event of type ej and corresponding uidj 

is a subtype of ei by dividing uidj by uidi. If the result of this 

operation has no remainder, then due to the unique 

properties of prime numbers, ej must be a subtype of ei (a 

formal proof of this property is provided in [21]). The uid of 

each type is only transmitted during deployment, binding 

and introspection. 
 

C. LooCI’s Distributed Event Bus 

The LooCI event-bus is an asynchronous, event based 

communication medium that follows a decentralized topic-

based publish-subscribe model. Events are typed according 

to the type system described in Section IV.B and can only 

be published and received by interfaces of compatible types. 

Application of the publish-subscribe model in LooCI 

provides loose coupling between components and eliminates 

the need for costly distributed quiescence protocols [24]. 

In order to communicate, components must be bound 

together. This occurs at runtime after deployment of the 

involved components. Bindings are artefacts that are stored 

in the binding tables of the Event Manager and which 

explicitly connect provided interfaces of publishing 

components with compatible required interfaces of 

subscribing components. Event Managers contain two 

binding tables; a local binding table for bindings between 

two local components, and a remote binding table for 

distributed bindings between a local and a remote 

component. Example remote binding tables can be seen in 

Figure 1. In general, bindings are defined by a <source 
event type, source component ID, source 

address, destination event type, destination 

component ID, destination address> tuple. 

Bindings are only allowed between compatible interfaces, as 

determined by their types as described in Section IV.B. 

LooCI supports the following binding modalities: 

§ A one-to-one binding is enacted by sending a wireTo 

event to the source node that identifies a unique 

provided-interface and a remote destination. A 

wireFrom event is sent to the destination node that 

identifies the unique source interface and the local 

destination interface. 

§ A one-to-many binding is enacted by sending a wireTo 

event to the source node that identifies a unique 

provided-interface and a wild-card destination (network 

broadcast or one-hop broadcast). A wireFrom event is 

then broadcast to all destination nodes that specifies the 

source address, a unique source interface and the local 

destination interface. (Note: a many-to-one binding is 

established using the inverse set of operations.) 

§ Opportunistic bindings are enacted by sending a 

wireTo event to all source nodes that specifies a 

provided-interface type and the 1-hop broadcast 

wildcard. A wireFrom event is then sent to the 

destination node(s) that specifies a wild-card source 

address, a wild-card source component id, the source 

interface type and a local destination interface.  



It is important to note that components neither send nor 

receive events until they have been bound and activated. As 

data is semantically typed and all communication occurs via 

explicit bindings, introspection may be used to reify 

distributed relationships and reconfiguration may be used to 

modify data flows at runtime.  

D. API and Management Support 

To deploy or reconfigure components and bindings at 
runtime, the core LooCI API is provided as shown in Listing 
3. The Control, Introspection and Binding APIs are exposed 
by the Reconfiguration Manager over the event bus and 
made available to back-end system elements via the gateway. 
As nodes do not have direct access to the component 
repository, the Deployment API is made available only to 
back-end system elements via the gateway. The core API 
contains the minimum functionality that is required to 
manage a network of LooCI nodes and while it may be used 
directly by the developer, we expect that it will more 
commonly be used to build higher-level services. Examples 
of such tools include the Quality Aware Reconfiguration 
Infrastructure (QARI) [28] and the Policy-based 
Management Architecture (PMA) [27]. 

 

Listing 3: The core LooCI API 
 

Deployment 
CompID  deploy(ComponentFile, NodeID) 
Boolean  removeComponent(CompID, NodeID) 
 

Control 
Boolean  deactivate(CompID, NodeID) 
Boolean  activate(CompoID, NodeID) 
 

Introspection 
CompID[] getComponents(NodeID, ComponentType) 
String  getComponentType(NodeID, CompID) 
State   getComponentState(NodeID, CompID) 
Event[]  getProvidedInterfaces(NodeID, CompID, UID) 
Event[]  getRequiredInterfaces(NodeID, CompID, UID) 
NodeID[] getOutWires(NodeID, CompID, EventTypeOut) 
NodeID[] getInWires(NodeID, CompID, EventTypeIn) 
 

Binding 
Boolean wireFrom(EventTypeOut, SrcCompID, 

SrcNodeID, EventTypeIn, DestCompID, 
DestNodeID) 

 

Boolean  wireTo(EventTypeOut, SrcCompID,  
SrcNodeID, DestNodeID) 

V. IMPLEMENTATION AND EVALUATION 

In this section we introduce three implementations of 

LooCI and use these to evaluate the design of LooCI. 

Section V.A quantifies the overhead of LooCI on each of 

the three evaluation platforms, Section V.B compares LooCI 

to other reconfigurable component based middleware for 

WSN and Section V.C assesses the network overhead of 

LooCI. 

Implementations of LooCI are currently available for 

Contiki, Squawk and OSGi. Table 1 summarizes each 

LooCI implementation and the hardware platform that was 

used in this evaluation. All implementations faithfully 

realize the design described in Section IV. The common 

type system and event-bus ensures that all ports of LooCI 

interact seamlessly, allowing for compositions that integrate 

Contiki [15], Squawk [16] and OSGi [17] motes. 
 

Table 1: LooCI Implementations and Test Platforms 
 Contiki Squawk OSGi 

Language C Java ME Java SE / OSGi 

Environment Contiki 2.4 [15] 
Squawk 

[16]. 
Java v1.6 

Test 

Platform 

Raven [7] 

20MHz 

ATmega1284p 

16K RAM 

128KB Flash 

SPOT [8] 

180MHz 

ARM920T 

512K RAM 

4MB Flash 

GumStix [9] 

400MHz 

XScale_PXA255 

16MB RAM 

16MB Flash 

A. Memory and Performance Overhead of LooCI 

The memory overhead of LooCI itself is comprised of 

the additional flash memory and RAM that is consumed by 

the execution environment. As can be seen from Table 2, 

LooCI runs comfortably on all of our test platforms. In the 

worst case, on the Raven [6], the combined LooCI and 

Contiki image leaves over 54% of flash memory and 38% of 

RAM free for application development. On SPOT [7] and 

GumStix [8], the vast majority of flash and RAM remain 

available. Along with a compact middleware footprint, it is 

also important that application components are compact. 

Table 3 compares the size of functionally equivalent 

implementations of a LooCI temperature sensor component 

for Contiki [7], Squawk [8] and OSGi [9].  

 

Table 2: LooCI Middleware Memory Consumption 

Static Memory Consumption (Flash) 
 Contiki/Raven Squawk/SPOT OSGi/GumStix 

LooCI 16884 bytes 45363 bytes 49987 bytes 

Underlying 

Platform 
43180 bytes 616048 bytes 87044 bytes 

Flash Overhead + 39.10% + 7.36% +57.42% 

Total Flash Used 45.83% 15.77% 0.82% 

Dynamic Memory Consumption (RAM) 
 Contiki/Raven Squawk/SPOT OSGi/GumStix 

LooCI 1561 bytes 31744 bytes 84992 bytes 

Underlying 

Platform 
8885 bytes 78848 bytes 445440 bytes 

RAM Overhead + 17.57% + 40.26% + 19.08% 

Total RAM Used 61.12% 21.09% 3.16% 

 

Table 3 shows that LooCI-Contiki and LooCI-OSGi 

components consume less RAM than an equivalent Contiki 

or OSGi module. This is because distribution support is 

included in the LooCI middleware and does not need to be 

embedded in the component. LooCI-Contiki also consumes 

less flash memory while LooCI-OSGi consumes marginally 

more. In the case of LooCI-Squawk, componentization adds 

minimal flash overhead, but significant RAM overhead as 

each component runs an Inter-Isolate RPC [16] server to 

communicate with the LooCI runtime. However, the 5120 

byte RAM overhead is constant and thus becomes less 

significant as component size increases. 
 

 

 

 



Table 3: LooCI Temperature Sensor Component 

Memory Consumption 
 Contiki/Raven Squawk/SPOT OSGi/GumStix 

 Static Memory Overhead (Flash) 
 Native 

Application 
281 bytes 1740 bytes 1511 bytes 

 LooCI 

Component 
220 bytes 1843 bytes 1750 bytes 

 % Change  - 21.71% + 5.92% + 15.82% 

 Dynamic Memory Overhead (RAM) 
Native 

Application 
63 21504 bytes 4588 bytes 

LooCI 

Component 
59 26624 bytes 2304 bytes 

% Change - 6.35% + 23.81% - 49.78% 
 

We define performance overhead as the time required to 

instantiate and bind components. Table 4 summarizes the 

LooCI performance timings in milliseconds. Initialization 

and binding operations on LooCI components are fast on all 

evaluation platforms. Furthermore the LooCI type system 

allows for checking of type safety at bind time with low 

performance overhead (in the worst case, 4.8% of bind 

time). 

 

Table 4: LooCI Middleware Performance Timings 
 Contiki/Raven Squawk/SPOT OSGi/GumStix 

Component 

Initialization: 
0.26 ms 35 ms 1050 ms 

Component 

Binding: 
0.15 ms 12 ms 0.12 ms 

Component 

Unbinding: 
0.15 ms 12 ms 0.12 ms 

Checking Type 

Safety: 
0.03 ms 0.29 ms 0.05 ms 

B. Performance Comparison against Reconfigurable 

Component-based Middleware for WSNs 

In Table 5 we identify the distribution mechanisms, 

languages and hardware platforms supported by competing 

middleware as well as relevant evaluation metrics that have 

been reported in the literature. 
 

Table 5: Features of Component-based WSN 

Middleware 
 Distribution Languages Hardware Metrics 

GridKit [3] RPC-based  Java SE GumStix [8] 
Memory & 

Perf. 

Lorien [14] NONE C Telos B [29] 
Memory & 

Perf. 

RUNES [4] NONE 

Java ME, 

C & 

Contiki 

Telos B [29] 
Memory & 

Perf. 

 

OSGi [17]  

 

NONE Java SE Various Memory 

LooCI 
Event Based 

Bindings 

Java SE, 

Squawk 

& Contiki 

Raven [7], 

SPOT [8] & 

GumStix [9] 

Memory & 

Perf. 

 

As NesC produces a monolithic system image it cannot 

be meaningfully compared to LooCI and it is therefore 

omitted. It should be noted from Table 5, that LooCI is the 

only reconfigurable WSN middleware that provides 

distribution support and platform independence.  

Table 6 compares the memory footprint of LooCI with 

other component based WSN middleware [3,4,13,14,17]. 

While each middleware provides a subtly different feature 

set, LooCI-Contiki is the smallest C based component 

model for WSN and LooCI-Squawk is the smallest Java-

based component model. Compared to GridKit [3], the only 

other component-based middleware that supports 

distribution, all versions of LooCI have a smaller memory 

footprint. 
 

Table 6: Flash Footprint of WSN Component Models 

 Language Size (Bytes) 

Lorien C 21794 

RUNES C 20000 

LooCI-Contiki C 16884 

LooCI-Squawk Java ME 45363 

LooCI-OSGi Java SE 49987 

OSGi Java SE 76800 

GridKit Java SE 106700 
 

Table 7 compares the performance of component-based 

WSN middleware in terms of component initialization and 

binding as reported in [3,4,14]. Note: these timings were 

obtained on a variety of hardware platforms as outlined in 

Table 5 and therefore should not be directly compared 

without taking into account platform capability. Where 

performance data is omitted, it was not provided in the 

source paper.  
 

Table 7: Performance of WSN Component Models 

 Language Bind Init. 

Lorien C N/A 799ms 

RUNES C N/A 0.98ms 

LooCI-Contiki C 0.26ms 0.30ms 

LooCI-Squawk Java ME 35ms 24ms 

LooCI-OSGi Java SE 0.24ms 1050ms 

GridKit Java SE 80ms 118ms 
 

Compared to the C-based component models, 

instantiation in LooCI-Contiki is three times faster than 

RUNES [4] and three orders of magnitude faster than Lorien 

[14]. However the compute power of the LooCI test 

platform (Raven [7] at 20 MIPS) is 25% greater than the 

Lorien and RUNES evaluation platforms (Telos B [29] at 16 

MIPS). 

Compared to the Java-based GridKit middleware [3], 

LooCI-Squawk [8] offers faster component initialization 

and binding, despite being evaluated on a mote providing 

less than half of the compute power (SPOT [8] provides 180 

MIPS, while GumStix [9] provides 400 MIPS), however 

caution is again warranted due to differences in the 

supporting operating system. Comparing the performance of 

LooCI-OSGi to GridKit on GumStix [9], the results are 

mixed. LooCI offers two orders of magnitude faster 

component binding, but one order of magnitude slower 

component instantiation (due to start up of inter-isolate RPC 

[16]). In our view, instantiation speed is less important than 



binding speed, as instantiation is typically infrequent 

compared to binding operations. 

C. Overhead of LooCI Networking Approach 

In this section we quantify the worst-case network 

overhead (i.e. with the maximum possible size of message 

payloads) introduced by LooCI in terms of number of bytes 

that must be transmitted to enact each LooCI command. 

This analysis does not take into account network dynamics 

and thus represents the worst-case scenario for an ideal one-

hop network with no collisions or packet loss. In terms of 

the application messages that are transmitted between 

components, the LooCI messaging format adds a fixed 

overhead of 4 bytes per message. As all commands in the 

LooCI API (provided in Listing 3) are implemented using a 

simple request/reply scheme, the worst-case number of 

bytes transmitted to enact any LooCI command is given by: 

Bytes = n * (PRQ + PRP). Where n is the number of nodes 

targeted, PRQ is the size of the request message and PRP is 

the size of the reply message. Table 8 provides the PRQ and 

PRP costs for all commands in the LooCI API and can thus 

be used to calculate the worst-case number of bytes 

transmitted for all commands.  
 

Table 8: Network Overhead of LooCI Commands 

 PRQ (Bytes) PRP (Bytes) 
deploy() CS +4 5 
activate() 5 5 
deactivate() 5 5 
removeComponent() 5 5 
getComponents() 28 C+6 
getComponentType() 5 29 
getComponentState() 5 6 
getProvidedIfaces()[TU] 5 2I + 6 
getProvidedIfaces()[TS] ST+4 I (ST+2)+6 
getRequiredIfaces()[TU] 5 2I+6 
getRequiredIfaces()[TS] ST+4 I(ST+2)+6 
getOutWires() 7 IA+6 
getInWires() 7 T(A+1)+6 
getLocalWires()  7 I+6 
wireFrom()[TU] A+8 5 
wireFrom()[TS] A+TS+8 5 
wireTo()[TU] A+7 5 
wireTo()[TS] A+TS+7 5 

 

CS is the size of the component to be deployed, C is the 

number of components matching an associated query, I is 

the number of interfaces matching the associated query, A is 

the size of a network address in bytes and ST is the worst 

case size of a semnatic type description. As type safety in 

discovery and binding may be deactivated, the overhead of 

both type unsafe [TU] and type safe [TS] operations is 

provided. For current implementations, the maximum size 

of A is 16 bytes for a full IPv6 address and the maximum 

size of TS is 22 bytes for a 65,000 element type system (in 

realistic scenarios, TS is likely to be far smaller [22]). All 

LooCI commands are compact and in normal cicumstances 

requests and responses will fit comfortably within a single 

802.15.4 packet, with the possible exception of type safe 

discovery messages that return a large number of matching 

interface descriptions. 

As taxonomic data and component names are only used 

to support discovery and binding, this data is not stored in 

the binding table of the Event Manager. Thus, each 

incoming wiring entry in this table consumes only 5+A 

bytes, while each outgoing wiring entry consumes only 4+A 

bytes. This allows complex patterns of component 

communication to be created, inspected and reconfigured 

while working within the resource constraints of 

contemporary mote platforms. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper introduced the Loosely-coupled Component 

Infrastructure (LooCI). LooCI is the first platform 

independent, distributed component infrastructure 

middleware for WSN. LooCI offers a language independent 

reconfigurable component model and standard support for: 

encapsulation of functionality, runtime reconfiguration and 

management of software components running on 

heterogeneous platforms.  LooCI strongly separates the 

concerns of component implementation and distribution, 

allowing components to be safely reused in a range of 

distributed contexts. Our analysis shows that LooCI 

provides a richer feature set than other reconfigurable WSN 

middleware, with minimal performance overhead. 

Our primary avenue of future work will be to validate 

LooCI in a large-scale WSN application using 

heterogeneous motes. We have previously implemented 

applications using prototypes of LooCI [12], but these were 

of small scale and implemented on a homogeneous 

hardware deployment [18]. We believe that large-scale, 

heterogeneous LooCI deployments are now required to 

validate the LooCI model and to evaluate our networking 

approach in a realistic environment. 
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