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Abstract

Most existing attention-based methods on image cap-

tioning focus on the current word and visual information

in one time step and generate the next word, without con-

sidering the visual and linguistic coherence. We propose

Look Back (LB) method to embed visual information from

the past and Predict Forward (PF) approach to look into

future. LB method introduces attention value from the pre-

vious time step into the current attention generation to suit

visual coherence of human. PF model predicts the next two

words in one time step and jointly employs their probabil-

ities for inference. Then the two approaches are combined

together as LBPF to further integrate visual information

from the past and linguistic information in the future to im-

prove image captioning performance. All the three methods

are applied on a classic base decoder, and show remarkable

improvements on MSCOCO dataset with small increments

on parameter counts. Our LBPF model achieves BLEU-4

/ CIDEr / SPICE scores of 37.4 / 116.4 / 21.2 with cross-

entropy loss and 38.3 / 127.6 / 22.0 with CIDEr optimiza-

tion. Our three proposed methods can be easily applied

on most attention-based encoder-decoder models for image

captioning.

1. Introduction

Image caption generation is to generate a sentence to de-

scribe an image in natural language from its visual contents

and has attracted increasing attention in computer vision

field. This task combines image understanding and natural

language processing methods to predict an informative and

fluent caption. The generated texts can do great help for

people with visual impairment and image searching prob-

lems. Caption generation is a challenging task. First, the

image needs to be well understood and the primary infor-
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Figure 1. An overview of our proposed Look Back and Predict For-

ward (LBPF) method. The same color of LSTM2 and Att indicates

they share the same parameters. Et denotes the word embedding

of yt. The Att layer takes both hidden state h and previous atten-

tion result attt−1 as input to predict the current attention value,

which shows the look-back part. The network predicts y′

t+1 and

y′

t+2 at the same timestep, and shares the Att and LSTM2 param-

eters, which shows the predict-forward part.

mation should be extracted as features for text generation.

Second, a language model should be employed to identify

concrete information from the extracted features and gen-

erate descriptive texts. In the past few years, many neural

encoder-decoder models [27, 25, 28] have been proposed to

solve this problem, where encoder extracts semantic em-

beddings from the image based on Convolutional Neural

Network (CNNs) and decoder predicts the texts using Re-

current Neural Networks (RNNs).

Attention mechanism is first introduced into this task
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in [29] and shows extraordinary advantage on all the ob-

jective metrics like BLEU [22], CIDEr [26] and SPICE [1].

Attention module takes a look at semantic embeddings from

the encoder, and focuses on the crucial information related

to the current expression. At each time step, the atten-

tion module calculates a relevance weight according to the

given word which contributes to the current word genera-

tion. Soft attention [5] method employs the weighted av-

erage of all the feature vectors as attention result, while

hard attention [4] method performs a sampling on the rel-

evance weights. Although attention module in the decoder

can provide precise and effective visual information for the

text generation, the attention methods simply take the cur-

rent word state ht as input and calculate the attention result

for only one output state ht+1. This kind of attention ig-

nores the visual relevance between adjacent words, e.g. “a

blue bike” actually expresses one object with three words.

As far as we know, all existing works on image caption-

ing generate word one by one and the predicted word y′t+1

is highly dependent on yt. During the training phase, they

take ground-truth yt as the input of the language model to

predict the word y′t+1. However, in the inference phase,

the input y′t can only be sampled from the last time step,

which can easily bring in accumulated error in final gen-

erated texts. Previous work like [9] proposes to increase

the correlation between ht−1 and ht by coupling with an

auto-reconstructor network (ARnet). This reduces the dif-

ference between ht−1 and ht, and can embed more infor-

mation from the previous state. However, the regularization

method using Euclidean distance may directly reduce the L-

2 norm for each hidden state, and show little intuitionistic

improvement.

In order to solve the problems mentioned above, we pro-

pose Look Back and Predict Forward method (LBPF) to uti-

lize the visual information and language modeling ability.

As illustrated in Figure 1, our LBPF method introduces two

main designs denoted as Look-Back (LB) part and Predict-

Forward (PF) part. The LB part concatenates the previous

attention vector and the current hidden state ht as the in-

put of the attention module. It helps to embed visual infor-

mation of the previous steps and suits human visual habit.

PF part differs from traditional methods and serially pre-

dicts ht+1 and ht+2 according to ht within the same time

step. We directly regard ht+1 as an embedding of y′t+1 and

pass it through the same parameters for ht to predict ht+2.

This process generates two sequences denoted as seq1 and

seq2, where seq2 starts from the second word in the final se-

quence. In the training phase, we separately optimize seq1
and seq2 according to the ground-truth. In the inference

phase, we predict y′t when t ≥ 2 with p1t + λp2t, and the

first word y1 depends on p11 itself (p1 denotes the predicted

probability in seq1, and p2 denotes the probability in seq2).

We evaluate our proposed LB, PF and LBPF methods on

MSCOCO Karpathy test split with both cross-entropy loss

and CIDEr optimization. To verify the effectiveness of our

methods, we employ Up-Down model [2] as the base de-

coder, and respectively implement LB, PF and LBPF model.

With the detected feature pre-trained on Visual Genome

dataset, all the three models show remarkable improvement

over the base model, and the best LBPF model achieves

BLEU-4 / METEOR / ROUGE-L / CIDEr / SPICE scores of

37.4 / 28.1 / 57.5 / 116.4 / 21.2 with cross-entropy loss and

38.3 / 28.5 / 58.4 / 127.6 / 22.0 with CIDEr optimization.

2. Related Work

A large number of methods have been proposed based

on encoder-decoder frameworks [19, 14, 13] for image cap-

tioning. Oriol Vinyals et al. [27] proposed show and tell net-

work, where the image was encoded into a feature vector by

a pre-trained CNN and used as the first word embedding in-

put for the language LSTM. Junhua Mao et al. [21] concate-

nated the image feature vector with each word embedding in

order to maintain the visual information for later-generated

words. Lisa Anne Hendricks et al. [3] separated visusal in-

formation from language LSTM and only employed it be-

fore the logit layer. Kelvin Xu et al. [29] first introduced

attention mechanism into caption generation tasks and also

first initialized the hidden state of language LSTM with vi-

sual feature vector. Attention module has been proved to

have huge improvements on image caption generation and

thus applied to almost all recent methods [30, 8, 32, 11].

Attention-based methods for image captioning usually

extract features with pre-trained CNN models on extra

datasets. Famous image datasets like ImageNet [10] have

a large number of images with labels for various common

objects. Channel-wise features from pre-trained CNN mod-

els like VGG [24] and ResNet [12] show great representa-

tional capacity in object and scene identification. As newly

released Visual Genome [15] dataset came out, detection-

based encoder employed Fast R-CNN network to extract

more explicit features for images. Peter Anderson et al. [2]

pre-trained Fast R-CNN on Visual Genome dataset, and

gathered the detected region vectors with high confidence

coefficients as final features, which showed remarkable ad-

vantage over CNN pre-trained features. All these efforts

focus on embedding more information on the encoded fea-

tures, while ignoring the relevance of visual attention. Our

proposed method instead considers the influence of the pre-

vious attention vector to the present one.

Besides attention mechanisms, the solution to accumu-

lated error also played an important role in image caption-

ing. Samy Bengio et al. [7] proposed scheduled sampling

for sequence prediction with RNNs, which partially uses

sampled y′t to replace ground-truth yt in the training phase.

Beam search algorithm has been widely used in caption

generation, as it reduces accumulated error caused by max-
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Figure 2. Look Back attention module. We concatenate previous

attention result attt−1 and the current hidden state ht together and

feed it into Attention module to predict attt.

sampling. Krueger et al. [16] put forward zoneout to reg-

ularize RNN, where each hidden state and memory cells

chose to update their values or remain unchanged. Xinpeng

Chen et al. [9] introduced auto-reconstructor network (AR-

net) to regularize the transition between neighboring hid-

den states. However, all these methods are still stuck in the

word-by-word generation process and have not considered

predicting forward to decrease accumulated error caused by

max-sampling. We propose to predict forward in both train-

ing and inference phase, and actively employ future infor-

mation to adjust current selection.

3. Method

Like most existing methods, we employ encoder-decoder

framework for image captioning. Given an image I , we first

generate the detection feature V = {v1, v2, · · · , vk}, vi ∈
R

D with pre-trained encoder model, and take the mean

pooling vector v̄ as the global information. Then we ap-

ply our LBPF method in the decoder architecture. In this

paper, we employ classic Bottom-Up and Top-Down Atten-

tion model proposed by [2] as the base image captioning

model. We first introduce Look-Back model in Sec 3.1 and

then describe Predict-Forward model in Sec.3.2. In Sec.3.3,

we explain how to combine these two models together as

LBPF.

3.1. Look Back Model

Given k spatial image feature vectors V =
{v1, · · · , vk} ∈ R

D×k and current hidden state ht ∈ R
d,

conventional attention module employs the attention

function fatt to calculate a weighted average vector attt as:

attt = fatt(V, ht) (1)

where each vi of V is a D-dimensional representation of

a detected region. In general, the calculated attt is directly

concatenated with ht to predict the next word y′t+1. How-

ever, the attention region should have visual coherence and

attt can contribute to later time steps.

We thus propose Look Back method, which helps to take

the previous attended result into consideration. As illus-

trated in Figure.2, we bring in attt−1, which is the previous

attention result, and concatenate it with current hidden state

ht as the input of fatt. We denote ◦ as the concatenation

operation, and we get new attt as:

attt = fatt(V, ht ◦ attt−1) (2)

We denote Ht = ht ◦attt−1, and then employ Ht to dis-

tinguish the importance of different feature vectors vi and

the weights are calculated as follows:

ui,t = wu tanh(Wvuvi +WhuHt) (3)

αt = softmax(ut) (4)

where Wvu, Whu and wu are parameters in fatt, αt =
{α1,t, α2,t, · · · , αk,t} ∈ R

k is a k-dimensional vector

which sums to 1. The final attention attt is generated by:

attt =

k∑

i=1

αi,tvi (5)

It is worth mentioning that, we treat attt−1 as previous

attended regions and employ it for current attention genera-

tion. In our Look Back model, we simply employ the value

of attt−1 and cut off the back propagation through it to the

previous time step. The attention module may become too

complicated and get hard to converge if all the gradients are

accumulated together.

3.2. Predict Forward Model

In most existing methods of sequence generation, the

current word embedding Et of yt is fed into the RNN-based

architecture, and the next word y′t+1 is predicted at this time

step. In the inference phase, y′t+1 depends heavily on y′t
and the probability of wrong sampling results in inevitable

accumulated error on sequence generation. We hereby pro-

pose Predict Forward method to predict y′t+1 and y′t+2 in

one time step to alleviate this problem.

As illustrated in Figure. 3, given h1
t from the attention

LSTM and visual features V , we get att1t with Att module

and feed them together into LSTM2 (the language LSTM).

Here we denote attention function as fatt, the mathematical

operation of LSTM2 as F2 and concatenation operation as

◦, then h2
t can be calculated as:

att1t = fatt(V, h
1
t ) (6)

h2
t = F2(h

1
t ◦ att

1
t , h

2
t−1) (7)

where h2
t−1 is the hidden state of LSTM2 from last time

step. Normally, h2
t is fed into the logit layer and retrieve the
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Figure 3. Predict Forward module. With current hidden state

h1
t from the first LSTM, we operate the word generation twice

with the same parameters in Attention module and the language

LSTM2. First we generate att1t and h2
t , and then we move forward

to predict h3
t by replacing h1

t with h2
t and feed it through Att and

LSTM2. h2
t is employed both as the hidden state to generate h3

t

and as the hidden state for LSTM2 in next time step. h2
t and h3

t

are fed into two independent logit layers to predict y′

t+1 and y′

t+2

respectively.

probability p2t for y′t+1, here we denote logit layer for pt+1

as logit1, and calculate p2t :

p2t = softmax(logit1(h
2
t )) (8)

As the training proceeds, h2
t tends to embed more precise

information of word yt+1, because it can be mapped to yt+1

by a simple logit layer. This offers us enough support to re-

gard h2
t as a special embedding of yt+1, and it is reasonable

to predict the next word by employing history information

and h2
t .

As shown in Figure.3, in our proposed PF module, be-

sides being fed into the logit layer, h2
t further go through

Att and LSTM2 and predict h3
t . The same color indicates

that the Att module and LSTM2 are identical to which h1
t

goes through. The main difference from the original method

is that the hidden state of LSTM2 is updated into h2
t while

h2
t−1 is employed for h1

t . Then h3
t is generated by the fol-

lowing:

att2t = fatt(V, h
2
t ) (9)

h3
t = F2(h

2
t ◦ att

2
t , h

2
t ) (10)

next, h3
t is connected to another logit layer logit2 to predict

the probability p3t for y′t+2 as:

p3t = softmax(logit2(h
3
t )) (11)

In Figure.3, the dashed line connecting LSTM2 and h3
t

indicates that h3
t will not be passed to the next time step

and is simply used to generate y′t+2. On the contrary, h2
t is

stored both for h3
t and h2

t+1 in next time step. We denote

the Predict Forward module as PF-LSTM unit for further

explaination.

In training phase with cross-entropy loss, the PF-LSTM

unit is executed for T steps where T refers to the length

of ground-truth Y . This process will generate two pre-

dicted sequences: Y 1
′

= {y1
′

1 , y1
′

2 , · · · , y1
′

T , EOS} and

Y 2
′

= {y2
′

2 , y2
′

3 , · · · , y2
′

T , EOS,EOS}, where Y 1
′

corre-

sponds to h2
t and Y 2

′

for h3
t . The input of training phase

starts from Begin-of-Sentence (BOS), which is normally

zero vector, and the prediction sequence ends with End-

of-Sentence (EOS). h3
t depends on h2

t and thus there is no

y2
′

1 in Y 2
′

. We also abandon the last EOS in Y 2
′

when h2
t

educes EOS. Then we define the loss as:

loss1 = −
1

T

T∑

t=1

log(p2t (yt|y1:t−1)) (12)

loss2 = −
1

T − 1

T∑

t=2

log(p3t (yt|y1:t−2)) (13)

loss = loss1 + loss2 (14)

loss1+ loss2 treats Y 1
′

and Y 2
′

equally, which prompts

the model to predict accurate y′t+1 and y′t+2. To utilize this

advantage, we combine the predicted probability of y1
′

t and

y2
′

t together by:

p′t = p2t + λp3t−1 (15)

where p2t is calculated from h2
t , p3t−1 is retrieved from

h3
t−1 and λ is a trade-off coefficient to balance the impor-

tance of p2t and p3t−1. During training process, both p2t and

p3t−1 approach to promote ground-truth yt+1, and we com-

bine them together to predict the next word. Beam search

method is employed in our inference phase, and beam-size

of 3 can basically guarantee the existence of optimal word

from both of the two probability distributions. This oper-

ation enables the prediction of y′t+1 to not simply depend

on sampled y′t, but can also directly look to the generation

result of the previous time step, which effectively reduces

the accumulated error by wrong sampling.

For completeness of comparison with state-of-the-art

work [2], we also apply our model with self-critical

(SC) optimization on CIDEr [23]. Conventional self-

critical learning on caption generation focuses on optimiz-

ing CIDEr score on the predicted sequence. The training

process is to minimize the negative expected reward:

Lr(θ) = −Ey1:T pθ
[r(y1:T )] (16)

where r(y1:T ) is the score function of the predicted se-

quence y1:T which is CIDEr in this paper and θ denotes
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the parameters of the network. Following the reinforcement

learning based method proposed in [23], the gradient can

be approximated as:

∇θLr(θ) ≈ −(r(ys1:T )− r(ym1:T ))∇θ log pθ(y
s
1:T ) (17)

where ys1:T represents a sampled sequence and ym1:T de-

notes the max-sampling sequence. The baseline is set to

be r(ym1:T ) to reflect the current capacity of the network.

In our PF model, we generate Y 1
′

and Y 2
′

simultane-

ously, and self-critical sequence training (SCST) certainly

takes one sequence to be optimized. To apply our PF model

with SCST, we select Y 1
′

to be trained with CIDEr score

optimization, and we force Y 2
′

to approach Y 1
′

by append-

ing cross-entropy loss of Y 2
′

with Y 1
′

as the ground-truth.

The cross-entropy loss Lc is calculated as:

Lc = −
1

T − 1

T∑

t=2

log(p3t (y
1
′

t |y1
′

1:t−2)) (18)

Then we combine self-critical loss Lr and cross-entropy

loss Lc together and apply the total loss for SCST as:

Lsc = Lr + Lc (19)

In the inference phase of SCST, we also employ the prob-

ability of Y 1
′

and Y 2
′

together, and follow Eq.(15) to gen-

erate the final sequence.

3.3. Look Back and Predict Forward Model

Look Back model focuses on attention module and take

attended result of the last time step as input, which helps

the model embed information from previous visual atten-

tion. Predict Forward model aims to predict next two words

in one time step. We can combine these two models to-

gether by simply reserving two attention results (att1t and

att2t ) in one time step for the next one, as illustrated in Fig-

ure.1. By bringing in both previous and future information,

our LBPF model is capable of predicting the next word by

both contexts of the situation and visual information, which

provides more details and guidance.

4. Experiments

4.1. Datasets

4.1.1 MSCOCO

We evaluate the performance of our proposed LBPF meth-

ods on MSCOCO 2014 caption dataset [18]. MSCOCO

is the largest English image caption dataset containing

164,062 images. It is split with rate 2:1:1 for training, val-

idation and test. In this paper, we employ the widely-used

’Karpathy’ splits [13] for offline evaluation, which chooses

113,287 images for training and 5000 for validation and test

each. Each image in MSCOCO is associated with at least 5

captions, and we select 5 per image for quantitative perfor-

mance evaluation on BLEU [22], METEOR [6], ROUGE-

L [17], CIDEr [26] and SPICE [1].

4.1.2 Visual Genome

Visual Genome (VG) [15] dataset contains 108K images

with dense annotations. There are 5.4 million region de-

scriptions and 42 for each image on average, where each

description is a phrase with 1 to 16 words. These annota-

tions include bounding boxes, classifications and attributes

of main objects, and even the relationships among differ-

ent instances are identified. Totally, the dataset contains 3.8

million object instances, 2.8 million attributes and 23 mil-

lion relationships. In this paper, we employ detected feature

pre-trained [20] on VG dataset.

4.2. Implementation Details

4.2.1 Encoder and Features

We employ detected vectors proposed by [2] as features,

which are generated by pre-trained Fast R-CNN model [20]

on VG dataset. In pre-training process, only object and at-

tribute data is employed. 98K images are split for training

and 5K for validation and test each [2, 20].

The annotations of objects and attributes are phrases with

1 to 16 words, thus data cleaning is performed over the

dataset. Fast R-CNN model is trained on this dataset for

multiple instances detection, and we only preserve ROI (re-

gion of interest) pooling vectors with the size of 2048 whose

confidence coefficient is at least 0.2 to guarantee the expres-

sive ability of our selected features. We also set the selected

number for each image to be 10-100 to balance the distribu-

tion among different images.

4.2.2 Decoder

Our base decoder employs the Bottom-Up and Top-Down

Attention model. For fair comparison with the previous

work, we directly employ the same hyper-parameters which

are proposed in [2]. We use hidden units of 1000 in both

LSTMs and set hidden units of the atttention module as 512.

The size of input word embedding is also 1000. We employ

Adam optimizer with the learning rate initialized as 5e−4

and decaying by 0.8 exponentially every 3 epoches. Due to

the limit of the graphic memory of GeForce GTX 1080Ti,

we set the batch size to 64. For self-critical learning, we

start from the best saved model during optimization using

cross-entropy loss. The learning rate for SCST starts from

5e−5 and decays by rate 0.1 every 50 epoches.
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Cross-Entropy Loss CIDEr Opitimization

Models B-1 B-4 METEOR ROUGE-L CIDEr SPICE B-1 B-4 METEOR ROUGE-L CIDEr SPICE

SCST:Att2in [23] - 31.3 26.0 54.3 101.3 - - 33.3 26.3 55.3 111.4 -

SCST:Att2all [23] - 30.0 25.9 53.4 99.4 - - 34.2 26.7 55.7 114.0 -

ARnet [9] 74.0 33.5 26.1 54.6 1.034 19.0 - - - - - -

Up-Down [2] 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4

Ours: LB 77.4 36.7 27.6 57.0 114.3 20.8 79.6 37.7 28.4 58.1 124.4 21.8

Ours: PF 77.4 37.0 27.9 57.2 115.7 20.9 80.7 38.3 28.4 58.4 126.9 21.9

Ours: LBPF 77.8 37.4 28.1 57.5 116.4 21.2 80.5 38.3 28.5 58.4 127.6 22.0

Table 1. Performance comparisons on MSCOCO Karpathy test split using cross-entropy loss and CIDEr optimization, respectively. Our

baseline is Up-Down model proposed in [2], the existing state-of-the-art model employing bottom-up attention mechanisms. With the

pre-trained features, we apply our Look Back (LB) method, Predict Forward (PF) method and the combined Look Back and Predict

Forward (LBPF) method on the base decoder. Testing results show that our methods bring huge boost with both cross-entropy loss / CIDEr

optimization and outperform all the previous work with simple feature. In the table, B-1 and B-4 represent BLEU-1 and BLEU-4.

PF Model

λ B-1 B-4 M R C S

0.1 76.5 36.3 27.7 56.7 112.7 20.6

0.3 76.9 36.6 27.7 57.0 113.2 20.6

0.5 77.0 36.7 27.7 57.0 113.8 20.8

0.7 77.2 36.7 27.7 57.0 113.7 20.8

0.9 77.4 36.6 27.6 56.9 113.5 20.8

LBPF Model

λ B-1 B-4 M R C S

0.1 76.7 36.7 27.9 57.0 113.9 20.7

0.3 76.9 37.0 27.9 57.1 114.1 20.8

0.5 77.2 36.9 27.9 57.2 114.3 20.8

0.7 77.2 36.8 27.8 57.1 114.2 20.9

0.9 77.3 36.6 27.7 56.9 113.8 20.9

Table 2. Performances evaluation of our PF and LBPF models with

different λ on MSCOCO Karpathy validation dataset where λ is

the trade-off parameter in Eq.(15). B-1 / B-4 / M / R / C / S refers

to BLEU-1 / BLEU-4 / METEOR / ROUGE-L / CIDEr / SPICE

scores respectively. This table shows the performance trained with

cross-entropy loss.

4.3. Captioning Evaluation Results

4.3.1 Model Selection with λ

In our proposed PF and LBPF methods, we combine two

generated sequences together with a trade-off parameter λ

in Eq.(15) and we do model selection through it. During the

training process, we noticed that the converged loss of Y 2
′

is slightly larger than that of Y 1
′

, thus we set λ from 0 to 1

to put more emphasis on Y 1
′

. In our experiments, we em-

ploy beam search method to sample output sequence. Beam

size of 3 can effectively cover the optimal words in both se-

quences and setting λ less than 1 tends to select the second

promoted word in Y 1
′

. The results of PF and LBPF models

trained with cross-entropy loss are shown in Table.2.

Recently, CIDEr has become the most important score

which is well-accepted to best reflect the information and

smoothness of the sentences. The results in Table.2 show

that both PF and LBPF models achieve their best perfor-

mances at λ = 0.5. This is reasonable, because if λ is

too small the sequence Y 2
′

might not contribute to the final

sampling, and on the contrary, if λ is too large the sequence

Y 2
′

might lead the sampling, while the training loss shows

that Y 1
′

converges slightly better than Y 2
′

. Thereafter, we

eventually set λ = 0.5 and test the performance over Karpa-

thy test split.

For self-critical learning, we perform the same model se-

lection procedure through λ and eventually select λ = 0.3
for PF model and λ = 0.5 for LBPF model. The results are

similar to those in Table. 2, and not shown here.

4.3.2 Evaluation Results

After model selection on the validation dataset according

to λ, we evaluate our methods on MSCOCO Karpathy test

split which contains 5000 images. The LB, PF and LBPF

model are trained independently from randomly initializa-

tion, and are validated every 0.5 epoch. The weights show-

ing best performance on validation dataset are eventually

selected to perform testing, and the validation procedure

also employs beam searching methods with the beam size of

3. All the three models are trained with both cross-entropy

loss and CIDEr optimization, where the self-critical learn-

ing starts from the best weights stored in the training pro-

cedure with cross-entropy loss. The evaluation results are

shown in Table. 1.

Our baseline is the Up-Down model proposed in [2], and

we also employ the network as our base decoder. The test

results in Table. 1 show that all the three methods bring

with noteworthy improvement over the baseline. The LB

model improves 0.8 percent on CIDEr score with cross-

entropy loss, and 4.3 percent with CIDEr optimization. The
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Figure 4. Qualitative analysis of attention results using Up-Down [2] model and our LB model.

Cross-Entropy Loss

Models B-1 B-4 M R C S

Up-Down [2] 76.5 36.3 27.7 56.7 112.7 20.6

PF λ = 0 76.7 36.6 27.8 56.9 114.4 20.8

PF λ = 0.5 77.4 37.0 27.9 57.2 115.7 20.9

LBPF λ = 0 76.7 36.6 27.9 56.9 114.8 20.8

LBPF λ = 0.5 77.8 37.4 28.1 57.5 116.4 21.2

CIDEr Optimization

Models B-1 B-4 M R C S

Up-Down [2] 79.8 36.3 27.7 56.9 120.1 21.4

PF λ = 0 80.4 37.9 28.4 58.4 126.5 21.9

PF λ = 0.3 80.7 38.3 28.4 58.4 126.9 21.9

LBPF λ = 0 80.4 38.1 28.5 58.4 127.1 21.9

LBPF λ = 0.5 80.5 38.3 28.5 58.4 127.6 22.0

Table 3. comparison of our proposed PF and LBPF model with

best λ value and λ = 0. B-1 / B-4 / M / R / C / S refers to BLEU-1

/ BLEU-4 / METEOR / ROUGE-L / CIDEr / SPICE scores. This

table shows the performance trained both with cross-entropy loss

and CIDEr optimization.

PF method shows better performance over LB method and

outperforms the baseline 2.2 / 6.8 percent with two training

methods respectively. LBPF method combines LB and PF

together, and achieves BLEU-4 / CIDEr / SPICE scores of

37.4 / 116.4 / 21.2 with cross-entropy loss, and 38.3 / 127.6

/ 22.0 with CIDEr optimization. The results are persuasive

to show the effectiveness of our proposed model as we out-

perform the baseline over every quantitative score by great

promotion. With the simple detected feature, we even ap-

proach the result in the latest work proposed in [31], which

employs complicated semantic and spacial information.

The qualitative analysis over the attention results for our

LB method is shown in Figure.4. For the same image, Up-

Down model only consider the main aera while our LB

model show a smooth transition from “dog” to “gound”,

“plate” and “food”. The caption shows this improvement

can also bring more information of the image like “food”.

Some examples of our generated captions with CIDEr

optimization are shown in Table. 4. From the table we can

see, all our three models retrieve most important informa-

tion from the image, and models with PF method can ob-

serve more precise visual information from the image like

“car”, “couch” and “sitting”. Some information we gener-

ated does not even exist in the ground-truth, which in fact

appears in the image like the “coach” in the second image.

4.3.3 PF method Analysis

Our PF model generates two sequences (Y 1
′

and Y 2
′

) to-

gether. In the training phase with cross-entropy loss, we re-

spectively calculate the losses of the two sequences and add

them together as the final loss in Eq.(14). In self-critical

training process, we optimize Y 1
′

with CIDEr score and

force Y 2
′

to be close to Y 1
′

by summing reward loss and

cross-entropy loss in Eq.(19). In the training phase, we em-

ploy a trade-off parameter λ to balance the contributions of

thte two sequences. In Table.3, we show the comparison of

our selected model with the best λ value and with λ = 0.

Evaluation results show that, even with λ = 0, our pro-

posed PF and LBPF models still show remarkable improve-

ment over the baseline Up-Down model. This comparison

indicates that, besides predicting two words at one time
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Images Our Captions Ground Truth Captions

LB:a wooden cutting board topped with a pizza 1.A vegetarian pizza is half eaten on a pizza holder

2.A couple of pieces of pizza with vegetable slices on them.

PF:a pizza sitting on top of a wooden cutting board 3.A wooden pan serving tray with a pizza on it

4.A pizza on a cutting board is half gone

LBPF:a couple of slices of pizza on a wooden cutting board 5.A Pizza is nearly finished with only three pieces left

LB:a man holding a nintendo wii game controller 1.A young man playing a game with a remote controller

2.A man playing a game with a remote controller

PF:a man sitting on a couch holding a wii game controller 3.A man is playing the wii while his face is being stroked

4.A hand strokes the face of a man playing a video game

LBPF:a man sitting on a couch holding a wii game controller 5.A guy sitting down playing a video game

LB:a person taking a picture of a dog in a rear view mirror 1.A man is taking a picture in a rear view mirror

2.A woman taking a picture of her and a dog in a mirror

PF:a person taking a picture of a dog in a car rear view mirror 3.The woman in the mirror is taking a picture of herself and the dog

4.A hand strokes the face of a man playing a video game

LBPF:a woman taking a picture of a dog in a rear view mirror of a car
5.A woman sitting in the pasenger seat of a car with a dog in her

lap and a camera in her hand

Table 4. Generated caption examples of our three models trained with CIDEr optimization. The results show that, all our three approaches

retrieve most important information from the image and models with PF method can observe more precise information like highlighted

”car”, ”couch”, ”sitting” and so on. (We rotate the image in line 2 to adapt to the table size)

Models Parameters(M)

Up-Down 49.71

LB 50.20

PF 58.77

LBPF 59.26

Table 5. Parameter counts for Up-Down model, LB model, PF

model and LBPF model, which is shown in M.

step, the PF method also helps the network embed more

precise information on h2
t . Models with the best λ exceed-

ing ones with λ = 0 show that combination with λ better

aggregates the information within two sequences.

4.3.4 Complexity comparison over decoder

As illustrated in Figure.2 Our proposed LB method simply

increases the input size of the Attention module, and PF

method adds another logit layer into the network as shown

in Figure.3. Table.5 shows the total parameters in the four

models, including the base Up-Down model. The parame-

ter numbers of LB model increases 0.99 percent, which lays

on the attention module. PF method brings with 18% incre-

ment on the base model. All the increased parameter lays

on the logit layer, which has no change on the main network

structure. After the combination of LB and PF methods,

LBPF model is totally 18.99 percent larger than the original

architecture.

This comparison shows that, we achieve remarkable im-

provements over the base model while bringing only small

increment in the parameter numbers. Our LBPF method can

effectively help the base architecture embed more informa-

tion and perform better on the caption generation task.

5. Conclusion

We propose Look Back method to embed previous vi-

sual information and Predict Forward approach to look into

future for image captioning task. Our LB method takes at-

tention value from the previous time step into the input of

the current attention module which satisfies the visual co-

herence of human beings. PF approach generates two next

words in one time step, which utilizes linguistic coherence

and integrates future information. In the inference phase,

the two generated probabilities are combined together to

predict the current word. LBPF approach combines LB

and PF together and achieves remarkable performance gains

over the state-of-the-art method on MSCOCO dataset.

All the three approaches can be easily applied on most

attention-based encoder-decoder models for image caption-

ing. When applying them on a base decoder Up-Down ar-

chitecture, LBPF model achieves BLEU-4 / CIDEr / SPICE

scores of 37.4 / 116.4 / 21.2 with cross-entropy loss and

38.3 / 127.6 / 22.0 with CIDEr optimization.

Our proposed PF method can be intuitively applied to

most sequence generation task like machine translation. In

our future work, we will further explore the potential of PF

method in both network structure and application fields.

6. Acknowledgement

This paper is supported by NSFC (No. 61772330,

61533012, 61876109), the Basic Research Project of In-

novation Action Plan (16JC1402800), the advanced re-

search project (No.61403120201), Shanghai authentication

key Lab. (2017XCWZK01), Technology Committee the in-

terdisciplinary Program of Shanghai Jiao Tong University

(YG2015MS43), and AI-Lab VS Team, Bytedance.

8374



References

[1] Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. Spice: Semantic propositional image cap-

tion evaluation. In ECCV, pages 382–398. Springer, 2016.

[2] Peter Anderson, Xiaodong He, Chris Buehler, Damien

Teney, Mark Johnson, Stephen Gould, and Lei Zhang.

Bottom-up and top-down attention for image captioning and

visual question answering. In CVPR, volume 3, page 6, 2018.

[3] Lisa Anne Hendricks, Subhashini Venugopalan, Marcus

Rohrbach, Raymond Mooney, Kate Saenko, and Trevor Dar-

rell. Deep compositional captioning: Describing novel ob-

ject categories without paired training data. In CVPR, pages

1–10, 2016.

[4] Jimmy Ba, Ruslan R Salakhutdinov, Roger B Grosse, and

Brendan J Frey. Learning wake-sleep recurrent attention

models. In NIPS, pages 2593–2601, 2015.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473, 2014.

[6] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic

metric for mt evaluation with improved correlation with hu-

man judgments. In ACL Workshop, pages 65–72, 2005.

[7] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam

Shazeer. Scheduled sampling for sequence prediction with

recurrent neural networks. In NIPS, pages 1171–1179, 2015.

[8] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian

Shao, Wei Liu, and Tat-Seng Chua. Sca-cnn: Spatial and

channel-wise attention in convolutional networks for image

captioning. In CVPR, pages 6298–6306. IEEE, 2017.

[9] Xinpeng Chen, Lin Ma, Wenhao Jiang, Jian Yao, and Wei

Liu. Regularizing rnns for caption generation by reconstruct-

ing the past with the present. In CVPR, June 2018.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, pages 248–255. Ieee, 2009.

[11] Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K Sri-

vastava, Li Deng, Piotr Dollár, Jianfeng Gao, Xiaodong He,

Margaret Mitchell, John C Platt, et al. From captions to vi-

sual concepts and back. In CVPR, pages 1473–1482, 2015.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016.

[13] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In CVPR, pages

3128–3137, 2015.

[14] Jonathan Krause, Justin Johnson, Ranjay Krishna, and Li

Fei-Fei. A hierarchical approach for generating descriptive

image paragraphs. In CVPR, pages 3337–3345. IEEE, 2017.

[15] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,

Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-

tidis, Li-Jia Li, David A Shamma, et al. Visual genome:

Connecting language and vision using crowdsourced dense

image annotations. IJCA, 123(1):32–73, 2017.

[16] David Krueger, Tegan Maharaj, János Kramár, Mohammad

Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal,

Yoshua Bengio, Aaron Courville, and Chris Pal. Zoneout:

Regularizing rnns by randomly preserving hidden activa-

tions. arXiv preprint arXiv:1606.01305, 2016.

[17] Chin-Yew Lin and Franz Josef Och. Automatic evaluation

of machine translation quality using longest common subse-

quence and skip-bigram statistics. In ACL, page 605. Asso-

ciation for Computational Linguistics, 2004.

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014.

[19] Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher.

Knowing when to look: Adaptive attention via a visual sen-

tinel for image captioning. In CVPR, volume 6, page 2, 2017.

[20] Ruotian Luo, Brian Price, Scott Cohen, and Gregory

Shakhnarovich. Discriminability objective for training de-

scriptive captions. arXiv preprint arXiv:1803.04376, 2018.

[21] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang,

and Alan Yuille. Deep captioning with multimodal recurrent

neural networks (m-rnn). ICLR, 2015.

[22] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing

Zhu. Bleu: a method for automatic evaluation of machine

translation. In ACL, pages 311–318. Association for Com-

putational Linguistics, 2002.

[23] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jarret

Ross, and Vaibhava Goel. Self-critical sequence training for

image captioning. In CVPR, volume 1, page 3, 2017.

[24] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. ICLR,

2015.

[25] Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D

Manning, and Andrew Y Ng. Grounded compositional se-

mantics for finding and describing images with sentences.

ACL, 2(1):207–218, 2014.

[26] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi

Parikh. Cider: Consensus-based image description evalua-

tion. In CVPR, pages 4566–4575, 2015.

[27] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-

mitru Erhan. Show and tell: A neural image caption gen-

erator. In CVPR, pages 3156–3164, 2015.

[28] Zhilin Yang Ye Yuan Yuexin Wu and Ruslan Salakhutdinov

William W Cohen. Encode, review, and decode: Reviewer

module for caption generation. NIPS, 2016.

[29] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron

Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua

Bengio. Show, attend and tell: Neural image caption gen-

eration with visual attention. In ICML, pages 2048–2057,

2015.

[30] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and

Alex Smola. Stacked attention networks for image question

answering. In CVPR, pages 21–29, 2016.

[31] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring

visual relationship for image captioning. In ECCV, 2018.

[32] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and

Jiebo Luo. Image captioning with semantic attention. In

CVPR, pages 4651–4659, 2016.

8375


