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ABSTRACT. - We prove a result on the topological entropy of a large
class of Hamiltonian systems. This result is obtained variationally by
constructing "multibump" homoclinic solutions.
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562 E. SERE

I. INTRODUCTION

1. Some history

Homoclinic orbits were first introduced by H. Poincare (see [M] for a
modern exposition). Considering a hyperbolic fixed point p of a diffeo-
morphism cp in [R2N, we say that a point is homoclinic if it belongs
to the intersection of the unstable and stable manifolds Wu, W associated
to (p, the orbit of r is called a homoclinic orbit. Assuming that Wu,
WS intersect transversally at r, and that cp is symplectic, Poincare proved
that there are infinitely many homoclinic orbits, geometrically distinct in
the following sense:

(the orbits of r, r’ are geometrically distinct) ~> (V n E 7L : cp" (r) 7~ r’).

Birkhoff, Smale and other authors also studied homoclinic orbits, and
their relation with Bernoulli shifts. We state here a result of Smale on
homoclinics (see [M]): if r i= p is a point of transverse intersection of Wu,
WS, then there are and a homeomorphism i : ~ 0, 1 } ~ -~ I, where I
is an invariant set for such that Here, a ((a")) _ with

bn = an+ 1 and {0, 1 ~~ is endowed with the standard metric

This structure is called a Bernoulli shift.

Bernoulli shifts are an important tool in the study of chaotic behavior.
For instance, Smale’s result given above implies that the topological

entropy of (p, h top (~P)~ is greater than This is a direct consequence

of the following definition (see [O], p. 182-183):

where

s (n, e, R) = max ~ Card (E) : E c B (0, R),

2. Variational approach

The results described in the preceding section were proved by dynamical
systems methods, with a transversality assumption on W", Ws. The ques-
tion examined in this paper is the following one:
We assume that (p is the time-one map of a Hamiltonian system

x’ = J V x H (t, x), H being one-periodic in time. Is it possible to say some-

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



563LOOKING FOR THE BERNOULLI SHIFT

thing about Bernoulli shifts and topological entropy, using a variational
method? We will see that this approach has several advantages:
. The existence of a homoclinic point r is not an assumption any more,

but follows from global hypotheses on H that we call (hA), (hR).
. The classical transversality hypothesis can be replaced by a weaker

condition, denoted 

3. Main results

We work with the same Hamiltonian system as in the paper [CZ-E-S]:

We are looking for non-zero solutions satisfying x ( ~ oo ) = o, i. e. solutions
homoclinic to 0.

We make the following assumptions on A, R:

A* = A, and JA = E is a constant matrix, ~ (hA)
all eigenvalues of which have a non-zero real part. 

~ (hA)

. R (. + l, .)=R (., .), and R is C2.

. (V t E !R), R (t, . ) is strictly convex.

. for some a > 2, 0  kl  k2  + oo, we have

In [CZ-E-S], it was proved under these assuptions that there are at
least two homoclinic orbits x, y, geometrically distinct, i. e. such that

d n E 7~ : n * x ~ y, where n * x (t) = x (t - n). One of them was obtained by
a mountain-pass argument on a dual action functional. This paper has
motivated some related work.

Concerning the existence of at least one homoclinic solution, the convex-
ity assumption was relaxed in [H-W] and [T], by two different methods.

Concerning multiplicity, a novel variational argument was introduced
in [S], and the following result was proved:

THEOREM I. - Assume (hA), (hR) are true. Then there are infinitely
many orbits homoclinic to 0, geometrically distinct in the sense

The idea in [S] was to look for solutions near ( - n) * x + n * x, where x
is the homoclinic orbit found in [CZ-E-S] by mountain-pass, and n is large
enough. We call them "solutions with two bumps distant of 2 n".

Vol. 10, n° 5-1993.



564 E. SERE

The existence of such solutions is a well-known fact of classical dynami-
cal systems theory, in many particular situations. Let describe briefly one
of them (see [W]):

Consider the autonomous system associated to the Hamiltonian

It is integrable, and does not have any solution with two (or more) bumps.
But in the autonomous case, we have a continuum of solutions which are
the translates of one of them in time, and Theorem I is not contradicted.
By Melnikov’s theory, it is possible to find small non-autonomous

perturbations H (p, q)+EK(t, p, q) of the Hamiltonian such that Wu, WS
intersect transversally. Then, using the implicit function theorem, multi-
bump homoclinic solutions can be constructed.
To give more detailed comments on Theorem I, we need some notations:
f is the dual action functional introduced in [CZ-E-S]. It is defined on

the space L~ with 1 + 1 =1 (the exact form of will be given in
section is the set of non-zero critical points, and
Z acts by integer translations in time.

L: La --~ W 1 ~ ~ is an isomorphism such that, if u E, then L u is a

homoclinic orbit (see §II).
c is the mountain-pass level, let us define it precisely:
0 is a strict local minimum for f, and f(0) = o. Moreover, f is not

bounded from below (see [CZ-E-S]. So we consider

r is non-empty, and we choose as mountain-pass
y e r

level.

In [S], the variational gluing of two bumps was possible under the
following assumption:

(*): There is some c’ > c such that (~ is finite.

The following result, which is a more precise version of Theorem I, is

an immediate consequence of the arguments given in [S]:

THEOREM I’. - Assume that (hA), (hR) and (*) are true. Then there are
two critical points u, v such that for any r, h > 0 and n >__ N (r, h), exists a
critical point un, with

u, v, possibly equal, satisfy f (u) = f (v) = c. The homoclinic orbit yn = L un
is called a solution with two bumps distant of 2 n. It satisfies

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



565LOOKING FOR THE BERNOULLI SHIFT

Theorem I is trivial when (*) is not satisfied ("degenerate" situation),
and Theorem I’ implies Theorem I when (*) is satisfied ("non-degenerate"
situation).

In the later work Coti Zelati and Rabinowitz apply the ideas
of [S] to the case of second order systems, and construct, under assumption
(*), solutions with m bumps, i. e. located in a ball of center

pl * xl + ... + pm * xm and radius E, for the norm of the functional space
E=W1, 2(R, RN) The xi are in a fixed finite set of critical points of

the action functional x - V defined on E. They are found thanks to a

mountain-pass. Moreover, for any i, (pi + 1 _ pi) > K (E, m). In the construc-
tion of [CZ-R]~, the minimal distance K between bumps goes to infinity
as m goes to infinity, for E fixed.

Other applications, in the domain of partial differential equations, are
given in [CZ-R]~, [LI] 1, [LI] 2 .

In the paper [C-L] of Chang and Liu, the assumption (*) is replaced by
(**) : ~ nfc’ contains only isolated points.
In the present work, (**) is replaced by the weaker assumption
(~) : ~ is at most countable.

Moreover, multibump solutions are constructed for a minimal distance
K between bumps independent of m. This last point, whose proof requires
many modifications in the arguments of [S], [CZ-R] 1, allows to study the
topological entropy of the Hamiltonian system. The main theorem that
we will prove can be stated as follows:

THEOREM II. - Assume (hA), (hR) and (~) are true. Then there exists
a homoclinic orbit x such that, for any E > o, and any finite sequence of
integers p = (pl, ..., pm), satisfying

there is a homoclinic orbit yp, with

Here, K is a constant independent of m.

Remark 1. - The assumption (~) cannot be satisfied in the autonomous
situation, where the translates of x in time form a continuum. Now, if
Wu, WS intersect transversally, then their intersection is at most countable,
and so is the set of homoclinic solutions; but the converse is false.

Remark 2. - The estimate on is given in L°° norm. In
i= 1

[S] and [CZ-R] 1, it was given in global (R) norm. Without this change,

Vol. 10, n° 5-1993.
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it seems impossible, or at least very difficult, to choose K independently of
m.

Since K does not depend on m, we can study the limit m - ~, and get
solutions with infinitely many bumps (those are not homoclinic orbits any
more). We have

COROLLARY II.I. - With the hypotheses and notations of Theorem II,
for any interval finite or infinite, and any sequence of integers
p - 1 such that (d i ) : + 1 _ p‘) > K (E), there is a solution yp of ( 1 )
satisfying

If I is infinite, we say that y has infinitely many bumps.
As a consequence, we have an "approximate" Bernoulli shift structure:

COROLLARY II.2. - Under the hypotheses of Theorem II, there is
such that, for any E > o, exist K=K(E»O and

with:
2022  is injective, and i -1 is uniformly continuous.

Here, cp is the time-one flow of ( 1 ), and 03C3 (s)n = sn+ 1. Note that we cannot
say that i is continuous. We call (i ( ~ 0, 1 ~~), cpK) an approximate Bernoulli
shift structure.

Corollary II.2 will be proved in section VI.
Now, we are in a position to state the result on topological entropy.

Choose ~~|x0| 3. . If two sequences s, s’ are such that for some k,

then

So, for and we get and

htop(03C6)~Ln2 K(~). So Corollary II.2 implies
COROLLARY 11.3. - hypotheses of Theorem /, the flow of (1)

Independently of the present paper, Bessi in [B] constructs varia-
tionally an approximate Bernoulli shift for the one-dimensional pendulum,

Henri Poincaré - Analyse non linéaire



567LOOKING FOR THE BERNOULLI SHIFT

by a method inspired of [S]. He replaces assumption (*) by a weakening
of the classical Melnikov condition, and his result is given for small

perturbations of an autonomous system.

II. VARIATIONAL FRAMEWORK
AND SKETCH OF PROOF OF THEOREM n

We use a variational formulation based on Clarke’s dual action principle
(see [CZ-E-S], [E]). Define G (t, y)=max {(z.y)-R(t, z)/z E R2N}. G is I -

p eriodic in time, strictly convex in y, and satisfies, for - + - = 1:

We define

We call ~ the set of non-zero critical points of the following functional /:

We have (see [CZ-E-S])

LEMMA 1. - IfuE, then x = L u is a non-zero solution of ( 1 ) such that
x ( ± ~) = 0, i. e. an orbit homoclinic to 0.
Our task will be to find a large class of elements of.
For this purpose, we need some compactness properties of f. Unfortu-

nately, f does not satisfy the Palais-Smale (PS) condition, because it is
invariant for the action of the non-compact group - n). To
deal with this problem, we use the concentration-compactness theory of
P. L. Lions (see [LS].
We have (see [CZ-E-S])

LEMMA 2. - Suppose (hA), (hR) are true. Then f satisfies the following
compactness property:

Let be a sequence such that

Vol. 10, n° 5-1993.
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Then there exist m > 0, a subsequence and ul, ..., um in ~, not
necessarily distinct, such that

where l~p E ~, (I~p - -~ + oo as p -~ + oo if i  j.
To simplify notations, we will write

will be summarized by

Now, what is special here is that the splittings k * u do not vary continu-
ously when f varies. This leads to introduce a new compactness condition
(see [CZ-E-S], [S]).

CONDITION PS (a). - Let (un) be a sequence such that l~,
f (un) -~ 0, (un + i - un) -~ 0. Then (un) is convergent.
We have:

LEMMA 3. - Assume (hA), (hR) and are true. Then PS (c’) holds.
Lemma 3 will be proved in section III, and will be used in the proof of

Lemma 7, section IV.
The interest of PS is that, if f is bounded on a pseudo-gradient line,

then one can find a PS sequence on this line. So PS can give the same
kind of deformation lemmas as the Palais-Smale condition. If PS is
satisfied under level c’, by deforming a particular curve in r, one finds at
least one critical point u between levels c and c’. When (*) holds, one can
impose f (u) = c. When only (Yr) holds, the best that can be done is to
take u with ( f (u) - c) arbitrarily small.

In [S], under assumption (*), a "product min-max" is constructed at
level 2 c, for the "split" functional] (x) = I(x + f (x where ~I is
the caracteristic function of I. Theorems I and I’ are then proved by
contradiction, thanks to a deformation argument. This argument works
because the differentials f’ and ’ "look the same" near ( - n) * u + n * v,
where u, v are critical points associated to the mountain-pass, possibly
equal.
The proof of Theorem II is based on the same ideas, but contains

several technical improvements.
We first construct, for any r, h > o, a non-trivial homology class in

Hi containing a chain included in B (u, r), thanks to assumption

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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(Jf). Here, c = f (u) E [c, c’), and found thanks to the mountain-pass,
is independent of r, h (see § IV).

Then, roughly speaking, we consider a product of m "copies" of

this homology class, and find a "product min-max" in a neighborhood
m

of L u. This is done in section IV thanks to Kunneth’s formula,
i= 1

Note that in [S], [CZ-R]1 , a more elementary procedure (without homol-
ogy) is used to construct the product min-max. It would be possible to
use this procedure in the proof of Theorem II. But the method involving
homology seems easier to generalize to situations where the min-max is
not of mountain-pass type.

m

Finally, we find a critical point up in a neighborhood of £ pi * u,
i= 1

provided ( pi + 1 _ pi) > K, K depending only on r, not on m. To do this,
we assume that up does not exist, construct a more precise version of the
deformation used in [S], and apply it to the "product min-max" to obtain
a contradiction (see § V).

In the proof of Theorem II, a crucial point is to make a suitable choice
m

of the neighborhood of £ pi * u in which we want to find up: this choice
i= 1

allows to control K as m increases. The correct neighborhood will be
defined in the statement of Theorem III (see the end of section V), after
the introduction of some technical notations. Theorem II will be a direct

consequence of Theorem III.

III. COMPACTNESS PROPERTIES OF f

We first prove the following result:

LEMMA 4. - Suppose (hA), (hR) and are true. Then there is an at
most countable compact set D such that:

If satisfies f (un)  c’, f (un) -~ 0, then

Here, B (D, +oo)ld(x, D)r}.

Vol. 10, n° 5-1993.
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Proof. - Consider the set

From (Jf), D is at most countable.
Let us prove that D is compact. We know (see [CZ-E-S]) that there is

A > 0 such that

f (u) ~ A.
Consider a sequence in D, with

We have 

So, after extraction, we may assume that Mn = M is constant and, by
Lemma 2, that, M]:

One easily sees that

where resp. 1/ k, if non-zero, are of the form n * resp. n * V~, and

We have thus proved that D is compact. The last step is to study (un)
such that

Assume there are two subsequences satisfying
~upm- uqm~ ( ~ B (D, p) for some p > o. After extraction, we may impose

" - -" _ _ _ .

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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After a new extraction, each sequence (xm - ~,m) has a limit in

+ oo ~ . Moreover, for each i, 
Hence

t

where is a reindexing of

(~)i~~~f t is a reindexing of

,. ..w....,

and 
t

Clearly, So £ 
k=1

which contradicts the assumption B (D, p). The last assertion
of Lemma 4 is thus proved by contradiction. D

We now give another lemma, that will be used in section V.

LEMMA 5. - Suppose that f satisfies (hA), (hR) and (~). Then the set

is closed and a most countable.
The proof of Lemma 5 is analogous to that of Lemma 4, so we won’t

give it. Now, we prove Lemma 3 as a consequence of Lemma 4.

Proof. - Consider a sequence (un) such that

we want to prove by contradiction that (un) is a Cauchy sequence.
Assume the contrary, i. e. (~ upn ( ~ ~ ~ > 0, /?~ + 1.

The open set ]0, contains an interval [dl - d2, dl + d2]. And there
is P such that

But this implies II urn - B (D, d2/2), which is impossible by Lemma 4.
So (un) is Cauchy, hence convergent. Lemma 3 is thus proved. D

Vol. 10, n° 5-1993.
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We now study the local compactness of. We prove

LEMMA 6. - Assume (hA) and (hR) are true. There is r0 > 0 such that,
if a sequence satisfies

then is precompact.

Proof. - We remark (see [CZ-E-S]) that there is r 0> 0 such that

We now apply Lemma 2 to the sequence (un). If m >__ 2 or if (m =1) and
lim ( ~ kP ~ _ + oo ), then for any P > 0, there are p > q > P such that
p - o0

This contradicts for P large enough.
So m = 1, and we may extract a subsequence un03C6(p) such that k;(p)=k is

constant, and -~ k * u ~ E. Lemma 6 is thus proved. D
p-+oo

Lemma 6 will be used in the proof of Lemma 12, section V.

IV. THE PRODUCT MIN-MAX

We want to find a min-max at each level kc, k >_ ~. This will be done
thanks to singular homology over Z. We first need to "localize" the min-
max

This will be done thanks to (~).
We recall some notations:

We have

LEMMA 7. - Assume (hA), (hR) and (~) are true. Choose r E 
with the notation of Lemma 4.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Then for any h > 0, exist p = p (h, r) E ~l *, (u ~, ... , up) E f ~ 
+ and

~y E r, with :
n

Proof. - Given r > o, we just have to prove the result for h small
enough. We take yhEr such 
We are going to take y as a deformation of yh. We choose e>O such

that [r - 2 e, r + 2 e] n D = QS. For we define

We assume c + h  c’. From Lemma 4, there independent of h,
and such that We assume, moreover, that

We build a locally Lipschitz vector field V such that:

Consider the flow cpt defined by

Assume that for some the maximal interval of definition of
L

t H cpr (x) is [o, L[, L  -f- oo . Then L0 ~ V o cpt (x)~dt = + ~. So we can

define a sequence by

Vol. 10, n° 5-1993.
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So we get

If 1  L, the left term of (y) is finite, and the right one infinite. So we have
1= L4 and

Since f satisfies property PS (c’), we get

But this intersection is empty. So we have proved that is defined on

Now, suppose that f(x)c+h, and that Then three

situations may occur:

apply (jjj), and conclude f ° cph (x)  c : contradiction.

In the second and third situations, we have and

from (JJJ),/;.V~-~!/;!!.!!VJ~-~!V~! 
Since /x~/2, we also contradiction.

So we have proved that if f(x)c+h, then or

Finally, y = (p~ y~* is such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Since Imy nfc is compact, we can extract a finite subcovering:

Lemma 7 is thus proved. D

Lemma 7 has a direct consequence:

COROLLARY 7.1. - Assume is true. Choose r > o, h > o. Then there
is u = u (r, h) E ~ such that i* ~ 0, where

i* : H1 n B (u~ n B (u~ r)) ~ H1 (.f ‘~~+n~~ . 
is the morphism induced by the canonical injection

Proof. - We juste have to prove the result when r E it will
then be true for any r’ ~ r.

Let p° be the minimal value of p such that there are

..., (f+h)p and yer satisfying the conclusion of Lemma 7.
Im y n B r) is the image of a I-dimensional complex ~ E C 1 ( f ‘ c~ + ~‘~),
with ~ E ~, for some c~ E H 1 (’~ B r), (~ B r)).

If i* ~ = o, then there is a singular 2-dimensional complex
such that with a E C 1 (, f ’ ‘~) . So, replacing the

curves of o by curves of a in y, we get y satisfying the conclusion of
Lemma 7 with ul, ... , up~ ‘ 1. This contradicts the minimality of po. So

Corollary 7.1 is thus proved, with D

Corollary 7.1 gives the existence of at least one critical point The

hypothesis seems too weak to get u independent of r, h, and we
cannot say that f (u) = c. The fundamental reason for this is that the
Palais-Smale condition is not satisfied. To overcome this difficulty, we
shall make use of Lemma 6 which gives a local Palais-Smale condition.
We first choose p° E ]o, d° > o, such that [pO - dO, 

ro being defined in Lemma 6.
We define

We take c’-c). By Corollary 7.1, there are

such that i* ~ ~ 0, where

is the morphism induced by the canonical injection

Vol. 10, n° 5-1993.
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We define

We call

the morphism induced by the canonical injections

Clearly, we have j*03C9~ 0.
We define c= inf (max f (z)) E [c, c + h[.

By arguments similar to those proving Lemma 7 and Corollary 7.1, we
find, for a critical point U B(uO, p° - d°), such
that i ~ ~ 0, where

is the morphism induced by the canonical injection

By Lemma 6, the sequence is precompact (recall that p°  ro). Con-
sidering one of its limit points, and taking r 1= d °/2, we get
LEMMA 8. - Assume that (hA), (hR) and are true.
Then there are u E ~ with f (u) = c E [c, c’) and rl > 0, such that, for any

r E ]o, r, ] and h > 0, we have ~ 0 where

is the morphism induced by the canonical injection

The great difference with Corollary 7.1 is that u does not depend on r,
h any more.
Lemma 8 gives a min-max localized around u. To get our multiplicity

result, we are going to make products of several "copies" of this min-
max. At each product will be associated a new critical point. We first

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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enounce:

COROLLARY 8.1. - Assume that (hA), (hR) and are true. Choose

Then there is N = N (r, h) such that

where

is the morphism induced by

and

Proof. - We choose 03C9~H1(f(c+h) H B (u, r)) such that

~(D~O,
with the notations of Lemma 8.

r

The class co has an element of the form £ X~ satisfying
t=i

(P) [~ e ~, and S~ -~ L~ continuous or [0, 1] -~ L~ continuous, with
a,(0), and n B (u, r) in both cases].
For ti, we define

We note that U Im 6i is compact, so that

Moreover, f ’ ‘~~ + h~ (~ B (u, r) and f ‘~ n B (u, r) are open.
So there is N = N (r, e, h) E I01 such that, if (a, b) E [N, + then

r

As a consequence, there is

such and i* (~) ~ 0 implies I* (~) ~ 0. So I* cannot
be zero. 

Vol. 10, n° 5-1993.
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Corollary 8.1 is thus proved. D

We now have to introduce some notations.

with xi the characteristic function of I, p° _ - oo, pm+ = + oo .
m m

t=l 1 f=l

Consider the sets

and the "product" ball

for p>O, 
From Künneth’s formula,

immediately follows

LEMMA 9. - Assume that (hA), (hR) and (~) are true. u, rl are the

same as in Lemma 8. Choose r E ]o, rl], h > o.
Then there is N = N (r, h) such that, if m >_ 1 and p = (pl ... pm) satisfy

for 1 _i_m- l, then

where

is the morphism associated to the canonical injection

Lemma 9 gives the desired product min-max.

V. A DEFORMATION ARGUMENT

In what follows, we assume once again that (hA), (hR) and (Jf) are
true. D, F are the same as in Lemmas 4, 5, ro is the same as in Lemma 6,
u, c, r are the same as in Lemmas 8, 9.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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5.1. Construction of a vector field

From (hA) (hR), we know that (3 9, C1 > 0) (V(X, Y) E (L~)2) :

for 8 (X, Y) = dist (supp X, supp Y).
From (hR), we know that

We choose such that

We are going to use these technical conditions in the proof of the following
Lemma:

LEMMA 10. - Assume that (hA), (hR) and (~f) are true, and to

0  r  r2 , associate e = e (r) such that
2

There are Jl _ ~ (r) > 0, A = A (r) > 0 such that: > A, ~~/If m >__ 2, and if p E 7~m satisfies (b’ i ) : pi + 1 - A, then:

with the notation yi = (x - pi * D

Proof. - Define

~ depends only on r, and ~, > 0 by Lemma 4. Let 

i E ~ 1, m], and Impose A > 64.
We always have + r2. So there is T’ E [2 A/2 - 2 such

that

Here, C2 is a constant, but T’ depends on x, i, A, p.
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Now, impose and 2014~2014~-, which is possible for

Then, three possibilities may occur:

First case:

We take

with

We have
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Finally,

So there is Wx, e L~ such that ]] 1, and

Now,

But ~xb~~C2 1/203B2, and max xa ~, ~xc~, ~xj~(j~i)}~~u~+r2.
We choose Clearly, ~Vi~~1. Moreover, we

have: 
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Identically,

Conclusion. - We now take Vx= Vx,i. By construction, 
Denote by I1, I2, 13 the sets of indices i corresponding to Cases 1, 2, 3
respectively. We write

N ow, there is a tamily J 1 c [0, m] such that

where

t T :

with ~ + E { 0, 1 ~, and

So there are three possible situations

First situation: 03BEJ-=03BEj+ = 1.
)enote

We have

Annales de l’Institut Henri Poincaré - Analyse non linéaire



583LOOKING FOR THE BERNOULLI SHIFT

Second situation: ~’ = o, ~ + =1.
We now take

We have ~Yj ~~e 3 + e 3 = 2e 3, dist (supp Zj, Supp Xj)~A. As in the first
situation, we get

The third situation is identical to the second one. Since I1 U I3 is non-

empty, we take
, n v

and Lemma 10 is proved. D

LEMMA 11. - Suppose f satisfies (hA), (hR) and (~). To l  c’, associate
r~ _ ~ (l) > 0 such that l + 2 ~ _- c’, and [l - 2 r~, l + 2 ~ ] n F = QS .

Then there are (I) and v = v (I) such that for any m >_ 2, Je 7~m,
with we have:
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Proof. - We know that f is uniformly continuous on any bounded
part of L~. So there is ~ (~) > 0 such that, ifX, YeB(0, then

Now, consider From Lemma 5, v>0. The

proof of Lemma 11 is similar to that of Lemma 10, replacing V by Y, Q
by v, A by ~ ~ by S. So we just sketch it. The three possibilities arc:

The final study off’ {x) . ~x is the same as in Lemma 10, and 11 is proved

with A = max (A0, ..., A4), v = min (03BD 2, c
LEMMA 12. - Suppose f satisfies (hA), {hR) and 
r, e {r), A (r), (r) are the same as in Lemma 10. We impose, moreover,

with the notation of Lemma 6.
Choose ~, > 0 such that c + ?~  c’,

Suppose m >_ 2, p E ~m,

(~ has been defined in Lemma 11).
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If G ~ Nup,r ~G + (03BB)/G_ (03BB) = ~, then there are 03BE=03BE (p, r, 03BB) > 0 and
a locally Lipschitz vector field V (x) such that:

Proof. - In Lemma 6, take Consider a sequence

(un) satisfies

So, if ~ ~ ~ + (~,)B~ _ (~) = Q~, we cannot have f -~ 0, and
there is a (p, u, r, ~,) > 0 such that

Now, if x E [Bp, (r - e)~~ we find Vx satisfying the conclusion of
Lemma 10, and we choose otherwise.

For s~{-, +}. ° if x Bu n U 
(fi)c+s03BB+~(c+s03BB)c+s03BB+~(c+s03BB), we find Ysx satisfying

the conclusion of Lemma 11 with l = c + s ~,, and we choose ~’x = 0 other-
wise.

If x E Bp, r (~ ~ + (~,)B~ - (~,) and if we find

such and we choose 

otherwise.

V~ satisfies:
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But Vx is not continuous. A classical pseudo-gradient construction ends
the proof. 0

5.2. The contradiction

We suppose (hA), (hR) and are true. r, e (r), p (r), ~, are the same
as in Lemma 12. we impose one more condition:

As in Lemma 12, we suppose that

and we take m >_ 2, p E 7Lm with

We define cp (t, x) for (t, x) x L~ by

where V (x) is the vector field of Lemma 12.
We have

LEMMA 13. - With the notations and hypotheses above, there is
~% _ ~ (r, ~,, ~) such that

Proof. - Take n 2 + (~) . Then

by (i) and (iv) of Lemma 12. Moreover, if x) E ~ _ (~,), then for any
t’ >_ t, cp (t’, x) E ~ _ (X), by (iv). Now, define

Define
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By (iii) of Lemma 12, there is ~% ] such that

By (i ), (ii ) of Lemma 12, this implies cp (I, x) E ~ _ (~,) (we recall that

2~,_~,(r)e(r)/3).
Lemma 13 is thus proved. D

Now, we impose

with the notations of Lemma 9.
The conclusion of Lemma 13 clearly implies J* = 0, which contradicts

the conclusion of Lemma 9.

Now, for any h > o, we may choose ~,  h satisfying all the conditions
above.

So, by contradiction, we have proved the following result:

THEOREM III. - Assume that (hA), (hR) and are true.

Then there is withf(u)=cE[c, c’), and such that for any r, h > o,
... , pm) E 7~m:

M (r, h) is a constant independent of m, and Up, r, h is a neighborhood of
m 

’

L pi * u defined as follows:
i= 1

= Bp, r n (~ + (h)~~ - (h)), with the notations of Lemma 9.

We now prove Theorem II:
We take a fixed value of h, and we write M (r) instead of M (r, h). We

may choose K > M (r) large enough to get II M _ r, which implies
m 

-

for any m >_ 2, and p~Zm such that So,
i= 1 

’

from Theorem III, there is such that

So, defining 

for K (E) large enough. So Theorem II is a direct consequence of Theo-

rem III. D

We are now going to study the limit (m - + oo).
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VI. THE APPROXIMATE BERNOULLI SHIFT

Our first taks here is to prove Corollary 11.1 of Theorem II. We consider
a sequence p = of integers with I~Z a finite or infinite interval, and
pi + 1 - pi  K (E). °

The case 0  Card (I)  oo is clear. So we just consider the case of an
infinite I. We may write I = U Ik, each Ik being finite. From Theorem II,

we get an orbit yk such that

The yk’s being ~d dtyk~ 1100 is a bounded sequence. So, after

extraction, by Ascoli’s theorem. yk converges to some orbit yp in the C0loc
topology, and Corollary 11.1 is proved.
Now, we take arbitrary (i. e. with possibly infinitely many

1’s). There are an interval I of integers and a sequence (qi)i with
°

We denote pi = K (E) q‘, and we define J (s) = yp, using Corollary II.1.
We recall that {0, 1}Z may be given the topology associated to the

metric d (s, s’) = 1 3 |sn-s’n| 2|n|. ,

We define

Since

m ~ - ‘r .. ~ ~ I 1 w .-

n

we have lim sup 
d (s, s’) -~ 0

Now, we take b > o. There is I (b) > 0 such that if d (s, s’) > ~, then
SI ~ 

So, taking K (E) large enough in Corollary II.1, there is p > 0 independent
of s, s’, E, with

So

for E  p .
2
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Now, define

where

By the classical continuity results on the Cauchy problem, (!J is uniformly
continuous on any bounded part of !R2N. So there is p’ (b) > 0, independent
of s, s’, r, such that

~(s~ s~)~S ~ ~~i(s)-z(s’),~~P’. °
So  is injective, is uniformly continuous. The other assertions of
Corollary 11.2 are easy to check, if we choose xo = x (0). Corollary 11.2 is
thus proved. One would like ~ to give a Bernoulli shift structure, i. e. i
homeomorphism, (see [M], [W]). Unfortunately, this is

not the case. We only have the estimate The
n

points s such that sn = 0 except for a finite number of n’s correspond to
homoclinic orbits passing through ~ (s) at time 0: there are infinitely many
of them.
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