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Abstract Mean-payoff games (MPGs) are infinite duration two-player zero-sum games
played on weighted graphs. Under the hypothesis of full observation, they admit memoryless
optimal strategies for both players and can be solved in NP ∩ coNP. MPGs are suitable
quantitative models for open reactive systems. However, in this context the assumption of
full observation is not always realistic. For the partial-observation case, the problem that asks
if the first player has an observation-basedwinning strategy that enforces a given threshold on
the mean payoff, is undecidable. In this paper, we study the window mean-payoff objectives
introduced recently as an alternative to the classical mean-payoff objectives. We show that,
in sharp contrast to the classical mean-payoff objectives, some of the window mean-payoff
objectives are decidable in games with partial observation.

Keywords Quantitative games · Partial observation · Verification · Synthesis · Game theory

1 Introduction

Mean-payoff games (or MPGs, for short) [13] are infinite duration, two-player, zero-sum
games played on weighted graphs, useful for modelling reactive systems with quantitative
objectives and designing algorithms to synthesize controllers for such systems [6]. Like other
verification games played on graphs, two playersmove a token around the graph for an infinite
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number of steps. One of the players selects a label, after which the second chooses an edge
with this label. The token is then moved along the selected edge. This infinite interaction
between the two players results in an infinite path in the graph. The objective of Player 1 is
to maximize the limiting average payoff of the edges (defined by the weights that annotate
them) traversed in this infinite path, while Player 2 tries to minimize this average. It has
been shown in [3,13] that both players in an MPG can play optimally using memoryless
strategies, and as a consequence, those games are known to be solvable in NP ∩ coNP. The
question of whether they can be solved in polynomial-time is an important open question,
and although pseudo-polynomial-time algorithms to solve these games are known [5,23], the
lack of efficient algorithms clearly limits the development of tools.

In the version of MPG described above, the game has full observation: both players have
complete knowledge of the history of the play up to the current position of the token. For
many applications such as controller synthesis, it is often more natural to assume that players
have only partial knowledge of the current state of the game. In practice, players may model
processes with private variables that other players (processes) may not see, or controllers
that acquire information about their environment using sensors with bounded precision, etc.
Unfortunately, it has been shown in [10] thatMPGswith partial observation are undecidable.

Window mean-payoff (WMP) objectives were recently introduced in [9] as an alternative
to the classicalMPobjectives. In aWMPobjective instead of considering the long-run average
along the whole play, payoffs are considered over a local bounded window sliding along the
play. The objective is then to make sure that the average payoff is at least zero over every
window. TheWMP objectives enjoy several nice properties. First, in contrast to classical MP
objectives, we have a polynomial-time algorithm for determiningWMP games. Second, they
can be considered as “approximations” of the classical MP objectives in the following sense:
(i) they are a strengthening of the MP objective, i.e. winning for the WMP objective implies
winning for the MP objective, (ii) if a (finite memory) strategy guarantees an MP with value
ε > 0 then that strategy also achieves the WMP objective for a window size that is bounded
by a function of ε and the game and strategy memory sizes. We remark that, indeed, this is a
very weak type of “approximation”. However, one cannot hope for much better considering
that in [15] it was shown the existence of a polynomial-time approximation scheme for MP
objectives would imply that MPGs are solvable in polynomial time.

From a practical point of view, WMP objectives present several advantages. First, they
are algorithmically more tractable: in the setting of full-observation games, WMP games
can be solved in polynomial-time while the classical MP objectives are only known to be in
NP ∩ coNP. Second, WMP objectives provide stronger guarantees to the system designer:
while classical MP objectives only ensure good performances in the limit (long run), variants
of WMP objectives provide good performance after a fixed or bounded amount of time. As
we show in this paper, these advantages transfer to the setting of games with incomplete
information, and this is highly desirable for practical purposes. Indeed, to apply synthesis in
practice, our models should be as close as possible to the systems that we want to simulate.
As classical MPGs with partial observation leads to undecidability, it is natural to inves-
tigate WMP objectives, and in this respect there are two pieces of good news: first, they
lead to decidability, and second, there is a potential of algorithmic support with symbolic
implementation.

1.1 Contributions

In this paper we consider the extension ofWMP objectives to games with partial observation.
We show that, in sharp contrast with classical MP objectives, some of the WMP objectives
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Looking at mean payoff through foggy windows 629

are decidable for such games. As in [9], we consider several variants of the window MP
objectives. For all objectives,we provide complete complexity results and optimal algorithms.
More precisely, our main contributions are as follows:

– First, we consider a definition in which the window size is fixed and the sliding window is
started at the initial move of the game, this is called the direct window objective. For this
definition we give an optimalEXP-time algorithm (Theorem 3) in the form of a reduction
to a safety game. Additionally, we show that this safety game has a nice structure that
induces a natural partial order on game positions. In turn this partial order can be used
to obtain a symbolic algorithm based on the antichain approach [12]. This shows that
WMP objectives allow us not only to recover decidability but they also lead to games that
have the potential to be solved efficiently in practice. The antichain approach has already
been applied and implemented with success for LTL synthesis [4], omega-regular games
with partial observation [2], and language inclusion between non-deterministic Büchi
automata [11].

– Second, we consider two natural prefix-independent definitions for the window objec-
tives, the (uniform) fixed window objectives. We also give optimal EXP-time algorithms
for these two definitions (Theorems 5 and 6) when weights are polynomially bounded in
the size of the game arena. For these objectives, we show that the sets of good abstract
plays (i.e. observation-action sequences) form regular languageswhose complements can
be recognized by non-deterministic Büchi automata of pseudo-polynomial size (Proposi-
tions 3 and 4). These automata can then be turned into deterministic parity automata that
can be used as observers to transform the partial-observation game into a full-observation
game with a parity objective.

– Finally, we show that, when the size of the window is not fixed but rather left as a param-
eter, then for all the objectives that we consider the decision problems are undecidable
(Theorem 2).

2 Preliminaries

Weighted game arenas A weighted game arena with partial observation (or WGA, for
brevity) is a tuple G = 〈Q, qI ,Σ,�,w,Obs〉, where Q is a finite set of states, qI ∈ Q
is the initial state, Σ is a finite set of actions, � ⊆ Q × Σ × Q is the transition relation,
w : � → Z is the weight function, and Obs ⊆ P(Q) is a partition of Q into observations.
Let W = max{|w(t)| : t ∈ �}. We assume � is total, i.e. for every (q, σ ) ∈ Q × Σ there
exists q ′ ∈ Q such that (q, σ, q ′) ∈ �. If every element of Obs is a singleton, then we say
G is a WGA with full observation and if |Obs| = 1 we say G is blind. For simplicity, we
denote by postσ (s) = {q ′ ∈ Q | ∃q ∈ s : (q, σ, q ′) ∈ �} the set of σ -successors of a set of
states s ⊆ Q.

In this work, unless explicitly stated otherwise, we depict states from a WGA as circles
and transitions as arrows labelled by an action-weight pair: σ, x ∈ Σ × {−W, . . . ,W }.
Observations are represented by dashed boxes and colors, where states with the same color
correspond to the same observation.

Abstract and concrete paths A concrete path in a WGA is a state-action sequence
q0σ0q1σ1 . . . where for all i ≥ 0 we have qi ∈ Q, σi ∈ Σ and (qi , σi , qi+1) ∈ �. An
abstract path is a sequence o0σ0o1σ1 . . . where oi ∈ Obs, σi ∈ Σ and such that there is a
concrete path q0σ0q1σ1 . . . for which qi ∈ oi , for all i . Given an abstract path ψ , let γ (ψ)

be the set of concrete paths that agree with the observation and action sequence. Formally
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γ (ψ) = {q0σ0q1σ1 · · · | ∀i ≥ 0 : qi ∈ oi and (qi , σ, qi+1) ∈ �}. Also, given abstract
(respectively concrete) path ρ = o0σ0 . . . and integers k, 	 we define ρ[k . . . 	] = ok . . . o	,
ρ[. . . k] = ρ[0 . . . k], and ρ[	 . . .] = o	σ	o	+1 . . . .

Given a concrete path π = q0σ0q1σ1 . . . , the payoff up to the (n + 1)-th element is given
by

w(π[. . . n]) = ∑n−1
i=0 w(qi , σi , qi+1).

If π is infinite, we define two mean-payoff valuesMP andMP as:

MP(π) = lim infn→∞ 1
nw(π[. . . n]) MP(π) = lim supn→∞ 1

nw(π[. . . n])

Plays and strategies A play in a WGA G is an infinite abstract path starting at oI ∈ Obs
where qI ∈ oI . Denote by Plays(G) the set of all plays and by Prefs(G) the set of all finite
prefixes of such plays ending in an observation. Let γ (Plays(G)) be the set of concrete paths
of all plays in the game, and γ (Prefs(G)) be the set of all finite prefixes of all concrete paths.

An observation-based strategy for Eve is a function from finite prefixes of plays to actions,
i.e. λ∃ : Prefs(G) → Σ . A playψ = o0σ0o1σ1 . . . is consistent with λ∃ if σi = λ∃(ψ[. . . i])
for all i .We say an observation-based strategy for Eveλ∃ hasmemoryμ if there is a setM with
|M | = μ, an elementm0 ∈ M , and functions αu : M ×Obs → M and αo : M ×Obs → Σ

such that for any play prefix ρ = o0σ0 . . . on we have λ∃(ρ) = αo(mn, on), where mn is
defined inductively by mi+1 = αu(mi , oi ) for i ≥ 0.

Objectives An objective for a WGA G is a set VG of plays, i.e. VG ⊆ Plays(G). We say
plays in VG are winning for Eve. Conversely, all plays not in VG are winning for Adam. We
refer to a WGA with a fixed objective as a game. Having fixed a game, we say a strategy λ

is winning for a player if all plays consistent with λ are winning for that player. We say a
player wins a game if (s)he has a winning strategy. We write V instead of VG if G is clear
from the context.

Given WGA G and a threshold ν ∈ Q, the mean-payoff (MP) objectivesMPSupG(ν) =
{ψ ∈ Plays(G) | ∀π ∈ γ (ψ) : MP(π) ≥ ν} and MPInfG(ν) = {ψ ∈ Plays(G) | ∀π ∈
γ (ψ) : MP(π) ≥ ν} require the mean-payoff value be at least ν. We omit the subscript in
the objective names when the WGA is clear from the context. Let ν = a

b , w′ be a weight
function mapping t ∈ � to b · w(t) − a, for all such t , and G ′ be the WGA resulting from
replacing w′ in G for w. We note that Eve wins theMPSupG ′(0) (respectively,MPInfG ′(0))
objective if and only if she winsMPSupG(ν) (resp., MPInfG(ν)).

3 Window mean-payoff objectives

In what follows we recall the definitions of the window mean-payoff (WMP) objectives
introduced in [9] and adapt them to the partial-observation setting. For the classical MP
objectives Eve is required to ensure the long-run average of all concretizations of the play
is at least ν. WMP objectives correspond to conditions which are sufficient for this to be
the case. All of them use as a main ingredient the concept of concrete paths being “good”.
Formally, given i ≥ 0 and window size bound 	max ∈ N0 = N \ {0}, let the set of concrete
paths χ with the good window property be

GW(ν, i, 	max) = {χ | ∃ j ≤ 	max : w(χ[i..(i + j)]) ≥ ν · j}.
As in [9], we assume the value of 	max is polynomially bounded by the size of the arena.
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Looking at mean payoff through foggy windows 631

The following definition will be useful later. It also provides some intuition for what kind
of objectives we will now define.

Definition 1 (Open and closed windows) Consider an abstract path ψ and a positive integer
n. We say a window of length 	 is open at q ∈ γ (ψ[n]) if there is some concretization χ of
ψ[. . . n] with q = χ[n] such that

χ /∈ GW(n − 	, 	).

For the first of the WMP objectives Eve is required to ensure all suffixes of all concretiza-
tions of the play can be split into concrete paths of length at most 	max and average weight at
least ν. TheMPobjectives are known to be prefix-independent, therefore a prefix-independent
version of this first objective is a natural objective to consider as well. We study two such
candidates. One which asks of Eve that there is some i such that all suffixes—after i—of all
concretizations of the play can be split in the sameway as before. This is quite restrictive since
the i is uniform for all concretizations of the play. The second prefix-independent version of
the objective we consider allows for non-uniformity.

The formal definition of the fixedwindowmean-payoff (FWMP) objectives is given below.
For convenience we denote byψ plays fromPlays(G) and concrete plays by π , i.e. elements
of γ (Plays(G)).

DirFix(	max) = {ψ | ∀π ∈ γ (ψ),∀i ≥ 0 : π ∈ GW(0, i, 	max)}
UFix(	max) = {ψ | ∃i ≥ 0,∀π ∈ γ (ψ),∀ j ≥ i : π ∈ GW(0, j, 	max)}
Fix(	max) = {ψ | ∀π ∈ γ (ψ), ∃i ≥ 0,∀ j ≥ i : π ∈ GW(0, j, 	max)}

For the FWMP objectives, we consider 	max to be a value that is given as input. Another
natural question that arises is whether we can remove this input and consider an even weaker
objective in which one asks if there exists an 	max. This is captured in the definition of the
bounded window mean-payoff (BWMP) objectives.

UDirBnd = {ψ | ∃	max ∈ N0,∀π ∈ γ (ψ),∀i ≥ 0 : π ∈ GW(0, i, 	max)}
DirBnd = {ψ | ∀π ∈ γ (ψ), ∃	max ∈ N0,∀i ≥ 0 : π ∈ GW(0, i, 	max)}
UBnd = {ψ | ∃	max ∈ N0, ∃i ≥ 0,∀π ∈ γ (ψ),∀ j ≥ i : π ∈ GW(0, j, 	max)}
Bnd = {ψ | ∀π ∈ γ (ψ), ∃	max ∈ N0, ∃i ≥ 0,∀ j ≥ i : π ∈ GW(0, j, 	max)}

Notice that we have defined window objectives with respect to a fixed threshold of ν = 0. As
with the mean-payoff objectives, this is no loss of generality since the more general definition
using a given threshold ν ∈ Q can always be reduced to the ν = 0 case.

3.1 Relations among objectives

Figure 1 gives an overview of the relative strengths of each of the objectives and how they
relate to the mean-payoff objective. The strictness, in general, of most inclusions was estab-
lished in [9], and Fig. 2 provides an example for the remaining case between Fix and UFix.

In general the mean-payoff objective is not sufficient for the FWMP or BWMP objectives,
e.g. see Fig. 3. Our first result shows that if, however, Eve has a finitememorywinning strategy
for a strictly positive threshold, then this strategy is also winning for all BWMP objectives;
and for all FWMP objectives—with a sufficiently large 	max. A specific subcase of this was
first observed in Lemma 2 of [9].
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Fig. 1 Implications among the objectives

Fig. 2 Blind WGA where, for any 	max ∈ N0, the only possible abstract play is in Fix(	max) but not in
UFix(	max)

Fig. 3 Perfect information WGA where Eve wins both MP objectives but none of the FWMP or BWMP
objectives

Proposition 1 Given WGA G, if Eve has a finite memory winning strategy for theMPInf(ε)
(or MPSup(ε)) objective, for ε > 0, then the same strategy is winning for her in the
DirFix(W |M |2|Q|2/ε)G game—where M is the amount of memory used by her winning
strategy.

Proof In [10] the authors show that if Eve is only allowed to play finite memory strategies
then she wins theMPInf(ν) game if and only if she wins theMPSup(ν) game, for any ν ∈ Q.
We show the claim holds forMPInf(ε). Let λ∃ = 〈M,m0, αu, αo〉 be the deterministicMoore
machine representation of Eve’s finite memory winning strategy. Consider the product of the
arena with Eve’s finite memory winning strategy,G×M , constructed in the obvious manner,
i.e. every path in G × M corresponds to a concrete path consistent with her strategy. Clearly
all cycles in G × M have weight of at least ε, otherwise Adam can create a concrete path
with mean-payoff value less than ε by “pumping” the cycles with value less than ε. As any
path in G × M corresponds to concrete plays consistent with Eve’s strategy, this contradicts
the fact that the strategy is winning for her. By the Pigeonhole Principle we have that for any
path in G × M : if a window opens at step i , then after i there is a sequence of length at most
|M ||Q| − 1 that is not involved in any cycle. Now, since every cycle has weight ε > 0, after
at most

μ = W · |M ||Q|
ε

· |M ||Q|
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Looking at mean payoff through foggy windows 633

steps the window will have closed. It follows that for all ψ ∈ Plays(G) consistent with her
strategy:

∀π ∈ γ (ψ),∀i ≥ 0 : π ∈ GW(i, μ)

which concludes our argument. ��
3.2 Lower bounds

In [9] it was shown that in multiple dimensions, with arbitrary window size, solving games
with the (direct) fixed window objective was complete for EXP-time. We now show that in
our setting this hardness result holds, even when the window size is a fixed constant and the
weight function is given in unary.

Theorem 1 Let 	max ∈ N0 be a fixed constant. Given WGA G, determining if Eve has a
winning strategy for the DirFix(	max), UFix(	max) or the Fix(	max) objectives is EXP-hard,
even for unary weights.

Proof We give a reduction from the problem of determining the winner of a safety game
with partial observation, shown in [7] to be EXP-complete.

A partial-observation safety game is played on a non-weighted game arena with partial
observation G = 〈Q, qI ,Σ,�,Obs〉. A play of G is winning for Eve if and only if it never
visits the unsafe state set U ⊆ Q. Without loss of generality, we assume unsafe states are
trapping, i.e. (u, σ, q) ∈ � and u ∈ U imply that u = q .

Letw be the transitionweight functionmapping (u, σ, q) ∈ � to−1 if u ∈ U and all other
t ∈ � to 0. Denote byGw the resultingWGA from addingw toG. It should be clear that Eve
wins the safety gameG if and only if she winsMPInfGw (0),DirFixGw (	max),UFixGw (	max),
and FixGw (	max)—for any 	max. That is, all objectives are equivalent for Gw . ��

In [9] the authors show that determining if Eve has a winning strategy in the k-dimensional
version of theUDirBnd andUBnd objectives with full observation is non-primitive recursive
hard. We show that, in our setting, these decision problems are undecidable.

Theorem 2 Given WGA G, determining if Eve has a winning strategy for any of the BWMP
objectives is undecidable, even if G is blind.

Proof We provide a reduction from the universality of weighted finite automata which is
undecidable [1]. A weighted finite automaton is a tupleN = 〈Q,Σ, qI ,�,w〉. A run of the
automaton on a word x = σ0σ1 . . . σn ∈ Σ∗ is a sequence r = q0q1 . . . qn ∈ Q+ such that
(qi , σi , qi+1) ∈ � for all 0 ≤ i < n. The cost of the run r is w(r) = ∑n−1

i=0 w(qi , σi , qi+1).
If the automaton is non-deterministic, it may have several runs on x . In that case, the cost of
x in N (denoted by N (x)) is defined as the minimum of the costs of all its runs on x .

The universality problem for weighted automata is to decide whether, for a given automa-
ton N , the following holds:

∀x ∈ Σ∗ : N (x) < 0.

We construct a blind WGA, GN , so that:

– if N is universal, then Eve has an observation-based winning strategy for the objective
UDirBnd,

– if N is not universal, then Adam has a winning strategy for the complement of the
objective Bnd.
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Fig. 4 Gadget which forces Eve to play infinitely many #

Fig. 5 Gadget which, given that Eve will play # infinitely often, forces her to play # in intervals of bounded
length

Fig. 6 Blind gadget to simulate the weighted automaton N

As shown in Fig. 1, UDirBnd ⊆ Bnd and all the other BWMP objectives lie in between
those two. So, our reduction establishes the undecidability of all BWMP objectives at once.

Our reduction follows the gadgets given in Figs. 4, 5, and 6. When the game starts, Adam
chooses to play from one of the three gadgets. As the game is blind for Eve, she does not
know what is the choice of Adam and so she must be prepared for all possibilities. Note also
that as Eve is blind, her strategy can be formalized by an infinite word w ∈ Σ ∪ {#}ω. Let us
show first that the two first gadgets force Eve to play a word w such that:

(C1) There are infinitely many # in w, and
(C2) There exists a bound b ∈ N such that the distance between two consecutive # in w is

bounded by b.

Assume that Eve plays a word w = #w1#w2#w3# . . . #wn# . . . that respects conditions
C1 and C2, with each wi ∈ Σ∗. First, if Adam decides to play in the first gadget (Fig. 4),
then either Adam stays in state q1 forever, and he does not open any window, or he decides
at some point to go from q1 to q2, whereupon he does open a window. However, after at
most b steps Adam has to leave q2 for q3 at the next occurrence of the # symbol, the bound
b is guaranteed by C2. After at most b additional steps, the open window will be closed as
the self loop on q3 is labelled with the weight +1. So in this case, Eve wins the objective
UDirBnd. Second, if Adam decides to play in the second gadget (Fig. 5), then he can go from
q4 to q5 on the # symbols. The windows that open on those transitions will all close within b
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Looking at mean payoff through foggy windows 635

steps according to condition C2 and the game moves back to q4. So again, Eve wins for the
objective UDirBnd.

Now assume that Eve plays a word w that violates either condition C1 or condition C2.
First, if w violates C1, then Adam chooses the first gadget (Fig. 4), and just after Eve has
played her last #, Adam moves from q1 to q2. As there will be no # anymore, Adam can
loop on q2 and the window that he has opened will never close. Hence, Adam wins for
the complement of the objective Bnd. Second, if w violates C2 then there exists an infinite
sequence of indices i1 < i2 < · · · < in < · · · such that |wi1 | < |wi2 | < · · · < |win | < · · ·
Then Adam can read this sequence of sub-words using runs of the form q4(q5)∗q4. Each
such run will open a window that closes at the end of the sub-word. But as the sequence of
lengths of the sub-words is strictly increasing and infinite, Adam wins for the complement
of the objective Bnd.

Now, we will assume that Eve plays a word w = #w1# . . . #wn# . . . that respects con-
ditions C1 and C2, and we consider what happens when Adam plays in the third gadget
(Fig. 6).

Assume first the automaton N is non-universal. Then by definition, there exists a finite
word w1 ∈ Σ∗ such that all runs of N on w1 have a non-negative value, i.e. N (w1) ≥ 0. In
that case, w = (#w1)

ω is a finite memory winning strategy for Eve for the objective Bnd.
Indeed, regardless of which run on w Adam simulates, the mean payoff of the outcome is at
least 0.5

b > 0 as each new # brings + 1
2 and we know that N (w1) ≥ 0. So Eve wins for the

objective UDirBnd by Proposition 1, as Eve obtains a strictly positive mean payoff bounded
away from zero with a finite memory strategy.

Finally, assume that automaton N is universal and let us show then that Adam has a
winning strategy for the complement of the Bnd objective. Indeed, if Eve plays a word
w = #w1#w2#w3# . . . #wn# . . . that respects conditions C1 and C2, then we know that
N (wi ) < 0 for each i ≤ 0. On such word, Adam can follow runs in the gadget of Fig. 6. As
the length between two consecutive # is at most b, we know that the mean payoff of the run
constructed by Adam is less than or equal to − 0.5

b . It follows that Adamwins the complement
of the Bnd objective as claimed, as Bnd objective implies the mean-payoff objectives (as
shown in Fig. 1). ��

4 Solving DirFix games

In this section we establish an upper bound to match our lower bound of Sect. 3.2 for
determining thewinner ofDirFix games.Wefirst observe that forWGAswith full observation
theDirFix(	max) objective has the flavor of a safety objective. Intuitively, a play π is winning
for Eve if every suffix of π has a prefix of length at most 	max with average weight of at least
0. As soon as the play reaches a point for which this does not hold, Eve loses the play. In
WGAs with partial observation we need to make sure the former holds for all concretizations
of an abstract play.

We construct a non-weighted game arena with full observationG ′ fromG. Eve’s objective
inG ′ will consist in ensuring the play never reaches locations inwhich there is an openwindow
of length 	max, for some state. This corresponds to a safety objective. Whether Eve wins the
new game can be determined in time linear w.r.t. the size of the new game (see, e.g. [22]).
The game will be played on a set of functions F which is described in detail below. We then
show how to transfer winning strategies of Eve from G ′ to G and vice versa in Lemmas 4
and 5. Hence, this yields an algorithm to determine if Eve wins the DirFix(	max) objective
which runs in exponential-time.
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Theorem 3 Given WGA G, determining if Eve has a winning strategy for the DirFix(	max)

objective is EXP-complete.

Let us define the functions which will be used as the state space of the game. Intuitively,
we keep track of the belief of Eve as well as the windows with the minimal weight open at
every state of the belief.1

For the rest of this section let us fix a WGA with partial observation G and a window size
bound 	max ∈ N0. We begin by defining the set of functions F as the set of all functions
f : Q → ({1, . . . , 	max} → {−W · 	max, . . . , 0}) ∪ {⊥}. Denote by supp( f ) the support of
f , i.e. the set of states q ∈ Q such that f (q) �= ⊥. For q ∈ supp( f ), we denote by f (q)i
the value f (q)(i). The function f I ∈ F is such that f I (qI )l = 0, for all 1 ≤ l ≤ 	max, and
f I (q) = ⊥ for all q ∈ Q \ {qI }. Given f1 ∈ F and σ ∈ Σ , we say f2 ∈ F is a σ -successor
of f1 if

– supp( f2) = postσ (supp( f1)) ∩ o for some o ∈ Obs;
– for all q ∈ supp( f2) and all 1 ≤ j ≤ 	max we have that f2(q) j maps to max{−W ·

	max,min{0, ζ(q)}}, where ζ(q) is defined as follows

ζ(q) =

⎧
⎪⎪⎨

⎪⎪⎩

min
p∈supp( f1)∧(p,σ,q)∈�,

f1(p) j−1<0

f1(p) j−1 + w(p, σ, q) if j ≥ 2

min
p∈supp( f1)∧(p,σ,q)∈�

w(p, σ, q) otherwise.

Lemma 1 The number of elements in F is at most 2|Q|·	max·log(W ·	max).

Proof

|F | ≤ (W · 	max)
|Q|·	max

=
(
2log(W ·	max)

)|Q|·	max

= 2|Q|·	max·log(W ·	max).

Hence, the result holds. ��
We extend the supp operator to finite sequences of functions and actions. In other words,

given ρ′ = f0σ0 f1σ1 ∈ (F · Σ)∗, supp(ρ′) = s0σ0s1σ1 . . . where si = supp( fi ) for all
i ≥ 0. In an abuse of notation, we define the function supp−1 : (Obs ·Σ)∗ ×F → (F ·Σ)∗
whichmaps abstract paths to function-action sequences. Formally, given ρ = o0σ0o1σ1 · · · ∈
Prefs(G) and ϕ ∈ F with supp(ϕ) ⊆ o0, supp−1(ρ, ϕ) = f0σ0 f1σ1 . . . where f0 = ϕ

and for all i ≥ 0 we have that fi+1 is the σi -successor of fi such that supp( fi+1) ⊆ oi+1.
Both supp and supp−1 are extended to infinite sequences in the obvious manner.

The following two results enunciate the key properties of sequences of the form (F ·Σ)∗.
Intuitively, the set of all those sequences corresponds to the windowed, weighted unfolding
of G with information about reachable states as well as open windows.

Lemma 2 Let ρ = o0σ0 . . . on be an abstract path, ϕ ∈ F such that supp(ϕ) ⊆ o0 and
supp−1(ρ, ϕ) = f0σ0 . . . fn ∈ (F · Σ)∗. A state q ∈ Q is reachable from some state
q0 ∈ supp(ϕ) through a concrete path q0σ0 . . . qn ∈ γ (ρ) if and only if q ∈ supp( fn).

1 The terms belief and knowledge are used to denote a state from any variation of the classic “Reif construc-
tion” [19] to turn a game with partial observation into a game with full observation. Other names for similar
constructions include “knowledge-based subset construction” (see e.g. [10]).

123



Looking at mean payoff through foggy windows 637

Proof (⇒) We proceed by induction. We will show that for all 0 ≤ j ≤ n, for all q j ∈
supp( f j ) there is a concrete path q0σ0 . . . q j such that qk ∈ ok for all 1 ≤ k ≤ j and q0 ∈
supp(ϕ). Note that for j = 0 the claim trivially holds. Assume the claim holds for j . From
the definition of σ -successor and supp−1 we have that supp( f j+1) = postσ j

(supp( f j )) ⊆
o j+1. This means that for all q j+1 ∈ supp( f j+1) there must be some q j ∈ supp( f j ) such
that (q j , σ j , q j+1) ∈ �. Hence anyq j+1 is reachable from someq j viaσ j which, by inductive
hypothesis, is in turn reachable from some q0 ∈ supp(ϕ) via a concrete path of the desired
form.

(⇐) We now show—once more by induction on j—that for all 0 ≤ j ≤ n, if there
is a concrete path q0σ0 . . . q j such that q0 ∈ supp(ϕ) and qk ∈ ok for all 1 ≤ k ≤ j ,
then q j ∈ supp( f j ). The claim holds for j = 0. Assume that it holds for some j . From
the assumptions we have that (q j , σ j , q j+1) ∈ � and q j+1 ∈ ok+1. Further, we know that
q j ∈ supp( f j ) by inductive hypothesis. Hence, q j+1 ∈ postσ j

(supp( f j )) ⊆ o j+1 which
means that q j+1 ∈ supp( f j+1). ��

Lemma 3 Let ρ = o0σ0 . . . on be an abstract path, ϕ ∈ F such that supp(ϕ) ⊆ o0 and
supp−1(ρ, ϕ) = f0σ0 . . . fn ∈ (F · Σ)∗. Given state p ∈ supp( fn) and 1 ≤ 	 ≤ 	max such
that 	 ≤ n, then there is a window of length 	 open at p if and only if fn(p)	 < 0.

Proof Instead of directly providing a proof of Lemma 3, we prove a more general result
below. Consider the three conditions stated in Claim 4. We shall prove that C1 ⇒ C2 ⇒ C3
⇒ C1. Since C1 corresponds to having a window of length 	 open at p from supp(ϕ), the
desired result follows from transitivity.

Claim Let ρ = o0σ0 . . . on be an abstract path, ϕ ∈ F such that supp(ϕ) ⊆ o0 and
supp−1(ρ, ϕ) = f0σ0 . . . fn ∈ (F · Σ)∗. Given state p ∈ supp( fn) and 1 ≤ 	 ≤ 	max

such that 	 ≤ n, let λ = n − 	. The following three statements are equivalent.

C1. There is a concrete path q0σ0 . . . qn ∈ γ (ρ) with qn = p and q0 ∈ supp(ϕ) and

m∑

j=n−	

w(q j , σ j , q j+1) < 0

for all n − 	 ≤ m < n.
C2. fn(p)	 < 0.
C3. There is a concrete path q0σ0 . . . qn ∈ γ (ρ) with qn = p and q0 ∈ supp(ϕ) such that

(a) f j (q j ) j−λ < 0 for all λ < j ≤ n, and
(b) fk(qk) j−λ + w(qk, σk, qk+1) = fk+1(qk+1)k−λ+1 for all λ < k < n.

(C3 ⇒ C1) We will apply induction on m. From the definition of σ -successor we have that
fλ+1(qλ+1)1 = min{0, w(qλ, σλ, qλ+1)}. Fromassumption (a)weknow that fλ+1(qλ+1)1 <

0. Thus, the claim holds for m = λ. Assume it holds for m. To conclude the proof, we now
show that the claim holds for m + 1 as well.

m+1∑

j=n−	

w(q j , σ j , q j+1) = fm(qm)m−λ + w(qm, σm, qm+1) ind. hyp.

= fm(qm)m−λ+1 from (b)

< 0 from (a).
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(C1 ⇒ C2) We show, by induction on m, that for all λ ≤ m < n

fm+1(qm1)m−λ+1 ≤
m∑

j=λ

w(q j , σ j , q j+1).

The desired result follows. As the base case, consider m = λ and note that by definition of
σ -successor we have that

fλ+1(qλ+1)1 = min({0} ∪ {w(p, σλ, qλ+1) | p ∈ supp( fλ) ∧ (p, σλ, qλ+1) ∈ �})
≤ w(qλ, σλ, qλ+1).

Thus the claim holds. Assume that the claim is true form. From the definition of σ -successor
we have that

fm+2(qm+2)λ−m+2 ≤ fm+1(qm+1)m−λ+1 + w(qm+1, σm+1, qm+2).

From the inductive hypothesis we get have that the right hand side of the inequality is
equivalent to

m+1∑

j=λ

w(q j , σ j , q j+1).

Thus the claim holds for m + 1 as well.
(C2 ⇒ C3) We inductively construct a concrete path q0σ0 . . . qnγ (ρ) with qn = p and
q0 ∈ supp(ϕ) such that

1. fn−k(qn−k)	−k < 0 for all 0 ≤ k < 	, and
2. fn−k(qn−k)	−k = w(qn−k+1, σn−k+1, qn−k)+ fn−k+1(qn−k+1)	−k+1 for all 1 ≤ k < 	.

As these conditions are equivalent to (a)–(b) from C3, the result follows. Note that for
k = 0 we have that (1) holds trivially since p ∈ supp( fn) and fn(p)	 < 0 by hypothe-
sis. If fn−k(qn−k)	−k < 0 then, by definition of σ -successor, it follows that there is some
q ′ ∈ supp( fn−k+1) ⊆ on−k+1 such that fn−k+1(q ′)	−k+1 < 0 and fn−k(qn−k)	−k =
w(qn−k+1, σn−k+1, qn−k) + fn−k+1(qn−k+1)	−k+1. In other words, q ′ is the source of the
minimal σn−k+1-transition of a state from supp( fn−k+1) to qn−k . Let qn−k+1 = q ′. Con-
tinue in this fashion defining every qi up to qn−	. Now, from Lemma 2, we have that qn−	

is reachable from some state in supp(ϕ) via a concrete path of the desired form. Any such
path is a valid prefix for the sequence qn−	σn−	 . . . qn we constructed above. ��

Formally, the arenaG ′ = 〈F, f I ,Σ,�′〉. The transition relation�′ contains the transition
( f1, σ, f2) if f2 is the σ -successor of f1. Eve, in G ′, is required to avoid states U = { f ∈
F | ∃q ∈ supp( f ) : f (q)	max < 0}.
Lemma 4 If Evewins the safety objective in G ′, then she alsowins theDirFix(	max) objective
in G.

Proof Assume λ′ is a winning strategy for Eve in G ′. We define a strategy λ for her in G
as follows: λ(ρ) = λ′(supp−1(ρ, f I )) for all ρ ∈ Prefs(G). We claim that λ is winning
for her in G. Towards a contradiction, assume ψ ∈ Plays(G) is consistent with λ and that
ψ /∈ DirFix(	max). Recall that this implies there are n ∈ N, q ∈ Q such that there is a window
of length 	max open at q ∈ γ (ψ[n]). By Lemma 3we then get that fn from supp−1(ψ, f I ) =
f0σ0 f1σ1 . . . is in U . As supp−1(ψ, f I ) is consistent with λ′, this contradicts the assumption
that λ′ was winning. ��
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Lemma 5 If Eve wins theDirFix(	max) objective in G, then she also wins the safety objective
in G ′.

Proof Assume λ is a winning strategy for Eve in G. We define a strategy λ′ for her in G ′ as
follows: λ′(ρ′) = λ ◦obs ◦ supp(ρ′) for all ρ′ ∈ Prefs(G ′). We claim that λ′ is winning for
her in G ′. Again, towards a contradiction, assume ψ ′ ∈ Plays(G ′) is consistent with λ′ and
that ψ ′ visits some f ∈ U . This implies, by Lemma 3, that there is a window of length 	max

open at some q ∈ supp( f ) in ψ = obs(supp(ψ ′)). As � is total, for any σ ∈ Σ Eve plays
then there is valid σ -successor of q that Adam can choose as the next state. Hence there is
some χ ∈ Plays(G) consistent with λ such that χ andψ have the same prefix up to iq , where
q ∈ γ (χ[iq ]), and there is a concretization π of χ such that π[iq ] = q . As χ is consistent
with λ and χ /∈ DirFix(	max), this contradicts the fact that it was a winning strategy. ��
4.1 A symbolic algorithm for DirFix games

We note that the state space of the construction G ′ presented in Sect. 4 admits an order such
that if a state is smaller than another state, according to said order, and Eve has a strategy to
win from the latter, then she has a strategy to win from the former. In this sectionwe formalize
this notion by defining the order and, in line with [4,8], propose an antichain-based algorithm
to solve the safety game on G ′.

We define the uncontrollable predecessors operator UPre : P(F) → P(F) as

UPre(S) = {p′ ∈ F | ∀σ ∈ Σ, ∃q ′ ∈ S : (p′, σ, q ′) ∈ �′}.
For S ∈ P(F), we denote by μX.(S∪UPre(X)), the least fixpoint of the function F : X →
S ∪ UPre(X) in the μ-calculus notation (see [14]). Note that F is defined on the powerset
lattice, which is finite. The following is a well-known result about the relationship between
safety games and the UPre operator (see e.g. [16]).

Proposition 2 Eve wins a safety game with unsafe state set U if and only if the initial state
of the game is not contained in μX.(U ∪ UPre(X)).

Definition 2 (The partial order) Given f ′, g′ ∈ F we say f ′ � g′ if and only if supp( f ′) ⊆
supp(g′) and

∀q ∈ supp( f ′),∀i ∈ {1, . . . , 	max}, ∃ j ∈ {i, . . . , 	max} : f ′(q)i ≥ g′(q) j .

An antichain is a non-empty set S ∈ P(F) such that for all x, y ∈ S we have x � y.
We denote by A the set of all antichains. Given a, b ∈ A, denote by a � b the fact that
∀x ∈ b, ∃y ∈ a : y � x . For S ∈ P(F) we denote by �S� the set of minimal elements of S,
that is �S� = {x ∈ S | ∀y ∈ S : y � x implies y = x}. Clearly �S� is an antichain.

Given S ∈ P(F)we denote by S↑ the upward-closure of S, that is S↑ = {t ∈ F | S � t}.
We say a set s ∈ P(F) is upward-closed if S = S↑. Note that �S�↑ = S↑ and therefore, if
S is upward-closed, the antichain �S� is a succinct representation of S.

Lemma 6 The following assertions hold.

1. U is upward-closed.
2. If S, T ∈ P(F) are two upward-closed sets, then S ∪ T is also upward-closed.

The usual way of showing an antichain algorithm works dictates that we now prove the
UPre operator, when applied to upward-closed sets, outputs an upward-closed set as well.
Unfortunately, this is not true in our case. The following example illustrates this difficulty.
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Example 1 Consider the WGA from Fig. 3 and let 	max = 2. We note that the function f
such that f (q0) = ⊥ and f (q1)1 = 1, f (q1)2 = 0 is in UPre(U). We also have that for the
function g such that g(q0) = ⊥ and g(q1)1 = 0, g(q1)2 = 1 we get that f � g. It is easy to
verify g /∈ UPre(U). Hence, UPre(U) is not upward-closed.

However, we claim that one can circumvent this issue by ignoring elements from U . Thus
we are able to prove that, under some conditions, UPre does preserve “upward-closedness”.

Lemma 7 Given upward-closed set S ∈ P(F) and f, g ∈ F \ U , if f ∈ UPre(S) and
f � g, then g ∈ UPre(S).

Proof We have that for all σ , there is hσ ∈ S such that ( f, σ, hσ ) ∈ �′. By construction of
�′ we also know that there is iσ such that (g, σ, iσ ) ∈ �′, and furthermore, since supp( f ) ⊆
supp(g), we get that

supp(hσ ) = postσ (supp( f )) ∩ o

⊆ postσ (supp(g)) ∩ o

= supp(iσ )

for some o ∈ Obs. Note that:

1. since f, g /∈ U , then f (p)	max = g(p)	max = 0 for all p ∈ supp( f ); and
2. iσ (q)1 = hσ (q)1 for all q ∈ supp(hσ ).

From (1) and since f � g, there is a function α : {1, . . . , 	max} → {1, . . . , 	max − 1} such
that for all 1 ≤ x < 	max we have that α(x) ≥ x and f (p)x ≥ g(p)α(x) holds for all
p ∈ supp( f ). Observe that for all q ∈ supp(hσ ) and any 2 ≤ x ≤ 	max, we have that

hσ (q)x = min
p∈supp( f )

({0} ∪ { f (p)x−1 + w(p, σ, q) | f (p)x−1 < 0}
≥ min

p∈supp( f )
({0} ∪ {g(p)α(x−1) + w(p, σ, q) | g(p)α(x−1) < 0}

≥ iσ (q)α(x−1)+1.

It follows that hσ � iσ and that, since S is upward-closed, iσ ∈ S. Thus, we have shown that
for all σ , there is iσ ∈ S such that (g, σ, iσ ) ∈ �′, which implies that g ∈ UPre(S). ��

We define a version of the uncontrollable predecessors’ operator which manipulates
antichains instead of subsets of F .

�UPre�(a) = �{p′ ∈ F \ U | ∀σ ∈ Σ, ∃q ′ ∈ a, ∃r ′ ∈ F : (p′, σ, r ′) ∈ �′ ∧ q ′ � r ′}�
Given a, b ∈ A we denote by a � b the least upper bound of a and b, i.e. a � b = �{q ′ ∈

F | q ′ ∈ a or q ′ ∈ b}�. It is easy to check that (a � b)↑ = a↑ ∪ b↑ for any a, b ∈ A.

Theorem 4 Given WGA G, Eve wins the DirFix(	max) objective if and only if {q ′
I } ��

μX.(�U� � �UPre�(X)).

Before proving the above theorem, we first argue the following holds.

Lemma 8 Given upward-closed set S ∈ P(F), �UPre�(�S�) = �UPre(S) \ U�.
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Proof We first show that if f ∈ �UPre�(�S�) then f ∈ UPre(S) \ U . We have that f /∈ U
and ∀σ ∈ Σ, ∃q ′ ∈ �S�, ∃r ′

σ ∈ F : ( f, σ, r ′
σ ) ∈ �′ and q ′ � r ′

σ . Since S is upward-closed
and q ′ � r ′

σ , we know that r ′
σ ∈ S. Hence, we get that ∀σ ∈ Σ, ∃r ′

σ ∈ S : ( f, σ, r ′
σ ) ∈ �′,

which implies that f ∈ UPre(S) \ U .
Next, we show that if f ∈ �UPre(S)\U� then f ∈ {p′ ∈ F \U | ∀σ ∈ Σ, ∃q ′ ∈ a, ∃r ′ ∈

F : (p′, σ, r ′) ∈ �′ and q ′ � r ′}. We know that f /∈ U and ∀σ ∈ Σ, ∃r ′ ∈ Q : ( f, σ, r ′) ∈
�′. By definition of �S�, we know there is qr ′ ∈ �S� such that qr ′ � r ′. Thus, we get that
∀σ ∈ Σ, ∃r ′

σ ∈ S, ∃qr ′ ∈ �S� : ( f, σ, r ′) ∈ �′ and qr ′ � r ′.
Finally, we note that if f ∈ �UPre�(�S�) then not only is it true that f ∈ UPre(S) \ U ,

but furthermore f ∈ �UPre(S) \ U�. Indeed, if this were not the case, then there would
be g ∈ �UPre(S) \ U� such that g � f and f �= g. Then, by the argument explained in
the previous paragraph, this would contradict minimality of f in �UPre�(�S�). Similarly, if
f ∈ �UPre(S) \ U� then f ∈ �UPre�(�S�), as otherwise, by the argument from the first
paragraph of the proof, minimality in the first set would be contradicted. Thus, the claim
holds. ��
We are now ready to present our proof for the theorem.

Proof of Theorem 4 We note that for any upward-closed set S ⊆ F such that U ⊆ S we
have, from Lemma 7 that U ∪ UPre(S) is again upward-closed and a superset of U . In fact,
it holds that

U ∪ UPre(S) = (�U� � �UPre(S)�)↑
= (�U� � �UPre�(�S�)↑ from Lemma 8.

It is easy to show by induction that μX.(U ∪UPre(X)) = (
μX.(�U���UPre�(�X�)))↑.

Thus, {q ′
I } �� μX.(�U� � �UPre�(�S�)) if and only if qI /∈ μX.(U ∪ UPre(S)). From

Proposition 2 and Lemmas 4 and 5 we know this is the case if and only if Eve has a winning
strategy in the safety game in G ′ if and only if she wins the DirFix(	max) objective in G. ��

5 Solving Fix games

Since Fix games are a prefix-independent version of DirFix games, it seems logical to
consider an analogue of the full-observation game from the previous section with a prefix-
independent condition. Indeed, the reader might be tempted to extend the approach used to
solve DirFix games by replacing the safety objective with a co-Büchi objective in order to
solve UFix or Fix games. However, we observe that although Eve winning in the resulting
game is sufficient for her to win the original Fix game, it is not necessary. Indeed, an abstract
play visits states from U infinitely often if and only if for infinitely many i there is a con-
cretization of the play prefix up to i which violatesGW(i, 	max). Nevertheless, this does not
imply there exists one (infinite) concretization of the play which violates GW(i, 	max) for
infinitely many i . Figure 7 illustrates this phenomenon.

For the reasons stated above, we propose to solve Fix games in a different way. We first
introduce the notion of observer. Let A be a deterministic parity automaton.2 We say A
is an observer for the objective V if the language of A is V , i.e. L(A) = V . In [7], the
authors show that the synchronized product of G and an observer for V is a parity game with

2 We refer the reader who is not familiar with parity automata or games to [22].
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Fig. 7 For n > 	max + 1 the abstract path (o0 . . . on)ω is winning for the Fix condition but infinitely often
visits an unsafe state in the construction from Sect. 4

full observation which is won by Eve if and only if she wins G. Thus, it suffices to find an
algorithm to construct an observer for Fix(	max) to be able to solve Fix games.

For convenience, we start by describing a non-deterministic machine that accepts as its
language the complement of Fix(	max). Note that all elements of Fix(	max) start with the
observation {qI } so it suffices to describe the machine that accepts any wordw ∈ (Σ ·Obs)ω

such that {qI } · w ∈ Plays(G) \Fix(	max). The construction is similar to the one used in [7]
to make objectives of partial-observation games visible. Intuitively, at each step of the game
and after Adam has revealed the next observation we will guess his actual choice of state
using non-determinism. Additionally, we shall guess whether or not a violating window starts
at the next step. The state space of the automaton will therefore consist of a single state from
Q, a negative integer to record the weight of the tracked window, and the length of the current
open window.

Formally, letN be the automaton consisting of the state space F = Q × {1, . . . , 	max} ×
{−W · 	max, . . . ,−1} ∪ {⊥}; initial state (qI , 1,⊥); input alphabet Σ ′ = Σ × Obs; and
�′′ ⊆ F × Σ ′ × F . The transition relation �′′ has a transition ((p, i, n), (σ, o), (q, j,m)) if
(p, σ, q) ∈ �, q ∈ o,

m =

⎧
⎪⎨

⎪⎩

w(p, σ, q) if w(p, σ, q) < 0

n + w(p, σ, q) if n �= ⊥ ∧ n + w(p, σ, q) < 0 ∧ i < 	max

⊥ otherwise,

j =
{
i + 1 if m = n + w(p, σ, q)

1 otherwise.

We say a state (q, i, n) ∈ F is accepting if i = 	max and n �= ⊥. The automaton accepts a
word x if and only it has a run (q0, i0, n0) (σ0, o1) (q1, i1, n1) (σ1, o2) . . . on x such that for
infinitely many j we have that (q j , i j , n j ) is accepting.

Proposition 3 The non-deterministic Büchi automaton N accepts a word ψ ∈ Plays(G) if
and only if ψ /∈ Fix(	max).

Proof
(⇒) Assume N accepts ψ . Let r = (q0, i0, n0)(σ0, o1)(q1, i1, n1)(σ1, o2) . . . be one of the
accepting runs of the automaton on ψ . By construction of N we have that q0σ0q1σ1 · · · ∈
γ (ψ). Let πr denote this concrete play and J = { j0, j1, j2, . . . } be an infinite set of indices
such that jk < jk+1 and (q jk , i jk , n jk ) is accepting for all k ≥ 0. Such a sequence is guaranteed
to exist since r is accepting. One can easily verify by induction on the definition of �′′ that
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for all k ≥ 0 it holds that πr /∈ GW(i jk − 	max, 	max). It follows that ∀m ≥ 0, ∃n ≥ m :
πr /∈ GW(n, 	max), which concludes our argument.
(⇐) Assume that ψ = o0σ0o1σ1 · · · /∈ Fix(	max). Let π = q0σ0q1σ1 ∈ γ (ψ) be the
concrete play such that for infinitely many i it is the case that π /∈ GW(i, 	max). We describe
the infinite run of N on ψ that accepts. Let J = { j0, j1, j2, . . . } be an infinite set of indices
such that jk + 	max < jk+1 and π /∈ GW( jk, 	max) for k ≥ 0. The sequence is guaranteed
to exist because of our choice of π . Observe that this implies there is a run r = (q0, i0, n0)
(σ0, o1) (q1, i1, n1) (σ1, o2) . . . of the automaton where for all k ≥ 0 we have that n jk+1 =
w(q jk , σ jk , q jk+1) and for all 1 < 	 < 	max then

n jk+	 = n jk+	−1 + w(q jk+	, σ jk+	, q jk+	+1).

Furthermore, in this run it holds that for all k ≥ 0 we have i jk+	max = 	max. Hence, said run
is such that for all k ≥ 0 the state (q jk+	max , i jk+	max , n jk+	max) is accepting. We conclude
that the automaton accepts ψ . ��

At this point we determinize N and complement it to get a deterministic automaton with
state space of size exponential in the size ofN yet has parity index polynomial w.r.t. the size
of Q (see [18,20,21]). The synchronized product of G and the observer yields a parity game
with the same size bounds. The desired result then follows from the parity games’ algorithm
and results of [17].

Theorem 5 GivenWGAG,determining ifEvehasawinning strategy for theFix(	max)objec-
tive can be decided in time exponential in W and the size of G.

Corollary 1 Given WGA G with unary encoded weights, deciding if Eve has a winning
strategy for the Fix(	max) objective is EXP-complete.

6 Solving UFix games

In order to determine the winner of UFix games, we proceed as in the previous section by
finding a non-deterministic Büchi automaton that recognizes the set of bad abstract plays.
However, in this case the situation is more complicated because a bad abstract play might
arise from a violation in the uniformity, rather than because of a concrete path with infinitely
many window violations. Figure 2 illustrates this issue. To overcome this, we first provide an
alternative characterization of the bad abstract plays for Eve. Consider some ψ ∈ Plays(G).
We say π ∈ γ (ψ)merges with infinitely many violating paths if for all i ≥ 0, there are j ≥ i ,
k ≥ j + 	max and some χ ∈ γ (ψ[. . . k]) such that π [k] = χ[k] and χ /∈ GW( j, 	max). We
refer to j as the position of the violation and to k as the position of the merge. Our next result
formally states the relationship between concrete plays merging for multiple violations and
UFix games.

Lemma 9 Given WGA G and ψ ∈ Plays(G), there is π ∈ γ (ψ) merging with infinitely
many violating paths if and only if ψ /∈ UFix(	max).

Proof
(⇒) Assume there is a π ∈ γ (ψ) merging with infinitely many violating paths. We have
that there are two infinite sequences of indices J = { j0, j1, . . . } and K = {k0, k1, . . . }
such that j	 < j	+1 and j	 + 	max ≤ k	, for all 	 ≥ 0, and for which we know that
there is concrete path χ	 ∈ γ (ψ[. . . k	]) such that χ[ j	 . . . j	 + 	max] realizes an open
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window of length 	max and χ	[k	] = π [k	], for all 	 ≥ 0. Observe that for all 	 ≥ 0
we have that χ	 · π[k	 . . .] ∈ γ (ψ) and that χ	 · π[k	 . . .] /∈ GW( j	, 	max). In other
words, ∀	 ≥ 0, ∃α ∈ γ (ψ), ∃m ≥ 	 : α /∈ GW(m, 	max) which implies that ψ /∈
UFix(	max).
(⇐) Assume ψ /∈ UFix(	max). We have that there is a infinite sequence of indices J =
{ j0, j1, . . . } such that jk < jk+1, for all k ≥ 0, and for which we know there is a concrete
play πk ∈ γ (ψ) such that πk /∈ GW( jk − 	max, 	max), for all k ≥ 0. Observe that for all
i ≥ 0 the set γ (ψ[i]) is finite and bounded by |Q|. Thus, by the Pigeonhole Principle we
have that, for all n ≥ 0 there is ηn ∈ {πm | 1 ≤ m ≤ |Q| · n} ⊆ γ (ψ) which merges with at
least n violating paths. Consider an arbitrary η1. If η1 merges with infinitely many violating
paths then we are done and the claim holds. Otherwise it only merges with a finite number
of violating paths, say a1. From the previous argument we know there is an ηa′

1
∈ γ (ψ) that

merges with at least a′
1 = a1 + 1. Clearly η1 and ηa′

1
are disjoint at every point after a′

1, lest
η1 would merge with a new violating path. We inductively repeat the process, if ηa′

i
merges

with infinitely many violating paths then we are done. Otherwise it only merges with some
finite number of violating paths, say ai . In that case we turn our attention to ηa′

i+1
. Note that

since Q is finite this process can only be done a finite number of times. Indeed, after having
discarded at most |Q| − 1 concrete plays (which are disjoint after some finite point) it must
be the case the last remaining possible concrete play has the desired property or we would
have a contradiction with our assumptions. Thus, there is some concrete play π ∈ γ (ψ) that
merges with infinitely many violating paths. ��

We now construct the non-deterministic Büchi automatonN ′ that recognizes plays which
contain a concrete path merging with infinitely many violating paths. The idea is that we
non-deterministically keep track of two paths: one that will eventually witness a viola-
tion and then merge with the other, which ultimately serves as the witness for the path
that merges with infinitely many violating paths. When the two paths merge, the automa-
ton non-deterministically selects a new path to witness the violation. This is achieved
by guessing a state in the belief set of Eve, as these states represent the end states of
any concrete play consistent with the abstract play so far. To avoid the double exponen-
tial associated with taking the Reif construction before determinizing the automaton, we
instead compute the belief set on the fly using a Moore machine that feeds into our non-
deterministic automaton. By transferring the exponential state increase to an exponential
increase in the alphabet size, the overall size of the determinized automaton (after compo-
sition with the Moore machine) will be at most singly exponential in the size of our game
and W .

More specifically, denote by B the machine that, given ψ = o0σ0o1σ1 · · · ∈ Plays(G)

as its input yields the infinite sequence o0σ0s0o1σ1s1 · · · ∈ (Obs · Σ · P(Q))ω such that
s0 = {qI } and for all i ≥ 0 we have si+1 = postσi (si ). One can easily give a definition of
B—which closely resembles a subset construction— with a state space at most exponential
w.r.t.G. Observe that B realizes a continuous function, in the sense that every prefix of length
i of the input uniquely defines the next si+1 annotation. Thus, the annotation can be done on
the fly.

Formally, N ′ consists of the state space F ′ = Q × Q × {1, . . . , 	max} × {−W ·
	max, . . . ,−1}∪ {⊥,�}; initial state (qI , qI , 1,⊥); input alphabetΣ ′′ = Σ ×Obs×P(Q);
and �′′′ ⊆ F × Σ ′′ × F . The transition relation �′′′ has a transition ((p, p′, i, n), (σ, o, s),
(q, q ′, j,m)) if (p′, σ, q ′) ∈ �, q ∈ s, q ′ ∈ o,
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m =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w(p, σ, q) if (p, σ, q) ∈ � ∧ w(p, σ, q) < 0

n + w(p, σ, q) if (p, σ, q) ∈ � ∧ n �= ⊥ ∧ n + w(p, σ, q) < 0 ∧ i < 	max

� if (p, σ, q) ∈ � ∧ (n �= � ∨ p �= p′) ∧ n �= ⊥ ∧ i = 	max

⊥ otherwise,

j =

⎧
⎪⎨

⎪⎩

	max if m = �
i + 1 if m = n + w(p, σ, q)

1 otherwise.

We say a state (q, q ′, i, n) ∈ F ′ is accepting if q = q ′, n = �. N ′ accepts a word x if and
only it has a run (q0, q ′

0, i0, n0) (σ0, o1, s1) (q1, q ′
1, i1, n1) (σ1, o2, s2) . . . on x such that for

infinitely many j we have that (q j , q ′
j , i j , n j ) is accepting.

Proposition 4 The non-deterministic Büchi automatonN ′ accepts a word α = B(ψ), where
ψ ∈ Plays(G), if and only if ψ /∈ UFix(	max).

Proof
(⇒) Assume N ′ accepts α. Let r = (q0, q ′

0i0, n0) (σ0, o1, s1) (q1, q ′
1i1, n1) (σ1, o2, s2) . . .

be one of the accepting runs of the automaton on α. By construction of N ′ we have
that q ′

0σ0q
′
1σ1 · · · ∈ γ (ψ). Let πr denote this concrete play, J = { j0, j1, . . . } and

K = {k0, k1, . . . } be two infinite sets of indices such that j	 < j	+1 and j	 + 	max ≤ k	, for
all 	 ≥ 0, and for which we know that

– (qk	
, q ′

k	
, ik	

, nk	
) is accepting for all 	 ≥ 0, and

– n j	+	max < 0 ∧ i j	+	max = 	max.

Such sequences are guaranteed to exist since r is accepting. Assuming the correctness of
B, one can easily verify by induction on the definition of �′′′ that for all 	 ≥ 0 we have that
πr , at k	 merges with a path having a violation at j	. It follows that πr merges with infinitely
many violating paths. From Lemma 9 we get that ψ /∈ UFix(	max).
(⇐) Assume that ψ = o0σ0o1σ1 · · · /∈ UFix(	max). Let π = q0σ0q1σ1 ∈ γ (ψ) be the
concrete play that merges with infinitely many violating paths (see Lemma 9). We describe
the infinite run of N on α = B(ψ) that accepts. Let J = { j0, j1, . . . } and K = {k0, k1, . . . }
be two infinite sets of indices such that j	 < j	+1 and j	 + 	max + 1 < k	, for all 	 ≥ 0,
and for which we know that there is some χ	 ∈ γ (ψ[. . . k	]) such that π[k	] = χ	[k	]
and for all jk < m ≤ jk + 	max + 1 we have w(χ[ jk . . .m]) < 0. The sequences are
guaranteed to exist because of our choice of π . Observe that this implies there is a run
r = (q0, q ′

0i0, n0)(σ0, o1, s1)(q1, q
′
1i1, n1)(σ1, o2, s2) . . . of the automaton where for all

	 ≥ 0 we have that n j	+1 = w(q j	 , σ j	 , q j	+1) and for all 1 < b < 	max then

n j	+b = n j	+b−1 + w(q j	+b, σ j	+b, q j	+b+1).

Furthermore, we have that n j	+b = � for all 	max ≤ b ≤ k	 and qk	
= q ′

k	
. Hence, said

run is such that for all 	 ≥ 0 the state (qk	
, q ′

k	
, ik	

, nk	
) is accepting. We conclude that the

automaton accepts ψ . ��

We recall that determinizing N ′ and complementing it yields an exponentially bigger
deterministic automaton. Its composition with B, itself exponentially bigger, accepts the
desired set of plays and is still singly exponential in the size of the original arena and W .
Once more, the desired result follows from the algorithm presented in [17].
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Theorem 6 Given WGA G, determining if Eve has a winning strategy for the UFix(	max)

objective can be decided in time exponential in W and the size of G.

Corollary 2 Given WGA G with unary encoded weights, deciding if Eve has a winning
strategy for the UFix(	max) objective is EXP-complete.

7 Conclusion

We have studied partial-observation games with window mean-payoff objectives. In contrast
to the classical mean-payoff objectives, fixed window mean-payoff objectives are decidable
in such games. Furthermore, when the weights are given in unary, determining if Eve wins
a fixed window mean-payoff game can be decided in exponential time. We conjecture that
our techniques can be extended to show the problem is in fact EXP-complete even when the
weights are given in binary.

References

1. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted automata? In: ATVA, pp.
482–491. Springer (2011)

2. Berwanger, D., Chatterjee, K., DeWulf, M., Doyen, L., Henzinger, T.A.: Alpaga: a tool for solving parity
games with imperfect information. In: TACAS, volume 5505 of LNCS. Springer (2009)

3. Björklund, H., Sandberg, S., Vorobyov, S.: Memoryless determinacy of parity and mean payoff games: a
simple proof. TCS 310(1), 365–378 (2004)

4. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.F.: Acacia+, a tool for LTL synthesis. In: CAV, pp.
652–657. Springer (2012)

5. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.F.: Faster algorithms for mean-payoff games.
FMSD 38(2), 97–118 (2011)

6. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: EMSOFT, volume
2855 of LNCS. Springer (2003)

7. Chatterjee, K., Doyen, L.: The complexity of partial-observation parity games. In: LPAR, pp. 1–14.
Springer (2010)

8. Chatterjee, K., Doyen, L., Henzinger, T.A, Raskin, J.F.: Algorithms for omega-regular games with imper-
fect information. In: CSL, pp. 287–302 (2006)

9. Chatterjee, K., Doyen, L., Randour, M., Raskin, J.F.: Looking at mean-payoff and total-payoff through
windows. In: ATVA, pp. 118–132. Springer (2013)

10. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.F., Toruńczyk, S.: Energy and mean-payoff games with
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