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Abstract—Learnable keypoint detectors and descriptors are
beginning to outperform classical hand-crafted feature extraction
methods. Recent studies on self-supervised learning of visual rep-
resentations have driven the increasing performance of learnable
models based on deep networks. By leveraging traditional data
augmentations and homography transformations, these networks
learn to detect corners under adverse conditions such as extreme
illumination changes. However, their generalization capabilities
are limited to corner-like features detected a priori by classical
methods or synthetically generated data.

In this paper, we propose the Correspondence Network
(CorrNet) that learns to detect repeatable keypoints and extract
discriminative descriptions via unsupervised contrastive learning
under spatial constraints. Our experiments show that CorrNet
is not only able to detect low-level features such as corners,
but also high-level features that represent similar objects present
in a pair of input images through our proposed joint guided
backpropagation of their latent space. Our approach obtains
competitive results under viewpoint changes and achieves state-
of-the-art performance under illumination changes.

Index Terms—Keypoint Detection, Feature Extraction, Feature
Extraction, Contrastive Learning, Self-supervised Learning

I. INTRODUCTION

“The AI revolution will not be supervised”.
- A. Efros [39].

Keypoint detection and description extraction in images are
important tasks for many real-world applications including
pose estimation [11], [15], [29] and object tracking [14].
Traditionally, those tasks are performed by extracting hand-
crafted features based on prior information such as gradient-
based methods [5], [19]. With the success of deep learning
in computer vision, recent approaches that rely on learnable
features by training deep neural networks have rapidly gained
popularity [10], [24]. Most learnable methods, however, are
trained under a (semi-)supervised regime and require a huge
amount of labelled data from some source [4], [10].

In fact, supervised learning approaches depend heavily on
the amount and quality of labelled training data available
to perform well under real-world conditions [9], [10]. This
limiting factor has encouraged the scientific community to
explore alternatives. Self-supervised methods, in particular via
contrastive learning (CL), have shown promising results and
are potential candidates to enhance generalization performance
using a few [7], [8] or no labels at all [28].

Similar Visual Representations

The CorrNet framework
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Fig. 1: The CorrNet framework. Illustration of joint keypoint
detection and description extraction with the proposed ap-
proach. Top: CorrNet encodes input images to latent feature
vectors. With a novel approach to the guided grad-CAM,
CorrNet detects keypoints in common regions between a pair
of images in the input space. Bottom: The same network can
be used for matching local patches centred at the keypoints.

Motivated by the latest achievements in contrastive learning,
we present a novel paradigm for detecting repeatable and
descriptive keypoints - beyond extracting sole corner and
edge detections - by learning visual feature representations
from weakly augmented image pairs in a fully unsupervised
manner. By training the proposed Correspondence Network
(CorrNet) under a contrastive regime with spatial constraints
from weakly augmented image pairs, CorrNet neither relies on
additional knowledge of the scene and camera poses [11], [29],
nor strong priors such as homographic viewpoint changes [4],
[10], supervised pre-training [10], or hand-crafted detection
anchors [4] which are typical methods adopted to train modern
feature extractors. In our approach, keypoints are detected
based on novel guided grad-CAM [35], [37] of CorrNet’s
latent space. Feature descriptions are extracted by computing
representations of local patches surrounding detected key-
points with the identical network.
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II. RELATED WORK

Feature extraction (i.e., keypoint detection and description
extraction) is a prerequisite for several computer vision tasks.
Early approaches [5], [13], [19], [25] proposed the use of
hand-crafted feature extraction methods for corner and edge
detection, followed by description extraction of local informa-
tion. However, their generalization capabilities are limited and
their performance often deteriorates under adverse conditions
such as illumination changes [4], [10], [25], [33].

In order to improve generalization performance for
real-world applications, classical supervised learning ap-
proaches [1], [30]–[32] were applied for feature extraction,
enhancing generalization by becoming invariant to various
input variations including scale, rotation, and illumination in
a sequential pipeline from keypoint detection to description
extraction. Sequential approaches for feature extraction are
still vastly adopted in computer vision [3], [20], [21], [24],
[36], [38], but at present, the disadvantage of the performance
of the latter (description extraction) being tightly dependent
on the performance of the former (keypoint detection) limits
capabilities and applicability.

Another paradigm for learnable feature extraction is to
jointly train a model to detect keypoints and extract descrip-
tions [10], [11], [26], [27], [29], [40]. For instance, in the
work of DeTone et al. [10], a multi-head deep neural network
(i.e., SuperPoint) is trained under a multitask learning setting
where one head minimizes the location of keypoints and the
other minimizes a similarity measure of description vectors
with respect to the detected keypoints with weak supervision.
The labels used to train SuperPoint are synthetically generated
through homography transformations in the training images.
Their approach achieved state-of-the-art results on the well-
established HPatches benchmark [2], and hence, is defined as
a baseline in our experiments.

III. THE CORRESPONDENCE NETWORK FRAMEWORK

The Correspondence Network (CorrNet) is an unsupervised
visual representation learning approach for joint keypoint
detection and description extraction. Unlike the majority of
contrastive learning-based methods which use self-supervision
as a precursory mechanism to improve performance on a
subsequent task (e.g., classification), CorrNet leverages con-
trastive learning as the main training objective. We hypothesize
that a deep neural network trained by contrasting similar pairs
of images is able to learn repeatable and discriminative visual
features. These features describe the similarity between two
images and recurrent patterns inherent in the training set.
Consequently, they could be used as keypoints and their latent
representations as descriptions.

To detect repeatable and discriminative features in the input
space, we propose an alternative approach to the guided grad-
CAM algorithm [35] that is best tailored to approaches for
metric learning such as CorrNet. In this section, we describe
the CorrNet training procedure using contrastive learning
under spatial constraints. Then, we conclude the section by
describing the full pipeline (shown in Figure 3) using first a

Attract

Repel

Attract

Repel

Attract

Fig. 2: The CorrNet contrastive learning paradigm. Top: Large
crops are extracted from an image to build positive and
negative examples to learn visual feature representations with
CorrNet for keypoint detection. Bottom: A multitude of small
negative crops are sampled around a positive small crop to
train a feature descriptor with CorrNet.

CorrNet model for keypoint detection and global description,
and then a fine-tuned one for discriminative local descriptions
of the previously detected keypoints.

A. Contrastive Learning with Spatial Constraints

Motivated by the latest results on self-supervised learn-
ing [8], the CorrNet framework consists of a siamese con-
volutional neural network trained via contrastive learning.
The objective is to automatically learn visual similarities and
differences between image pairs by exploiting ideas from
SimCLR [7]. Unlike previous methods [34], SimCLR does not
require accurate sample selection. However, without proper
data augmentation, the network tends to fail to learn useful
visual representations as demonstrated by Chen et al. [7].
As a result, the performance of the network in subsequent
tasks is negatively affected. In order to be able to detect
highly-repeatable keypoints and extract discriminative local
descriptions, the network should learn representations of the
most salient features and their spatial information. To do so,
we propose the application of spatial constraints in contrastive
learning. The spatial constraints are modelled as soft con-
straints to foster the model to learn common and salient visual
features between image pairs [12].

Fostering highly repeatable keypoints. Aiming to preserve
spatial relationships between features from image pairs, a



positive training pair is defined as two random crops with over-
lapping regions, as shown by the green crops in Figure 2 (top
illustration). To foster CorrNet to learn efficient representations
for feature extraction and avoid learning trivial solutions [7],
[41], we increase the difficulty of the optimisation objective by
taking another pair from the same image without overlapping
regions with respect to the first pair (red crops). These spatial
constraints are the main differences between CorrNet and
SimCLR. In the latter, the green and red crops are considered
positive examples since both represent features of the same
object (i.e., Big Ben), whereas in the former a pair of the green
and red crops are defined as a negative pair because there are
no repeatable keypoints between them. The other differences
are photometric and weak geometric transformations applied
to each image to make CorrNet invariant to input changes
caused by illumination or perspective variations.

Fostering highly discriminative descriptions. As training
progresses, the network learns gradually to become invariant to
strong input changes due to the data augmentations. Assuming
that two keypoints are close to each other in a reference
image with common neighbouring pixels, a network trained
to become invariant to this sort of situation would generate
ambiguous description vectors. This is detrimental to the task
of finding corresponding keypoints in the target image. Thus,
we propose to train an additional set of weights for CorrNet
under neighbouring spatial constraints to enhance discrimina-
tive descriptions as illustrated in Figure 2 (bottom). Under the
neighbouring constraints, a positive pair is defined as crops
of local regions centred at detected keypoints (the green crop)
and the neighbouring local crops in red are considered to be
the negative samples with respect to green crops.

CorrNet is trained to minimize the normalized temperature-
scaled cross-entropy loss function (NT-Xent) [7], defined for
a single positive pair as follows:

li,j = − log
exp(sim(zi, zj)/τ)

2N∑
k=1

1[k 6=i] exp(sim(zi, zk)/τ)
(1)

A positive pair of similar transformed input images (xi, xj)
are presented to the network to compute their respective
description vectors zi and zj . The exponential cosine similarity
between the description vectors of the positive pair (zi, zj) is
divided by the summation of the exponential cosine similarities
from negative pairs (zi, zk) where xi 6= xk. The temperature
parameter τ is utilized for normalization.

B. Joint Guided Gradient Backpropagation

Figure 3 depicts the complete inference or processing
pipeline for joint keypoint detection and description extrac-
tion with the CorrNet framework. The reference and target
images (x and x′) are introduced to the model to compute
their description vectors (z and z′). In the case of joint
input including a reference and a target image, keypoints are
detected by applying a modified version of the guided grad-
CAM algorithm [35] on the CorrNet’s latent units.

The original algorithm combines the guided backpropaga-
tion algorithm for fine-grained salient map generation, and the
grad-CAM algorithm to reduce the noise of the former and
highlight regions with more semantic content. Guided grad-
CAM [35] has been utilized to indicate units in the input space
responsible for the high activation of a target neuron in the
output layer. In their algorithm, activations are backpropagated
with respect to the same image.

In our version of guided grad-CAM, we perform operations
in the latent space to correlate the visual representations of the
reference and target input images before the backpropagation
of the activations. More specifically, we multiply the latent
vector of the reference image to the last feature maps of the
target image and vice-versa as a modulation factor for our
algorithm to focus attention on common visual representations.

Moreover, we multiply the latent vectors z and z′ to
identify the neuron that retains information about similar
visual features. We define the neuron with the highest value
as the target for visualization. We hypothesize that the high
activation of this neuron is due to the presence of common
visual features in the input space in related images x and
x′. The most activated neuron between of the latent vector
is backpropagated to the input space to generate keypoints
on the reference and target images in regions with similar
content. A qualitative impression of our algorithm is illustrated
in Figure 4. Note that our novel approach can robustly filter
out many noisy keypoints in the non-overlapping regions in
the background with non-similar image content. The keypoints
are mostly detected in these regions with similar content.

Afterwards, we apply non-maximum suppression on the
gradient images in the guided grad-CAM stage in Figure 3 to
reduce the number of keypoints in a small region and select
the top-k units with the largest gradients. Our assumption is
that these units in the input space have the highest likelihood
to be found on both the reference and target images.

Finally, the last part of the correspondence network frame-
work extracts local patches centred at the detected keypoints.
Only these patches are used as input to l-CorrNet to com-
pute its descriptions. The cosine similarity between the local
description vectors from l-CorrNet can be used for matching.

IV. EXPERIMENTS

In this section, we systematically evaluate CorrNet as a
joint detector and descriptor under different experimental
conditions. We follow the experimental protocol defined by
DeTone et al. [10] - thus adopting the resolution of 240x320 -
which includes the use of the MS-COCO [18] as a training set
and HPatches [2] as a test set. In the following, we describe the
evaluation metrics and the implementation details. Afterwards,
we present and discuss quantitative and qualitative results, as
well as extensive ablation studies on keypoint detection.

A. Evaluation Metrics

Ideally, keypoints should be repeatable under various scene
and image conditions, such as image noise, illumination and
perspective changes. A widely used criterion is repeatability
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Fig. 4: A comparison of the standard guided backprop
(CorrNet (Single), 55.7% of repeatable keypoints) and our
novel approach (CorrNet, 71.0% of repeatable keypoints).

as introduced by Mikolajczyk and Schmid [23]. It represents
the ratio between the number of repeatable keypoints over the
total number of detections defined as follows:

REP =
1

N1 +N2

∑
i

γ(xi) +
∑
j

γ(xj)

 . (2)

As a second metric, the localization error is used to evaluate
the accuracy of the position of detected keypoints as follows:

LE =
1

N

∑
i:γ(xi)

min
j∈{1,...,K}

||xi − x̂i||, (3)

where correctness γ(xi) is defined with respect to the thresh-
old ε depicting the maximum correct distance between two
points, having N1 points in the first image and N2 points in
the second image. We define correctness [10] as:

γ(xi) =

(
min

j∈{1,...,N2}
||xi − x̂i||

)
≤ ε. (4)

The third metric is based on the estimated homography Ĥ
against the ground-truth homography H. We evaluate how
accurately the homography transforms the four corners of
one image onto the other. If the reference image has corners
c1, c2, c3, c4 respectively, the ground-truth H homography is
applied to recover the ground-truth corners in the target
image c′1, c

′
2, c
′
3, c
′
4 and the estimated homography Ĥ to get

ĉ′1, ĉ
′
2, ĉ
′
3, ĉ
′
4. The threshold ε is used to denote a correct

homography and resulting scores should range between 0 and
1 where higher is always better.

CorrH =
1

N

N∑
i=1

 4∑
j=1

||ci,j − ĉ′i,j ||

 ≤ ε
 (5)

Finally, we rely on the publicly available evaluation scripts
from Jau [15]1 and Sarlin [33]2. In these scripts, keypoints
detected in a reference image that would correspond to a lo-
cation outside the target image (and vice-versa) are filtered out
using the ground-truth homography provided in the HPatches
dataset. Although this practice has been previously used in the
literature [4], [10], the use of the ground-truth homography
would be unrealistic since it is not available in real-world
applications. Therefore, this filtering method is omitted in our
experiments in order to present results that better reflect the
performance of the approaches in real-world applications.

B. Implementation Details

Our architecture consists of a siamese convolutional neural
network. The CorrNet encoder, as illustrated in Figure 3,
is a ResNet50 with no max-pooling layers and pre-trained
weights of SimCLR [7]3. The projection head, on the other
hand, was not made available. In our approach, it comprises
a multilayer perceptron of three layers with 2048, 512, and
d neurons, respectively. The parameter d denotes the size of
the description vector. The Adam algorithm [17] was used to
optimize CorrNet. After extensive exploratory experiments, we
fixed the learning rate to 1e−3, weight decay to 1e−6, batch

1https://github.com/eric-yyjau/pytorch-superpoint
2https://github.com/rpautrat/SuperPoint
3https://github.com/google-research/simclr



size of 200 and the temperature parameter of the NT-Xent loss
to 0.5. The code is publicly available in our repository4.

C. Evaluation of the Keypoints

Table I presents the performance of our approach, CorrNet,
in comparison with state-of-the-art methods for keypoint de-
tection. To conduct a fair evaluation for all of the methods,
they are strictly evaluated under the same condition. In sum-
mary, the input image size is 240x320, and non-maximum sup-
pression (NMS) of 3x3 is applied to increase the distribution
of the detected key points in the image. In addition, no filtering
method using ground truth is utilized, and the top 1000
keypoints are detected in each image. Moreover, only original
implementations from their official repositories are used such
as SuperPoint5, SuperPoint (Gauss)6, and Key.Net7. For the
classical methods, we use the OpenCV implementations.

CorrNet achieves state-of-the-art results for illumination
changes on both repeatability and localization error, demon-
strating its robustness against adverse environmental condi-
tions, and competitive results on viewpoint changes. Surpris-
ingly, consistent with recent findings from Balntas and Lenc
et al. [2], classical hand-crafted methods can still play an
important role in modern applications. Moreover, CorrNet’s
superior results when compared against SimCLR (pre-trained
network from Chen et al. [7] using our guided grad-CAM that
correlates two input images by exchanging the grad-CAM flow
between images) and ELF [6] (a gradient-based method for
keypoint detection using pre-trained networks) show that the
proposed training method via contrastive learning under spatial
constraints provides a significant performance improvement
and plays an important role in detecting highly repeatable
keypoints.

TABLE I: Comparison with state of the art. Repetability (rep.)
and localization error (loc. error) of keypoints on HPatches for
illumination and viewpoint changes. se: semi-supervised, us:
unsupervised, and hc: hand-crafted.

Approach Nature Illumination Viewpoint
Rep. ↑ Loc. Error Rep. Loc. Error

CorrNet (ours) us 77.2% 0.86 63.3% 1.38
CorrNet (ours, single) us 76.3% 0.87 59.9% 1.39
Harris [13] hc 74.0% 1.03 66.6% 1.18
Shi-Tomasi [16] hc 73.2% 1.13 65.2% 1.25
FAST [31] hc 72.9% 1.02 65.7% 1.21
SuperPoint (Gauss) [15] se 72.4% 1.20 56.1% 1.40
SuperPoint [10] se 71.5% 1.22 55.8% 1.45
ELF [6] - 71.3% 1.45 60.0% 1.59
Key.Net [4] se 70.6% 0.90 59.0% 1.06
ASLFeat [22] se 67.9% 1.12 55.0% 1.20
R2D2 [29] us 67.2% 1.32 46.3% 1.43
SimCLR [7] us 58.2% 1.09 38.4% 1.55
Random hc 32.5% 1.94 26.2% 1.90

Figure 5 presents qualitative results on repeatability from
CorrNet, Harris, and SuperPoint detections. While CorrNet is

4https://github.com/siqueira-hc/CorrNet
5https://github.com/magicleap/SuperPointPretrainedNetwork
6https://github.com/eric-yyjau/pytorch-superpoint
7https://github.com/axelBarroso/Key.Net

able to detect repeatable and stable keypoints under different
illumination changes, Harris and SuperPoint suffer from the
challenging illumination condition in the target image where
keypoints are detected in dark regions due to the false-positive
corner and edge detection caused by shades. Under different
viewpoints, CorrNet achieves higher repeatability scores on
these examples by successfully focusing the detection on
similar objects present in the reference and target images,
whereas the other methods blindly detect keypoints on the
entire images.

Finally, it is important to notice that although CorrNet is
trained in a fully unsupervised manner with weakly aug-
mented image pairs, our generic training scheme can yield
comparable results on viewpoint changes. In fact, our approach
even outperforms semi- and self-supervised methods such as
SuperPoint [10], [15], ELF [6], ASLFeat [22], and R2D2 [29].
We believe further research including perspective viewpoint
changes, and exploiting the temporal domain of sequences
would lead to further improvements.

D. Evaluation of the Descriptions

In this experiment, we evaluate l-CorrNet as a description
extraction method and compare our results with the state-of-
the-art. Table II summarizes the success rate of homography
estimation under different thresholds: 1, 3, and 5. Under
illumination changes, l-CorrNet (single) achieves the most
accurate homography estimation with a threshold of 1 by
a large margin, and similar results compared to HardNet
under a threshold of 3. With a threshold of 5 l-CorrNet
achieves comparable results to HardNet. For homography
estimation from different viewpoints, SIFT shows to be the
most reliable and accurate method. We observe l-CorrNet
(single) achieves better results compared to l-CorrNet for
homography estimation. Our hypothesis is that keypoints that
are essential for the homography computation may be located
within regions that are less relevant in terms of similar visual
features and are therefore not entirely recovered. Additionally,
large homographic changes may lead to only a small overlap
between image pairs, which would foster keypoint clusters
with our novel approach, making it more challenging for
homography computation.

TABLE II: Homography estimation errors under illumination
and viewpoint changes and different correctness criteria. se:
semi-supervised, us: unsupervised, and hc: hand-crafted.

Approach Nature Illumination Viewpoint
ε = 1 ↑ ε = 3 ε = 5 ε = 1 ε = 3 ε = 5

CorrNet (ours, single) us 84.6% 94.7% 97.2% 11.2% 37.3% 52.2%
CorrNet (ours) us 71.9% 92.6% 96.8% 5.1% 33.2% 46.1%
KeyNet [4] + HardNet [24] se 70.6% 96.8% 98.9% 43.1% 76.3% 83.7%
SIFT [19] hc 69.1% 88.4% 89.8% 59.0% 79.3% 85.8%
SuperPoint [10] se 47.4% 88.4% 96.8% 20.0% 60.3% 77.6%
SuperPoint (Gauss) [15] se 52.6% 87.0% 95.4% 8.5% 45.8% 62.0%
ORB [32] hc 36.8% 64.6% 72.3% 11.5% 50.8% 60.3%

From a qualitative analysis of CorrNet’s matching presented
in Figure 6, we show CorrNet’s robustness against extreme
illumination changes. In this second column, SIFT fails to
match enough keypoints for accurate homography estimation.
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Fig. 5: Qualitative results of keypoint detection using CorrNet, Harris [13] and SuperPoint [10]. Repeatability scores are shown
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Fig. 6: Qualitative results of keypoint matching using keypoints and descriptions from CorrNet, SIFT [19] and SuperPoint [10].
On the left results under illumination changes, and on the right results under viewpoint changes.

SuperPoint achieves similar qualitative results as CorrNet.
Nonetheless, keypoints detected by CorrNet are more dis-
tributed over the images which often leads to more accu-
rate homography estimation. Under viewpoint changes, the
distribution of keypoints over the images may have affected
homography estimation using CorrNet when compared against
SIFT and SuperPoint (Figure 6, right).

E. Ablation Studies

Aiming to identify the major factors with a direct impact
on CorrNet’s performance as a joint keypoint detector and
description extractor, we carefully investigate different param-
eters in the CorrNet framework. The research questions to be
studied in this section are the following: (1) what is the impact
of the description size on keypoint repeatability? (2) which
latent vector, h or z, better encodes the visual similarities
between two input images, reference and target? (3) What
is the impact of different levels of spatial constraints on the
repeatability of keypoints? (4) How can the likelihood of the
detection of repeatable keypoints be increased? And finally, (5)

what is the best set of data augmentation methods for keypoint
detection?

Description size and the most informative latent space.
Figure 7 depicts the training dynamics of CorrNet with respect
to different description sizes (128, 256, and 512 units) by
showing their repeatability over epochs. Solid lines show the
repeatability of keypoints by applying the guided backpropa-
gation with respect to the latent vector h, whereas dashed lines
with respect to the latent vector z. Our results are consistent
with the work of Chen et al. [7] which argues that the latent
vector h provides more useful visual representations of the
data. Indeed, the repeatability scores are consistently higher
for all of the CorrNets at different epochs when the guided
backpropagation algorithm is applied from h. Note CorrNet’s
low repeatability scores for both illumination (58.2%) and
viewpoint (38.4%) in the beginning changes drastically during
the first few epochs. These results suggest that the pre-trained
SimCLR, while performing highly accurate on ImageNet
trained without spatial constraints, is not able to detect a
high number of repeatable keypoints when compared to a
mature CorrNet trained under the proposed spatial constraints.
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Regarding the description size, all of the CorrNets show
similar behaviours. They achieve high repeatability scores after
a few epochs and the difference in performance decreases over
time.

Contrastive learning under spatial constraints. Figure 7
also shows repeatability over training epochs for different
CorrNets trained under different spatial constraints on the
illumination and viewpoint sets of the HPatches dataset. The
only variable factor in this experiment is the proportion of
the overlapping region between image pairs indicated by
its overlapping percentage. The higher the percentage, the
larger the overlapping region between a pair of the positive
images. For instance, the training batch for CorrNet (512,
100%) is always composed of positive pairs with 100% of
overlap. For illumination changes, the repeatability scores
are similar but the highest scores are achieved by CorrNet
trained under stronger spatial constraints, namely CorrNet
(512, 80%) and CorrNet (512, 100%). The difference in
performance becomes more evident under different viewpoint
changes where correspondent keypoints are placed in different
coordinates in the reference and target images. Therefore, the
spatial information of similar features is crucial to achieving
high repeatability scores. CorrNet (512, 100%) trained under
the strongest spatial constraints achieves the best performance
on the viewpoint experiments. These results support our initial
hypothesis, showing that contrastive learning under spatial
constraints plays an important role in the detection of repeat-
able keypoints.

TABLE III: Comparison of different CorrNets with the best
performance on the validation set of MS-COCO based on the
NT-Xent contrastive loss. Repeatability (rep.) and localization
error (loc. error) of detected keypoints on HPatches for illu-
mination and viewpoint changes.

Approach ↓ Illumination Viewpoint
Rep. Loc. Error Rep. Loc. Error

CorrNet-128 75.4% 0.94 59.7% 1.39
CorrNet-128 (single) 73.8% 0.95 56.8% 1.40
CorrNet-256 75.5% 0.90 61.1% 1.38
CorrNet-256 (single) 74.5% 0.91 58.2% 1.39
CorrNet-512 74.5% 0.95 59.4% 1.38
CorrNet-512 (single) 73.6% 0.96 56.8% 1.39
CorrNet-512 (80%) 76.8% 0.89 61.2% 1.40
CorrNet-512 (single, 80%) 75.7% 0.90 58.5% 1.41
CorrNet-512 (100%) 77.2% 0.86 63.3% 1.38
CorrNet-512 (single, 100%) 76.3% 0.87 59.9% 1.39

Correlating reference and target images. Table III shows
a systematic comparison between the keypoint detection from
CorrNet when using a single image and CorrNet when corre-
lating visual representations of the input features that represent
the similarity between the reference and target image. The
former approach, indicated in the table by the keyword single,
performs the guided backpropagation of the most activated
neuron in the h vector, whereas the latter approach is the
proposed alternative to the guided grad-cam for CorrNet and
metric learning. All of the CorrNets that used our method
to correlate reference and target image demonstrated a bet-
ter performance than the traditional guided backpropagation
algorithm. This is evidence that our method increases the
likelihood of detection of repeatable keypoints in regions that
present similar visual features. In fact, Figure 4 presents a
qualitative result where regions from the reference image
(top) that contains visual features presented in the target
image (bottom) are highly activated according to the salience
maps. Although keypoints are still detected in regions that
are not presented in both, the reference and target image, our
method decreased the number of keypoints detected in such
regions (see the concentration of keypoints on the right of the
image), resulting in an improvement of 15.3% in repeatability.
Nevertheless, some less relevant structures are still detected
due to sub-optimal representations learned from the dataset,
which could be further improved with future research on
representation learning.

Ablation study on data augmentation techniques. We
evaluate the influence of different data augmentation strategies
on detection performance quantitatively. As before, we train on
MS-COCO and test on HPatches. We experiment with colour
augmentations only, and colour augmentations plus random
homography transformations (see Table IV.) The random
homography transformation is implemented in a manner such
that it does not yield out-of-image pixels after being applied
to the input image. We perform zooming, which is coupled
with the degree of transformation of the homography matrix
to avoid artefacts.



TABLE IV: Ablation study on different data augmentation
strategies under illumination and viewpoint changes. Augmen-
tations: C: color; C+H: color and homography.

Approach Aug. Illumination Viewpoint
Rep. Loc. Error Rep. Loc. Error

CorrNet-256 (single) C 78.8% 0.75 56.8% 1.29
CorrNet-256 C 80.8% 0.77 61.3% 1.26
CorrNet-256 (single) C+H 76.9% 0.82 58.8% 1.31
CorrNet-256 C+H 78.9% 0.82 64.8% 1.28

V. CONCLUSIONS

In this paper, we introduce CorrNet, a fully unsupervised
approach for feature extraction. Our approach provides a
flexible training strategy based on contrastive learning under
spatial constraints, and a novel keypoint detection algorithm
based on guided grad-CAM. Our experiments show CorrNet’s
robustness and advantages against previous methods under
challenging illumination changes, achieving state-of-the-art re-
sults on HPatches [2], and competitive results under viewpoint
changes. We believe that contrastive learning will play a major
role in many machine learning applications. The flexibility
of setting up a training strategy that guides representation
learning will potentially yield increasingly superior results on
feature extraction in the wild. As a future direction, we will
extend CorrNet to perform lifelong learning of visual features
for continually improving its performance for pose estimation.
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