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1 Introduction

In Euclidean signature, correlators of local operators are analytic for non-coincident points.

However in Lorentzian signature, singularities can arise when “something happens.” These

Lorentzian singularities correspond, in weakly coupled theories, to Landau diagrams con-

sisting of a set of null particles interacting at local vertices in an energy-momentum con-

serving fashion. We will derive these rules for a generic perturbative quantum field theory

(see also [1–6]).1

In theories that have gravity duals, singularities can arise from Landau diagrams in

the bulk. In some cases, these occur at positions where there is no Landau diagram on the

boundary [9–13]. Such singularities are a probe of bulk locality. We call them “bulk-point

singularities.” We will display examples in 1+1 and 2+1 dimensions.

The emergence of the bulk is intimately related to the development of these singularities

as the boundary theory becomes strongly coupled. In this paper we analyze some properties

of bulk-point singularities, but we do not give a satisfactory explanation for their emergence.

There were several previous studies of these interesting singularities including [9–13]. Some

articles (see e.g. [10, 11]) assumed the singularity is present and showed how it could be

used to extract the flat space scattering amplitude. We are simply adding a few comments

to those previous papers.

We first review the origin of bulk-point singularities using the local bulk theory. We

argue that finite α′ effects remove the singularity [13]. We then comment that D-instanton

effects are again singular at this location. Finally, we expect that at finite GN this singu-

larity should not be present since, in some sense, there was no bulk point to start with in

the boundary theory.

In 1+1 dimensions, using general CFT arguments, we show explicitly that the singu-

larity is not present in the exact answer. The only singularities of the four-point function

are the light-cone singularities.

This paper is organized as follows. In section 2, we derive the position-space Landau

rules for correlators. These are analogous to the well-known momentum-space Landau

rules [1–3]. In section 3, we consider singularities arising from a local bulk. We argue

that these singularities do not arise from boundary Landau diagrams in 1+1 and 2+1

dimensions. In section 4, we consider stringy and instanton corrections to the gravity

formulas, and then we discuss some aspects of the exact answer. In section 5, we discuss

1For a discussion of analytic properties of correlation functions of local operators in a generic QFT

see [7], the case of a CFT is considered in [8].
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the singularities of the four-point function in d > 2 and discuss how there can be both a bulk

UV and IR contribution to the singularity. In section 6, we review the relation between the

singularity and the OPE expansion, clarifying the applicability of the OPE for this analysis

and also for the Regge limit. In section 7, for 1+1 dimensional CFTs, we prove that there

are no bulk-point singularities in the exact answer. In appendix A, we prove a bound on the

coefficients of the low energy expansion of a causal flat-space tree level four-point scattering

amplitude. Other appendices give more details on the discussion in the main body.

2 Singularities of perturbative correlation functions

Let us consider a weak coupling expansion of a local quantum field theory. We study time-

ordered correlation functions of local operators. At each order in perturbation theory, these

are functions of the spacetime positions of the operators. In this section, we describe their

possible singularities. In other words, we have

〈O(x1) · · ·O(xn)〉 =
∑

k

gkFk(x1, · · · , xn), (2.1)

and we want to find the spacetime locations where Fk has singular behavior. Previous

discussion of this topic includes [4–6].

There is a conceptually similar problem involving the singularities of perturbative

scattering amplitudes, viewed as functions of the momenta. In that case, the singularities

are at locations where one can draw a Landau diagram [1–3]. For correlation functions,

the situation is similar, and the singularities are at the momenta where one can draw a

position-space Landau diagram with on-shell massless particles interacting at local vertices

with momentum conserved at the vertices. In this section, we derive this rule. First we

consider a simple example.

2.1 A four-point function example

Consider a massless field φ in four dimensions with an interaction
∫
d4xλφ4. The leading

order correction to the four-point function is given by the integral

〈φ(x1) · · ·φ(x4)〉 ∝ λI, I ≡
∫
d4w

1
∏4

i=1[(w − xi)2 + iε]
, (2.2)

I = −2π2izz̄

x212x
2
34



2Li2(z)− 2Li2(z̄) + log(zz̄) log

(
1−z
1−z̄

)

z − z̄


 , (2.3)

u =
x212x

2
34

x213x
2
24

= zz̄, v =
x214x

2
23

x213x
2
24

= (1− z)(1− z̄). (2.4)

The last line defines the variables z and z̄. In Euclidean space z̄ = z∗, and the only

possible singularities arise when points coincide, at z = z̄ = 0, 1, ∞. In particular, there

is no singularity when z = z̄ for generic z since the numerator in (2.3) has a zero at that

location. Now we can move to Lorentzian signature, where z and z̄ become independent

real variables. We have a singularity when z = 0, with any z̄. These are the light-cone
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Figure 1. Landau diagram for the four-point function. There is a point w null separated from the

insertion points of the operators. We can put physical massless particles along these null lines so

that momentum is conserved at the vertex.

singularities, arising when two points are lightlike separated. We can continue past this

singularity by using the appropriate iε prescription. Now some of the points are timelike

separated and some are spacelike separated. In this regime, we might encounter new

singularities. In our example, this occurs when z = z̄. What has happened is that we have

analytically continued (2.3), going through branch points such that when we set z = z̄ the

numerator no longer cancels the denominator.

Let us see this more explicitly. We choose

x1 = (−t, 0, 1, 0), x2 = (−t, 0,−1, 0), x3 = (t, 1, 0, 0), x4 = (t,−1, 0, 0)

1

z
=

1

2
+
√
t2(1− t2),

1

z̄
=

1

2
−
√
t2(1− t2). (2.5)

The iε prescription corresponds to setting t = −iε + t̃ with real t̃ in these formulas. As

we change t̃ from zero to one, we go from the Euclidean region to the Lorentzian region

described above. In doing so, z goes around the branch point at z = 1, while z̄ goes around

z̄ = ∞. Therefore, when we return to 1
z = 1

z̄ = 1/2, at t = 1, we pick up a contribution from

going to the other branches in (2.3), and now the numerator no longer vanishes when z = z̄.

Namely, the term in brackets in (2.3) becomes (2π)2

z−z̄ plus terms that are regular at z = z̄.

It is actually not necessary to know the explicit answer to find the singularity. One can

start with the original integral (2.2). In Lorentzian signature, the iε prescription completely

defines the integral by stating how we should pick the integration contour. A singularity

can only arise if we cannot deform the contour to avoid zeros in the denominator of the

integrand in (2.2). That is, singularities arise when

(xa − w0)
2 = 0, a = 1, · · · 4, (2.6)

and we cannot deform the w integral away from w0. If the w integral can be deformed by

shifting wµ → wµ + ivµ so that

(xµa − wµ
0 )v

µ > 0, for all a, (2.7)

then there is no singularity, despite (2.6). This is expected to be the generic situation, since

it is generically possible to solve the four equations (2.6) for four variables. The singularity

– 3 –
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can be present only when we fail to find a vµ obeying (2.7), which happens if and only if

the following condition holds: there exist four numbers αa, such that

4∑

a=1

αa(x
µ
a − wµ

0 ) = 0, αa ≥ 0, not all αa zero. (2.8)

It is clear that if (2.8) holds then (2.7) cannot hold, since we can simply multiply (2.8) by

vµ to find an inconsistency. It is also true that if it is not possible to solve (2.7) then it is

possible to solve (2.8) (we present the argument in the next subsection).

The conclusion is that the singularity is present when both (2.6) and (2.8) hold. The

first could hold for generic xa but the second can only hold for special cases, since, in par-

ticular, it requires that det (xµa −wµ
0 ) = 0, which imposes one more condition beyond (2.6).

This can be interpreted as follows. We are demanding that there exists a point w0 such

that we can send on-shell massless particles from the position of the operators, xa, with

momenta kµa = αa(x
µ
a−wµ

0 ) so that momentum is conserved at the point w0. The positivity

of αi ensures that the energies are all positive. We call such a configuration a position-space

Landau diagram. A Landau diagram is like a Feynman diagram, except that the lines are

all null, and we can associate null momenta to all the lines so that they obey momentum

conservation at the vertices.2

After this introductory case, let us consider a general case.

2.2 General conditions for singularities of correlators in local quantum field

theories

We consider a time-ordered Lorentzian correlation function in a perturbative field theory.

The theory can be massive or massless. It can be in any dimension. We will analyze

the location of possible singularities at a given order in perturbation theory. Some four-

dimensional cases were considered previously in [4–6].

We consider a correlation function of local operators. At a fixed order in perturbation

theory, we get an expression of the form

〈O(x1) · · ·O(xn)〉 =
∑

k

gk
∫ k∏

a=1

ddwa〈Lint(w1) · · ·Lint(wk)O(x1) · · ·O(xn)〉, (2.9)

where the interaction Lagrangian is a product of local fields. Therefore the integrand is

given by a product of propagators. There can be derivatives acting on the propagators.

We do not expect any singularity arising from infinity. This can be seen by deforming the

integration contours into the Euclidean direction as soon as the integration variables are

larger than the largest time appearing in the correlator. The propagators are functions

of distances G(d2ij + iε), which are regular for positive values of the argument but have

2A momentum-space Landau diagram [1–3] is a momentum-space Feynman diagram, where we can

assign positions to the vertices such that the difference in positions between two vertices joined by a line

with momentum pµ is proportional to pµ with a positive coefficient. Here the momenta obey p2 = −m2,

with possibly non-zero values of m2.
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a singularity when the argument is zero. This singularity can be a pole or a branch cut

depending on the dimensionality and whether the field is massive or massless.

Let us lump all the integration variables into a big vector wM . We consider a region in

the integration domain, centered on a wM
0 where any number of these distances is becoming

zero

d2ij(w
M
0 ) = 0, for i, j ∈ S, (2.10)

where S is the set of distances that are zero. Now let us define

xMij =
∂d2ij
∂wM

∣∣∣∣∣ (w0). (2.11)

Next consider shifting the integration contour, which runs over real wM , to the imaginary

region wM → wM + ivM . The distances change to d2ij + iε → d2ij + i(xMij v
M + ε). We can

move away from the dangerous region if

there exists a vM such that
∑

M

xMij v
M > 0, for i, j ∈ S. (2.12)

If we can not do this, then we will have a pinch singularity, where the integration contour lies

between two singularities that are approaching each other. In this case, the final correlator

will generically be singular. (Of course, it is possible to have cancellations between different

diagrams).

Now, let us denote the indices ij in S collectively by the letter J . Farkas’ lemma

states3 that either (2.12) or the following is true:

There exists αJ ≥ 0, not all αJ zero,
∑

J

αJx
M
J =

∑

ij∈S

αijx
M
ij = 0. (2.13)

In other words, when we can solve (2.13), we have a singularity of the correlator. As in

the previous subsection, the condition (2.13) says that we can assign momenta to the null

lines so that momentum is conserved.

We could make the formulas look more uniform by defining αij = 0 for all ij that are

not in the set of distances, S. Then the conditions for a singularity are that we can solve

αijd
2
ij = 0 (no sum),

∑

ij

αijx
M
ij = 0, αij ≥ 0 not all αij zero. (2.14)

Note that we have massless particles even in a massive theory because the singularity

comes from the propagation of a very high energy particle. For such high energy particles,

we can neglect the mass.

The conclusion is that the only possible singularities of perturbative Lorentzian corre-

lators arise when we can draw a Landau diagram with on-shell massless particles that start

from the external points and undergo collisions. We can assign a momentum along the

direction of motion of each massless particle in such a way that momentum is conserved at

the interaction points, but not at the external points.

3We thank N. Arkani-Hamed for pointing this out to us.
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Landau’s original equations are similar, but they are related to singularities of Feynman

diagrams in momentum space [1]. In the case of momentum-space Feynman diagrams, the

Landau diagrams also involve on-shell particles interacting at localized positions in an

energy-momentum conserving fashion. But now they represent propagation for very long

distances in spacetime, and their energy and momentum are finite. For this reason the

masses do not drop out. The difference in position between two vertices connected by

an on-shell line l with momentum pµl is ∆xµ = αlp
µ
l . The condition that this defines a

consistent set of positions is that
∑

l αlp
µ
l = 0 for each loop. This is analogous to (2.13).

If we consider a quantum field theory in curved space, the same reasoning tells us that

we should consider massless geodesics in the curved spacetime with momentum locally

conserved at each vertex, and redshifted appropriately when we go from one vertex to the

next. We have not checked this explicitly.

2.3 From Minkowski space to the cylinder

Notice that besides the momentum all other conformal charges are preserved at the inter-

action vertex. In order to see this, let us first introduce the angular momentum, dilatation,

and special conformal charges for any classical massless particle as

Jµν = xµpν − xνpµ, D = xµpµ, Kµ = −2xµxνpν + x2pµ. (2.15)

Note that the fact that p2 = 0 implies that we can evaluate xµ along any point on the

trajectory. At a collision point, the fact that momentum is conserved implies that the

charges in (2.15) are conserved since the position xµ can be chosen as the interaction point

for all of the particles coming to a given vertex.

Now let us consider a CFT and the same process on the cylinder, R × Sd−1. We can

view the on-shell particles as living on the cylinder and impose that they preserve the

natural charges on the cylinder, namely energy and angular momentum. These charges

are a combination of the various conformal generators on the plane. Given that they are

conserved on the plane, we will find that they are also conserved on the cylinder.

2.4 Applications to symbology

In computations of perturbative correlators in scale-invariant theories, it has proven use-

ful to introduce a “symbol” that captures some of the singularities of the integrals [14].

The symbol contains arguments that are functions of the kinematic invariants. The zeros

of the functions appearing in the symbols should correspond to solutions of the Landau

equations. This is due to the fact that such zeros represent branch point singularities of

the answer as a function of the kinematic invariants. These branch points might appear

only after analytically continuing the answer through some previous branch cuts. So, they

are singularities of the analytically continued function. Since, a priori, we do not know

whether such analytic continuation arises from going to Lorentzian signature or from a

more formal operation,4 we can consider solutions of the Landau equations without insist-

ing on the positivity (or reality) of the αij parameters (we still demand that they are not

4E.g., complexifying the coordinates or considering other orderings of the operators.
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all zero). Similarly, we can also allow on-shell three-point vertices. On the other hand,

solutions of the Landau equations could also appear as prefactors of the symbols or as

zeros inside the symbol. In some computations, a guess has been made for the possible

arguments of the symbol at a given order in perturbation theory (e.g. [15]). Here we are

simply giving a guiding principle for what these arguments can be. Their zeros should

correspond to solutions of the Landau equations. At a finite order in perturbation theory

there is only a finite number of possible Landau graphs. These remarks suggest that it

would be very interesting to find the explicit locations in kinematic space where Landau

graphs are possible, but we will not attempt that here.

3 Bulk versus boundary singularities

We have seen that perturbative singularities of local QFTs correspond to Landau diagrams.

This logic applies when either the boundary or the bulk is local and weakly coupled. In

the next subsection, we give an example of a perturbative “bulk-point singularity” arising

from a bulk Landau diagram. Subsequently, we show that this bulk-point singularity could

never arise from perturbation theory on the boundary, at least in 1+1 and 2+1 dimensions.

(This is not a contradiction because we do not expect the bulk to be local and perturbative

simultaneously with the boundary.)

3.1 Bulk-point singularities from a local bulk

Consider a d-dimensional CFT with an AdSd+1 dual. We view AdSd+1 as the universal

cover of the hyperboloid in R
2,d given by

P IPI = −(P−1)2 − (P 0)2 +
d∑

I=1

(P I)2 = −1. (3.1)

Consider a (d + 2)-point correlation function with generic boundary points given by null

XI
a ∈ R

2,d (a = 1, . . . , d + 2). The singularity we are interested in happens when x ≡
detXI

a = 0. Notice that x = 0 defines a codimension-one subspace in the space of cross-

ratios.

A null vector X representing a boundary point is defined modulo rescaling X ∼ λX,

λ ∈ R
+. Hence, x = detXI

a itself is not a well-defined cross-ratio, but instead transforms

with weight 1 under rescaling of each of the individual XI
a ’s. To define a cross-ratio, we

can divide by appropriate factors to form a projective invariant, e.g.,

x̂ =
x

((−2X1 ·X2)(−2X2 ·X3) · · · (−2Xd+2 ·X1))1/2
. (3.2)

Objects with nonzero weight appear throughout the discussion in this section, but physical

results are always projective invariants. For d = 2, we have

x̂ = − z − z̄

4z(1− z)
+O((z − z̄)2) (3.3)

so that x = 0 is the same as z − z̄ = 0, as described in section 2.1.

– 7 –
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Figure 2. An example arrangement of boundary points that leads to a singularity. X1 and X2

are at time −π/2 on diametrically opposite sides of the Lorentzian cylinder. The remaining points

X3, . . . , Xd+2 are at time π/2 and arranged at generic directions on Sd. In this configuration,

lightlike particles can propagate into the bulk from X1, X2, scatter at P , and propagate out to

X3, . . . , Xd+2.

When x vanishes, XI
a is a singular (d+2)× (d+2) matrix, so it has a zero-eigenvector

P I . P represents a bulk point that is lightlike separated from the others, Xa · P = 0, such

that we can draw null lines from the boundary points Xa to P . Using AdS isometries, we

may assume P = (1, 0, . . . , 0). The Xa then take the form Xa = (0, na), where na are null

d + 1-vectors. The na represent the direction of the null lines to the boundary, in local

coordinates near P .

If detXI
a = 0, then XI

a also has a left zero-eigenvector ka such that
∑

a kaXa = 0.

Explicitly, we may choose

ka = (−1)a−1det ′a(n
µ
b ), (3.4)

where det ′a(·) denotes a determinant with the a-th column removed. Thus we can assign

momenta kana to each null line so that momentum conservation holds at P , see figure 2.

A singularity arises as a consequence of a local interaction in the bulk. Let us imagine

that we have the d+2 fields interacting through a local interaction λ
(d+2)!φ

d+2. The leading

perturbative correction to our correlation function is given by the Witten diagram5

I =

∫

AdSd+1

dQ(−iλ)
d+2∏

a=1

C
1/2
∆

(−2Q ·Xa + iε)∆
(3.5)

=

(
C

1/2
∆ e−iπ

2
∆

2∆Γ(∆)

)d+2 ∫

AdSd+1

dQ

∫ ∞

0

(
∏

a

dωa

ωa
ω∆
a

)
(−iλ)e−iQ·

∑
a ωaXa−ε

∑
a ωa ,

5This iε prescription is appropriate when Q lies in the three Poincaré patches nearest Xa [16]. Other

patches do not contribute to the singularity we are interested in, so we will ignore them. We leave ε explicit

because it will be important in the following discussions.
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where

C∆ ≡ Γ(∆)

2π
d
2Γ(∆− d

2 + 1)
. (3.6)

Suppose that Xa = (σa, na), where the σa are small. Note that

x =
∑

a

kaσa, (3.7)

where the ka are given by (3.4).

Let us consider the integral (3.5) near Q = P in the limit x → 0. I is singular if the

integration contour cannot be deformed away from Q = P . We claim that this occurs if

and only if all ka have the same sign. In this case we can reorder the Xa so that all the ka
are positive. Indeed, suppose ka > 0 and consider deforming Q in the imaginary direction,

Q → P − iδQ. To avoid singularities in the propagators, we must have δQ · Xa > 0 for

all a. However, then 0 =
∑

a kaXa · δQ > 0, a contradiction. This shows that positivity is

sufficient to have a singularity. As we explained in section 2.3, it is also necessary. For the

remainder of this section, we will assume that ka > 0. This gives an additional constraint

on the Xa. (For example, they cannot all be in the past (or future) of P .)

The integral (3.5) will be dominated near the point Q = P . In this region, we can

approximate AdS by flat (d + 1)-dimensional Minkowski space, Q = (1, y), y ∈ R
1,d, so

that the wavefunctions e−iQ·ωaXa become plane waves eiωaσa−iy·ωana with momenta ωana.

The integral over y produces a momentum-conserving delta function,

I ≈ (2π)d+1

(
C

1/2
∆ e−iπ

2
∆

2∆Γ(∆)

)d+2 ∫ ∞

0

(
∏

a

dωa

ωa
ω∆
a

)
δd+1

(
∑

a

ωana

)
(−iλ)ei

∑
a ωa(σa+iε).

(3.8)

This approximation is valid up to subleading terms in the limit x → 0. The δ-function

constraint is solved by ωa = ωka with an arbitrary overall energy ω,

I ≈ (2π)d+1

(
C

1/2
∆ e−i π2 ∆

2∆Γ(∆)

)d+2 (∏
a k

∆−1
a

) ∫∞
0 dω ω(d+2)(∆−1)(−iλ)eiω(x+iε), (3.9)

Finally, integrating over ω gives rise to a singularity at x = 0,6

I ∝
∏

a k
∆−1
a

(−ix)(d+2)(∆−1)+1
. (3.10)

For a general interaction given by a local amplitude A(pa), the constant −iλ gets

replaced by the amplitude evaluated at momenta ωpa, where pa = kana (no sum),

I ≈ (2π)d+1

(
∏

a

C
1/2
∆a
e−iπ

2
∆ak∆a−1

a

2∆aΓ(∆a)

)∫ ∞

0
dω ω

∑
a(∆a−1)A(ωpa)e

iω(x+iε). (3.11)

6This singularity has projective weight −∆ in each of the Xa, matching (3.5). To express it in terms of

projectively invariant cross-ratios, we can multiply by appropriate powers of Xa ·Xb.
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Figure 3. Lorentzian cylinder drawn in the plane. The vertical lines at 0 and 2π are identified.

Red dots correspond to operator insertions. Black dots stands for the points of first interactions

of on-shell particles emitted/absorbed by external operators. Clearly, it is not possible to draw a

Landau graph for φ 6= 0, π.

When x is small, the behavior of I is controlled by the fixed angle scattering amplitude at

high energies ∼ 1/x̂. (Recall that x̂, defined in (3.2), is a projectively invariant version of

x.) For local interactions, A is polynomial in ω, giving a singularity at x = 0.

We expect this computation to be reliable for x̂ ≫ 1/M∗, where M∗ is the scale that

suppresses higher-dimensional interactions in the bulk. When the bulk is a string theory,

this is x̂≫ ℓs, and in M-theory this is x̂≫ ℓP l, where ℓs and ℓP l are, respectively, the string

and Planck lengths in units of RAdS. We discuss what happens near these scales in section 4.

3.2 Landau diagrams in 1+1 dimensions

The bulk-point singularity described above cannot arise at any order in boundary pertur-

bation theory in 1+1 dimensions. To see why, consider a weakly coupled 2d sigma model.

The Landau diagrams are very simple in this case. The lines are lightlike and momen-

tum conservation at the interactions implies that the left- and right-moving momenta are

conserved. Therefore it is as if we did not have any interactions. In other words, the

Landau diagrams with and without interactions look the same, and the only singularities

are light-cone singularities.

In particular, this implies that there is no singularity at x ∝ z − z̄ = 0, for generic

values of z.

By performing conformal transformations, the points x3, x4 can be set at τ = π
2 , and

ϕ = 0, π and the points x1, x2 at τ and ϕ = φ+π, φ, see figure 3. Then x = 0 corresponds

to τ = −π
2 with any value of φ. These points can be joined by a bulk Landau graph but

not by any boundary Landau graph.

A popular starting point for the sigma model that is dual to AdS3 × S3 ×M4, with

M4 = K3 or T 4, is the symmetric product Mk
4 /Sk, where Sk is the permutation group of

k elements. One then deforms this theory by a twist operator mixing two of the factors at

a time. It is interesting to wonder whether this type of perturbation theory can produce
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a) b)

Figure 4. We consider the five-point correlation function on the Lorentzian 3d cylinder. The

configuration is chosen such that all external points lie on the geodesics emanating from a point

in AdS4. In a) the position of five points on the spatial S2 is shown. Red points correspond to

operators inserted at τ = −π
2
. Blue points correspond to operators inserted at τ = π

2
. In b) the

moment of first interaction at τ = 0 is shown. Excitations created at τ = −π
2
could potentially

interact at τ = 0 along the sphere equator.

the bulk-point singularities at finite order in perturbation theory. At finite order in per-

turbation theory a connected correlator corresponds to a computation in a theory with an

order one value of k (that grows with the order of perturbation theory). In a theory with a

small value of k, we will prove in section 7 that the correlators do not have any singularity

except for the ordinary light-cone ones. Since we are expanding around a regular point

in the conformal manifold (the space of coupling constants of the theory), we expect that

each term in the expansion should also be analytic at z = z̄.

3.3 Landau diagrams in 2+1 dimensions

We now argue that the bulk-point singularity x = 0 cannot arise in perturbation theory

in a three-dimensional CFT. In this case d+ 2 = 5, and we are dealing with the five-point

function. We label the points in terms of (τ, θ, φ), where τ is time and θ and φ are standard

coordinates on S2. We choose two points to be at (−π
2 , 0, φ), (−π

2 , π, φ) in the past; these

points evolve into the three points (π2 ,
π
2 , φ1), (

π
2 ,

π
2 , φ2), (

π
2 ,

π
2 , φ3) in the future, see figure 4.

Let us do the same thing as before: starting from initial points, we follow the light-cone

to the first possible interaction and then run time backwards from the final points to the

last interaction.

Starting from points 1 and 2 (located at the north and south pole respectively), we

evolve in time from τ = −π
2 to τ = 0 — the moment when the light cones first meet at the

equator of the sphere. We conclude that the earliest interactions can occur at τ = 0 and

should occur at the equator.

Now we can run time backwards. Starting from the final points we conclude that at

the moment τ = π
2
−, all particles that are away from the equator must move towards it,

since the final points are at the equator.

After the initial light-cones meet at the equator, at a time τ = 0, there are two options:

either the particles remain up to τ = π/2 on the equator, or they leave the equator. In the

second case, they must eventually return to the equator. Let us consider the case where

– 11 –
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there are particles going towards the north pole. These particles cannot reach very high

latitudes since they have to get back to the equator at time π/2. Let us consider the highest

latitude collision. If there are several collisions at this latitude, consider the one having

incoming particles going north. It will have no incoming particles moving south. But it

has no outgoing particles going north, therefore momentum along the lines of longitude

would not be conserved. This contradiction means that particles remain on the equator

from τ = 0 until τ = π/2. Since the equator has only one spatial dimension, we now

have Landau diagrams in 1+1 dimensions. As we have remarked above, these Landau

diagrams are the same as the ones we would have in the free theory. So we can draw a

pair of null lines emanating from an arbitrary point on the equator, one left-moving and

one right-moving. These lines must end on two separate operators. But this is impossible

if the positions of the operators are generic, namely when |φi − φj | is not a multiple of π.

3.4 Landau diagrams in d ≥ 4

In 3+1 dimensions, we have not been able to find a set of points with x = 0 where we can

prove nonexistence of a boundary Landau diagram. For some symmetric configurations

of points, we can actually find Landau diagrams on the boundary (see appendix C), but

this does not mean that they exist for generic configurations. It would be interesting

to understand further when they do or do not exist. The conditions that determine the

existence of Landau diagrams seem reminiscent of the positivity conditions studied in the

context of the amplituhedron [17], and it would be interesting to see if there is any relation.

4 Singularities beyond perturbation theory

In this section, we study the effect of various types of corrections. First we discuss the effect

of string worldsheet corrections for bulk-point singularities. At finite α′ these corrections

should make bulk-point singularities disappear [13]. We then discuss the effect of D-

instantons. We claim that the D-instanton correction contains a singularity. It turns

out that at weak boundary coupling, we can also get similar singularities from field theory

instantons. We will provide a rationale for the agreement between these two computations.

Finally, we argue that with a finite gravitational coupling constant GN , we expect no bulk-

point singularities.

While so far we have focused primarily on d+ 2-point functions in d-dimensions, it is

also interesting to consider four-point functions in d-dimensions. We end with a discussion

of their expected singularities.

4.1 Stringy corrections

Here we consider bulk-point singularities in d+2-point functions, arising from an interaction

localized at a point in the bulk. We consider a theory in the large N expansion, and we

examine the correlators at fixed order in this expansion. Each term is a function of the

’t Hooft coupling parameter λ. We recover the discussion in section 3.1 in the λ → ∞
regime where the bulk string theory can be approximated by a local field theory. Here, we

discuss what happens when λ is finite but large. This corresponds to a bulk theory with a

– 12 –
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finite and small string length in units of the AdS radius, ℓs ≪ 1. In the small x limit, we

expect a correction to the formulas in section 3.1, which arises as follows. We know that

the flat space, fixed angle, string scattering amplitude at large energy goes as

Aflat(ωpa) ∝ e−ω2h, (4.1)

where h is a positive function of the angles [18–20]. We saw that in the local regime,

described in section 3.1, the energy scales as ω ∼ 1/x. We have a range of energies where

we can approximate the amplitude by the high energy flat space amplitude. In this regime,

the correlator has the form

I ∝
∫ ∞

o(1)
dω ωce−ℓ2sω

2
eiωx−εω. (4.2)

The integral is now convergent at large ω for all x. To understand what happened with

the singularity it is useful to consider the explicit toy model

I(ℓs, x) =

∫ ∞

0
dω e−ℓ2sω

2
eixω. (4.3)

For ℓs = 0, we get I(0, x) = i/x. When ℓs is non-zero, I(ℓs, x) is an analytic function of

x (an error function). For large x with Im(x) > 0, we have that I ∼ i/x, agreeing with

the result when ℓs = 0. However, as x becomes comparable to ℓs, we find deviations from

this behavior. Interestingly, when the imaginary part of x is very negative, say x = −iy
with large positive y, then the function grows like exp(y2/(4ℓ2s)). In this region, even

though |x| is large, the value of the function is completely different from i/x, which is the

analytic continuation of the ℓs = 0 answer to the region where the original integral was not

convergent. Notice that the explicitly convergent region of the integral is in the direction

of the iε prescription, which corresponds to performing a bit of Euclidean evolution that

damps the contribution of high energy states. If we go in the opposite direction, we enhance

high energy contributions, and it is not surprising that we get a very different answer. One

might have naively expected that the pole at x = 0 would move in the complex plane when

ℓs becomes finite. The complete disappearance of the singularity is related to the fact that

the function is not analytic in ℓs at ℓs = 0.7

Of course, if we expand the amplitude in powers of ℓ2s, then each individual term seems

to have a singularity at x = 0. In fact, higher orders in the expansion give higher order

singularities. However, the full function is perfectly regular at x = 0.

The conclusion is then that finite α′ effects remove the x = 0 singularity from the

string tree-level correlator. This had been previously observed in [13].

When the energy of the collision is very large, we expect corrections to the flat

space scattering formula coming from the curvature of AdS. High energy scattering ampli-

tudes in AdS were considered in [21], where it was found that the amplitude behaves as

exp(−(logω)2ĥ) for large energies, where ĥ is a positive function of the angles. This also

leads to a convergent amplitude at large ω.

7We thank A. Zamolodchikov for discussion on this point.
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Note that once we have this strong suppression at large ω, it is no longer true that

ω ∼ 1/x. In fact, if we evaluate (4.2) by saddle-point approximation, we see that even

for x = 0, we have a finite value for ω. In the gravity regime, we can picture the x → 0

limit as a kind of microscope, or collider, that lets us explore the local bulk degrees of

freedom. However, this microscope is blurred at the bulk string scale where it ceases to

explore higher energies.

It would be interesting to evaluate the correlation function of heavy operators using

classical strings, as in [22], to further check that the result is completely regular at x = 0.

These arguments suggest that there will be no singularity at x = 0 at any order in

string perturbation theory.

As a final point, notice that the emergence of a local theory in the bulk is something

that can be explored using the planar approximation of the gauge theory. As we go from

small to large ’t Hooft coupling λ, we should get an enhancement of the connected correlator

when x ∼ 0. This could be done explicitly if integrability techniques are developed to

compute planar correlation functions. For recent progress in this direction see [23, 24].

4.2 Instanton corrections

Here we consider the spacetime dependence of instanton or D-instanton corrections to

correlation functions. Such corrections are exponentially small, due to the action of the

instanton. However, there are cases where instantons or D-instantons lead to a dependence

on one parameter that is invisible in perturbation theory (e.g., the theta angle in four-

dimensional gauge theories). In these cases, we can consider the derivative of the correlator

with respect to this parameter, whose leading contribution comes from the one-instanton

correction, and we can explore its dependence on the positions in a clear way.8 Below, we

will show that such corrections typically display a singularity at the same location as the

bulk-point singularities.

D-instantons. As argued in [25, 26], D-instanton corrections to scattering amplitudes

are not exponentially suppressed at high momenta.9 So if we consider the one-instanton

correction to the correlator, we expect singular behavior at x = 0. This is in line with the

idea that D-instantons explore points in the bulk.

Singularities from field theory instantons. Now we consider singularities due to

instantons in the boundary quantum field theory. It turns out that instanton corrections

often give rise to singularities that are similar to bulk-point singularities. Let us explain the

mechanism in a simple case. Consider a theory in 1+1 dimensions. Imagine a non-linear

sigma model that contains a non-contractible S2 in its target space. This has instantons

that correspond to wrapping the S2, which can be described as follows. Consider first the

8Of course, a singularity in the prefactor of the one-instanton correction does not mean that the function

after we sum over all instantons is singular at this location.
9In the flat space case, the instanton correction never dominates over the tree amplitude e−ℓ2

s
p2 or the

e−ℓsp that we get after resumming over genera [27]. The black hole formation threshold at ℓsp ∼ 1/g

happens first as we increase the energy.
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Euclidean field theory and parametrize space by the coordinates z and z̄. We parametrize

the target space sphere using the complex coordinate w, with

w = tan θ/2eiφ, dθ2 + sin2 θdφ2 = 4
|dw|2

(1 + |w|2)2 . (4.4)

The instanton is given by

w =
az + b

cz + d
, m ≡

(
a b

c d

)
, det m = 1, (4.5)

where the matrix m is related to parameters of the instanton. The moduli space is given

by SL(2,C)/SU(2), which can be viewed as H3 since the metric is SL(2,C)-invariant. We

now consider operators that change the radius of the sphere,

O(z, z̄) =
∂αw∂αw̄

(1 + |w|2)2 . (4.6)

Evaluated on the holomorphic instanton (4.5), this operator has the expectation value

〈O(z, z̄)〉 = 1
(
(z̄, 1)m†m

(
z

1

))2 . (4.7)

We see that the answer depends on the hermitian matrix P = m†m, with detP = 1, which

parametrizes SL(2,C)/SU(2). Writing

P =

(
Y−1 + Y2 Y

E
0 + iY1

Y E
0 − iY1 Y−1 − Y2

)
, detP = 1 = Y 2

−1 − (Y E
0 )2 − Y 2

1 − Y 2
2 , (4.8)

we recognize the YI as embedding coordinates for H3. Furthermore the expression for the

operator in (4.7) is simply given by 〈O〉 = (X ·Y )−2, with X the embedding coordinate for

the boundary point. We see then that the instanton contribution to the four-point function

can be computed as

〈O1O2O3O4〉 ∝ e−I

∫

H3

d3Y
1

∏4
i=1(Y ·Xi)2

. (4.9)

This has precisely the same form as that of a local bulk interaction. Here, I is the action

of the instanton. In particular, after continuing (4.9) to Lorentzian signature, we will find

precisely the same bulk-point singularity that gravity produces (except for the small factor

e−I).

We should remark that the full computation in the sigma model is more involved, since

we need to include the fermions and the fluctuations in the extra dimensions in target space

that make it a full conformal sigma model. If we only had the S2 and nothing else, then the

theory would not be conformal. Similarly, the operators might contain some dependence

on those dimensions, which would complicate some of the details while retaining the same

x = 0 singularity, at least at leading order in perturbation theory.
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Notice that the presence of a singularity here does not contradict the argument that,

in perturbation theory, we only get singularities on the light cone in 1+1 dimensions. Here

we are talking about a non-perturbative effect.

In 3+1 dimensions, one obtains a similar result [28–30]. The moduli space of Yang-

Mills instantons can be viewed as H5, where the radial direction is the instanton size.

Furthermore, the correction they produce for a correlation function can be found by eval-

uating the operator in the instanton background, as above. This leads again to functions

that are identical to the ones produced by local bulk interactions.10

4.3 General argument for the position dependence of one-instanton correc-

tions

Here, we explain the position dependence of the one-instanton correction to correlation

functions. We imagine an instanton whose only moduli are those given by the breaking of

the symmetries: conformal symmetries as well as supersymmetries. The main point is that

the one-instanton correlation function at leading order in the 1/N -expansion factorizes as

〈O(x1) · · ·O(xn)〉 ∝ e−I

∫
DY 〈O(x1)〉inst,Y · · · 〈O(xn)〉inst,Y , (4.10)

where 〈O(xi)〉inst,Y is the expectation value of an operator in the presence of the instanton

with fixed values of the zero modes. This one-point function is completely fixed by confor-

mal invariance: it is given by the corresponding bulk-to-boundary propagator. We saw this

explicitly in the example above when we only had the conformal moduli. We did not check it

explicitly, but we expect that the same symmetry arguments extend to the fermionic mod-

uli, when these arise from broken supersymmetries. This then fixes the one-point functions

and consequently the spacetime dependence of the correlation function. The important

point to notice is that in this argument we did not use the value of the ’t Hooft coupling,

so it applies both for strong and weak coupling. In fact, the spacetime dependence of the

instanton correction was observed to be the same at both weak and strong coupling [28–30].

This argument does not put any constraint on the λ dependence of the constant prefactor.

4.4 Exact answer

If we now consider a theory with a finite Planck scale, then we expect that the fixed angle

scattering is suppressed exponentially, since the amplitude would be given by a classical

gravity solution whose action is proportional to GNω
d−1, leading to the corresponding

exponential suppression exp(−GNω
d−1). This is also sometimes explained by saying that

high energy scattering will typically make a black hole that evaporates into a large number

of particles, so that producing just two particles in the final state would be highly un-

likely [31, 32]. Of course, we could consider a theory where the string scale and the Planck

scale coincide, where these strong gravity effects are the first to remove the singularity.

This suppression leads us to expect that the answer should be analytic at x = 0. We can

also say that the production of black holes implies that we cannot explore arbitrarily short

10For example, see equation (34) in [28].
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Figure 5. An illustration of the (d + 2)-point function near x̂ = 0 for different bulk theories.

The top curve (dashed light-blue) shows a x̂−β divergence from a tree-level Witten diagram. The

bottom curve (dark blue) shows this divergence cut off at ℓs, when the bulk is a string theory. The

middle curve (medium blue) shows the case ℓs → ℓPl, where the divergence is cut off by further

corrections in the exact gravity theory. The dotted gray curve shows the effect of D-instantons,

which (though formally singular at x̂ = 0) are suppressed and can only be trusted down to a scale

between ℓPl and ℓs.

distances, therefore removing the x = 0 singularity. Of course, the boundary theory had

no bulk points to start with.

In fact, we will later prove that in a 1+1 dimensional CFT, there is indeed no singularity

at x = 0.

4.5 Summary

These considerations suggest the following picture for the (d+2)-point function near x = 0,

illustrated in figure 5. In this discussion, it is useful to refer to the projectively invariant

cross-ratio x̂ (3.2). For a bulk amplitude growing like A ∝ sk, a tree-level Witten diagram

gives a singularity f ∼ (N2x̂β)−1, where β = (d + 2)∆ − d − 1 + 2k. In the case of an

ordinary local gravity theory, we expect that k = 1. If the bulk is a string theory, the

singularity is cut off at the scale x̂ ∼ ℓs, resulting in a bump in the correlator of height

(N2ℓβs )−1. When the bulk is not described by weakly-coupled string theory (for instance in

M-theory, or in the limit ℓs → ℓP l), our tree-level computation breaks down near x̂ ∼ ℓP l,

and we expect gravitational corrections to smooth out the singularity, resulting in a bump

of height (N2ℓβP l)
−1 ∼ N

2β
d−1

−2.11 Note that in this latter case, even though the bump

comes from a 1/N2 correction, it actually grows with N when (d+2)∆−2d+2k > 0. This

is because the breakdown of bulk perturbation theory occurs when the effective energy

11Here, we assume cT ∝ N2, as for an adjoint theory. In a vector-like theory, the N -dependence will be

different.

– 17 –



J
H
E
P
0
1
(
2
0
1
7
)
0
1
3

scale ω ∼ x̂−1 becomes of order ℓ−1
P l , and the breakdown does not depend on whether the

correlator itself is small or large.

5 Singularities of the four-point function

Previous papers on this subject have focused on the four-point function [9–13]. In d ≥
3 dimensions, the CFT four-point function can have a singularity at z = z̄ already in

perturbation theory (see (2.3) ) because we can draw a Landau diagram on the boundary.

In addition, we can also draw Landau diagrams in the bulk. In this section, we discuss in

more detail the four-point function, emphasizing the various possible contributions to the

singularity at z = z̄.

Let us start with some kinematics. We have four points XM
a in embedding coordi-

nates. We form the 4 × 4 matrix Xa · Xb. Generically its determinant is non-zero. We

want to focus on situations where its determinant, det (Xa · Xb) ∝ (z − z̄)2, vanishes.

It turns out that there are distinct configurations with zero determinant that cannot be

distinguished by the cross-ratios of the four points [10]. They can be distinguished by

the type of manifold generated by the four vectors XM
a . This manifold can be either a

four-dimensional null manifold or a three-dimensional manifold. As an example, the first

case arises when the four points can be located in the interior of the Poincaré patch, such

as the points in (6.9) with t = 1. An example of the second configuration is the points

XM = (X−1, X0, X1 · · · , Xd) given by12

XM
1,2 = (0,−1,∓ cosφ,∓ sinφ,~0), XM

3,4 = (0, 1,±1, 0,~0). (5.1)

Both types of configurations have z = z̄ or zero determinant. But they cannot be trans-

formed into each other by a finite conformal transformation. This type of situation is

common in Lorentzian signature. For example, consider the two-point function, which is

a function of the proper distance x2. We can have a singularity at x2 = 0 when points

are either null-separated or coincident. By analogy with this situation, we will call the

first type of configuration the “null z = z̄ singularity” and the second the “full z = z̄

singularity.” Since the four-point function depends only on the cross-ratios, we will have

the same approach to the singularity in both cases, even though the configurations look

rather different. Of course, if we had a higher point function, where only four of the points

are approaching the z = z̄ configuration, then these two cases can behave very differently,

and can be distinguished by looking at other cross-ratios.

In the case of the null z = z̄ configuration, we cannot find a bulk point P that is null

separated from all other boundary points. The only point that is null separated from the

four points lies also on the boundary.

A richer situation arises for the full z = z̄ configuration. In this case, we can find a

point P that is null separated from all the boundary points, Xa · P = 0. Furthermore,

it is also possible to draw bulk Landau diagrams with a vertex at P .13 In fact, we get

12We use XM
i = (cos τi, sin τi, cosφi, sinφi,~0).

13This is clear because we can find a point P in the AdS3 subspace given by 0 = X3 = X4 = · · · = Xd,

as in section 3.1.

– 18 –



J
H
E
P
0
1
(
2
0
1
7
)
0
1
3

a full family of such points that span an Hd−2 subspace of AdSd+1. For example, in the

configuration in (5.1), this subspace is given by −(X−1)2 + (X3)2 + · · · (Xd)2 = −1. We

can understand the symmetries of the configuration as follows. A generic set of four points

is only invariant under an SO(d − 2) subgroup of the conformal group. However, the

Lorentzian full z = z̄ configuration is invariant under a SO(1, d − 2) subgroup.14 This

subgroup acts on the bulk hyperboloid. This bulk hyperboloid intersects the boundary at

an Sd−3, so that even on the boundary we can have more than one Landau diagram.15

When we perform the bulk computation, we can have contributions to the z− z̄ singu-

larity that come from two sources. We can have a bulk UV contribution that comes from

high energy particles colliding at a particular point P in the hyperboloid. In addition,

we can have a bulk IR contribution that comes from integrating the interaction point P

over the hyperboloid. Let us discuss first the bulk IR contribution. When we go away

from z = z̄, we find that this integral over hyperbolic space gets cut off at a distance

eρ ∝ 1/|z − z̄|, which results in a singularity of the form

〈O(x1)O(x2)O(x3)O(x4)〉 ∝
1

(z − z̄)d−3
(5.2)

(for d = 3 we get a logarithm). This singularity does not involve short distances in the

bulk. From the boundary point of view, it involves short distances near the Sd−3 of possible

interaction points for boundary Landau diagrams.

Let us now discuss the contribution from the bulk UV singularity. For that purpose,

it is convenient to choose the following AdSd+1 coordinates:

QM
AdSd+1

= cosh ρ Q̃M
AdS3

+ sinh ρ~nSd−3 , (5.3)

where Q̃M
AdS3

are embedding coordinates of AdS3 and ~n is a unit vector on Sd−3. Then the

bulk diagram corresponding to a contact λ
4!φ

4 interaction has the form

I = VolSd−3

∫ ∞

0
dρ sinhd−3 ρ(cosh ρ)3

∫

AdS3

dQ̃
−iλ

∏4
a=1(−2Q̃ ·Xa cosh ρ+ iε)∆

. (5.4)

The last term has the same form as the AdS3 problem, except that the Xa have been

rescaled. Therefore, we can repeat the derivation in section 3.1 to go from (3.5) to (3.9).

14In Euclidean space, configurations with z = z̄ are invariant under SO(d− 1).
15For d = 3 we have two points.
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The only difference is that we replace x by x cosh ρ,

I ≈ (2π)3

(
C

1/2
∆ e−iπ

2
∆

2∆Γ(∆)

)4(∏

a

k∆−1
a

)
VolSd−3

×
∫ ∞

0
dρ sinhd−3 ρ

∫ ∞

0
dω ω4(∆−1)(−iλ)eiωx cosh ρ

≈ 2(2π)
d+3
2

(
C

1/2
∆ e−iπ

2
∆

2∆Γ(∆)

)4(∏

a

k∆−1
a

)
(5.5)

×
∫ ∞

0
dω ω4(∆−1)(−iλ)(−iωx) 3−d

2 K d−3
2
(−iωx)

∝
∏

a k
∆−1
a

(−ix)4∆−3
,

where the (cosh ρ)3 term in (5.4) was cancelled by three-dimensional energy momentum

conservation in AdS3. In the second line, we have done the integral over ρ in order to get

the Bessel function.

The integral (5.5) contains both the UV and IR contributions. To separate them, it

is useful to replace the contact interaction by a string amplitude. We can model this by

writing an expression analogous to (3.11) where we replace λ by A(ωpa). Here, ω sets

the overall energy scale of the process. If the amplitude vanishes rapidly for large ω, then

the UV contribution cancels and we get the result predicted by the general discussion

around (5.2). Namely, if the amplitude is suppressed beyond ω0, then we get eiw0x cosh ρ,

which cuts off the ρ integral at a constant value of xeρ, producing the desired result (5.2).

This discussion is similar to the one in [33] for deep inelastic processes. The high energy

regions in the bulk are highly suppressed and the contribution arises from the regions where

a redshift factor effectively lowers the energy to proper energies below the string scale.

For similar reasons, in the exact gravity theory we do not expect a bulk UV contribu-

tion. But we do expect the bulk IR contribution. In fact, we can argue that we expect a con-

tribution of the form (5.2) for general theories, even those that do not have a gravity dual.

This should be intuitively clear from the discussion of symmetries above. Namely, the sin-

gularity arises from the action of the non-compact symmetry group SO(1, d−2). In fact, the

1/(z−z̄)d−3 singularity is present for each individual conformal block. Here it is clear that it

can only arise from the non-compact nature of this symmetry group. The fact that confor-

mal blocks have this singularity is reviewed in appendix B and can be seen by looking at the

equation (2.21) in [34] (see also [35]). It is also clear from the explicit expressions in d = 4, 6.

Note that a free field theory does not have any singularity at z = z̄. The singularities

from each individual conformal block cancel out.

It is tempting to conjecture that any non-free theory will have a singularity at z − z̄

of the form (5.2). As a simple example, consider the large N critical O(N) model, which

in a sense is close to a free theory. In that case, the 1/N correction to the four-point

function of the spin fields (O(N) vectors) has a singularity of the form Γ(d−3
2 )x3−d, as

expected.16 It is important for this conjecture that we consider the four-point function of

16This is obtained from the function D̄ d

2
−1,1, d

2
−1,1, see [36].

– 20 –



J
H
E
P
0
1
(
2
0
1
7
)
0
1
3

the smallest dimension (or twist) operator in the theory. For example, in a product of two

independent field theories, where each individual one is interacting within itself, we can

consider products of operators in each of the two theories, and we can have a higher order

singularity. Similarly, in a large N theory, we can have higher order singularities if we have

double-trace external operators.17

An apparent counterexample arises when we consider the four-point function of scalar

half-BPS operators Tr[φ2] in N = 4 SYM. At one loop, we get λ
(z−z̄) coming from a φ4-

type interaction, and at two loops we get λ2

(z−z̄)2
from two copies of that diagram [37].

This double pole arises because we have two separate vertices. In other words, we get a

singularity similar to what we would get in two separate field theories. We expect that

at higher loops, there should be log(z − z̄) corrections that ultimately remove this higher

power. In fact, at three loops there is such a contribution [38]. It is also interesting to try

to give a hand-waving bulk understanding of this higher order singularity. Since it should

correspond to a string theory with very small string tension, we do not expect a bulk UV

singularity. However, a very low string tension can give rise to a very big intermediate

string that stretches between two very distant bulk points, so that we end up integrating

over two separate points on the hyperboloid. But we expect that at higher orders we will

get contributions that suppress the separate points as e−λ(log(z−z̄))2 .

6 Approaching singularities using the OPE

In this section, we apply the OPE to understand the behavior of Lorentzian correlators.

We are primarily interested in the bulk-point singularity and the Regge limit. One must

analytically continue away from the Euclidean sheet to reach these configurations. Never-

theless, we would like to emphasize that they can be approached in such a way that the

OPE remains valid.

The general idea is easy to formulate. Consider operators O(τL, φ) on the Lorentzian

cylinder parameterized by a time τL and an angle φ on a great circle of Sd−1. We arrange

them in the following four-point function:

f(u, v) =
〈O(−π, φ+ π)O(−π, φ)O(0, 0)O(0, π)〉R×Sd−1

〈O(0, 0)O(0, π)〉2 , (6.1)

with generic φ.18,19 To approach this configuration, we evolve the operators at time τL = −π
by −ǫ in Euclidean time, corresponding to −π → −π + iǫ. Next, we consider the OPE in

the s-channel O(−π + iǫ, φ)O(−π + iǫ, φ+ π). This OPE converges for ǫ > 0. The region

of interest lies at the boundary ǫ→ 0.

17We thank Douglas Stanford for discussion on this point.
18Throughout the paper we write the correlator

〈T {O(x1)O(x2)O(x3)O(x4)}〉 = 〈O(x1)O(x2)O(x3)O(x4)〉,

which makes time ordering implicit.
19We have shifted all operators by −π/2 in τL relative to previous sections. This is for convenience when

discussing analytic continuation below.
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x1 = −ρ

x2 = ρ

x3 = 1x4 = −1

Figure 6. Any four points in R
d can be brought into the above configuration using conformal

transformations. The four points lie in a two-plane, and ρ = reiφ is a complex coordinate on that

plane. The quantities r and φ are alternative parameterizations of the two nontrivial conformal

cross-ratios. Radial quantization around the origin gives an expansion for the four-point function

in r = |ρ|. (figure from [34].)

The s-channel OPE takes the following form:

f(u, v) =
∑

∆,ℓ

e−iπ∆c2∆,ℓg∆,ℓ(ǫ, φ), (6.2)

which should be compared with the Euclidean correlator

fE(u, v) =
∑

∆,ℓ

c2∆,ℓg∆,ℓ(ǫ, φ), (6.3)

which corresponds to 〈O(−ǫ, φ+ π)O(−ǫ, φ)O(0, 0)O(0, π)〉E . The difference between the

two is in the phase factor e−iπ∆ in (6.2). As we explain below, this can lead to different

effects. First, it is easy to see that it can lead to the emergence of singularities in large N

theories. In this case the emergence of a singularity is related to infinitely many operators

having dimensions such that they sum up “in phase.” Second, it can lead to damping of

the correlator when the phases are “random.” This is the chaos phenomenon.

6.1 A simple bound on the bulk-point singularity

To understand more clearly the relationship between the Lorentzian and Euclidean corre-

lator, let us start on the Euclidean cylinder,

fE(u, v) =
〈O(τE , φ+ π)O(τE , φ)O(0, 0)O(0, π)〉E

〈O(0, 0)O(0, π)〉2 , (6.4)

with τE < 0. In radial quantization, this corresponds to the configuration shown in figure 6,

where ρ = eτE+iφ is the radial coordinate introduced in [34, 39]. The standard cross-ratios

z, z̄ are related to τE and φ by

ρ = reiφ = eτE+iφ =
z

(1 +
√
1− z)2

,

ρ̄ = re−iφ = eτE−iφ =
z̄

(1 +
√
1− z̄)2

. (6.5)
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Figure 7. The map from z-plane to the ρ-space is shown. The whole z-plane minus the [1,∞) cut

is mapped to the |ρ| < 1 region. The [1,∞) cut in the z-plane is mapped to the |ρ| = 1 locus.

Regge

bulk point

Euclidean





L

Figure 8. There are several different regions of the Lorentzian cylinder where z = z̄, but they are

easy to distinguish using the variables τL and φ. Firstly, when τL = 0 with φ arbitrary (blue), the

correlator is in a Euclidean regime: all operators lie on the unit circle in figure 6. When φ = 0, π with

τL arbitrary (green), we have z = z̄. (Moving along the green line, taking τL → π, we approach the

Regge limit, discussed below.) Finally if τL = π with φ arbitrary (red), the correlator is in the bulk-

point region. Although all of these loci have z = z̄, they require different analytic continuations from

the Euclidean regime, and hence can have different physics. For example, if we start at the blue line

and increase τL, then each operator crosses one light cone (dashed line) to get to the green line, while

each operator crosses two light cones to reach the red line. One can move around the light cones

and connect these different regimes by moving in Euclidean time (making ǫ finite) as we do below.

In Euclidean space, ρ̄ and z̄ are the complex conjugates of ρ and z, respectively. The

OPE around r = 0 converges for |r| < 1, which translates to the whole cut plane in the z

variables, see figure 7.

The Lorentzian correlator corresponds to analytically continuing τE → iτL. Note that

ρ = eiτL+iφ and ρ̄ = eiτL−iφ are no longer complex-conjugates after this continuation.

As we approach the Lorentzian region, we maintain convergence of the OPE by taking

τE = iτL − ǫ where ǫ is small and positive. The Lorentzian version of the correlator (6.4)
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can then be written

f(eiτL−ǫ, φ) = 〈ψ|e(iτL−ǫ)D+iφR|ψ〉 = 〈ψ|e−ǫD/2eiτLD+iφRe−ǫD/2|ψ〉, (6.6)

where D is the Hamiltonian on the cylinder, R is the generator of rotations in the φ

direction and |ψ〉 ≡ O(0, π)O(0, 0)|0〉/〈O(0, π)O(0, 0)〉. Since D and R are Hermitian, the

Cauchy-Schwarz inequality implies

|f(eiτL−ǫ, φ)| ≤ 〈ψ|e−ǫD/2e−ǫD/2|ψ〉 = f(e−ǫ, 0). (6.7)

This implies that for ǫ > 0 we have a strictly convergent OPE expansion. Of course we

could still have a divergence as ǫ → 0. We can derive a simple bound on the rate of

divergence. The configuration τE = −ǫ, φ = 0 is now Euclidean, and we can use the

crossed-channel OPE to compute the four-point function,

f(e−ǫ, 0) ∼ 1

(1− e−ǫ)4∆
∼ 1

ǫ4∆
(ǫ≪ 1). (6.8)

Combining (6.7) and (6.8), we see that the correlator is bounded by ǫ−4∆ when approached

from the Euclidean direction τE = iτL − ǫ.

More generally, we may be interested in a d+ 2 function of the form

f(eτE , {~nα}) =
〈
O(τE , ~nn)O(τE , ~ns)

[
d∏

i=1

O(0, ~ni)

]〉

R×Sd−1

, (6.9)

where ~ni are points on the Sd−2 sphere at the equator of Sd−1 and ~nn,s are on the north

and south pole of the Sd−1. This configuration is characterized by several cross-ratios.

However, we can keep all the points on the sphere fixed and change only τE . The OPE

in the north+south channel is convergent as long as τE < 0. Furthermore, all points at

τE = iτL − ǫ are at the boundary of this OPE convergence region. This includes the locus

τL = −π, where the special cross-ratio x vanishes.

We can derive a bound similar to (6.8) for this correlator.20 In particular, it applies as

we approach the singular locus x = 0 from the Im(x) > 0 direction. However, this bound

is not very constraining for bulk-point singularities that arise as coefficients in the 1/N2

expansion. As discussed in section 4.5, the singularity is smoothed out when x̂ ∼ ℓP l. At

this location, it does not violate the Cauchy-Schwarz inequality.

6.2 Origin of the singularity from the dimensions of operators in the OPE

The OPE in Euclidean (6.3) and Lorentzian (6.2) signature look very similar. It is in-

structive to understand why the Lorentzian one can develop a bulk-point singularity in

the gravity regime, while the Euclidean one remains finite (for generic values of the

angle). This question was addressed in [11], and it will be useful to briefly review it.

20The right-hand side of the bound is ǫ−(d+2)∆.
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Contact interactions in AdS generate an anomalous dimension for double-trace operators

On,l ≡ O∂2n∂µ1 . . . ∂µl
O and also a shift in their three-point coefficients,

∆n,ℓ ≡ dimOn,ℓ = 2∆+ 2n+ ℓ+ γ
(1)
n,ℓ + . . .

pn,ℓ ≡ f2OOOn,ℓ
= p

(0)
n,ℓ + p

(1)
n,ℓ + . . . , (6.10)

where p
(0)
n,ℓ are the values in Mean Field Theory (see appendix B) and γ

(1)
n,ℓ and p

(1)
n,ℓ are of

order 1/N2.

The four-point function has a conformal block expansion

f(r, φ) = 1 +
∞∑

n=0

∑

ℓ=0,2,...

pn,ℓg∆n,ℓ,ℓ(r, φ) + other operators, (6.11)

where “other operators” are single- and multi-trace operators that contribute at first and

higher order in the 1/N2 expansion. Under evolution by −π in Lorentzian time, each block

acquires an overall phase g∆,ℓ(e
−iπr, φ) = e−iπ∆g∆,ℓ(r, φ) (for even ℓ). Thus, the correlator

becomes

f(e−iπ−ǫ, φ) = 1 +

∞∑

n=0

∑

ℓ=0,2,...

pn,ℓe
−iπ∆n,ℓg∆n,ℓ,ℓ(e

−ǫ, φ) + other operators. (6.12)

Let us denote the leading correction in the 1/N2 expansion by δ(1)f . We have

δ(1)f(e−iπ−ǫ, φ) = e−2πi∆δ(1)f(e−ǫ, φ)

+e−2iπ∆
∞∑

n=0

∑

ℓ=0,2,...

(
−iπγ(1)n,ℓ

)
p
(0)
n,ℓg2∆+2n+ℓ,ℓ(e

−ǫ, φ)

+single -trace. (6.13)

In the first line, we have packaged together contributions δ(1)f(e−ǫ, φ) that are present in

Euclidean space. The second line contains extra double-trace terms that arise in Lorentzian

signature from the expansion of e−iπγ
(1)
n,ℓ . The third line contains single-trace terms that

we will ignore for now.

The Euclidean terms cannot contribute to a singularity as ǫ→ 0 for generic φ because

no such singularity exists for Euclidean correlators (which have only OPE singularities).

Thus, a singularity as ǫ→ 0 must come from the second set of terms in (6.13), proportional

to the anomalous dimensions γ
(1)
n,ℓ . Because double-trace dimensions are nearly equal to

2∆ plus an even integer, these contributions sum up “in phase,” allowing us to pull out

the overall factor of e−2πi∆.

As an example, let us reproduce the singularity in φ4 theory from a sum over blocks.

When ǫ is small, the sum in (6.13) is dominated by terms with nǫ of order 1. The scalar

blocks in this limit (see appendix B) are given by

g2∆+2n,0(e
−ǫ, φ) ≈ 2

2−d
2
√
n√

π| sinφ|ǫ
3−d
2 K d−3

2
(2nǫ), n≫ 1, nǫ = O(1). (6.14)
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To compare to the variables in section 3.1, let us choose boundary points Xi =

(cos τi, sin τi, cosφi, sinφi) with τ1,2 = −π + iǫ and τ3,4 = 0 and the φi as before. (For

convenience, we are gauge-fixing the rescaling of the Xi). In the limit ǫ→ 0, we have21

x ≈ 4iǫ| sinφ|, (ǫ≪ 1),

ka ≈ 2| sinφ|, (ǫ≪ 1, a = 1, 2, 3, 4) (6.15)

A λ
4!φ

4 contact interaction in AdS generates anomalous dimensions only for scalar

double-trace operators at leading order in 1/N2. For large n, these are given by [11, 40]

γ
(1)
n,0 ≈

λnd−3

22+dπd/2Γ(d/2)
, n≫ 1. (6.16)

Finally, the large-n limit of the Mean Field Theory OPE coefficients is [41]

p
(0)
n,0 ≈

22+
3d
2 n4∆− 3d

2 πΓ(d/2)

Γ(∆)2Γ(1− d
2 +∆)2

, n≫ 1. (6.17)

Plugging (6.14), (6.16), and (6.17) into (6.13) and approximating
∑∞

n=0 →
∫∞
0 dn, we

obtain precisely the Witten diagram integral (5.5) with n = 2ω| sinφ|. This gives the

familiar singularity ∏
a k

∆−1
a

(−ix)4∆−3
∝ 1

| sinφ|
1

ǫ4∆−3
, (6.18)

with the correct coefficient. For a four-point bulk interaction with m derivatives we get

γ
(1)
n,ℓ ∝ nd−3+m instead of (6.16), resulting in a singularity ǫ−(4∆−3+m).

Note that at finite N , we must exponentiate γn,ℓ again. With a sufficiently chaotic

spectrum, we expect that all phases average out in (6.12). Thus, at finite N , we do not

expect an extra enhancement to the singularity in the four-point function beyond the one

present for the individual conformal blocks. For a similar reason, we do not expect that

the single trace terms in (6.13) will contribute to the singularity since such terms have the

dimensions already in the exponent, even to leading order in the 1/N expansion.

Exponentiation gives another way to understand the regime of validity of the Witten

diagram computation in a bulk gravity theory. The sum over blocks (6.13) is reliable as long

as γn,ℓ ≪ 1 so that we can expand e−iπγn,ℓ ∼ 1 − iπγn,ℓ + . . . . The fixed-angle amplitude

in gravity grows as A ∝ s, leading to an anomalous dimension γ
(1)
n,ℓ ∼ GNn

d−1. This gives

the condition n≪ G1−d
N or ǫ≫ ℓP l, in agreement with the discussion in sections 3 and 4.

The relation between a bulk Witten diagram as an integral over ω and the conformal

block expansion is easy to understand. Conformal blocks are eigenfunctions of the quadratic

Casimir C of the conformal group, acting on the two initial (or final) operators. In the bulk,

C becomes the squared total momentum plus the Casimir of the Lorentz group. At high

energies, this is just C = (ωk1n1 + ωk2n2)
2 = 16ω2| sinφ|2. The Casimir for an operator

of dimension ∆n,0 is 4n2 for n ≫ 1. Thus, inserting δ(n − 2ω| sinφ|) into (5.5) gives the

contribution of a single conformal block.22

21In deriving this relation, we must take care to reorder the operators so that the ka in (3.4) are positive.

The correct ordering depends on the sign of sinφ, leading to the absolute value.
22For more general interactions, we can also project onto a specific angular momentum block by picking

out individual partial waves in the scattering process.
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6.3 The Regge limit and the bound on chaos

When ǫ→ 0, φ→ π with |π−φ|/ǫ < 1 held fixed (or equivalently z, z̄ → 1 with 1−z
1−z̄ fixed),

the physical picture changes. This is the so-called Regge limit, which in the bulk is con-

trolled by high energy, fixed impact parameter scattering [16, 42–45]. Recently, this kine-

matical regime was analyzed in the context of chaos in [46, 47]. As illustrated in figure 8, the

physics of the Regge limit is different from that of the bulk-point singularity, even though

we have z → z̄ in both cases. Here we simply want to compare and contrast the two regimes.

Following the notation of [47], we consider a time-ordered flat-space correlation func-

tion

F (t) ≡ 〈T{V (x1)V (x2)W (x3)W (x4)}〉, (6.19)

where we restrict xi ∈ R
1,1 ⊂ R

1,d−1 as follows

x±1 = ±1, x±2 = ∓1, x±3 = ±eσ±t′ , x±4 = ∓eσ±t′ , (6.20)

where t = t′ + iπ/2. The advantage of the variable t is that F (t) is real for real t [47].

We are interested in the values of F (t) in the strip |Im(t)| < π/2. The above correlator

is at the upper boundary Im(t) = π/2 − ε. The Regge limit corresponds to t′ → ∞.

In this limit, the V (x1)V (x2) OPE is no longer valid. However, note that after a boost,

V (x1) and W (x4) can be placed at time −π/2 on the Lorentzian cylinder, while V (x2)

and W (x3) are approaching time +π/2 on the Lorentzian cylinder. This is equivalent to

the configuration (6.1) with φ → π. Hence, we can safely approach this limit using the

V (x1)W (x4) OPE. Doing the OPE in this channel we get the variables

ρ ∼ e−2πi

(
1 + 4ie

−σ−t′

2

)
, ρ̄ ∼ 1 + 4ie

σ−t′

2 , (6.21)

for large t′. The e−2πi phase factor indicates the path of analytic continuation to get to the

Regge regime. Note that we have |ρ|, |ρ̄| < 1 for all −3π
2 < Im(t) < π

2 , and in particular

for real t. Swapping t ↔ t̄ corresponds to exchanging points 3 and 4. Thus, the line

Im(t) = −π
2 , where ρ, ρ̄ are both real and less than 1, corresponds to the performing the

V (x1)W (x3) OPE in the Lorentzian correlator (6.19) with real t′, which is also convergent.

One point that these observations make clear is the following. There is no singularity

when σ → 0 (so that z → z̄) in the Regge regime. This is because there exists an OPE

channel where |ρ|, |ρ̄| < 1 when σ = 0 (with t finite). From figure 8, it is not surprising

that z = z̄ in the Regge regime has different physics from z = z̄ in the bulk-point regime.

We now consider the correlator

F (t)

Fd
= 1− 1

N2

(
Ae(j−1)t + . . .

)
+O

(
1

N4

)
, t≫ 1. (6.22)

where the “. . . ” represents subleading terms at large t. The chaos bound [47] states that

j ≤ 2, and A ≥ 0. (6.23)

The quantity j is called the Regge intercept, see, e.g., [48]. In theories with gravity duals

we have j = 2, with the Regge limit controlled by graviton exchange. In weakly coupled
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gauge theories, j is slightly bigger than one. In the exact theory, the correlator should go

to zero for large t.

By looking at the OPE, we can perform an analysis similar to the one done in section 6.2

and relate the growth of the correlator to the dimensions of double-trace operators obtained

from a gravity computation in the bulk. For example, a contact interaction with amplitude

iA = λsk +O(sk−1) with k ≥ 2 gives

δ(1)
F (t)

Fd
= λe(k−1)tf(σ), t≫ 1, (6.24)

where δ(1) denotes the leading correction in the large N expansion, and f(σ) is a positive

function of σ. Assuming this contact term dominates at high energies, (6.23) implies k ≤ 2.

For the case k = 2, corresponding to an interaction λ(∂φ)4, we also find λ < 0. This con-

straint was obtained in [49] for field theories in flat space, and more recently in [50] for AdS.

In terms of anomalous dimensions of double-trace operators, the condition j ≤ 2 is

equivalent to the statement that γ
(1)
n,ℓ can grow no faster than nd+1, when a finite number

of spins contribute:

lim
n→∞, ℓ≤ℓmax

γ
(1)
n,ℓ ≤ O(nd+1). (6.25)

(And furthermore, the coefficient of nd+1 must be negative.) This uses the large ∆ limit of

the blocks at fixed ℓ. One can repeat the analogous exercise for corrections that correspond

to exchange of particles in the bulk. The relevant limit of the blocks was considered

in [16, 42–45]. The result is the following bound:

lim
n→∞, ℓ

n
fixed

γ
(1)
n,ℓ ≤ O(n2). (6.26)

This bound is equivalent to the statement that the scattering phase δ(s, b) does not grow

faster than s [51].

7 Singularities in 1+1-dimensional theories

In this section we continue to pursue the strategy of bounding Lorentzian correlators by

Euclidean correlators, now making use of the special structure present in two dimensions.

We first describe a quantization of the theory that makes manifest certain positivity prop-

erties of Virasoro conformal blocks. Working in this quantization, we prove the absence of

bulk-point singularities in the four-point function nonperturbatively.

Before presenting the general proof, let us first remark on a simpler case. In rational

CFTs it is easy to see that we will not get a singularity. The reason is that the correlator

is a sum of a finite number of products of holomorphic times antiholomorphic functions.

Such a product can never give rise to a singularity at z = z̄, which is a non-holomorphic

condition. Now let us consider the general case.

In two dimensions, it is standard to define

F(z, z̄) = 〈O(0)O(z, z̄)O(1)O(∞)〉 = lim
x4→∞

x2∆4 〈O(0)O(z, z̄)O(1)O(x4)〉,

f(z, z̄) = z∆z̄∆F(z, z̄), (7.1)
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where F(z, z̄) can be expanded as a sum of Virasoro conformal blocks,

F(z, z̄) =
∑

h,h̄

f2OOOh,h̄
Vh(z)Vh̄(z̄). (7.2)

The Vh(z) are complicated, but fortunately we will not need their detailed structure to

obtain bounds on the Lorentzian cylinder. We can take a simpler route by quantizing the

theory in the right way.

Our quantization will yield an expansion for the four-point function in the elliptic nome

q, defined as

q = eiπτ =
z

16
+ . . . ,

τ = i
K(1− z)

K(z)
,

K(z) =
1

2

∫ 1

0

dt√
t(1− t)(1− zt)

,

z =
θ2(q)

4

θ3(q)4
, (7.3)

where K is an elliptic integral of the first kind. The Virasoro block Vh(z) has a natural

expression in terms of q, obtained by Zamolodchikov in [52],

Vh(z) = (16q)h−
c−1
24 (z(1− z))

c−1
24

−∆θ3(q)
c−1
2

−8∆H(h, q), (7.4)

where H(h, q) can be determined recursively [52–54]. In Zamolodchikov’s analysis, the

prefactors above come from a semiclassical Liouville theory computation of the large-h

limit of Vh. We will give an alternative understanding of these factors using an appropriate

quantization of the CFT.

First, let us describe the geometry underlying the q-variable. The quantity τ is the

modulus of a torus given by a double-cover of the Riemann sphere branched at 0, z, 1, and

∞. This torus is described by the equation

y2 = x(z − x)(1− x), (7.5)

where x is a coordinate on the base P
1.

What does a torus have to do with a four-point function on the Riemann sphere? The

answer is that the Riemann sphere can be thought of as the quotient of the torus by Z2

covering transformations y 7→ −y. That is, P1 ∼= T 2/Z2. Via this quotient, the sphere

inherits a metric that is flat except for four conical defects at the fixed-points of Z2. We

will refer to the sphere with this metric as the “pillow.”

Let us describe the quotient T 2/Z2 more explicitly, since it will be useful in the dis-

cussion that follows. On the left-hand side of figure 9, we show the torus in the uniform

coordinate u, where it is a rectangle with opposite sides identified. In the u-coordinate,

the Z2 acts as u 7→ −u. A cycle around 0 and z in the x-plane maps to the A-cycle of

the torus (the horizontal direction), while a cycle encircling z and 1 maps to the B-cycle

– 29 –



J
H
E
P
0
1
(
2
0
1
7
)
0
1
3

u = 0 u = π

u = π + πτu = πτ
A

B

Figure 9. The quotient T 2/Z2 gives the pillow, which has the topology of a sphere and a metric

that is flat except at four conical defects. On the left, we show the positions of the Z2 fixed points,

which become conical defects on the pillow. (The u-coordinate is defined below.) The shaded region

is a fundamental domain of Z2. On the right, we show the result of the quotient and indicate the

former A and B cycles of the torus, which become contractible S1’s on the pillow separating pairs

of conical defects.

(the vertical direction). Now, let us cut the torus into two sheets along a pair of A-cycles.

Taking one of the sheets (the bottom half of the torus in figure 9), we recover the sphere

by re-gluing the cuts together. The former A-cycle is now contractible — it corresponds

to an S1 that separates pairs of conical defects.

Let us now return to our CFT four-point function F(z, z̄). The operators O lived at

the fixed-points 0, z, 1,∞ of this Z2 quotient, so on the pillow we have one operator at

each conical defect. The key idea to obtain a q-expansion is to quantize the CFT in the

pillow geometry, with the former A-cycle of the torus as a spatial slice. Let us normalize

the A-cycle to have length 2π, so the states associated with this spatial slice have the usual

left- and right-moving Hamiltonians L0− c
24 , L̄0− c

24 of the CFT on a cylinder. These states

evolve for half the length of the B-cycle because the pillow comes from half of the torus.

Consequently, the correlator will be an expansion in eiπτ(L0−
c
24

)−iπτ̄(L̄0−
c
24

) = qL0−
c
24 q̄L̄0−

c
24 .

Let’s explore this idea in more detail. The uniformizing coordinate on the torus u is

defined by

du =
1

θ3(q)2
dx

y
, (7.6)

where y satisfies (7.5) and the prefactor θ3(q)
−2 = 2π/(4K(z)) comes from normalizing the

A-cycle to have length 2π. The Z2 acts as u → −u. In the u-coordinate, the operators

sit at the fixed points u1 = 0, u2 = π, u3 = π(τ + 1), and u4 = πτ . We would like to

compute the four-point correlator 〈OOOO〉 by first performing a Weyl transformation to

the uniform metric,

dx dx̄→ e2ωdx dx̄ = du dū. (7.7)

Under this transformation, the correlator gets contributions both from the Weyl anomaly

and from local rescaling near the operator insertions at 0, z, 1, ∞. Both of these factors
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are infinite and must be regularized appropriately (see appendix C for details), giving

F(z, z̄) = Λ(z)Λ(z̄)g(q, q̄),

Λ(z) ≡ θ3(q)
c
2
−8∆(z(1− z))

c
24

−∆, (7.8)

g(q, q̄) ≡ 〈O(u = 0)O(u = π)O(u = π(τ + 1))O(u = πτ)〉pillow,

where g(q, q̄) is an appropriately regularized four-point function in the pillow geometry

with operators at the conical defects.23 Note that the rescaling factor Λ(z) gives precisely

the c- and ∆-dependent prefactors in Zamolodchikov’s expression (7.4).

As discussed above, by quantizing the theory with the A-cycle as the spatial slice, we

can write g(q, q̄) as a sum over states on the circle,

g(q, q̄) = 〈ψ′′|qL0−
c
24 q̄L̄0−

c
24 |ψ′′〉,

|ψ′′〉 ≡ |O(u = 0)O(u = π)〉pillow, (7.9)

where |ψ′′〉 is defined by cutting the path integral along an A-cycle just above the defects

at u = 0, π.24

Equivalently, we can write

g(q, q̄) =
∑

h,h̄

f2OOOh,h̄
Ṽh(q)Ṽh̄(q̄), (7.10)

where the modified blocks Ṽh(q) are given by

Ṽh(q) = Λ(z)−1Vh(z) = (16q)h−
c
24

∞∏

k=1

(1− q2k)−
1
2H(h, q). (7.11)

By interpreting Ṽ(q) as a sum over states on the pillow, it follows that Ṽh(q) has an

expansion with nonnegative coefficients whenever c, h,∆ have values appropriate for a

unitary theory:

Ṽh(q) =
∞∑

n=0

anq
h+n− c

24 , an ≥ 0. (7.12)

This fact is non-obvious from the recursive definition of H(h, q) [52].

Considering our four-point function in the pillow geometry makes crossing symmetry

look extremely similar to modular invariance of the torus partition function — it is sim-

ply the statement that the partition function is unchanged under a 90◦ rotation of the

(Euclidean) spacetime manifold. Instead of quantizing the theory with the A-cycle as a

spatial slice, we could instead choose the B-cycle, which would lead to an expansion in the

image of q under a modular S-transformation. More precisely, crossing symmetry of the

four-point function

F(z, z̄) = F(1− z, 1− z̄) (7.13)

23This definition of g(q, q̄) is schematic because of the need for regularization. We define g(q, q̄) precisely

in appendix C.
24The state |ψ′′〉 is non-normalizable, but it can be made normalizable by a small amount of evolution

in Euclidean time. The same is true of a boundary state or any state created by a local operator.
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1

1

1

1

−1

−1

−1

−1

ρ q

Figure 10. The map ρ 7→ q takes the interior of the unit circle to the shaded region on the right.

In particular, the boundary of the unit ρ-circle maps inside the unit q-circle, except for ρ = ±1,

which map to q = ±1.

φ

σ(φ)

1 2 3 4 5 6

0.5

1.

1.5

Figure 11. The value of σ(φ) = − log |q| for angles φ ∈ [0, 2π]. It is positive everywhere apart

from φ ∈ πZ.

implies that g(q, q̄) is a (non-holomorphic) modular form,25

g(q, q̄) =
(√

τ τ̄
) c

2
−8∆

g(q̃, ¯̃q),

q̃ = eiπτ̃ = e−iπ/τ . (7.14)

7.1 All Lorentzian singularities in d = 2

On the Lorentzian cylinder, ρ, ρ̄ take values on the unit circle. In q, q̄-coordinates, the

unit ρ-circle gets mapped to the shape shown in figure 10 — inside the unit q-circle (aside

from q = ρ = ±1). The correlator g(q, q̄) is finite here, since it is given by a series in

q, q̄ with positive coefficients, and this series converges for real q ∈ [0, 1). It follows that

the four-point function is completely finite on the Lorentzian cylinder (aside from when

ρ, ρ̄ = ±1), and in particular there is no bulk-point singularity.

25Formulated in terms of g(q, q̄), the four-point function bootstrap [55–59] is almost identical to the

modular bootstrap [60, 61]. The key differences are that we must allow for non-integral coefficients in the

q, q̄ expansion and that the vacuum character gets replaced by the conformal block for the identity operator.
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Let us see this more explicitly. On the Lorentzian cylinder, our four-point function

becomes

g(q, q̄) = g(e−σ(τL+φ)+iθ(τL+φ), e−σ(τL−φ)+iθ(τL−φ)), (7.15)

where

log q
(
z = csc2(φ/2)

)
≡ −σ(φ) + iθ(φ). (7.16)

We plot the function σ(φ) in figure 11. Importantly for us, it is positive everywhere aside

from φ = 0, π.

We can now repeat the argument of the previous section, this time using q-quantization.

Starting from (7.9), the Cauchy-Schwarz inequality implies

|g(q, q̄)| ≤ 〈ψ′′||q|L0−
c
24 |q̄|L̄0−

c
24 |ψ′′〉 = g(e−σ(τL+φ), e−σ(τL−φ)) ≤ g(e−σmin , e−σmin),

σmin = min[σ(τL + φ), σ(τL − φ)]. (7.17)

Thus, we have bounded the Lorentzian correlator by the Euclidean one evaluated at q =

q̄ = e−σmin . Note that

σ(nπ ± φ) = σ(φ), n ∈ Z (7.18)

so that the fundamental domain for σ is [0, π2 ]. The Euclidean correlation function is only

singular when σmin = 0. In this way we just proved that the only singularities of the

Lorentzian four-point correlation function are light-cone singularities, which occur at

|τL| = |πn± φ|. (7.19)

The bulk-point configuration, which corresponds to τL = π and generic φ, is non-

singular. More precisely,

|g(q, q̄)|bulk−point ≤ g(e−σ(φ), e−σ(φ)). (7.20)

The latter is clearly finite for φ 6= 0, π, since it is strictly increasing as σ(φ) → 0, and

approaches the (finite) value dictated by crossing symmetry when σ(φ) is sufficiently small

but nonzero. Re-expressing (7.20) in terms of the four-point function f(z, z̄), we have

|fbulk−point(φ)| ≤
∣∣∣∣
z∆L Λ(zL)

z∆EΛ(zE)

∣∣∣∣
2

f(zE , zE),

zL = csc2
(
φ

2

)
, (7.21)

zE =
θ2(e

−σ(φ))4

θ3(e−σ(φ))4
.

As an example, when φ = π
2 , (7.21) reads

|fbulk−point(π/2)| ≤ 2c/8−4∆f
(
12
√
2− 16, 12

√
2− 16

)
. (7.22)

Note that 12
√
2− 16 ≈ 0.97, so we expect the correlator on the right-hand side to be well-

approximated by the unit operator in the other channel. In particular, the c-dependence of
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the bound (7.22) comes primarily from the prefactor 2c/8. The fact that the bound grows

faster than any power of c is consistent, for any ∆, with the expectation that a gravity

correlator grows like fgravitybulk−point(φ) ∼ c4∆−2 as c→ ∞ (figure 5).26

7.2 Other analytic continuations

Moving in the time direction on the Lorentzian cylinder corresponds to repeatedly circling

the origin ρ, ρ̄ = 0. It is also interesting to consider analytic continuations around the other

singular points ρ = ±1 (equivalently z = 1,∞). In Lorentzian signature, such continuations

can be interpreted in terms of two operators crossing each others’ light cones, and are

needed to calculate non-time-ordered correlators in various quantizations of the theory.

We will see that arbitrary analytic continuations of this type correspond to moving around

inside the q, q̄ unit discs, so that the OPE expansion (7.9) remains convergent.

This fact is easiest to understand in terms of the modulus τ . First note that analytic

continuation around z = 0 corresponds to the PSL(2,Z) transformation T 2 : τ 7→ τ + 2.

Since crossing symmetry z ↔ 1−z is a modular S-transformation, continuation around z =

1 corresponds to ST 2S : τ 7→ τ
1−2τ . We do not need to separately consider the cycle around

z = ∞, since it is linearly dependent with cycles around z = 0, 1. Together, T 2 and ST 2S

generate the principal congruence subgroup Γ̄(2) ⊂ PSL(2,Z), which clearly preserves the

upper half-plane and hence the unit q-disc. Succinctly, τ provides a uniformization of the

universal cover of the three-punctured sphere.

We can now map out all possible analytic continuations of our four-point function as

follows. In the z-plane, let us draw cuts between each pair of branch points, {∞, 0}, {0, 1},
{1,∞}, colored red, gray, and blue, respectively. Only two cuts are necessary for keeping

track of the branch structure, but we include all three so as not to break the symmetry

between 0, 1,∞. Encircling a branch point thus corresponds to crossing two cuts of different

colors. In the q-plane, the cut from 1 to ∞ maps to the boundary of the shaded region

in figure 10 (this locus corresponds to the Lorentzian cylinder configuration discussed in

section 6), while the cuts between {z = ∞, z = 0} and {z = 0, z = 1} map to segments on

the real line between {q = −1, q = 0} and {q = 0, q = 1} respectively. Now acting with

Γ̄(2) on τ , we can produce the images of these cuts under continuation around the different

branch points. The result is depicted in figure 12.

Every region accessible by analytic continuation has spikes that touch the boundary

of the unit q-disk. These spikes correspond to light-cone singularities as z → 0, 1,∞ on

some sheet of the branched-cover of the three-punctured sphere. (These are left-moving

light-cone singularities, since we are only discussing the holomorphic variable z. By addi-

tionally analytically continuing in z̄, we can also explore right-moving light cones as well

as combinations of both right- and left-moving light cones.) In fact, a dense set of points

on the unit q-circle correspond to some light-cone singularity after analytic continuation.

They are arranged in a fractal pattern at rational angles. Because of this fractal of singu-

26It may be possible to prove a stronger bound by using the full structure of Virasoro blocks, together

with crossing symmetry, instead of just the q-expansion.
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Figure 12. The map z → q takes the universal cover of the sphere with punctures at z = 0, 1,∞
to the interior of the unit q-disc. On the left, we show paths between the punctures in different

colors. We imagine drawing these paths on every sheet of the universal cover. On the right, we

show the images of these paths in the unit q-disc. Analytic continuation around punctures on the

left corresponds to moving around inside the unit q-disc on the right. A dense set of points on the

boundary of the q-disc corresponds to approaching a puncture on some sheet of the universal cover.

larities at |q| = 1, we expect it should not be possible to analytically continue the four-point

function outside the unit q-circle.27

It is remarkable that, using q-quantization, a single OPE expansion is sufficient to

cover every possible analytic continuation of the four-point function g(q, q̄). By contrast,

in higher dimensions where only the ρ-variable is available (without assuming additional

symmetries), the OPE has only a finite radius of convergence.28

8 Conclusions

In this paper we have analyzed some Lorentzian singularities of correlators. We showed

that singularities of weakly coupled local quantum field theories are at the location of

Landau diagrams. These Landau diagrams are a purely geometric construction that is

theory independent. At each order in perturbation theory, there is a finite number of

possible diagrams. It would be interesting to derive general formulas for the location of

these singularities, since this could have useful applications for symbology. Of course, these

remarks also hold for the usual momentum-space Landau diagram locations.

27A simple example of a function that cannot be analytically continued outside the unit q-circle is
∑

n≥0 q
n!, which is super-exponentially convergent for |q| < 1, but divergent on the unit circle at every

rational angle.
28This radius of convergence can be extended by using additional information about the spectrum and

OPE coefficients to partially (or completely) resum the expansion, as we did with Virasoro symmetry in

this section.
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We considered particular (d+2)-point correlation functions and argued that they have

singularities (perturbatively in the 1/N expansion) at a codimension-one hypersurface in

the space of cross-ratios given by detXI
a = 0. This singularity arises from a particular

point in the bulk. Indeed, it is a signature of a local bulk theory, acting as a microscope

for that bulk point. In principle, one can imagine defining bulk correlators of n points by

taking n(d + 2) points and grouping them in n groups of d + 2 so that we approach the

bulk-point singularity in each group, associated to n different bulk points. In this limit,

the correlator will be related to the insertion of n operators in the bulk after we factor out

pieces from each singularity. This is only a sketch since we would also have to subtract

contributions from graviton exchanges between the various bulk null lines.

We showed that in 1+1 or 2+1 dimensions, these bulk-point singularities cannot be

reproduced by weakly-coupled theories. It would be nice to see whether this is true in

3+1 dimensions. We suspect that it should be true for generic configurations with zero

determinant, but the method we used in lower dimensions was no longer applicable, since

there are special configurations that do lead to such a singularity (see appendix C).

After reviewing and slightly extending the discussion of [13], we argued that finite α′

effects should remove the singularity from planar correlators. It is interesting that the

emergence of bulk-point singularities is something that could be seen directly by looking at

planar correlators, since these might be computed using integrability in the not so distant

future!

We noted that instanton effects, curiously, both at weak and strong coupling, give rise

to a bulk-point singularity. This is due to a couple of simple facts: the moduli space being

AdS and the correlators factorizing in the presence of an instanton. In principle, this instan-

ton discussion is irrelevant for the emergence of the singularity in bulk perturbation theory.

However, it is tempting to imagine that there could be an underlying mechanism that uses

a similar idea. As a vague idea, one would suggest “fractional instantons” whose action

would be divided by N and thus important at strong coupling. Such configurations were

discussed in, e.g., [62]. More physically, one would like to argue that the sphere diagram in

planar gauge theory has some zero modes corresponding to conformal transformations and

nothing else. When we attach the external lines, we get a picture similar to the instanton

discussion. It would be nice to make these ideas concrete. Note that in the twistor string

theory, the spacetime interactions also arise from D-instanton contributions [63].

The picture for parton evolution at strong coupling is that it is very rapid, with mo-

mentum becoming rapidly spread over very many low energy partons, which fill the whole

spatial region within the light cone of the operator insertion [64], see also [65]. The bulk-

point singularity arises when all these partons interact coherently, each carrying an in-

finitesimal amount of momentum. In this case we are not obeying the Landau rules, which

hold only in perturbation theory, where parton evolution only leads to splitting into a finite

number of partons.

We have noted that at finite GN , we do not expect bulk-point singularities. In 1+1

dimensions, we proved this using the full power of the conformal group. In that case, the

only true singularities are light-cone singularities.
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It would also be nice to relate the emergence of bulk-point singularities to the spectrum

of the theory. In other words, one expects [11] that as the dimension of the lightest single

trace higher spin (S > 2) operator, ∆∗, becomes large, then the theory should become

local. The authors of [11] showed that the only solutions to crossing symmetry in this

situation correspond to local-like interactions, in the sense that they can be described by

bulk interactions of the form λnφ
2∂2nφ2, with various contractions of derivatives. However,

we expect more to be true. We expect that the coefficient of such interactions should be

suppressed for n > 1 as |λn| ≤ λ∗/∆
2n
∗ . We have been unable to prove this conjecture.29

We propose a corresponding conjecture in flat-space physics. Namely we consider a tree-

level amplitude (containing only poles) that respects causality so that it grows less rapidly

than s2 for large s. When we perform a low energy expansion of the amplitude, we will get

terms that are polynomial in the Mandelstam variables, s, t, u. Then we expect that higher

derivative corrections to the amplitude should be suppressed by the inverse mass of new

particles. In other words, a term whose amplitude goes as A ∼ s2+n in the large s (fixed

t) region should be suppressed by 1/M2n
∗ , where M∗ is the mass of the lightest higher spin

particle. We prove a weak version of this flat space conjecture in appendix A, using a slight

variation of the method in [49]. It would be nice to prove a stronger version of the flat

space conjecture. Mellin space looks like the best tool to study these issues, since the Mellin

amplitudes have analytic properties similar to string tree-level amplitudes [12, 66, 67]. The

bulk-point singularity arises from a Mellin amplitude that is polynomial in s and t. A true

local theory governed by Einstein gravity would have higher order polynomials suppressed

by inverse powers of 1/∆∗. It seems that a proof of these statements (or a corrected version

of them) should be feasible.
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A Bounds on higher derivative interactions

Let us assume we have an amplitude A(s, t) that is meromorphic and with Regge behavior

at infinity,

|A(s, t)| ≤ |s|2, s large, t ≤ 0 (A.1)

for large s (in any direction of the complex plane) and fixed t ≤ 0 (negative t is spacelike

t). The rationale for imposing this condition is that we want the amplitude to respect

causality in both the u and s channels. Let us also assume that the first massive state

appears at Ms.

29For an argument for the graviton three-point function see [51].
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We can now apply an argument similar to the one in [49]. First let us do exactly what

they do. Namely, we consider Ã(s, t) = A(s, t)−poles, where the poles are the low energy

poles of particles with spin less than two. The subtracted amplitude Ã(s, t) continues to

obey the high energy behavior (A.1). Because we subtracted the poles (including the one

at t = 0), Ã has a power series expansion around s, t = 0. Let us first set t = 0 in Ã.

We now consider the integral

c2n =

∮
ds

2πi

Ã(s, t = 0)

s2n+1
=

2

π

∫

cuts,s>0
ds
sσ(s)

s2n+1
. (A.2)

We can neglect the contribution at infinity as long as n > 1. For a meromorphic function,

the sum over cuts is simply a sum over delta functions iπδ(s−M2
k ). In other words, σ(s)

contains such δ functions. Now we therefore end up with an expression of the rough form

c2n =
2

π

∫ ∞

M2
min

ds

s

σ(s)

s2n−1
, (A.3)

where the integral is really a sum over δ functions. It would be nice to assume that the

right-hand side was finite for n = 1. But this does not follow from our assumptions. In

fact, it could be divergent. On the other hand it would be consistent with our assumptions

to say that the integral on the right-hand side is convergent for n = 1 + ǫ. This implies

c2n ≤ c2+2ǫ

(M2
min)

2n−2−2ǫ
, (A.4)

where c2+2ǫ is defined to be the right hand side of (A.3) for n = 1 + ǫ. For the case of a

theory where the integral for n = 1 is finite, as was considered in [49], one can set ǫ = 0

in (A.4). We can also saturate the bound by classically integrating out a massive scalar

field of mass Mmin.

All this discussion was for t = 0. We can now consider non-zero t. In this case, we

obtain a similar expression with

cm(t) =

∮
ds

2πi

Ã(s, t)

sm+1
=
∑

k

1

(M2
k )

m+1
A12,MAM,34 + (−1)m

∑

k

1

(M2
k )

m+1
A14,MAM,32,

(A.5)

where the first sum contains the poles in the s channel and the second contains the poles

in the u channel. We also have a sum over spins implicit in these expressions:

∑

spins

A12,MAM,34 = Ĉ
d−3
2

l (cos θ)Rk, (A.6)

where Ĉν
l (cos θ) = Γ(2ν)l!

Γ(ℓ+2ν)C
ν
l (cos θ) is a normalized Gegenbauer polynomial. (In four

dimensions, it is a Legendre polynomial.) Here, Rk is the same as the left-hand side when

t = 0, which is the residue that appeared in (A.2). Now, an important point is that for

real θ, |Ĉν
l (cos θ)| ≤ 1 and for θ = 0 (or t = 0), it is equal to one. This is because

Ĉ
d−3
2

l (cos θ) = (k̂1)
l.(k̂3)

l, sin2
θ

2
=

−t
s
, (A.7)
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where k̂1 and k̂3 are unit vectors in the direction of the center of mass frame along the

momenta of the particles 1 and 3. (k̂1)
l is a symmetrized, traceless, and unit-normalized

combination of l powers of k̂1. This is maximal when k̂3 is in the direction of k̂1. To

ensure θ is real, we may demand −M2
min ≤ t ≤ 0, since then s, t take values possible in

a physical scattering process for each pole. Therefore, in the above expressions, we can

bound A12,MAM,34 by their value at t = 0, allowing us to apply our previous argument.

Thus we find that

|cm(t)| ≤ c2+2ǫ

(M2
min)

m−2−2ǫ
, −M2

min ≤ t ≤ 0, m > 2. (A.8)

It seems clear that with extra assumptions we might be able to do better. Another

possible assumption is to demand that for t < 0, the power for large s is strictly less than

two in (A.1). It might be possible also that we can limit more strongly the corrections to

the gravitational effective action rather than generic corrections to scalar fields. Assuming

N = 8 supersymmetry, we can do better, but not as well as we expected.

B Limits of conformal blocks and MFT OPE coefficients

Conformal blocks in d-dimensions are eigenfunctions of the Casimir operator for the con-

formal group SO(d, 2) [35]. Solving this equation in the large ∆ limit gives [68]

g∆,ℓ(r, φ) =
ℓ!

(d− 2)ℓ

r∆C
d/2−1
ℓ (cosφ)

(1− r2)d/2−1
√
(1 + r2)2 − 4r2 cos2 φ

(∆ ≫ 1), (B.1)

where ρ = reiφ is defined in (6.5) and C
d/2−1
ℓ (cosφ) is a Gegenbauer polynomial. The

above expression is valid in the limit ∆ ≫ 1 with r fixed. Here, we have normalized the

block so that the leading term of g∆,ℓ(r, φ = 0) at small r is r∆.

We also need the mixed limit ∆ → ∞, r = e−ǫ → 1 with the product t ≡ ∆ǫ fixed.

Let us define g∆,ℓ(e
−t/∆, φ) ≡ f∆,ℓ(t, φ). Taking the leading terms in the Casimir equation

for f∆,ℓ in the large ∆ limit, we find

(
t
∂2

∂t2
+ (d− 2)

∂

∂t
− t

)
f∆,ℓ(t, φ) = 0. (B.2)

This has solution

f∆,ℓ(t, φ) = t
3−d
2 K d−3

2
(t)j∆,ℓ(φ), (B.3)

where K d−3
2
(t) is a Bessel function of the first kind. The function j∆,ℓ(φ) can be fixed by

demanding that the limit t→ ∞ of f∆,ℓ(t, φ) correctly reproduces the r → 1 limit of (B.1).

This gives

g∆,ℓ(e
−ǫ, φ) =

2
1−d
2 ℓ!√

π(d− 2)ℓ

C
d/2−1
ℓ (cosφ)

| sinφ|
√
∆ ǫ

3−d
2 K d−3

2
(∆ǫ) (∆ ≫ 1,∆ǫ fixed). (B.4)

Several different normalizations of the conformal blocks are present in the literature.

In our normalization, the Mean Field Theory OPE coefficients for double-trace operators
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On,ℓ ≡ O∂2n∂µ1 · · · ∂µℓO are given by [41]

p̄n,ℓ ≡ f2OOOn,ℓ
|MFT (B.5)

=
42∆+2n+ℓ(1 + (−1)ℓ)(2h− 2)ℓ(∆)2ℓ+n(∆ + 1− h)2n

ℓ!n!(h− 1)ℓ(h+ ℓ)n(2∆ + 1− 2h+ n)n(2∆− h+ ℓ+ n)n(2∆− 1 + ℓ+ 2n)ℓ
,

where h = d/2.

C A Landau diagram on R × S
3

Here we present an example of a set of points in four dimensions, on R× S3, such that we

can draw a Landau diagram on R × S3. At τ = π/2 (the final time) we have two points

on the north and south pole of S3. Then at τ = −π/2 (the initial time) we consider four

points that are on the equatorial S2 inside S3. Two of the points are on opposite sides of

a circle at θ0 and two are on opposite sides of the circle at π− θ0. More explicitly, we have

the following points on S2:

top± = (± sin θ0, 0, cos θ0), bottom± = (± sin θ0 cosφ,± sin θ0 sinφ,− cos θ0). (C.1)

We can now have two lines that start from top two points and meet at the north pole of

S2 at time θ0. They send lines along the great circle that contains the bottom two points.

These lines travel for a time π/2− θ0. After this time, they meet a line coming from one of

the bottom points that is coming along the same great circle and will collide with it. This

will happen after a total time of π/2. So at this time, they produce the lines going to the

north and south poles of the S3. The existence of this diagram suggests that there is a qual-

itatively new entry for the symbol of the three-loop contribution to the six-point function.

This is a special configuration, but it shows that the strategy we used to prove that

there are no boundary Landau diagrams in d = 2, 3 does not work here. It would be nice

to find out whether a completely generic configuration of six points with detX = 0 can or

cannot have a Landau diagram purely on the boundary.

D Transformation to the pillow metric

Consider a four-point function on the plane with coordinate x,

〈O1(x = 0)O2(x = z)O3(x = 1)O4(x = ∞)〉, (D.1)

where the operators Oi have conformal weights δi, δ̄i. The pillow metric is given by du dū,

where u satisfies

du =
1

θ3(q)2
dx

y
,

y2 = x(z − x)(1− x). (D.2)

Under the Weyl transformation

dx dx̄→ e2ωdx dx̄ =

∣∣∣∣
du

dx

∣∣∣∣
2

dx dx̄, (D.3)
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the correlator (D.1) gets contributions from local rescaling near each operator insertion

and also the Weyl anomaly. Because of the singular nature of the map x 7→ u near the

operator insertions, both of these contributions must be evaluated with some care. We will

address each one in turn. However, let us first make some preliminary remarks about the

uniformizing coordinate u.

We choose branch cuts for y to run along (0, z) and (1,∞). With these cuts, the plane

maps to half of the torus u ∈ [0, 2π] + τ [0, π], with the operators mapping as follows:

O1(x = 0) → O1(u = 0),

O2(x = z) → O2(u = π),

O3(x = 1) → O3(u = π + πτ),

O4(x = ∞) → O4(u = πτ). (D.4)

(We have not yet kept track of the rescaling of the operators due to the change of local

coordinate.)

The segment u ∈ (0, π) on the pillow corresponds to moving along the top of the

branch cut between x = 0 and x = z. Meanwhile, the segment u ∈ (π, 2π) corresponds to

moving back below the same branch cut on the x-plane. Since the theory on the sphere

has no actual cut, these paths on the pillow should be identified

u = t ∼ u = 2π − t, t ∈ (0, π). (D.5)

Similarly for the other cut,

u = πτ + t ∼ u = πτ + 2π − t, t ∈ (0, π). (D.6)

Notice that locally near each operator insertion, the map x 7→ u looks like a square-root

and a rescaling, with the branch cut re-identified to create a conical defect. In the following

subsections, we will examine more closely the behavior of operators and partition functions

under these sorts of maps. For simplicity, we will sometimes assume the operators Oi are

purely holomorphic (δ̄i = 0), restoring non-holomorphic dependence at the end.

D.1 Rescaling of local operators at branch points

Consider the behavior of O(x = 0) under a square-root map

x 7→ ξ = 2a
√
x. (D.7)

We take the branch cut along the positive real x-axis, so the positive and negative real

ξ-axes should be identified to create a conical defect. Since our map is singular at x = 0,

we should define O(ξ = 0) in terms of a limit of operators at nonsingular points. We have

O(x = 0) = lim
ǫ→0

O(x = ǫ)

= lim
ǫ→0

(
a√
ǫ

)δ

O(ξ = 2a
√
ǫ)

= a2δ

[
lim
σ→0

(
2

σ

)δ

O(ξ = σ)

]
, (D.8)
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where we have redefined 2a
√
ǫ ≡ σ.

This suggests that the quantity in brackets,

O(∗)(ξ = 0) ≡ lim
σ→0

(
2

σ

)δ

O(ξ = σ), (D.9)

is the correct definition of a regularized operator at a conical defect in the ξ coordinate.

Our calculation above now reads

O(x = 0) = a2δO(∗)(ξ = 0). (D.10)

By writing the map x 7→ u locally in the form (D.7) near each operator insertion,

we can now use (D.10) to relate operators at branch points in the x-plane to regularized

operators at conical defects on the pillow,

O1(x = 0) = θ3(q)
−4δ1z−δ1O(∗)

1 (u = 0),

O2(x = z) = θ3(q)
−4δ2(z(1− z))−δ2O(∗)

2 (u = π),

O3(x = 1) = θ3(q)
−4δ3(1− z)−δ3O(∗)

3 (u = π + πτ),

O4(x = ∞) = θ3(q)
−4δ4O(∗)

4 (u = πτ). (D.11)

(As usual, the operator at infinity O4(x = ∞) is defined by O4(w = 0), where w = 1/x is

a local coordinate near ∞.)

D.2 The Weyl anomaly

The Weyl anomaly for a rescaling δ → e2ωδ is given by

A ≡ logZ[⌉∈ωδ]− logZ[δ] =
⌋

∈△π

∫
⌈∈σ δ⊣⌊∂⊣ω∂⌊ω, (D.12)

where x = σ1 + iσ2, x̄ = σ1 − iσ2, and d2σ = dσ1dσ2.

As a warmup, let us compute A for the square-root mapping (D.7). The coordinate ξ

defines a metric

dξdξ̄ = e2ωdxdx̄, ω =
1

2
log

|a|2
|x| . (D.13)

Plugging ω into (D.12), we find a logarithmic divergence at x = 0. This phenomenon is

familiar from the plane-to-cylinder map (where ω differs from (D.13) by a factor of 2).

There, the anomaly contributes to a divergence in the partition function on the infinite

cylinder. This divergence has a simple physical interpretation: it comes from the Casimir

energy of the theory on the circle, integrated along the infinite length of the cylinder. A

simple way to regulate this infinity is to instead consider a Weyl transformation to the

finite-length cylinder. Equivalently, we can modify ω inside small circles around x = 0 and

x = ∞ so that it is everywhere nonsingular, see, e.g., [69, 70].

We can adopt the same procedure here. Let us modify ω to be

ω =





1
2 log

|a|2

|x| if |ξ| > ǫ,

1
2 log

|a|2

|ǫ/2a|2
if |ξ| ≤ ǫ.

(D.14)
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The anomaly contribution close to x = 0 is now

A ∼ c

24π

2π

4

∫

( ǫ
2a

)2

dr

r
= − c

24
log ǫ+ finite. (D.15)

The infinite piece − c
24 log ǫ can be subtracted off to define a regularized partition function

in the dξdξ̄ metric.

Let us now return to the pillow Weyl transformation,

ω = − log |θ3(q)|2 −
1

2
log |y|2

= − log |θ3(q)|2 −
1

2
log |x(z − x)(1− x)|. (D.16)

As before, we regulate A by modifying the pillow metric inside small circles of radius ǫ

around the points u = 0, π, πτ, π + πτ . It is important that we modify the metric in the

same way near each of the conical defects. Suppose instead we were to choose circles of

different radii ǫi around the points ui. Then the regularized pillow would no longer be

invariant under reflection in the Im(u) direction when Re(τ) = 0. Consequently, the pillow

four-point function may no longer be reflection-positive. For this reason, we should choose

each circle to have the same radius ǫ in the u-coordinate. These circles then map to different

size circles in the x-coordinate with radii

r1 =

(
θ3(q)

2√z
2

)2

ǫ2,

r2 =

(
θ3(q)

2
√
z(1− z)

2

)2

ǫ2,

r3 =

(
θ3(q)

2
√
1− z

2

)2

ǫ2,

r4 =

(
θ3(q)

2

2

)−2

ǫ−2. (D.17)

The divergent part of the anomaly near x = 0, z, 1 is again given by (D.15). A similar

computation near the point at infinity gives the divergent piece −9 c
24 log ǫ. Thus, we can

define the regularized anomaly contribution

A∗ = lim
ǫ→0

(
logZ[e2ωδ]− logZ[δ] +

c

2
log ǫ

)
. (D.18)

We are finally ready to compute A∗ for the transformation to the pillow metric. We

have

A =
c

24π

1

4

∫

R
d2σ ∂a log |y|2 ∂a log |y|2

=
c

24π

1

4

∮

∂R
log |y|2∂a log |y|2dna, (D.19)

where we have used the divergence theorem together with the fact that log |y|2 is harmonic.

Locally near the points 1, 2, and 3, log |y|2 has the form log |x− xi|+ bi(x), where bi(x) is
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slowly varying. Hence,
∫

Ci

log |y|2∂a log |y|2dna ≈ log |xi + ri|2
∫

Ci

1

ri
(−ridθi) = −2π log |xi + ri|2, (D.20)

where we have discarded terms that vanish as ri → 0. The circle at infinity contributes

similarly, with an additional factor of −3. Hence, the anomaly is

A =
c

24π

1

4
(−2π)

(
3∑

i=1

log |y(xi + ri)|2 − 3 log |y(r4)|2
)

= − c

48
(24 log ǫ+ 48 log |θ3(q)|+ 4 log |z(1− z)| − 24 log 2) . (D.21)

The regularized anomaly is

A∗ = −c log |θ3(q)| −
c

12
log |z(1− z)|, (D.22)

where we have absorbed constant pieces into a redefinition of ǫ.

D.3 Putting everything together

Combining the results of the previous subsections, and writing only the holomorphic half

of the transformation law for brevity, we have

〈O1(x = 0)O2(x = z) O3(x = 1)O4(x = ∞)〉R2 (D.23)

= θ3(q)
c
2
−4(δ1+δ2+δ3+δ4)z

c
24

−δ1−δ2(1− z)
c
24

−δ2−δ3

× 〈O(∗)
1 (u = 0)O(∗)

2 (u = π)O(∗)
3 (u = π + πτ)O(∗)

4 (u = πτ)〉(∗)pillow.

Here, the regularized correlator on the pillow is defined by combining the divergent part

of the Weyl anomaly with the (divergent) partition function in the pillow metric to get a

finite quantity,

〈. . .〉(∗)pillow ≡ e
c
2
log ǫ〈. . .〉pillow. (D.24)

We refer to the regularized four-point function in the main text as g(q, q̄). Note that our

regularization procedure does not spoil reflection positivity in the case that O3 = O†
2,

O4 = O†
1 and Re(τ) = 0 since we simply rescale the reflection-positive pillow correlator by

a positive constant.
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[6] O. Erdoğan and G. Sterman, Ultraviolet divergences and factorization for coordinate-space

amplitudes, Phys. Rev. D 91 (2015) 065033 [arXiv:1411.4588] [INSPIRE].

[7] R.F. Streater and A.S. Wightman, PCT, spin and statistics, and all that, Princeton Univ.

Pr., Princeton U.S.A. (2000).

[8] M. Lüscher and G. Mack, Global conformal invariance in quantum field theory,

Commun. Math. Phys. 41 (1975) 203 [INSPIRE].

[9] J. Polchinski, L. Susskind and N. Toumbas, Negative energy, superluminosity and holography,

Phys. Rev. D 60 (1999) 084006 [hep-th/9903228] [INSPIRE].

[10] M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT

singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].

[11] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field

theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

[12] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes,

JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

[13] T. Okuda and J. Penedones, String scattering in flat space and a scaling limit of Yang-Mills

correlators, Phys. Rev. D 83 (2011) 086001 [arXiv:1002.2641] [INSPIRE].

[14] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for

amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703]

[INSPIRE].

[15] L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon,

JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].

[16] L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in

AdS/CFT: from shock waves to four-point functions, JHEP 08 (2007) 019 [hep-th/0611122]

[INSPIRE].

[17] N. Arkani-Hamed and J. Trnka, The amplituhedron, JHEP 10 (2014) 030

[arXiv:1312.2007] [INSPIRE].

[18] G. Veneziano, Construction of a crossing-symmetric, Regge behaved amplitude for linearly

rising trajectories, Nuovo Cim. A 57 (1968) 190 [INSPIRE].

[19] V. Alessandrini, D. Amati and B. Morel, The asymptotic behaviour of the dual pomeron

amplitude, Nuovo Cim. A 7 (1972) 797 [INSPIRE].

[20] D.J. Gross and P.F. Mende, The high-energy behavior of string scattering amplitudes,

Phys. Lett. B 197 (1987) 129 [INSPIRE].

[21] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling,

JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

– 45 –

http://dx.doi.org/10.1063/1.1703676
http://inspirehep.net/search?p=find+J+%22J.Math.Phys.,1,429%22
http://inspirehep.net/search?p=find+R+UMI-83-07385
http://dx.doi.org/10.1103/PhysRevD.89.085016
https://arxiv.org/abs/1312.0058
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.0058
http://dx.doi.org/10.1103/PhysRevD.91.065033
https://arxiv.org/abs/1411.4588
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.4588
http://dx.doi.org/10.1007/BF01608988
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,41,203%22
http://dx.doi.org/10.1103/PhysRevD.60.084006
https://arxiv.org/abs/hep-th/9903228
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D60,084006%22
http://dx.doi.org/10.1103/PhysRevD.80.085005
https://arxiv.org/abs/0903.4437
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4437
http://dx.doi.org/10.1088/1126-6708/2009/10/079
https://arxiv.org/abs/0907.0151
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.0151
http://dx.doi.org/10.1007/JHEP03(2011)025
https://arxiv.org/abs/1011.1485
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1485
http://dx.doi.org/10.1103/PhysRevD.83.086001
https://arxiv.org/abs/1002.2641
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2641
http://dx.doi.org/10.1103/PhysRevLett.105.151605
https://arxiv.org/abs/1006.5703
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.5703
http://dx.doi.org/10.1007/JHEP11(2011)023
https://arxiv.org/abs/1108.4461
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.4461
http://dx.doi.org/10.1088/1126-6708/2007/08/019
https://arxiv.org/abs/hep-th/0611122
http://inspirehep.net/search?p=find+J+%22JHEP,0708,019%22
http://dx.doi.org/10.1007/JHEP10(2014)030
https://arxiv.org/abs/1312.2007
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2007
http://dx.doi.org/10.1007/BF02824451
http://inspirehep.net/search?p=find+J+%22NuovoCim.,A57,190%22
http://dx.doi.org/10.1007/BF02728811
http://inspirehep.net/search?p=find+J+%22NuovoCim.,A7,797%22
http://dx.doi.org/10.1016/0370-2693(87)90355-8
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B197,129%22
http://dx.doi.org/10.1088/1126-6708/2007/06/064
https://arxiv.org/abs/0705.0303
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0303


J
H
E
P
0
1
(
2
0
1
7
)
0
1
3

[22] T. Bargheer, J.A. Minahan and R. Pereira, Computing three-point functions for short

operators, JHEP 03 (2014) 096 [arXiv:1311.7461] [INSPIRE].

[23] B. Basso, S. Komatsu and P. Vieira, Structure constants and integrable bootstrap in planar

N = 4 SYM theory, arXiv:1505.06745 [INSPIRE].

[24] Z. Bajnok and R.A. Janik, String field theory vertex from integrability, JHEP 04 (2015) 042

[arXiv:1501.04533] [INSPIRE].

[25] M.B. Green, A gas of D-instantons, Phys. Lett. B 354 (1995) 271 [hep-th/9504108]

[INSPIRE].

[26] M.B. Green and M. Gutperle, Effects of D-instantons, Nucl. Phys. B 498 (1997) 195

[hep-th/9701093] [INSPIRE].

[27] P.F. Mende and H. Ooguri, Borel summation of string theory for Planck scale scattering,

Nucl. Phys. B 339 (1990) 641 [INSPIRE].

[28] M. Bianchi, M.B. Green, S. Kovacs and G. Rossi, Instantons in supersymmetric Yang-Mills

and D-instantons in IIB superstring theory, JHEP 08 (1998) 013 [hep-th/9807033]

[INSPIRE].

[29] N. Dorey, T.J. Hollowood, V.V. Khoze, M.P. Mattis and S. Vandoren, Multi-instanton

calculus and the AdS/CFT correspondence in N = 4 superconformal field theory,

Nucl. Phys. B 552 (1999) 88 [hep-th/9901128] [INSPIRE].

[30] M. Bianchi, A. Brandhuber, G. Travaglini and C. Wen, Simplifying instanton corrections to

N = 4 SYM correlators, JHEP 04 (2014) 101 [arXiv:1312.3916] [INSPIRE].

[31] N. Arkani-Hamed, S. Dubovsky, A. Nicolis, E. Trincherini and G. Villadoro, A measure of

de Sitter entropy and eternal inflation, JHEP 05 (2007) 055 [arXiv:0704.1814] [INSPIRE].

[32] S.B. Giddings and R.A. Porto, The gravitational S-matrix, Phys. Rev. D 81 (2010) 025002

[arXiv:0908.0004] [INSPIRE].

[33] J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality,

Phys. Rev. Lett. 88 (2002) 031601 [hep-th/0109174] [INSPIRE].

[34] M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks,

Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].

[35] F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion,

Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

[36] L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin

symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].

[37] B. Eden, C. Schubert and E. Sokatchev, Three loop four point correlator in N = 4 SYM,

Phys. Lett. B 482 (2000) 309 [hep-th/0003096] [INSPIRE].

[38] J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington and V.A. Smirnov, Leading

singularities and off-shell conformal integrals, JHEP 08 (2013) 133 [arXiv:1303.6909]

[INSPIRE].

[39] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE convergence in conformal field

theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].

[40] A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective conformal theory and

the flat-space limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].

– 46 –

http://dx.doi.org/10.1007/JHEP03(2014)096
https://arxiv.org/abs/1311.7461
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.7461
https://arxiv.org/abs/1505.06745
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.06745
http://dx.doi.org/10.1007/JHEP04(2015)042
https://arxiv.org/abs/1501.04533
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.04533
http://dx.doi.org/10.1016/0370-2693(95)00584-8
https://arxiv.org/abs/hep-th/9504108
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B354,271%22
http://dx.doi.org/10.1016/S0550-3213(97)00269-1
https://arxiv.org/abs/hep-th/9701093
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B498,195%22
http://dx.doi.org/10.1016/0550-3213(90)90202-O
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B339,641%22
http://dx.doi.org/10.1088/1126-6708/1998/08/013
https://arxiv.org/abs/hep-th/9807033
http://inspirehep.net/search?p=find+J+%22JHEP,9808,013%22
http://dx.doi.org/10.1016/S0550-3213(99)00193-5
https://arxiv.org/abs/hep-th/9901128
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B552,88%22
http://dx.doi.org/10.1007/JHEP04(2014)101
https://arxiv.org/abs/1312.3916
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3916
http://dx.doi.org/10.1088/1126-6708/2007/05/055
https://arxiv.org/abs/0704.1814
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.1814
http://dx.doi.org/10.1103/PhysRevD.81.025002
https://arxiv.org/abs/0908.0004
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.0004
http://dx.doi.org/10.1103/PhysRevLett.88.031601
https://arxiv.org/abs/hep-th/0109174
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,88,031601%22
http://dx.doi.org/10.1103/PhysRevD.87.106004
https://arxiv.org/abs/1303.1111
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1111
http://dx.doi.org/10.1016/j.nuclphysb.2003.11.016
https://arxiv.org/abs/hep-th/0309180
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B678,491%22
http://dx.doi.org/10.1007/JHEP06(2016)091
https://arxiv.org/abs/1506.04659
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.04659
http://dx.doi.org/10.1016/S0370-2693(00)00515-3
https://arxiv.org/abs/hep-th/0003096
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B482,309%22
http://dx.doi.org/10.1007/JHEP08(2013)133
https://arxiv.org/abs/1303.6909
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6909
http://dx.doi.org/10.1103/PhysRevD.86.105043
https://arxiv.org/abs/1208.6449
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6449
http://dx.doi.org/10.1007/JHEP07(2011)023
https://arxiv.org/abs/1007.2412
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2412


J
H
E
P
0
1
(
2
0
1
7
)
0
1
3

[41] A.L. Fitzpatrick and J. Kaplan, Unitarity and the holographic S-matrix,

JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].

[42] L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in

AdS/CFT: conformal partial waves and finite N four-point functions,

Nucl. Phys. B 767 (2007) 327 [hep-th/0611123] [INSPIRE].

[43] L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: resumming

the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [INSPIRE].

[44] L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange,

arXiv:0710.5480 [INSPIRE].

[45] L. Cornalba, M.S. Costa and J. Penedones, Eikonal methods in AdS/CFT: BFKL pomeron

at weak coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [INSPIRE].

[46] S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132

[arXiv:1412.6087] [INSPIRE].

[47] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106

[arXiv:1503.01409] [INSPIRE].

[48] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091

[arXiv:1209.4355] [INSPIRE].

[49] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity

and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

[50] T. Hartman, S. Jain and S. Kundu, Causality constraints in conformal field theory,

JHEP 05 (2016) 099 [arXiv:1509.00014] [INSPIRE].

[51] X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on

corrections to the graviton three-point coupling, JHEP 02 (2016) 020 [arXiv:1407.5597]

[INSPIRE].

[52] Al.B. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion

representation of conformal block, Theor. Math. Phys. 73 (1987) 1088 [Teor. Math. Fiz. 73

(1987) 103].

[53] Al.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence

formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419

[INSPIRE].

[54] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Little string amplitudes (and the

unreasonable effectiveness of 6D SYM), JHEP 12 (2014) 176 [arXiv:1407.7511] [INSPIRE].

[55] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor.

Fiz. 66 (1974) 23 [INSPIRE].

[56] S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and

conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

[57] G. Mack, Duality in quantum field theory, Nucl. Phys. B 118 (1977) 445 [INSPIRE].

[58] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in

two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

[59] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in

4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

– 47 –

http://dx.doi.org/10.1007/JHEP10(2012)032
https://arxiv.org/abs/1112.4845
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4845
http://dx.doi.org/10.1016/j.nuclphysb.2007.01.007
https://arxiv.org/abs/hep-th/0611123
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B767,327%22
http://dx.doi.org/10.1088/1126-6708/2007/09/037
https://arxiv.org/abs/0707.0120
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0120
https://arxiv.org/abs/0710.5480
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.5480
http://dx.doi.org/10.1088/1126-6708/2008/06/048
https://arxiv.org/abs/0801.3002
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.3002
http://dx.doi.org/10.1007/JHEP05(2015)132
https://arxiv.org/abs/1412.6087
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6087
http://dx.doi.org/10.1007/JHEP08(2016)106
https://arxiv.org/abs/1503.01409
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01409
http://dx.doi.org/10.1007/JHEP12(2012)091
https://arxiv.org/abs/1209.4355
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4355
http://dx.doi.org/10.1088/1126-6708/2006/10/014
https://arxiv.org/abs/hep-th/0602178
http://inspirehep.net/search?p=find+J+%22JHEP,0610,014%22
http://dx.doi.org/10.1007/JHEP05(2016)099
https://arxiv.org/abs/1509.00014
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00014
http://dx.doi.org/10.1007/JHEP02(2016)020
https://arxiv.org/abs/1407.5597
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5597
http://dx.doi.org/10.1007/BF01022967
http://dx.doi.org/10.1007/BF01214585
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,96,419%22
http://dx.doi.org/10.1007/JHEP12(2014)176
https://arxiv.org/abs/1407.7511
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.7511
http://inspirehep.net/search?p=find+J+%22Zh.Eksp.Teor.Fiz.,66,23%22
http://dx.doi.org/10.1016/0003-4916(73)90446-6
http://inspirehep.net/search?p=find+J+%22AnnalsPhys.,76,161%22
http://dx.doi.org/10.1016/0550-3213(77)90238-3
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B118,445%22
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B241,333%22
http://dx.doi.org/10.1088/1126-6708/2008/12/031
https://arxiv.org/abs/0807.0004
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0004


J
H
E
P
0
1
(
2
0
1
7
)
0
1
3

[60] G.W. Moore and N. Seiberg, Polynomial equations for rational conformal field theories,

Phys. Lett. B 212 (1988) 451 [INSPIRE].

[61] S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP 08 (2011) 130

[arXiv:0902.2790] [INSPIRE].
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