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Abstract With the ever-increasing flow of high-
throughput gene expression, protein interaction and
genome sequence data, researchers gradually approach a
system-level understanding of cells and even multi-cel-
lular organisms. Systems biology is an emerging field
that enables us to achieve in-depth understanding at the
system level. For this, we need to establish methodolo-
gies and techniques that enable us to understand
biological systems as systems, which means to under-
stand: (1) the structure of the system, such as gene/
metabolic/signal transduction networks and physical
structures, (2) the dynamics of such systems, (3) methods
to control systems, and (4) methods to design and
modify systems to generate desired properties. However,
the meaning of ‘‘system-level understanding” is still
ambiguous. This paper reviews the current status of the
field and outlines future research directions and issues
that need to be addressed.
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Introduction

This paper elucidates the scope of and issues in systems
biology (Kitano 2000, 2001, 2002), an emerging discipline
that attempts to understand organisms at the system level.
Systems biology is both an old and new field in biology. It
is an old field because system-level understanding has
been proposed and tried in the past. It was perhaps
originated by Norbert Wiener who proposed the concept
of cybernetics and devised mathematical formulae for
physiological systems nearly 40 years ago (Wiener 1965).
A precursor to Wiener was the concept of homeostasis by
Cannon (1933). The philosopher Von Bertallanffy
attempted to establish a general systems theory (Von
Bertallanffy 1969), but it was too abstract to be a serious
scientific discipline. Concepts such as robustness and
feedback control were already discussed at that time and
extensively investigated.

In the late 1980s, a group of scientists including
Christopher Langton tried to develop a theoretical basis
for living systems, using a computational approach that
has progressed far since the days of Wiener. They
claimed artificial life (Langton 1988) and complex
systems research to be the central thrust for under-
standing life through theoretical methods. However,
these attempts had minimal impact, if any, on the
biological community because their theories were not
able to provide useful predictions, guiding principles, or
verifications of actual biological issues. In addition, with
only a few exceptions, the community is dominated by
computer scientists and physicists, who are not much
interested in tangible biological phenomena. While
artificial life has been an interesting source of novel ideas
for engineering transformation of some biological
knowledge, such as genetic algorithms and evolvable
hardware, it never grew into the biological sciences.

At the same time, molecular biology and genetic an-
alyses made remarkable progress. The main focus of
those disciplines has been (and is) to identify essential
elements and fundamental mechanisms that enable cell
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functions, as we perceive them. The approach has been
deductive, in the sense that major efforts have been made
on the identification of genes and proteins responsible
for specific phenomena, to create an encyclopedic
knowledge of the genes and proteins involved. Although
interactions have been investigated to understand how
particular genes and proteins function, studies have only
been made in an ad hoc manner and on a small scale.

The situation, however, is now changing, or being
forced to change, due to the availability of complete
genome sequences and the emergence of high-throughput
measurement systems for gene expressions, protein
interactions, and other essential factors. A group of new
experimental methods enables us to measure large num-
bers of components simultaneously, thus opening up the
possibility of system-level studies. Already, there have
been various early attempts to make use of the massive
amount of expression array and protein interaction data.

Systems biology is built on progress in related fields
and past attempts. Thus, attempts to achieve system-
level understanding are not new, but for the first time we
can base such understanding on a molecular-level
understanding. This was not possible in the days of
Norbert Wiener, because molecular biology was only in
its infancy and control theory and computer science had
not matured enough to handle the immense complexity
inherent in biological systems.

The goal of systems biology is to offer a comprehensive
and consistent body of knowledge of biological systems
tightly grounded on the molecular level, thus enabling us
to fully integrate biological systems into more funda-
mental principles. It should be noted, however, that this
does not imply that all biological phenomena can be
explained directly by a set of basic principles, such as the
basic laws of physics. System-level knowledge should be
grounded in such a way that the system is composed of
molecules; and molecules follow the laws of physics.
However, how a system operates can only be described by
a set of theories that focuses on system-level behaviors.
The point is that such theories must reflect the realities of
biological systems and molecules, without abstracting the
essential aspects of biology.

It is important to distinguish between the types of
theories. There are fundamental theories, as often seen
in physics, that can be a basis for all phenomena, such as
quantum electro-dynamics and super-string theory.
However, there are theories that I would call “structural
theories™ that define structural constraints for specific
phenomena. An example of this is the Bardeen Cooper
Schrieffer theory (the BCS theory) that defines specific
constraints causing the cooper pair, a state that is
responsible for super-conductivity. The value of the BCS
theory is that it explains super-conductivity, while it
is grounded on the quantum theory. On top of these
theories, there are designs that define specific realization
of theoretical constraints, such as specific composition,
to comply with the BCS theory.

In systems biology, research on all three categories of
theories and design must be conducted, but more

emphasis will be placed on identifying structural theories
and using such theories to quickly identify specific
designs and vice versa. In the past, molecular biologists
focused almost exclusively on finding the design of life,
by isolating specific genes and proteins, but paid little
attention to structural theory. Researchers who have a
physics background mislead themselves by trying to find
fundamental theories where they should instead seek
structural theories that can sufficiently constrain design
spaces. This situation needs to be rectified.

The scope of systems biology is potentially very
broad and different sets of techniques may be deployed
for each specific research target. It requires collective
efforts from multiple research areas, such as genetics
and molecular biology, high-precision measurement,
computer science, control theory, and other scientific
and engineering fields. There are four areas where
research needs to be carried out: (1) genomics and other
molecular biology research, (2) computational studies,
such as simulation, bioinformatics, and software tools,
(3) analysis of dynamics of the system, and (4) tech-
nologies for high-precision and comprehensive
measurements.

One issue that may puzzle traditional biologists when
they encounter systems biology research is that they
have to deal with the state of the system, rather than
components of the system. Molecular biologists and
geneticists have been working on understanding genes
and proteins that are tangible objects. They are physical
substances that we can point to and say “‘this is a
protein”. In contrast, systems biology has to deal with
not only genes and proteins, but also the states of
systems that are not tangible. Of course, components of
the systems are tangible, but a system is not merely an
assembly of components. What matters in the system is
its dynamics, rather than a mere list of components or
static structures. This raises an important question
“what does it mean to understand a system?”’ A system
is an abstract concept by itself. It is basically an
assembly of components in a particular way that
exhibits certain behaviors. Obviously, it is not sufficient
to draw a diagram of all gene and protein interactions.
Such a diagram is, of course, necessary and provides
insights on how the system works. But, it is like a road
map where we wish to understand traffic patterns and
their dynamics. The focus of the research shifts from
elements to networks, from matters to states, and from
structures to dynamics.

Research in systems biology can be divided into two
major groups that are complementary. One is a research
on tools and algorithms for system-level studies. The
other is research on system properties of specific biology,
using the tools and algorithms developed.

Four phases of systems biology research

System-level understanding involves four phases
depending on how much we understand the system: (1)



structure identification, (2) behavior analysis, (3) system
control, and (4) system design.

System structure identification

The most basic level is to understand the structure of the
system, such as the network of gene regulation, metab-
olism, and signal transduction. This level of under-
standing provides the basic organization of the system.
Of course, not only the network of the system, but also
physical structures need to be identified and included in
the model. For the sake of explanation, this review article
focuses on the network of gene regulation, metabolism,
and signal transduction. The network structure consists
of: (1) elements of the network, (2) interaction between
elements, and (3) associated parameters.

Identification of elements of networks, i.e. genes,
mRNA, and proteins, has been the main focus of re-
search in molecular biology; and the pace of research
will accelerate. Interactions have been investigated, but
only on a small scale. Some efforts has been made to
create a map of interactions, as seen in KEGG
(Kanehisa and Goto 2000) and EcoCyc (Karp 2001).
However, these efforts are basically assembling literature
reports of independent experiments and are thus
dependent on individual discoveries. Various early
attempts at modeling and simulation of biological sys-
tems took a similar approach in building up their
models. Examples of such approaches are seen in studies
on the lambda phage decision circuit (McAdams and
Shapiro 1995), early embryogenesis and morphogenesis
of Drosophila (Reinitz et al. 1995; Kitano et al. 1997,
Hamahashi and Kitano 1998; Kyoda and Kitano 1999),
cell cycle modeling (Novak and Tyson 1997; Borisuk
and Tyson 1998), cellular aging (Kitano and Imai 1998),
circadian rhythms (Leloup and Goldbeter 1999; Ueda
et al. 2001), Calcium oscillation (De Young and Keizer
1992; DuPoint et al. 1996), IP3 receptor-based calcium
oscillation (LeBeau et al. 1999), bacterial chemotaxis
(Barkai and Leibler 1997; Bray et al. 1998), and the
MAPK cascade (Ferrell and Machleder 1998). Extensive
research has been done in the past and this list represents
only a part of the effort.

Despite intensive investigations on simulation-based
studies, there has not been an increased recognition on
the usefulness of such an approach. One bottleneck,
which is still the case even today, is a lack of precise data
and knowledge that can provide a basis for precision
simulation. For example, simulation of the G protein
cascade requires kinetic constants, such as the rate of Gu
activating PLCf and the rate of active PLCp inducing
IP3 production, which are not precisely measured. In
addition, very few simulations take into account spatial
distribution and movement of proteins within a cell and
assume all ingredients are in an homogeneous mixture.
Although there are cases where such approximations do
not substantially alter the nature of the systems,
many cellular processes are influenced by sub-cellular
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localization. This drawback is readily recognized by
many researchers involved in simulations and is ex-
pected to be resolved in the future.

Despite these problems, simulation-based study is
expected to be very effective for resolving conflicts in
hypotheses or to find a hypothesis to explain counter-
intuitive and contradictory data, because it enables us to
make implicit assumptions explicit and to carry out
complex calculations underlying counter-intuitive
behavior. However, it is not suitable when so many
factors are left unknown and only fragmented data are
available. This situation is gradually improving due to
the emergence of various high-throughout measurement
techniques. With an increase in data precision, the
accuracy of simulation and hypotheses will be enhanced,
so that simulation-based studies will enjoy more
opportunity to make predictions which can be experi-
mentally confirmed and to resolve conflicting ideas. It
may takes years for this approach to be used ubiqui-
tously in experimental molecular biology, but it will
certainly impact on how biology is pursued.

A high-throughput approach has been designed and
some pioneering studies on the reverse engineering of
gene regulatory networks from expression profile data
have been reported. Clustering of expression profiles has
been used to identify genes that are involved in a certain
phase of biological processes. Such an approach has
been applied for instance to the yeast cell cycle (DeRisi
et al. 1997; Brown and Botstein 1999; Spellman et al.
1998) and the development of mouse central neural
systems (Michaels et al. 1998). While clustering provides
some insights as to which genes may be involved in the
process, it does not identify the causal relationship
between genes and thus is not able to recover network
structures.

Alternative methods are now being developed to
directly infer the network structure from expression
profiles (Liang et al. 1999) and extensive gene-disruption
data (Akutsu et al. 1999; Ideker et al. 2000). Most of the
methods developed in the past translate expression data
into binary values, so that algorithms are made tractable
and computing cost can be reduced. But, such methods
seriously suffer from information loss in the binary
translation process and cannot accurately obtain net-
work structure. A method that can directly handle
continuous-value expression data was proposed (Kyoda
et al. 2000) and reported highly accurate performance.
However, only a limited relationship can be inferred,
because it uses only the mRNA-level. Protein—protein
interaction data, such as yeast two-hybrid data are, at
this moment, too noisy to be used for pathway inference.
With improvements in measurement accuracy, these
data will be integrated and provide us with an overall
picture of complex networks. To accomplish this, there
are several issues that have to be overcome, including:
(1) the fusion of various data, such as protein inter-
action, sequence, and modification, (2) extension to
multi-cellular organisms, and (3) improvements in
measurement accuracy.



In addition to the reverse engineering of network
structures, various parameters need to be measured to
investigate the dynamic properties of the system. While
computational estimation of such parameters is possible
to a certain extent, parameters should be measured and
verified through high-precision experiments.

System behavior analysis

Once a system structure has been identified to a certain
degree, its behavior needs to be understood. Various
analytical methods can be used for this purpose. System
behavior can be analyzed at several levels, depending
upon how much we know about parameters associated
with the network.

First, steady-state analysis can be performed even
without knowing various parameters. Methods such as
flux balance analysis (FBA) and metabolic control
analysis can provide theoretical upper-bound, lower-
bound, and optimal operation points of the circuit in the
steady-state condition, using only the structure of the
network (Fell 1997; Edward and Palsson 1999). FBA is a
combination of linear algebra and linear programming
applied to biological systems. Given the structure of a
metabolic network, it generates a high-dimension space,
where the basis vector spans the possible subspace in
which this network operates, constrained by the law of
mass action, etc. The basis is transformed to correspond
to a biologically meaningful vector space, where each
dimension roughly corresponds to extreme cases of
metabolic balance, so that the combination of such bal-
ances covers all possible metabolic states of the system.
Finally, the object function is defined, such as growth
rate, so that optimal operating points can be calculated
using linear programming, a conventional method in
operations research. Palsson demonstrated the utility of
this approach through the analysis of controlled nutri-
tion intake in Escherichia coli and succeeded in predicting
shifts in metabolic pathways due to external conditions
(Edward et al. 2001). Although this method is limited to
steady-state analysis, it is one of the most powerful
methods for system analysis, because of its mathematical
transparency and no need for parameters.

Some of the other approaches used in operations
research, such as sensitivity analysis, can be used for
understanding inter-relationships, both in the steady
state and in the quasi-dynamic state.

Bifurcation analysis and other dynamic analytical
methods provide means to understand the dynamic
properties of biological systems, but require the identi-
fication of associated parameters and massive comput-
ing power. Some pioneering studies were done by John
Tyson and his colleagues for the cell cycle network
(Novak and Tyson 1997; Borisuk and Tyson 1998),
where complex combinations of attractors are identified.
Bifurcation analysis enables us to draw a phase portrait
in which bifurcation points of the system can be mapped
out, so that we can understand the dynamics of the

system, potential operating points, and phase transition
boundaries. Such an analysis not only reveals system-
level characteristics, but also provides important insights
for medical treatments, by discovering the cell response
to certain chemicals, so that effects can be maximized
while lowering possible side-effects.

System control

In order to apply insights obtained by system structure
and behavior understanding, research on establishing a
method to control the state of biological systems would
be required. Control may be done through controlled
environmental stimuli, chemical injection, drug absorp-
tion, and physical intervention. The current usage of
drugs is a crude means to control cellular states, but it
has not been precisely arranged, due to the limitations of
our knowledge and a lack of simulation capabilities.
Although research in this area has not taken off yet, this
is one of the most important areas in systems biology,
because major drugs and new treatment methods may be
discovered. Central questions at this stage are: How can
we transform malfunctioning cells into healthy cells?
How can we control cancer cells, to turn them into
normal cells or cause apoptosis? Can we control the
differentiation of a specific cell into a stem cell and
control its subsequent differentiation into the desired cell
type? Technologies to accomplish such control would
enormously benefit human health.

Obviously, the first precise treatment may be enabled
by using various individual genetic variations, including
single nucleotide polymorphisms (SNPs). It is likely that
some of the effects of SNPs are masked by a mechanism
that compensates for such variations. In this case, cor-
responding SNPs do not seem to affect the behavior of
the cell. However, if such a compensation mechanism is
disrupted by a SNP in a locus that constitutes the
compensation mechanism, the effects of SNPs will
directly show up in the cell’s behavior. In such a case,
it will be observed that, for a certain group of cells,
SNPs affect phenotype, but for other groups SNPs do
not seem to affect phenotype. By the same token, the
effects of drug administration may be balanced out by a
certain feedback system controlling metabolism, but
effects may be gained if such a feedback system is
temporarily suspended by using another drug prior to
the effective drug. Understanding and exploiting such
complexity cannot be captured just by looking at single
gene mutations: it needs system-level research.

System design

Ultimately, we would like to establish technologies that
allow us to design biological systems, for instance with
the aim of curing diseases. A futuristic example would be
to actually design and grow organs from the tissue of the
patient him/herself. There may be some engineering



applications by using biological materials for robotics or
computation. By using materials that have self-repair
and self-sustaining capabilities, industrial systems will
undergo revolutionary progress.

Measurement issues

Computational efforts alone will never solve the prob-
lem of structure identification of gene and metabolic
networks. The popular notion that “biological science
will turn into information science” overestimates the
power of the computational approach and ignores the
pressing need for high quality data for modeling and
analysis. Any knowledgeable computer scientist knows
the “garbage-in garbage-out” golden rule in computing.
There are various issues that need to be improved in the
measurement technique.

Comprehensiveness of the measurement is a critical
issue. Although the word ‘“‘comprehensive’ is used in
various contexts, there are three main types of compre-
hensiveness.

Factor comprehensiveness: this refers to the per-
centage of gene or protein covered in the experiment.
This includes a measurement expression level of large
numbers of genes, using DNA micro-arrays and a large-
scale protein interaction using the yeast two-hybrid
method (Ito et al. 2000; Schwikowski et al. 2000).

Time comprehensiveness: numbers of time points
measured may play a critical role in understanding
dynamic phenomena that are time-dependent.

Item comprehensiveness: multiple items may need to
be measured, such as gene expression, protein concen-
tration, and localization. Comprehensiveness in terms of
numbers of items measured simultaneously is an
important index.

Although there have been many projects that have
performed comprehensive measurements of the various
aspects of biological systems, most notably for yeast and
Caenorhabditis elegans, such as cell lineage identification
(Sulston and Horvitz 1977; Sulston et al. 1983), in situ
hybridization (Tabara et al. 1996), and other experi-
ments (White et al. 1986), they are not at the level of
accuracy and comprehensiveness required for computer
simulation modeling and systems analysis. The use of
new technologies and automation may further improve
the accuracy and throughput of such measurements.

One of the interesting examples of automated and
computerized measurement is a new microscopy system
that can automatically trace the cell lineage of C. elegans
(Onami et al. 2001). It can identify the nucleus position
of each cell from 4-D differential interference confocal
images, using a special image analysis software running
on a massively parallel PC cluster of 32 CPUs. With
such a system, we can identify a very large number of
cell lineages produced from an exhaustive RNAIi
knockout project and obtain highly reliable 3-D position
data throughout the time course. The automatic nature
of the system enables us to repeat the same experiment
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much more easily than before. For example, we can
identify the 4-D lineage of the same mutant or wild-type
strain for 100 samples and obtain statistical properties.
Quantity changes the quality of research, because the
availability of a large amount of 4-D linecage data
enables us to define wild-type and each mutant lineage at
the desired statistical significance, whereas we currently
depend on individual judgement of mutant isolation and
no quantitative measure has been established. With such
a system, we can map all mutants in the phenotype
space, statistically defined and grounded on massive
experimental data. Similar efforts can be made on vari-
ous aspects of experiments.

Aside from comprehensiveness, there are serious needs
to improve the accuracy of measurement and the capa-
bility of single-cell measurement, instead of cell culture.

The needs for high quality and comprehensive mea-
surement demand a radical change in experimental sys-
tems for further automation and the introduction of
micro-fluidic systems. Some pioneering work on micro-
fluild measurement systems has already been done
(Anderson et al. 2000; Ikuta et al. 2001). The power of
the micro-fluidic system is that it enables a higher level
of automation and reduces the need for sample quanti-
ties. A series of research projects in so-called nano-
biology follow another approach that may enable highly
precise measurement. As represented by the work of
Yanagida and others, nano-biology enables single
molecular measurements (Ishijima and Yanagida 2001).

The way we design and plan experiments may be
seriously affected. The current method is generally of an
exploratory nature. In future, experiment planning will
be more model- and hypothesis-driven. Models and
analytical results dictate what is to be measured, with
what level of accuracy. This resembles high-energy
physics experiments carried out to verify theoretical
predictions, so that specific energy ranges, properties
measured, and minimum number of experiments are well
defined. We cannot expect the same to apply to biology,
where systems are so complex. However, it is possible to
identify what needs to be measured and with what
accuracy from models and analysis. We may just need
to measure more items.

Software platform

A comprehensive body of software systems is necessary
to make best use of massive data sets. Such a body of
software includes:

Database for storage of experimental data

Cell and tissue simulator

Parameter optimization software

Flux balance analysis software

Bifurcation and systems analysis software
Hypothesis generator and experiment-planning ad-
visor software

7. Data visualization software

Sk w =



It is neither feasible nor practical to assume that
all modules will be developed to the highest quality by a
single development group. Currently, a collective effort
is underway to create a standard for models and data
exchange, together with a plug-in modular software
environment, so that users can create their own envi-
ronment by combining the best modules available.
Systems biology mark-up language (SBML) is an effort
to define consistent data and model exchange formats
among simulator and analysis tools (Hucka et al. 2000,
Kitano 2002). It is an extension of XML and is expected
to be the industrial and academic standard of the data
and model exchange format. Already SBML level-1 has
been defined and was announced in March 2001; and
SBML level-2 is now being defined. The systems biology
workbench project is a joint project that enables versa-
tile modular software to be used to create a software
environment for systems biology (Hucka et al. 2001).
The first version of this software was recently released
(http://www.cds.caltech.edu/erato/).

Among various components in the software envi-
ronment, simulation of gene and metabolism network
behavior plays an important role. There are several on-
going efforts for simulator development (Mendes and
Kell 1998; Tomita et al. 1999; Kyoda et al. 2000). There
are several issues that need to be resolved.

First, a method to efficiently compute stochastic
processes needs to be developed. Many existing simula-
tion software packages use differential equations to
describe biochemical processes, but the stochastic nature
of biochemical processes will be explicit when only a
small number of molecules is involved in the reaction.
Simulation using differential equations only provides
average behaviors, instead of actual behaviors for each
case. Such a problem has been pointed out in the sim-
ulation of phage decision circuits where a stochastic
process is dominant (Arkin et al. 1998).

Second, there are many features of biological systems
that we do not know how to simulate at a reasonable
level of accuracy. Simulation can be an extremely pow-
erful tool when it is applied to issues that are sufficiently
understood to make the simulation reasonably accurate,
so that predictions derived from the simulation can
effectively constrain possible hypotheses. However,
simulation is powerless when there is too little knowl-
edge to provide a solid basis. Decisions on which state
the assumed problems fall into are left to the intuition
and experience of the researcher.

Third, biological systems are complex and highly
nonlinear. This is exactly where we need simulation,
instead of human intuition. But, this is precisely where
simulation is of limited usefulness. Although various
research has been done, simulation and equation solver
technologies have certain limitations for high-order
nonlinearity.

There are additional problems that will be discussed
in detail here. However, these problems can be overcome
and simulation will be an indispensable means of

biological research. It is not foolish to imagine that some
day the Food and Drug Administration may require
simulation data to be attached to drug approval appli-
cations, just like construction approval applications for
high-rise buildings must be accompanied by structural
dynamics simulations.

Scientific issues
Robust systems

One of the essential traits of biological systems is
robustness. Understanding how robustness is established
and how it will break down is one of the most important
aspects of understanding a system. The term “‘robustness’
is used in various contexts. It often refers to the system’s
ability to adapt to the environment (adaptation). In a
different context, it means that the system can tolerate
damage by preventing catastrophic degradation of its
functions (graceful degradation). It is also used to capture
the system’s ability to operate normally under a range of
parameters and constants (parameter insensitivity).

In engineering systems, robustness is attained by
various methods. First, extensive use of feedback and
feedforward control significantly improves robustness
by monitoring and adjusting the difference between the
desired state and the current state of the system. Second,
built-in redundancy makes the system more tolerant
against disruption of the system components. Third, the
use of a structurally stable network ensures that the state
of the system converges to the desired state, despite
various noises. Finally, modular design isolates sub-
systems from possible disruptions.

The exciting fact is that a number of cases can be
identified in biological systems that exploit these engi-
neering methods for robust system design. Some exam-
ples will illustrate how these mechanisms are used in
biological systems.

Feedback control

Bacterial chemotaxis is one of the most well studied
phenomena in biological systems. It demonstrates
robust adaptation against a broad range of chemical
attractant concentrations, so that it can always sense
changes in chemical concentration and adjust its
behavior accordingly. The mechanism behind this abil-
ity is a closed-loop feedback circuit (Barkai and Leibler
1997; Alon et al. 1999) that enables the bacteria to sense
only acute changes in chemical concentration. In addi-
tion, it was shown that this feedback loop consists of
integral feedback, so that it can perfectly adapt under a
broad range of internal parameters (Yi et al. 2000). In
this case, ligands that are involved in chemotaxis bind to
a specific receptor (MCP) that forms a stable complex
with CheA and CheW. CheA phosphorylates CheB and



CheY. Phosphorylated CheB de-methylates the MCP
complex and phosphorylated CheY triggers tumbling
behavior. It was shown through experiments and sim-
ulation studies that this forms feedback circuits which
enable adaptation to changes in ligand concentration.
Specifically, for any sudden change in the ligand
concentration, the average activity level that is charac-
terized by the tumbling frequency quickly converges to
the steady-state value. This means that the system only
detects acute changes in ligand concentration that can
be exploited to determine tumbling frequency, but is
insensitive to the absolute value of ligand concentration.
Therefore, the system can detect and control its behav-
ior to move to an area of highly attractant concentra-
tion in the field regardless of the absolute concentration
level, without saturating its sensory system. Detailed
analysis revealed that this circuit functions via integral
feedback (Yi et al. 2000), the most typical automatic
control strategy. System-level analysis revealed that this
sub-system is relatively parameter-insensitive, so that
adaptation behaviors can be sustained even under
varying environments and internal disruption.

Structural stability

The simplest example of how a biological system ex-
ploits a structurally stable network can be seen in the
lambda phage fate decision circuit (McAdams and
Shapiro 1995). Lambda phage exploits multiple feed-
back mechanisms to stabilize the committed state and to
enable switching of its pathways. When lambda phage is
infected to E. coli, it chooses one of two pathways:
lysogeny or lysogen. While a stochastic process is
involved in the early stage of commitment, two positive
and negative feedback loops involving CI and Cro play a
critical role in stable maintenance of the committed de-
cision. In this case, whether to maintain feedback or not
is determined by the dosage of activator binding to the
Or region; and the activator itself cuts off feedback when
the dosage exceeds a certain level. Overall, the concen-
tration of Cro is maintained at a certain level using
positive feedback and negative feedback.

In the Drosophila development process, circuits are
shown to be structurally stable, so that it exhibits con-
verging behaviors over a broad range of parameters
(Von Dassaw et al. 2000). This is an important finding
because it demonstrates that structure is an essential part
of a biological network, instead of specific parameters.
Some feedback is used in the circuit to attain this
parameter insensitivity. This is not used for adaptation,
but is used to attain structural stability.

Feedback circuits also play important roles in devel-
opment. A recent review article (Freeman 2000) eluci-
dated some interesting cases in which feedback circuits
play a dominant role in the development process. Such
cases include: temporal control of signaling in JAK/
STAT-signaling pathways, spatial control in pattern
formation in Drosophila involving Ubx and Dpp,
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maintenance of patterns of expression for sonic hedge-
hog (Shh) and ZPA in limb development, etc. Detailed
analysis has yet to be performed on specifically what
kind of control is imposed on these feedback systems.
Analysis of feedback control in development is highly
complicated, because it involves both spatio-temporal
dynamics and changes in morphology of the organism.

Redundancy

Redundancy also plays an important role in attaining
robustness of the system. It is critical to cope with acci-
dental damage to components of the system. If there are
multiple independent signal transmission sub-systems,
the system functions normally even when one or two of
them are damaged. Redundancy design is generally used
to protect the essential parts of the system against acci-
dental disruption. Therefore, in an aircraft, control
systems and engines are designed to have a high level of
redundancy. In a cellular system, signal transduction and
cell cycle are equivalent to control systems and engines.

The cell cycle is the essential process of cellular activity.
For example, in the yeast cell cycle, the Cln and Clb
families play a dominant role in the progress of the cell
cycle. They bind with Cdc28 kinase to form Cdk complex.
Cln is redundant because knock-out of up to two of three
Cln (CInl, CIn2, CIn3) does not affect the cell cycle. All
three Cln have to be knocked out to stop the cell cycle. Six
Clb have very similar features and part their origin may be
gene duplication. No single loss-of-function mutant of
any of six Clb affects growth of the yeast cell. The double
mutants CLB1 and CLB2, or CLB2 and CLB3 are lethal,
but other double-mutant combinations do not affect
phenotype. It is reasonable that the basic mechanism of
the cell cycle has evolved to be redundant and is thus
robust against various perturbations.

Modular design

Modular design is a critical aspect of robustness. It
ensures that damage in one part of the system does not
spread to the entire system. Modular design can be
implemented by three means: physical isolation, spatial
isolation, and structural isolation.

The cellular structure of a multi-cellular organism is a
clear example of physical isolation. It physically parti-
tions the structure so that it prevents the entire system
from collapse due to local incidents.

Spatial isolation may take place within the cell, where
specific chemicals are localized and isolated from other
parts of the cell.

Gene regulatory circuits may embed structural iso-
lation by shunting effects in certain parts of the network
from other parts of the network, using feedback loops
and other methods. Even if a certain part of the circuit is
disrupted, due to mutation or injection of chemicals, it
does not necessarily affect other parts of the circuit. For
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example, mutation in p53 may destroy the cell-cycle
check-point system that leads to cancer. But, it does not
destroy metabolic pathways, so that the cell continues to
proliferate. How and why such modularity is maintained
is not well understood at present.

Design patterns

Considering how biological systems are formed, it is
hard to imagine that we can understand every detail
from first principles. Thus, instead of trying to identify
design principles, we should try to find design patterns
that are widely used in biological system with certain
variations.

Although there are very large numbers of gene net-
work topologies and associated parameters, it is cer-
tainly not infinite and the number of useful patterns
should be countable. With careful analysis and catego-
rization, the author expects that something like a peri-
odic table of biological networks can be created.

For example, many of the circuits that are involved in
oscillatory behaviors, either temporal or spatial, have
common network structures and are classified into a few
typical patterns. Such auto-regulatory loops can be seen
in various other places in biological systems. Calcium
oscillation based on the activation of the G protein-
coupled receptor (GPCR) complex is caused by an ele-
vated IP3 level, induced by PLCf activation, triggering
the release of calcium pooled in the endoplasmic retic-
ulum (ER) into the cytoplasm, binding with CaM to
form Ca’"-CaM. Ca®"-CaM activates the hydrolytic
activity of the RGS protein, which shunts Ga activity.
Through this loop, the initial activation of GPCR is
reduced and thus calcium release is stopped. Calcium in
the cytoplasm is pumped out or back into the ER. While
this is a greatly simplified picture of this process, the
point is that calcium oscillation may be an attribute of a
feed-back loop (DuPoint and Goldbeter 1996). There is
a potentially conflicting hypothesis that claims that
prime cause of calcium oscillation is the properties of
ER surface IP3 receptor dynamics (LeBeau et al. 1999).
In a totally different system, p53 activates the tran-
scription of mdm?2 that binds to p53. This creates a
negative feedback loop, whereas expression of p53
invokes mdm?2 that effectively causes proteolytic degra-
dation of p53. Oscillatory behavior is observed when a
high dose of ionized radiation is imposed on cells in
culture (Lev Bar-Or et al. 2000). This is a simple auto-
regulatory system that causes oscillation. Both use
completely different molecules, but attain induced-
oscillation because of the structural properties of inter-
action, i.e. an auto-regulatory loop, or negative
feedback. Obviously, the proteins involved are all
different, but the point is that the structure of the
network at the abstract level remains identical, thus both
share similar, but not identical, dynamic properties.

Circadian oscillation is a famous oscillatory behavior
that has been extensively investigated. Circadian

oscillation is evoked and maintained by the proteins
PER and TIM, that create a dimer on the cytosol and
inhibit their own transcription when transported back to
the nuclei. On the surface, circadian oscillation may
strike one as being similar to oscillatory systems, such as
calcium oscillation and p53-mdm?2 oscillation. However,
unlike calcium and p53-mdm?2 oscillation, which oscil-
late in the presence of inducing stimuli, such as ligand-
induced GPCR activity and ionized radiation, circadian
oscillation is more sustained and can oscillate for very
long periods of time without any inducing stimuli; and it
is very robust against environmental changes. It was
discovered that the circadian system actually encom-
passes one more feedback loop involving CYC and CLK
interlocked with the PER-TIM loop. A salient feature is
that PER-TIM activates transcription of CYC-CLK,
which are auto-regulatory; and CYC-CLK activates
transcription of PER and TIM, which are also auto-
regulatory. The two loops are inter-locked, so that either
is always stimulated from the complementary loop
(Glosopp et al. 1999). While the three systems briefly
described here attain oscillation, the circadian system
uses different structural dynamics from other two sys-
tems; and such structural differences affect the robust-
ness of oscillatory behavior itself. Thus, careful
classification at structural level may provide significant
insights on the dynamics of biological systems. Circa-
dian systems themselves are known to exist in different
species, but using slightly different proteins; and it may
be considered to be an evolutionary well conserved cir-
cuit. Similarly, there may be circuits that are almost
identical, but with some elements substituted. These are
the subject of investigation for evolutionary conserved
circuits. Calcium oscillation and p53-mdm?2 share only a
very abstract circuit structure, but cell cycle circuits in
different organisms share details of circuits and mole-
cules involved which should share details of dynamics,
too.

Orthologous and homologous circuits need to be
identified to gain a more detailed picture of the evolu-
tionary change in genetic information. Circuits that may
be found in yeast and C. elegans may also be present in
mice and humans, similar to the idea of homologous
genes. Some of the feedback circuits, for example, may be
so essential that they have been conserved through the
course of evolution. Also, some circuits may be duplicated
and revised versions applied in other parts of the system.
With the progress of the systeome project in various
model systems, such comparative studies and homology
searches at the circuit level will became possible.

Future directions

Systems biology will ultimately change biological
research and medical practice, because it offers a more
precise understanding of the state of the system and a
prediction of the effects of genetic alterations or treat-
ments of patients. To accelerate progress in the field, a



project comparable to the human genome project needs
to be established, but combining both centralized task-
oriented research and distributed exploratory research.
Such a project may be called “The human systeome
project”.

The goal of the human systeome project, if it is re-
alized at all, shall be defined as “‘to complete a detailed
and comprehensive simulation model of human cells at
an estimated error margin of 20% by the year 2020 and
to finish the identification of the system profile for all
genetic variations, drug responses, and environmental
stimuli by the year 2030.”

Undoubtedly, this is an ambitious project and needs
several milestones and pilot projects, such as in yeast,
leading to the final goal. Already, there are projects
having similar targets. The Alliance for Cellular Sig-
naling, headed by Alfred Gilman, aims at building
models of cells for cardiomyocytes and B cells, focusing
on the G protein cascade. The initial part of the project
is focused on the development of measurement systems
to generate quantitative data to form the basis of high
quality simulation models.

While these projects focus on modeling at the
moment, the final target will be restated to identify the
systeome. The systeome is an assembly of system profiles
for all genetic variations and environmental stimuli
responses. A system profile means a set of information
on the properties of the system that includes the struc-
ture of the system and its behavior, analysis results such
as phase portfolio, and bifurcation diagrams. The
structure of the system means the structure of the gene
and metabolic network, its associated constants, physi-
cal structures, and their properties. The systecome is
different from a simple cascade map, because it assumes
active and dynamic simulations and profiling of various
system statuses, not static entities.

The impact of this project will be far-reaching. It will
be a standard asset for biological research and a fun-
damental basis for diagnostics and prediction for a wide
range of medical practices.

The systeome project will be a major commitment.
However, it is indispensable for accelerating research on
systems biology and contributing to a better under-
standing of living systems and medical practice. The
systeome project includes a major engineering project for
measurement and software platform development,
followed by a wide range of scientific projects. Ideally, this
project should be initiated as an international joint project
on a scale comparable to the human genome project.

Conclusion

Systems biology is a new and emerging field in biology,
that aims at system-level understanding of biological
systems. System-level understanding requires a range of
new analytical techniques, measurement technologies,
experimental methods, software tools, and new concepts
for looking at biological systems. The work has just
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begun and much remains to be done to develop a deep
understanding of biological systems. Nevertheless, the
author believes that systems biology will be the dominant
paradigm in biology and that many medical applications
as well as scientific discoveries can be expected.
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