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1 Introduction

Recently, a rich class of four-dimensional (4d) N = 2 superconformal gauge theories was

identified as the infrared fixed point of the 4d theory obtained by compactifying the six-

dimensional (2,0) superconformal theory of AN−1 type on a general Riemann surface C

with punctures [1, 2]. In the IR limit, the 4d gauge theory data do not depend on the

scale factor of the 2d metric on C. The space of coupling constants of this class of 4d

superconformal gauge theories can be identified with Teichmüller space Tg,n, the universal

covering space of the moduli space Mg,n of complex structures of punctured Riemann

surfaces. Moreover, via the six-dimensional perspective, S-duality naturally arises as the

geometric invariance under the action of the mapping class group Γg,n, the group of large

diffeomorphisms acting on C that leave its complex structure fixed. The space of physically

inequivalent superconformal gauge theories thus takes the form of the quotient

Mg,n = Tg,n
/

Γg,n . (1.1)

A practical subset among this class of N = 2 gauge theories, that is most accessible to

quantitative computations, is obtained by compactifying the six-dimensional (2,0) theory of

type A1. In this case, the superconformal gauge theory admits a weakly coupled Lagrangian

description, whenever the compactification surface C degenerates into a set of three-

punctured spheres (also known as ‘trinions’ or ‘pairs of pants’) glued together via thin tubes.

The weakly coupled theory takes the form of a generalized quiver gauge theory, where each

tube corresponds to an SU(2) gauge group factor, and each trinion represents a matter mul-

tiplet, transforming as a trifundamental under the three adjacent SU(2) factors, and each

puncture to an ungauged SU(2) flavor group. The simplest examples are N = 4 and N = 2∗

super Yang-Mills (SYM) theory with gauge group SU(2), corresponding to the torus with

zero and one puncture, and the N = 2 SU(2) gauge theory with Nf = 4 flavors, correspond-

ing to the four-punctured sphere. The geometric operations that connect different ways

of assembling the same Riemann surface become identified with S-duality transformations,

which relate different Lagrangian descriptions of the same theory. The dictionary between

the dual descriptions involves a generalization of electric-magnetic duality, that exchanges

the role of electric and magnetic observables such as the Wilson and ’t Hooft loop operators.

The generalized quiver diagrams, which specify the perturbative limits of the N = 2

gauge theory associated with a Riemann surface C, look identical to the trivalent graphs

that are used to label the conformal blocks of a two-dimensional (2d) CFT on C. It is

then natural to suspect that there may exist a direct correspondence between S-duality op-

erations of the 4d superconformal gauge theory and modular transformations of conformal

blocks in some suitable 2d CFT.

This intuition was recently made precise in [3], where it was shown that the Nekrasov

instanton partition function of the generalized quiver gauge theory on R
4 is identical to

the conformal block (specified by the corresponding trivalent graph) in Liouville conformal

field theory. In this correspondence, the Liouville momenta at the marked points specify

the masses of the flavor multiplets, while the momenta in the intermediate channels are

identified as the Coulomb branch parameters. The central charge of the Liouville CFT is
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determined by the value of two deformation parameters ǫ1 and ǫ2, which can be identified

with the coordinates on the Lie algebra of the rotation group SO(2)1 × SO(2)2 ⊂ SO(4)

acting on the R
4. Furthermore, it was found that the full Liouville correlation function,

which takes the form of the integral of the absolute value squared of conformal blocks,

naturally arises as the partition function of the 4d N = 2 gauge theory defined on S4 [4].

These remarkable relations allow for a multi-pronged analysis of the properties of this

class of theories. A useful general strategy is as follows.

• Pick a class of observables {O}6d in the six-dimensional A1 theory on C.

• On the Coulomb branch, the A1 theory reduces to the free abelian theory for a single

M5-brane wrapped on the Seiberg-Witten curve Σ, a double cover of C. The flow

of {O}6d towards the IR can be easily followed, giving rise to a class of observables

{O}u(1) of the 4d abelian Seiberg-Witten gauge theory.

• The result becomes more useful if one can identify the meaning of the observables

directly in the 4d generalized quiver gauge theories. A natural way to accomplish

that is to employ the perspective of brane constructions in type IIA string theory.

This defines a new incarnation of the observables, {O}4d.

• The relation to the 6d observables {O}6d provides {O}4d with a manifest behavior

under S-duality, and a map from {O}4d to the IR observables {O}u(1).

• Finally, one can seek a Liouville theory manifestation of these observables, {O}2d.

The powerful methods developed in the context of 2d conformal field theory can be

applied to the computation of expectation values of {O}4d on the four sphere, or in

the ǫ-deformed background on R
4.

In this paper we will employ this general strategy to study three natural classes of

observables in the 4d gauge theory

(i) general Wilson-’t Hooft line operators,

(ii) surface operators and

(iii) line operators bound to surface operators.

In particular we will illustrate how to compute the expectation value of these operators by

using Liouville CFT technology.

1.1 Surface, line and point operators

The six-dimensional perspective gives useful guidance in identifying and relating the various

gauge theory observables. The (2,0) theory of type A1 arises as the infrared limit of the

world-volume theory of a stack of two coincident M-theory five-branes (together with a

free 6d theory describing the center-of-mass motion). Each M5-brane contains a two-form

potential B with self-dual three-form field strength. An M2-brane can attach to an M5-

brane via an open boundary, that sweeps out a 2d surface S. It is a source for B. The
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Figure 1. Surface operators are supported on a surface S in R
4 (shown on the left part of the

figure) and are localized at a point z in C (on the right). Similarly, line operators extend along an

(open or closed) curve C in R4 and wrap a 1-cycle γ in C.

different ways of embedding S inside the 6d space-time C × R
4 give rise to three different

classes of gauge theory observables:

(1) surface operators,

(2) line or loop operators, and

(3) point or ‘vertex’ operators:

1. The surface operators are defined by considering an M2 boundary surface S to be

embedded1 in the 4d space-time R
4 and localized as a point z on C. In N = 4 SYM

theory, the surface operators are identified [7] as operators that create a singular vor-

tex by allowing for a suitable singular boundary condition on the gauge and scalar

fields along S. For the most elementary class of surface operators, the vortex singu-

larity is parametrized by two real parameters α and η; here α is the magnetic flux

through the singular vortex and η is a suitable 2d theta-angle. Both are naturally

defined as periodic variables; from the M-theory point of view, they parametrize the

location z of the surface operator on C = T 2.

As we explain below, a similar class of half-BPS surface operators can be defined in

N = 2 quiver gauge theories of interest. Moreover, for the most elementary class of

such operators, the parameters (α, η) associated to the different SU(2) gauge group

factors can be glued together to specify a single location z on the punctured Rie-

mann surface C.

2. The line or loop operators are represented by M2-brane boundaries that wrap a

one-cycle γ on C, and extend along an infinite line or closed loop C in R
4. In the

perturbative regime, where the surface C decomposes into thin tubes sewed together

via trinions, the loops labeled by the one-cycles around the thin tubes represent fun-

damental Wilson lines of the corresponding SU(2) gauge groups. General Wilson-’t

Hooft line operators can be thought of as the coupling of the gauge theory to the

1Although in this paper we mainly take S = R
2, in the topological version of the theory one might

consider more general space-time 4-manifolds M and embedded surfaces S ⊂ M , cf. [5–9].
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Figure 2. A point or ‘vertex’ operator may form a junction between several line operators. On

C, it spans an open region bounded by the (non-intersecting) one cycles associated with the line

operators that meet at the junction.

worldline of a dyonic point charge. The spectrum of possible Wilson-’t Hooft loops in

the generalized quiver gauge theory is labeled by the set of closed non-selfintersecting

paths on C, up to homotopy [10]. As explained in [10], in a given weakly coupled

description in terms of gauge theory with gauge group G = SU(2)3g−3+n, this set has

the physically expected form.

Line operators can act on surface operators, when the worldline C of the former is

embedded inside the worldsheet S of the latter. The line operator then creates a

discontinuity along C in the parameters (α, η) of the surface operator, generated by

transporting its location z on C by the corresponding closed path on C. Intuitively,

we can think of this discontinuity as the effect of the generalized Dirac string of the

dyonic point particle.

3. Point or ‘vertex’ operators may form a junction between several line operators. On

C, they span on open region bounded by the (non-intersecting) one cycles associated

with the line operators that meet at the junction. In the simplest case, when the

boundary consists of three Wilson line operators in three adjacent gauge group fac-

tors, the point operator represents a point charge transforming in the corresponding

trifundamental representation.

In this paper we will focus our attention on the surface and loop operators, and leave the

study of the point operators for future work.

1.2 Computation strategy

We now summarize the basic strategy of our calculation of the expectation value of general

Wilson-’t Hooft line operators on R
4 and S4. Although the validity of the actual computa-

tion does not rely on any unverified assumptions, it turns out that we can gain some useful

geometric intuition by first stating the following conjecture:

The expectation value in the N = 2 gauge theory of an elementary surface operator,

specified by its position z on C, is equal to the Liouville CFT correlation function with the

added insertion of a degenerate primary operator Φ2,1(z) = e−(b/2)φ(z).

Although the complete proof of this conjecture goes beyond the scope of the present pa-

per, in sections 2 and 3 we present several pieces of evidence that support this proposed
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Figure 3. The hemispherical stereographic projection of S4 onto two copies of R
4. It reflects the

factorization of the instanton sum on S4 into two “chiral” halves, given by the R4 contribution of

instantons localized near the north and south pole. Surface operators on S4 similarly factorize into

a two “open” surface operators, a north and a south half, glued together at the equator.

identification. For now, however, we will adopt it as a working hypothesis, that will help

us formulate a practical procedure for computing the expectation values of Wilson-’t Hooft

loops by means of the Liouville CFT correlation functions.

Let us state the conjecture a bit more precisely. As shown in [3], the Nekrasov partition

function on R
4 is equal to a Liouville conformal block, i.e. a chiral half of the full Liouville

correlation function, while the partition function on S4 takes the form of an integral of the

absolute value squared of a conformal block. So it is natural to identify the division of S4

into the northern and southern hemispheres with the chiral decomposition of the Liouville

CFT correlation functions into “left-moving” and “right-moving” chiral halves. To make

this somewhat more concrete, imagine choosing hemispherical stereographic coordinates on

S4 as indicated in figure 3. The upper and lower halves of S4 are projected on two copies of

R
4. We parametrize each R

4 ∼= C
2 by two complex coordinates (w1, w2) and (w̃1, w̃2), such

that the north and south pole of the S4 project to the origin of the corresponding R
4 ∼= C

2.

Now imagine adding a single elementary surface operator, inserted, say, on the lower

copy of R
4. In the gauge theory set-up of [11] and [4], there are two natural locations for the

surface operators, namely w1 = 0 and w2 = 0. Both locations are invariant under the U(1)

rotation symmetry used in the localization of the gauge theory path integral, which acts as

(w1, w2) 7→ (e2πiǫ1w1, e2πiǫ2w2) (1.2)

As we shall argue below, the expectation value of the simplest type of such surface operators

located at w1 = 0 corresponds to the insertion, inside the Liouville CFT conformal block,

of a degenerate chiral vertex operator Φ2,1(z), while the same type of surface operators

located at w2 = 0 corresponds to the insertion of the chiral operator Φ1,2(z), which is the

quantum version of the Liouville exponential e−φ(x)/(2b). Indeed, these two types of surface

operators are related by the symmetry ǫ1 ↔ ǫ2. According to the dictionary of [3], in the

Liouville theory it corresponds to switching the roles of b and 1/b, which indeed relates the
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Figure 4. A Wilson-’t Hooft loop is labeled by a closed path γ on C, and a surface operator is

specified by a location z on C. When the loop acts on a surface operator on S4, it shifts the relative

location of the upper- and lower-half via a monodromy operation associated with the closed path

γ. The vertical direction indicates a ‘time coordinate’ t on S4, defined such that the equator gets

mapped to t = 0 and the north and south pole to t = ±∞.

degenerate chiral vertex operators Φ2,1(z) and Φ1,2(z). Note that the conformal block is

multi-valued as a function of the position z ∈ C. This multi-valuedness arises because this

class of surface operators on R
4 has an open boundary at infinity [7].

Via the hemispherical stereographic projection, the surface operator on S4 can be

thought of as the result of gluing together two “open” surface operators, one acting on

the south copy of R
4 and one acting on the north copy of R

4. We conjecture that the

expectation value of the surface operator on S4 is given by inserting a non-chiral vertex

operator inside the non-chiral Liouville correlation function. Note that the non-chiral

correlation function of Φ2,1 is single valued as a function of z ∈ C, which is as one would

expect for surface operators that do not have any open boundary. The factorization of the

non-chiral operator into left- and right-moving chiral vertex operators amounts to splitting

the closed surface operator into two “open” halves.

Next, consider a Wilson-’t Hooft loop labeled by a closed path γ on C, acting on a

surface operator on S4. For concreteness, we take the surface operator to be located at w1 =

0, and the loop operator to act within the equator of the S4. The loop operator splits the

surface operator into two open halves, glued together via a prescribed discontinuity in the

parameters α and η of the singular vortex, i.e. via a jump in the location z ∈ C. Since the

two sides correspond to the two chiral halves of the degenerate field Φ2,1, the discontinuity

amounts to a relative shift in the location z of the left and right chiral vertex operators

by a full monodromy around γ. We can thus visualize the action of the Wilson-’t Hooft

loop as performing a monodromy operation, in which one of the chiral vertex operators is

transported along the closed path γ. This procedure is illustrated in figure 4.

– 7 –
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Finally, to get a Wilson-’t Hooft line in isolation, one can start by viewing it as the

result of annihilating two identical surface operators, i.e. both are at the same location on

S4 and on C, except that one of the two has a discontinuity as a result of acting with the

given loop operator at the equator. Via the geometric visualization of the discontinuity

as drawn in figure 4, we arrive at the identification of the Wilson-’t Hooft loop with the

following familiar CFT monodromy operation:2

1. Insert the identity operator 1 inside the Liouville correlation function.

2. Write 1 as the result of fusing two degenerate Liouville operators Φ2,1(z), via their

operator product expansion.

3. Transport the chiral half of one of the two operators along the closed non-self-

intersecting path γ that labels the Wilson-’t Hooft operator.

4. Reconstitute the local operator Φ2,1 (by recombining the two chiral halves), and

re-fuse the two degenerate fields together into identity via the OPE.

The above monodromy procedure was introduced in the context of rational CFT by

E. Verlinde [12], and played a key role in the derivation of the relation between modular

transformations and the fusion algebra. It defines a linear operator, that acts non-trivially

on the space of conformal blocks. To explicitly perform the various steps, one needs to

know the modular properties of the conformal blocks under basic moves, known as fusion

and braiding. Liouville field theory is a non-rational CFT, but its conformal blocks have

rather similar modular properties as in rational CFT, except that the labels are continuous

rather than discrete [13, 14]. In particular, the fusion and braiding matrices are known

explicitly, and satisfy the necessary polynomial consistency relations. This knowledge is

sufficient for us to turn the above four step procedure into a straightforward computation

of the expectation value of the Wilson-’t Hooft line operators.

1.3 Organization

The rest of this paper is organized as follows. In section 2, we set up a semi-classical

dictionary between the N =2 gauge theory and Liouville theory, based on the asymptotics of

the Nekrasov partition function and the identification between the expectation value of the

Liouville energy-momentum tensor and the quadratic differential describing the Seiberg-

Witten curve. We pay special attention to the semiclassical behavior of the monodromies

of the degenerate Liouville field Φ2,1.

In section 3, we first recall the definition of the surface operators in the gauge theory,

and provide an M-theory realization of them. We then present a semi-classical argument

2In the gauge theory, the four steps correspond to:

(i) insert a “trivial” surface operator at w1 = 0,

(ii) split it into a pair of conjugate surface operators, each specified by the same parameter z on C,

(iii) act with a loop operator on one of the two surface operators,

(iv) let the two conjugate surface operators annihilate each other, leaving behind a bulk loop operator.

– 8 –
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that supports their identification with the insertion of the degenerate fields in Liouville the-

ory.

In section 4, we consider the action of Wilson-’t Hooft loop operators on surface op-

erators, and relate their expectation values to the monodromy of Φ2,1 in the full quantum

Liouville theory. As an application, we discuss how S-duality between the Wilson and ’t

Hooft loops follows from elementary properties of CFT conformal blocks. In section 5 we

consider the Wilson-’t Hooft loop operators in the bulk, and use the recipe outlined above

to compute their expectation value for the specific examples of N = 2∗ and Nf = 4 SYM

theory. We briefly discuss their relation to observables on quantized Teichmüller space. We

end with some concluding comments on open problems and future directions in section 6.

In appendix A and B, we have collected some useful facts about Liouville modular

geometry, the form of the relevant fusion and braiding matrices and the relations among

them. In appendix C, we present an explicit calculation of the semi-classical limit of a de-

generate operator insertion. Finally in appendix D, we discuss the issue of self-intersecting

paths on the Seiberg-Witten curve.

2 Semi-classical Liouville/gauge theory correspondence

In this section, we give a short overview of the semi-classical limit of Liouville CFT and

its correspondence with the Seiberg-Witten solution of the class of N = 2 gauge theories

introduced in [2]. We then use this correspondence to study the semi-classical monodromies

of the Liouville degenerate field Φ2,1.

2.1 Seiberg-Witten curve from Liouville

The IR dynamics of undeformed N = 2 gauge theories on R
4 is completely characterized

by the classical Seiberg-Witten (SW) curve. For our class of theories, the SW curve is

given by the double cover Σ of the Riemann surface C, specified in terms of a quadratic

differential φ2(z) defined on C, as

x2 = φ2(z) . (2.1)

φ2(z) has double poles at the n marked points, whose coefficients encode the mass pa-

rameters mi of the gauge theory. The space of quadratic differentials with double poles

of fixed coefficients is an affine space of dimension 3g − 3 + n. This is also the dimension

of the Coulomb branch. The Coulomb branch moduli ai of the field theory are identified

with periods of the SW differential λSW = xdz around a complete set of non-intersecting

one-cycles Ai on Σ
1

2πi

∮

Ai

x dz = ai . (2.2)

The periods of the SW differential around the dual cycles Bi on Σ specify a dual set of

parameters
1

2πi

∮

Bi

x dz = ai
D . (2.3)

– 9 –
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The magnetic parameters ai
D are not independent from the ai, but determined via

ai
D =

1

4πi

∂F
∂ai

, (2.4)

where F is the SW prepotential, which is an analytic function of the 3g − 3 + n coupling

constants τi and Coulomb branch parameters ai.

In the perturbative limit, there is a canonical choice of Ai cycles which project to a

complete set of mutually non-intersecting closed paths in the Riemann surface C, that

surround the thin tubes that characterize the SU(2) gauge group factors of the generalized

quiver gauge theory. The reader is warned this choice ceases to be canonical as soon as one

moves away from the perturbative limit. The homology lattice of the SW curve is subject

to all sort of interesting monodromies as one varies φ2. At a generic point in the Coulomb

branch, there is no preferred choice of a set of special coordinates (ai, a
i
D).

To help compute the instanton partition sums of N = 2 gauge theory, Nekrasov consid-

ered a deformation of the Lagrangian by two parameters ǫ1 and ǫ2, both with the dimension

of mass, that specify a certain SO(4) rotation and some non-commutative modification of

the space-time R
4. This ǫ deformation breaks the translational symmetry and effectively

places the functional integral on a compact space-time: the full partition function on R
4

is just a finite number Z4d, which depends meromorphically on the coupling constants

and Coulomb branch parameters. Interestingly, Z4d coincides with a conformal block of

the Liouville CFT defined on the base curve C, with conformal fields Vmk
(zk) placed at

the n punctures [3]:

Z4d = 〈Vm1(z1) · · · Vmn(zn)〉{ai} (2.5)

Here, in our notation for the conformal block, we leave implicit the choice of pants decom-

position of the Riemann surface C. Both sides of this equality are given as a perturbative

expansion in the instanton factors qi = e2πiτi of the SU(2) gauge groups, which are identi-

fied with the parameters of the “plumbing fixture” used to join the various pairs of pants.

For example, when the base curve C is a sphere, qi give the cross ratios of the coordinates

zi of the insertions.3

In a sense, that we will make more precise in what follows, the Nekrasov deformation

amounts to a “quantization” of the space of Coulomb branch parameters, that specify the

SW differential of our class of theories. In accordance with this interpretation, we write4

ǫ1 = b~, ǫ2 =
~

b
. (2.6)

3There is a certain degree of arbitrariness in the precise definition of conformal blocks. Pairs of pants

are glued together by a local coordinate transformation z1z2 = q. The exact parameterization of the

complex structure moduli space by the qi depends on the precise choice of a local coordinate at each

puncture. Fortunately, the integration kernels implementing S-duality do not depend on the qi, and are

thus insensitive to this choice. The instanton partition function suffers of similar arbitrariness, in the sense

of some regularization scheme dependence. The ambiguity did not manifest itself in the explicit examples

of [3], possibly because of an underlying brane construction.
4Note that this does not become the standard practice ǫ1 = ~, ǫ2 = −~ at b = 1.

– 10 –
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Here ~ defines some mass scale, relative to which we will measure all other mass parameters.

The parameter b is related to the central charge c of the Liouville CFT via c = 1 + 6Q2

with Q = b + 1
b . The fields inserted at the n marked points have Liouville momentum

mk
~

and conformal dimensions ∆k = mk
~

(Q − mk
~

), where mk is the mass parameter for

the SU(2) flavor group associated to the k-th puncture. The primary field propagating in

intermediate channels is given by eαiϕ(z) with

αi =
Q

2
+

ai

~
(2.7)

where ai is the Coulomb branch parameter, In other words, ai specifies the Liouville mo-

mentum in the channel.5 This operator has conformal dimension ∆i = (ai
~

+ Q
2 )(Q

2 − ai
~

).

The SW curve and associated prepotential F(a) emerges from the Nekrasov partition func-

tion in the “semiclassical limit” ǫ1,2 ≪ ai,mi, or in 2d terminology, the ~ → 0 limit where

all Liouville momenta become large:

logZ4d ≃ − 1

~2
F(a) + . . . (2.8)

Here the canonical choice of A-cycles is playing a hidden role. As both sides of (2.8) are

defined by power series in the qi, the logarithm and the ~ → 0 limit should be taken term by

term in the qi expansion. The important monodromies of (ai, a
i
D) in the Coulomb branch

are completely invisible to the qi expansion: each term is a rational function of the ai.

As was observed in [3], the quadratic differential φ2(z) that specifies the SW curve can

be recovered in the semiclassical limit ~ → 0 from the Liouville CFT, by considering the

expectation value of the 2d energy momentum tensor

〈T (z)Vm1(z1) · · ·Vmn(zn)〉{ai} → − 1

~2
φ2(z) 〈Vm1(z1) · · ·Vmn(zn)〉{ai} (2.9)

The quadratic differential φ2(z) defined this way has double poles at zk with coefficient

given by ~
2 times the conformal dimension hk, which in the semi-classical regime co-

incides with the squared mass parameter m2
k. Similarly, it is not hard to verify that

the definition (2.2) of the ai parameters with the electric periods of the SW differential

xdz =
√

φ2(z)dz around the Ai cycles, perfectly matches with the identification (2.7) with

the intermediate Liouville momenta αi. Again, the match is to be understood term-by-term

in the qi expansion.

It was shown by Pestun [4] that the instanton partition function of the undeformed

gauge theory on S4 is given by the integral over the Coulomb branch parameters ai of the

absolute value squared of the R
4 partition function, with equal deformation parameters

ǫ1 = ǫ2 = 1/R, where R is the radius of S4:

ZS4 =

∫

dai

∣

∣〈Vm1(z1) · · · Vmn(zn)〉{ai}

∣

∣

2
. (2.10)

This expression coincides with the partition function of the full non-chiral Liouville field

theory. Since non-chiral CFT partition functions are invariant under modular transfor-

mations, this observation makes explicit that the S4 partition function ZS4 is S-duality

5In the following, we will refer to the exponent ai as the Liouville momentum.
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invariant. In contrast, Nekrasov’s partition function on R
4 transform non-trivially under

S-duality.

Indeed the conformal blocks labeled by different trivalent graphs can be considered

as different delta-function normalizable bases of the same Hilbert space, labeled by the

continuous parameters αi. The change of basis involves integration against an intricate

kernel, which does not depend on the qi. If we denote the choice of trivalent graph for the

quiver, or the conformal block, as G, we can write schematically

ZG
4d(ai,mk; τi) =

∫

da′i ZG′

4d(a′i,mk; τ
′
i)K(ai, a

′
i,mk), (2.11)

where the τi are the complex structure moduli of the surface in the new basis.

2.2 Monodromies of the degenerate field Φ2,1

To gain more insight, it is useful to introduce the insertion of a degenerate local Liouville

operator Φ2,1. As mentioned in the introduction, and explained in more detail in section

3, we propose that this operator insertion corresponds to the gauge theory partition sum

in the presence of an elementary surface operator.

Let us consider the properties of Φ2,1 in the semi-classical limit. The degenerate field

Φ2,1 can be viewed as the operator with Liouville momentum equal to −b/2. It satisfies

the relation (L2
−1 + b2L−2)Φ2,1 = 0, which implies that, when inserted in any correlation

function, it satisfies a differential equation of the form

∂2
zΦ2,1(z) = −b2 :T (z)Φ2,1(z) : (2.12)

Here the normal ordering amounts to subtracting the double and single pole singularity as

T (z) approaches Φ2,1(z).

For a general surface C with n punctures, the above differential equation has a large

space of solutions, which one would like to identify with the space of conformal blocks with

a degenerate insertion.6 The choice of sign in ± b
2 corresponds to the two solutions of the

second order differential equation (2.12).

Since the conformal dimension of Φ2,1 is fixed, and thus remains finite as ~ → 0,

in the semi-classical regime one is allowed to replace T (z) by its expectation value (2.9).

The semiclassical analysis of (2.12) thus is reduced to the WKB analysis of a holomorphic

Schrödinger equation.

Consider the conformal block with a degenerate field insertion.

Z(ai ; z) = 〈Φ2,1(z)Vm1(z1) · · · Vmn(zn)〉{ai} (2.13)

The insertion modifies the semi-classical limit (2.8) at subleading order, to

Z(ai; z) ∼ exp

(

−F(ai)

~2
+

bW(ai, z)

~
+ · · ·

)

. (2.14)

6The identification is true, but with an important caveat. The null vector (L2
−1 + b2L−2)Φ2,1 decouples

from correlation functions, but surprisingly does not decouple automatically from conformal blocks as well,

unless one imposes “by hand” the degenerate fusion rule: the Liouville momenta on the two sides of the

degenerate insertion must differ by ±
b
2
. We will assume this constraint whenever we talk about conformal

blocks with one or more degenerate insertions. A few more details are given in appendix B.1.
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A basic WKB argument, combining (2.12) and (2.9), shows that

(∂zW)2 = φ2(z) = x(z)2, (2.15)

hence W is (plus or minus) the integral of the SW differential along some path to the point

z, starting at some reference point z∗:

W±(z) = ±
∫ z

z∗

x dz (2.16)

The choice of sign in (2.16) corresponds to the two-fold degeneracy in the space of conformal

blocks with a degenerate insertion.7 We will denote the two WKB solutions by Z±(ai; z).

Since the SW differential has non-vanishing periods (2.2) and (2.3), (2.14) and (2.16)

tell us that Z±(ai; z) is a multi-valued function of the position z of the degenerate field.

As we will see later (and as detailed in appendix B.1), in the full quantum CFT this multi-

valuedness is implemented via so-called fusion and braiding matrices, which in this case are

given by 2 × 2 matrices that relate the doublets of conformal blocks with the degenerate

field inserted at different locations. The transport of z along paths in the Riemann surface

is implemented by the composition of a certain number of these matrices. We will denote

the resulting transport operator along a path γ as Mγ .

As a crude first step towards finding the semiclassical behavior of Mγ , we could simply

look at the monodromy of each WKB wavefunction. This monodromy depends on the

periods of the SW differential along the lift of γ to the SW curve.8 The monodromy of

the WKB wavefunctions around the A-cycle Ai on Σ is given by a simple phase factor,

determined by the corresponding Coulomb branch parameter9

Z±(ai; z + Aj) = exp

(

±2πib

~
aj

)

Z±

(

ai; z
)

. (2.17)

This behavior is as expected from standard CFT arguments: transporting a degener-

ate field around a certain leg of the conformal block produces a simple phase factor

e2πi(∆α+∆2,1−∆α±b/2). This agrees at the leading order with (2.17).

The B-cycle monodromy, on the other hand, takes the form

Z±(ai ; z + Bj) = exp

(

±2πib

~
aj

D

)

Z±

(

ai; z
)

. (2.18)

Via eq. (2.4) and working to leading order in ~, we see that the prefactor in (2.18) can be

naturally absorbed via a quantized shift in the Coulomb branch parameter associated with

the dual A-cycle:

Z±(ai ; z + Bj) = Z±

(

ai ±
b~

2
δj
i ; z

)

. (2.19)

7As we will see in section 3, in the gauge theory, the two fold degeneracy arises because the IR surface

operators associated with a given gauge group factor have two degenerate vacua.
8In the following intuitive argument, we will temporarily ignore some important structure associated to

the fact that the same homotopy class in the base curve C lifts to a multitude of possible homology classes

in the SW curve. Still, the naive reasoning is rather instructive.
9Here z + Ai is a schematic notation for moving the position z on C along the cycle Ai.
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Hence we see that the B cycle monodromies may lead to shifts in the ai parameters by mul-

tiples of ~b/2. We will confirm this fact via a more precise quantum treatment in section 5.

As explained in the Introduction, the above monodromy operations represent the action

of Wilson loops (for the Ai monodromy) and ’t Hooft loops (for the Bj monodromy) on

a surface operator in the gauge theory. The above naive semi-classical expressions for

these monodromies, while incomplete, already give some useful first hints at what general

structure we should expect for the full answer.

First, we see that the conformal blocks with fixed ai parameters naturally form an

eigenbasis of the Ai monodromies of Φ2,1. The Bi monodromies, on the other hand, act

non-trivially on the eigenlabels ai. In the gauge theory, this corresponds to the fact that the

instanton partition function (in the presence of a surface operator) on R
4 is an eigenfunction

of the Wilson loop operator, while the ’t Hooft loop operator acts on the Coulomb branch

parameters via quantized shifts.10 S-duality can thus be thought of as a change of eigen

basis from a set of ‘electric’ loop operators to some dual set of ‘magnetic’ loop operators.

Note further that the expectation value of a surface operator on S4, which is expressed

as the integral over the Coulomb branch parameters of the absolute valued squared of the

instanton sum, is a single-valued function of z: the A monodromies are phase factors that

do not affect the norm squared, while the shifts in a generated by the B monodromies can

be absorbed in a redefinition of the integration variables. This distinction between R
4 and

S4 expectation values is related to the fact that surface operators on R
4 are open (and thus

may produce boundary terms upon partial integration), while on S4 they are closed.

The above comments are all meant as intuitive expectations, based on a somewhat

crude semi-classical arguments. The WKB approximation can be conducted in a rather

more precise way, following the approach of [1]. A crucial step in [1] was a careful WKB

analysis of a certain differential equation involving the same quadratic differential φ2(z) as

we have here. This method can be applied with minor modifications to the holomorphic

Schrödinger equation based on φ2(z). The trick is to re-express the transport matrices Mγ

for the differential problem as a linear combination of certain quantities Xγ̃ , for which the

naive WKB approximation along the path γ̃ in the SW curve is correct. As detailed in

appendix A of [1], Mγ is a linear combination, with integer coefficients, of Xγ̃ , where the

index γ̃ runs over various possible lifts of γ to the SW curve. At different values of the pa-

rameters, different terms in the sum may be dominant in the semi-classical limit. Moreover,

the integer coefficients which determine which γ̃ is actually present in the sum are subject

to discontinuous jumps as a function of the parameters. Only in a fixed perturbative limit,

the naive WKB approximation around the Ai cycles is valid. This is a rather degenerate

case of the analysis in [1], where a maximal set of “closed WKB curves” emerges.

The analogy between our setup and the setup of [1] is clearly not coincidental. The

relation between Mγ and Xγ̃ in [1] represents the IR behavior of the same general class of

10A priori, it may look somewhat surprising that the ’t Hooft loops can change the Coulomb branch pa-

rameters, and do not commute with the Wilson line operators. However, as noted earlier, the ǫ deformation

effectively makes the space compact. Thus a localized operator may be capable of changing the vevs ai.

Secondly, loop operators that act on a surface operator can be ordered in ‘time’; hence it is meaningful to

talk about commutators between loop operators.
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line operators in the gauge theory as we consider here.

In sections 5 we will compute the full quantum expression for the monodromies (2.17)

and (2.19) in Liouville CFT, which will provide the exact gauge theory expectation values

of the Wilson and ’t Hooft line operators. The results will confirm the basic intuitive

picture presented above.

3 Surface operators in N = 2 gauge theories

In this section we discuss a simple brane realization of half-BPS surface operators in N = 2

gauge theory and argue that their counterparts in the low energy effective theory are labeled

by points on the SW curve. Here we consider general SU(N) gauge groups because our

construction works equally well for any N . We will restrict our attention to SU(2) in

section 4 and 5, and compare gauge theory data with Liouville theory data.

As we will see, the brane construction shows that the twisted superpotential of the 2d

theory on the surface operator is given by an integral along an open path on the SW curve

Σ, reproducing the formulae (2.14) and (2.16), thus supporting our identification between

surface operators in the gauge theory side and insertions of degenerate operators in the

Liouville side. We will also comment on how we can derive these results from the instanton

counting in the presence of a surface operator.

Before we start, we should mention a relationship between our consideration of the

surface operators and the analysis of quantum vortices in the Higgs phase of N = 2 theories

presented in the review [15] and references therein. There, supersymmetric Nielsen-Olsen

type vortices were considered in the maximal Higgs branch of a specific N = 2 theory, and

the quantum dynamics of the zero modes living on the vortices was studied. They found a

relation similar in spirit as (2.15), although they could only probe a very special point on the

Coulomb branch, namely the root of the maximal Higgs branch. There is an obvious, sharp

distinction between these vortices and our surface operators: the former are dynamical

excitations of the theory, whereas the latter are operator insertions. Nevertheless, the two

results are not completely unrelated. It is possible to consider a setup where an N = 2

theory sits at the bottom of an IR flow initiated in a larger theory by a judicious Higgs

branch expectation value. Vortex strings in the larger theory will flow in the far IR to

surface operators: the magnetic fluxes of the low-energy U(1) gauge fields in the core of

the vortex are squeezed to delta functions, and the tension of the strings goes to infinity.

In a similar spirit, one can establish a relation between our surface operators in N = 2

field theories, and the D-strings employed by [16] in N = 2 string theory compactifications

to give a physical interpretation to the refined open topological string amplitudes [17, 18].

3.1 Half-BPS surface operators

First let us recall the ultraviolet definition of surface operators. We are interested in half-

BPS surface operators in N = 2 gauge theories. The super-Poincaré subgroup preserving

the surface operator corresponds to N = (2, 2) supersymmetry in two dimensions. More

specifically, if we denote the two sets of 4d supercharges as Q±
α , where ± denotes the

eigenvalue of the Cartan generator of SU(2)R, the surface operator preserves a left moving
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half of Q+
α and a right moving part of Q−

α . This is motivated by the fact that we con-

sider (mass deformation of) 4d superconformal theories, and the natural subgroup of the

superconformal group which preserves a surface operator is

SU(1, 1|1)L × SU(1, 1|1)R × U(1)e ⊂ SU(2, 2|2). (3.1)

Four-dimensional multiplets restricted to the surface operator can be packaged into 2d

superfields, useful to describe the couplings to the 2d defect. Different 2d supermultiplets

can be identified with the help of the extra U(1)e factor in (3.1), which commutes with the

2d superconformal group. The U(1)e is a linear combination of the Cartan generator of

SU(2)R and of the rotations in the plane transverse to the surface operator.

Abelian vector multiplets in four dimensions restricted to the surface operator yield a

twisted chiral multiplet of charge 0 under U(1)e. Every such multiplet contains the 2d part

of the field strength, together with the vector multiplet scalars. Twisted superpotential

terms integrated over the surface operator will play a role which is quite parallel to the

role of the prepotential in the 4d theory, as they are functions of the Coulomb branch

vevs. Expanding in component, they give rise to couplings to the abelian 4d magnetic and

electric fluxes across the surface operator.

For a surface operator that breaks the gauge group G down to a subgroup L ⊂ G (the

so-called Levi subgroup [7]) one can introduce a 2d Fayet-Iliopoulos (FI) term of the form

t
∫

S C for each abelian factor in L. A simple example corresponds to the next-to-maximal

L, e.g. L = U(N −1)×U(1) (or SU(N −1)×U(1)) in a theory with gauge group G = U(N)

(resp. SU(N)). In this case, there is only one FI parameter t, which can be conveniently

written as t = η + τα in terms of real parameters α and η that have a simple interpre-

tation in gauge theory [7]. Namely, the “magnetic” parameter α defines a singularity for

the gauge field:

A = αdθ + · · · , (3.2)

where x2 + ix3 = reiθ is a local complex coordinate, normal to the surface S ⊂ M , and the

dots stand for less singular terms. Note, in order to obey the supersymmetry equations, the

parameter α must take values in the L-invariant part of t, the Lie algebra of the maximal

torus T of G.

On the other hand, the “electric” parameter η enters the path integral through the

phase factor

exp (iη · m) (3.3)

where

m =
1

2π

∫

S
F (3.4)

measures the magnetic charge of the gauge bundle E restricted to S. The monopole number

m takes values in the WL-invariant part of the cocharacter lattice, Λcochar, which we denote

as ΛL. The lattice ΛL is isomorphic to the second cohomology group of the flag manifold

G/L, a fact that will be useful to us later. Therefore,

m ∈ ΛL
∼= H2(G/L; Z) (3.5)
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and the character η of the abelian magnetic charges m takes values in Hom(ΛL,U(1)),

which is precisely the WL-invariant part of L
T.

The “classical” twisted superpotential coupling on the surface operator which is associ-

ated to these surface operators is simply (η+τα)a, where a is the superpartner of F , the re-

striction of the Coulomb scalar field to S. On the Coulomb branch of the non-abelian gauge

theory, the twisted superpotential will evolve into an effective twisted superpotential W, a

non-trivial function of the abelian Coulomb branch parameters. We propose that in general

the effective twisted superpotential, much like the effective prepotential, is computable in

terms of the SW curve Σ. In particular, we claim that it is given by the integral of the SW

differential along an open path (starting at some reference point p∗) on the SW curve,

W =

∫ p

p∗

λ (3.6)

The endpoint p of the path provides an IR parameterization of surface operators.

Notice that in the IR abelian gauge theory, the superpotential is a function of the

Coulomb branch parameters ai of the abelian gauge fields. The couplings to electric and

magnetic fluxes ti = ηi + τijα
j live naturally in the Jacobian variety of the SW curve.11

Because the partial derivatives of the SW differential are, by definition, the holomorphic

differentials ωi on the SW curve, the map

ti =
∂W
∂ai

=

∫ p

p∗

∂λ

∂ai
=

∫ p

p∗

ωi (3.7)

coincides with the Abel-Jacobi map from a Riemann surface to its Jacobian.

3.2 Surface operators from M2-branes

Let us now study how these surface operators arise in terms of a surface operator in the

six dimensional (2, 0) AN−1 theory on a Riemann surface C. In terms of M5-branes, this

is a setup where N M5-branes wrap C × R
4 × {pt} in T ∗C × R

4 × R
3. The SU(2)R R-

symmetry rotates the transverse R
3, while the U(1) R-symmetry acts on the fiber of T ∗C.

The surface operator represents the endpoint of an M2-brane, stretched to infinity along a

specific direction in R
3. Therefore, the resulting surface operator is naturally labeled by a

point z in C, when all the M5-branes are coincident and thus the theory is at the origin of

the Coulomb branch.

In the Coulomb branch of the theory, the M5-branes merge into a single M5-brane

wrapping the SW curve Σ, an N -ramified cover of C in T ∗C defined by an equation

xN =
N
∑

i=2

φi(z)xn−i (3.8)

Here φi(z)dzi are degree i differentials on C. The normalizable deformations of the φi(z)dzi

correspond to the Coulomb branch parameters. The SW differential is λ = xdz. The M2-

brane ends on the SW curve at a point p = (x, z).

11More properly the Prym variety. For example in the A1 case, the derivatives of the SW differential λ

with respects of the parameters ui in φ2 = λ2 produce holomorphic differentials ωi = ∂λ
∂ui

which are odd

under the involution λ → −λ of the ramified cover Σ → C.
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As the abelian theory on a single M5-brane is well understood, we can understand

directly the coupling of the surface operator to the fluxes of the 4d abelian gauge theory.

The 4d fluxes are the components of the self-dual three form field strength on the M5-

brane along the harmonic one forms on the SW curve. The surface operator couples to the

self-dual three form field strength in a standard way: pick a three chain bounded by the

surface operator p × R
2 and a reference surface p∗ × R

2 and integrate the three form field

strength along it. We reproduce the desired

ti =

∫ p

p∗

ωi (3.9)

and from that the twisted superpotential.

How should we understand the relation between the UV label z and the IR label

p = (x, z)? The degrees of freedom living at the UV surface operator appear to have N

distinct vacua in the IR. We would like to interpret the SW equation as a chiral ring relation

for a twisted chiral superfield x, capturing the dynamics of such degrees of freedom. At

least locally, if we consider a small variation of the 2d coupling z → z + δz, it is natural to

consider δz as an FI parameter for the twisted chiral superfield x.

The twisted chiral superfield x resembles closely the generator of the quantum chi-

ral ring of a CPN−1 sigma model. This is not a coincidence. The basic surface op-

erators in the SU(N) gauge theory, which break the gauge symmetry to the subgroup

L ∼= SU(N − 1) × U(1), have a natural relation to a CPN−1 sigma model: one can always

re-instate full gauge symmetry on the surface operator by introducing a compensator field

living in SU(N)/(SU(N − 1) × U(1)) = CPN−1. This compensator field may well become

dynamical in the IR.

A weakly coupled SU(N) gauge group in four dimensions arises from the M5-brane

theory whenever a tube in the Riemann surface C is close to degeneration, i.e. becomes long

and thin. In this limit the (2, 0) theory along the tube can be reduced to a 5d Yang-Mills

theory in a segment, and then to a weakly coupled 4d SU(N) gauge theory. The gauge

coupling τ is the modular parameter of the tube. If the M2-brane is attached to (one of)

the M5-branes in the long tube region, it will clearly produce a defect in the 4d SU(N)

gauge theory which breaks SU(N) to SU(N − 1) × U(1).

We can be more precise. As we reduce from the (2, 0) theory on a long, thin tube to

a weakly coupled SU(N) 5d Yang-Mills theory on a long segment, the M2-brane surface

operator descends to a D2-brane surface operator, represented in the 5d theory by a ’t

Hooft monopole operator of minimal charge. The position of the original puncture on the

M-theory circle is encoded in the angle η coupled to the magnetic flux integrated over the

surface operator. By supersymmetry, the holomorphic coordinate t along the tube must

coincide with the holomorphic combination η + τα. We still have to fix a reference point,

t = 0, that will be discussed below.

To summarize, we conclude that the definition of standard surface operators in N = 4

SYM theory can be easily extended to surface operators in N = 2 theories in the weak

coupling regime, provided that the punctures are well inside the tubes of the Riemann
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Figure 5. The brane construction of N = 2 super Yang-Mills theory with a half-BPS surface

operator in type IIA string theory (a) and its M-theory lift (b).

surface. As the puncture moves through pair of pants from one tube to another, the

corresponding surface operator must undergo some interesting 2d duality transformation.

To understand better the detailed structure of the surface operators, we will follow a

standard route [2]: we will first focus on a subclass of theories, the conformal linear quivers

of unitary groups, which have a brane realization in IIA theory [19].

3.3 Brane construction in type IIA

Let us consider a stack of N D4-branes intersecting n NS5-branes. We take the NS5-branes

to be along the directions x0, x1, . . ., x5, and D4-branes to be along the directions x0, x1,

. . ., x3, and x6. This setup realizes a conformal linear quiver of n − 1 SU(N) groups, with

N fundamental hypers at each end. In M-theory, it lifts to a brane configuration which we

identify with the AN−1 theory “compactified” on a cylinder, with n simple defects.

To produce transverse, semi-infinite M2-branes in the M-theory setup we need trans-

verse, semi-infinite D2-branes in the IIA setup. They should preserve half of the remaining

supersymmetry of the D4 and NS5 brane system. We choose the D2-brane worldvolume

to be along the directions x0, x1, and x7, as in figure 5 a. Below we summarize the

worldvolume directions of various branes in the resulting configuration:

NS5 : 012345

D4 : 0123 6

NS5′ : 01 45 89

D2 : 01 7 (3.10)

where we included a new kind of the five-brane, denoted as NS5′, with worldvolume along

the directions x0, x1, x4, x5, x8, and x9. The NS5′-brane preserves the same part of the 4d
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Figure 6. (a) The brane construction of N = 2 super Yang-Mills theory with a half-BPS surface

operator (shown on figure 5 a) where we introduced an extra NS5′-brane. Now the D2-brane can

end on the NS5′-brane, thus, having a finite extent in the x7 direction. (b) The M-theory lift of the

type IIA brane configuration on part (a) of the figure.

N = 2 supersymmetry as the D2-brane and is useful for identifying the half-BPS surface

operator represented by the D2-brane.

In the presence of the NS5′-brane, the D2-brane can have a finite extent in the x7

direction by stretching between the NS5′-brane on the one end, and the original system

of D4 and NS5 branes, on the other, as illustrated on figure 6 a. When the D2-brane

has finite extent in the x7 direction, its worldvolume theory is effectively a 2d U(1) gauge

theory with the coupling constant
1

e2
=

ℓs∆x7

gs
(3.11)

In particular, the original brane configuration on figure 5 a can be recovered in the limit

∆x7 → ∞, which corresponds to the weak coupling limit of the D2-brane theory.

To be precise, it is convenient to start by attaching the D2-brane to one of the NS5-

branes. The Neumann boundary conditions on the D2-brane worldvolume theory allow for

a simple dimensional reduction to a 2d gauge theory. The effective theory on the D2-brane

is N = (2, 2) supersymmetric gauge theory with gauge group U(1) and a certain matter con-

tent, which is easy to read of from the brane construction on figure 6 a. Specifically, we have

the following N = (2, 2) theory in two dimensions (with space-time coordinates x0 and x1):

D2 theory : U(1) with N chiral multiplets of charge 1 and N of charge − 1

Indeed, up to a simple change of coordinates, this setup is related to the brane system

considered in [20] that engineers N = (2, 2) 2d abelian gauge theory with chiral multiplets

of charge +1,−1. In the D2-brane theory, the boundary conditions corresponding to the

NS5 and NS5′ branes project out all massless string modes, except for a N = (2, 2) vector

multiplet. Indeed, since the NS5-brane is localized in the directions x6, . . ., x9, and since
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the NS5′-brane is localized in the directions x2, x3, x6, x7, the D2-brane can only move

along the directions x4 and x5 (which are common to both the NS5 and NS5′ brane). These

two modes combine into a complex scalar field σ on the D2-brane worldvolume,

x4 + ix5

ℓ2
s

∣

∣

∣

∣

∣

D2

= σ

which can be identified with a complex scalar in the 2d N = (2, 2) vector multiplet (equiv-

alently, twisted chiral multiplet).

Once we have D2, NS5, and NS5′ branes, incorporating the D4-branes does not break

supersymmetry further. The D2-D4 open string states give rise to charged chiral multiplets

(one for every D4-brane) resulting in the effective theory (3.12). Note that, in the D2-brane

theory, the vevs ai of the 4d adjoint scalar field play the role of twisted mass parameters

and the SU(N) gauge symmetry of the 4d gauge theory on the D4-branes plays the role

of the flavor symmetry. For generic values of ai the SU(N) flavor symmetry is broken to a

subgroup U(1)N−1. We get a set of N chiral multiplets of charge +1 from the D4-branes

ending on the left of the NS5-brane, and a set of N chiral multiplets of charge −1 from the

D4-branes ending on the right of the NS5-brane.

These 2d fields couple in a standard way to the 4d gauge fields arising from the D4-

branes, and also couple (via cubic superpotential) to the bifundamental adjoint hypermulti-

plets coming from the D4-D4 strings (stretched between the two sets of D4-branes). Giving

expectation values to the bifundamental fields corresponds to reconnecting the D4-branes

and separating them from the NS5-brane; this operation is known to give a mass term to

the 2d chiral multiplets [20].

Now, let us turn on a parameter that corresponds to moving the NS5′-brane (and,

therefore, the D2-brane) in the x6 direction. It forces the D2-brane to end on one of the

D4-branes, cf. figure 6 a. From the point of view of the 2d theory on the D2-brane it

corresponds to turning on the Fayet-Iliopoulos parameter of the U(1) gauge group [20].

Depending on the sign of the FI term, either the chiral fields of charge +1 or of charge

−1 gain expectation values, connecting the D2-brane and either set of the D4-branes. To

match the brane picture, it must be the case that the cubic superpotential coupling will

insures that only one of the two types of fields can receive expectation values. Indeed an

expectation value for both types of fields would act as a delta-function source for the four

dimensional hypermultiplet fields. In the Coulomb branch of the theory, expectation values

for the Higgs branch fields, which are massive, will typically break SUSY.

If all the parameters ai are set to zero, the space of vacua in such a theory is the Kähler

quotient

C
N//U(1) ∼= CPN−1 .

The Kähler modulus can be combined with a B-field η on the target space CPN−1 to a

complexified FI parameter t. In N = (2, 2) 2d theories, such as the one we are consider-

ing, the values of the Fayet-Iliopoulos parameter α and the theta-angle η are renormalized

due to quantum corrections. The renormalized value of the complex parameter t can be
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Figure 7. The effective twisted superpotential W(v) of the D2-brane theory can be expressed as

an integral over an open path on the SW curve.

expressed in terms of the twisted superpotential:

t =
∂W(σ)

∂σ
(3.12)

As was explained above, in the brane construction the classical (“bare”) FI parameter

α is identified with the position of the D2-brane in the x6 direction, cf. figure 5 a, while

its “quantum” companion η can be identified with the position in the x10 direction (which

is not manifest in the type IIA theory/classical field theory). As in [19], we can describe

quantum corrections by performing the usual M-theory lift of this picture and identifying

the effective value of the complexified FI parameter t in the IR theory with the distance

between the M2-brane and the M5-brane in the complex plane parameterized by x10 + ix6,

t = ∆x10 + i∆x6 . (3.13)

Combining this with eq. (3.12), the identification of the position in the v plane with the

twisted chiral field σ, and the fact that the M5-brane worldvolume is the SW curve Σ, we

arrive at the following property of the twisted superpotential:

∂WD2(a, v)

∂v
= t . (3.14)

This expression is actually equivalent to (3.6). Indeed, eq. (3.6) represents the effective

superpotential for the bulk fields after integrating out σ = v. By the standard rules

of the Legendre transformation, the solution to (3.14) is the derivative of the effective

superpotential W with respect to t = z, i.e. λ.

The linear sigma model construction we meet here has some interesting features, and

an unpleasant one. On the one hand, it gives a slightly better definition of surface operators

than the one based on a codimension two singularity for the gauge field, or the coupling of

the 4d SU(N) gauge theory to a CPN−1 sigma model on S. The advantage of the linear

sigma model is that it allows one to follow the “flop” from positive to negative values of α,

which appears to relate surface operators for consecutive gauge groups in the quiver. On the

other hand, it is still not as powerful as one might desire: e.g. in the N = 2 case, where the

U(1) flavor symmetry of the bifundamental field is promoted to a crucial SU(2) flavor group,
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one has to gauge this symmetry group to produce a generalized quiver. The cubic superpo-

tential coupling of the bifundamental field (in the N = 2 example, an SU(2)×SU(2)×SU(2)

“trifundamental”) to the 2d chiral multiplets cannot preserve this extra SU(2) symmetry.

It would be interesting to find a description of the surface operator capable to describe

in a symmetric fashion all three possible “flops” which may transport the basic surface

operators of either of the three SU(2) groups through the pair of pants.

We have now a rough, self-consistent picture of the correspondence between six and

four dimensional surface operators, in a given weakly coupled four dimensional Lagrangian

description. Well inside a tube the surface operator should be well described by the basic

defect operator where the SU(2) gauge group corresponding to the tube is broken to a U(1)

subgroup. Near the endpoints of the tube, the pure gauge theory description breaks down,

and the defect is better described by coupling to a 2d sigma model, associated to a specific

pair of pants. Flops in the 2d sigma model connect the surface operators living on different

legs of the pants. We will not attempt to refine this picture further in this paper.

3.4 Instanton counting

Now we are ready to discuss instanton counting in the presence of a surface operator. In

particular, our goal is to clarify the claim, made in the previous sections, that the semi-

classical behavior of the Nekrasov partition function in the presence of a surface operator12

matches the semiclassical limit of the conformal block with the insertion of a degenerate

field, and to set the stage for a computation beyond the semiclassical limit (that we will

not attempt in the present paper).

Following [11], we introduce the generating function

Zinst(a, q, ǫ; L, t) =

∞
∑

k=0

∑

m∈ΛL

qkeit·m

∮

Mk,m

1 (3.15)

where q = e2πiτ and Mk,m is the moduli space of “ramified instantons.” From the point

of view of the 4d gauge theory (where a surface operator supported on S is defined as

in (3.2) and (3.3)) the ramified instantons are anti-self-dual gauge connections on R
4 \ S

with instanton number k ∈ Z and monopole number m ∈ ΛL.

As noted above, one can also represent surface operators of Levi type L by studying

4d gauge theory on R
4 coupled to a 2d sigma model on S ⊂ R

4 with the target space G/L.

In this description, the complex parameter t is the complexified Kähler modulus of the

flag manifold G/L and “ramified instantons” with m 6= 0 can be thought of as the usual

instantons of the 4d gauge theory combined with 2d worldsheet instantons of the sigma

model. Indeed, according to (3.5), the monopole number m ∈ ΛL
∼= H2(G/L; Z) measures

the degree of the map Φ : S → G/L. In the case we are mostly interested in, where L is

the next-to-maximal Levi subgroup, we have G/L ∼= CPN−1 and the monopole number is

simply an integer, m ∈ Z.

12It is worth noting that in [21] it has been independently proposed that the instanton partition function

in the presence of a surface operator should satisfy a differential equation of the type (2.12). It would be

interesting to explore further the connections with that work.
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The moduli space Mk,m is non-compact, so the integral in (3.15) needs to be properly

defined (regularized). This can be achieved by noting that Mk,m admits a natural action

of the gauge group G (which acts by a change of framing at infinity) and an action of the

2d torus T2
E (induced by the action of T2

E = SO(2)1 × SO(2)2 ⊂ SO(4) on R
4). Therefore,

the integral on the right-hand side of (3.15) can be conveniently regularized by considering

the equivariant integral of the unit G × T2
E-cohomology class over Mk,m. This integral

takes values in the field of fractions of the ring H∗
G×T

2
E
(pt), which can be identified with

the ring of functions on the Cartan subalgebra of G×T2
E, invariant under the Weyl group.

Therefore, the equivariant integrals on the right-hand side of (3.15) are rational functions

of a, ǫ1, and ǫ2, where a = (a1, . . . , aN ) and ǫ1,2 denote coordinates on the Lie algebra of

T ⊂ G and T2
E, respectively.

As in [11], combining the instanton partition function with the classical term and the

one-loop term we obtain the full partition function,

Z4d = Zclassical · Z1−loop · Zinst (3.16)

that we already encountered in section 2. As we claimed there, the general structure of

conformal blocks with degenerate field insertions match the semiclassical expansion of the

partition function Z4d in the presence of surface operators,

Z4d ∼ exp

(

−F(ai)

ǫ1ǫ2
+

W(ai, t)

ǫ1
+ · · ·

)

, (3.17)

where the prepotential F(ai) and the twisted superpotential W(ai, t) are the F-terms of

the 4d theory on R
4 and the 2d theory on S = R

2 that contribute to the Nekrasov partition

function. Indeed, by the localization rule

Vol(R4) =

∫

R4

1 =
1

ǫ1ǫ2
, Vol(R2) =

∫

R2

1 =
1

ǫ1

where we assumed that the surface operator is supported on a plane S = {w1 = 0}. For a

surface operator supported at w2 = 0 the roles of ǫ1 and ǫ2 are exchanged. As we explained

in section 2, in the Liouville theory these surface operators correspond to the degenerate

fields Φ2,1 and Φ1,2.

Notice that the surface operator breaks the permutation symmetry between the

(a1, . . . , aN ). In particular, the classical twisted superpotential will be written as (η+τα)ai

for a certain choice of i. More generally, the instanton partition function is not invariant

under Weyl group permuting the (a1, . . . , aN ), unless one acts on this extra dummy label

i as well. This is as it should be to match the conformal block interpretation. Conformal

blocks without a degenerate insertion are labelled by continuous (Liouville or Toda) mo-

menta, each subject to the identification by the action of the Weyl group (α → Q − α for

Liouville theory). Conformal blocks with a degenerate insertion in a certain leg carry an

extra discrete label: the momenta on the two sides of the degenerate insertion must differ

by a value allowed by the degenerate fusion rule. The Weyl group acts non-trivially on

this difference. This discrete label coincides with the extra dummy label in the instanton

partition function.
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More generally, we believe that, for every conformal block with a degenerate field

insertion, there should be a half-BPS surface operator supported on a surface S ⊂ R
4

invariant under the symmetry (1.2). The definition of such surface operator should be given

in the corresponding generalized SU(2) quiver gauge theory, and allow for a computation

of the Nekrasov partition function in the presence of the surface operator. In particular,

it is natural to expect that the degenerate field Φ2,2 corresponds to a surface operator

supported on a degenerate curve S defined by the equation w1w2 = 0.

4 Line operators on surface operators

N = (2, 2) theories in two dimensions have interesting half-BPS line operators. They

preserve the diagonal combination of SU(1, 1|1)L × SU(1, 1|1)R. A useful way to produce

such line operators is to consider a deformation of the theory where some marginal

coupling t has a non-constant profile t(x1) as a function of the space coordinate x1 over

a finite region −L < x1 < L. A flow to the IR sends the scale L → 0 and squeezes the

profile t(x1) to a step function.

The resulting line operators are labeled by the path in the space of couplings, up to

homotopy. This construction applies as well to the construction of line operators inside

surface operators. A simple, rich example appears in [7] in the case of N = 4 super Yang-

Mills. We are especially interested in line operators for which the path in the space of

couplings is closed, so that the line operator does not interpolate between two distinct

surface operators.

It is easy to understand the meaning of such line operators in an Abelian gauge theory.

If we consider a profile for the coupling η to the magnetic flux, and we write η(x1) =

η0 + δη(x1) with δη(±∞) = 0, we get a term in the Lagrangian

∫

η(x1)F =

∫

η0F −
∫

dδη ∧ A (4.1)

In the IR the latter term reduces to ∆η
∫

dx0A0. (We take the surface operator to span

x0, x1). This line operator coincides with the insertion of a Wilson line for the U(1) gauge

group! A similar reasoning (or a simple electromagnetic duality) shows that a discontinuity

∆α coincides with the insertion of a ’t Hooft line operator.

We can use this result in two ways. In a non-Abelian gauge theory where the surface

operator breaks the gauge group to, say, L = SU(N − 1) × U(1), the Wilson and ’t Hooft

line operators will live in the U(1) factor. These operators are defined independently from

the bulk line operators. However we will learn how to reproduce the bulk line operators

from line operators living on a surface operator.

In the Coulomb branch of the non-abelian gauge theory, the line operators will take the

form of ’t Hooft-Wilson line operators with charges qi = ∆ηi, p
i = ∆αi. As the parameter

space of surface operators in the IR coincides with the SW curve Σ , one could consider

line operators in the IR associated to a closed path γ on Σ, which carry charge

qi + τijp
j =

∮

γ
ωi. (4.2)
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Alternatively, γ = qiα
i + pjβj in a canonical basis of one-cycles.

From the six-dimensional point of view, as our surface operators are labeled by a

point in the curve C over which the twisted (2, 0) theory lives, we expect to see line

operators labeled by closed paths in C, up to homotopy. We have two rather distinct

ways to label a line operator attached to a surface operator: a homotopy class of paths

in C in the UV 6-dimensional theory, and a homology class in Σ in the IR theory. We

already encountered this phenomenon in Liouville theory, and understood the relation to

the WKB analysis of [1]: expectation values of UV line operators are linear combinations

of individual contributions, each taking the form expected from an IR line operator.

Now we are ready to provide explicit expressions for the 2d CFT operators which

represent the action of line operators on surface operators.

4.1 Line operators from braiding and fusion

In order to introduce line operators in a setup where localization is possible, we need the

support of the line operator to be invariant under the two relevant U(1) isometries. The

isometries are the rotation in the plane of the surface operator, and the rotation in the plane

orthogonal to the surface operator. Although until now we mostly referred to straight line

operators, a conformal transformation allows us to consider circular line operators as well.

In complex coordinates z,w on C
2 ∼= R

4, we can consider a surface operator at w2 = 0 with

a line operator at |w1| = 1. The same location works for S4, in stereographic coordinates.

Given a conformal block with the insertion of a degenerate field Φ2,1(z), we can ask:

what is the effect of transporting the point z along a closed path γ on the surface C? This

is a well studied problem in the context of rational conformal field theories [22]. If we insert

the operator Φ(2,1) in a certain channel of the conformal block, the result is (by definition)

a power expansion in z, which is convergent as long as z lies in the corresponding tube

of the Riemann surface. The conformal block is defined outside that region by analytic

continuation. The analytic continuation is naturally executed stepwise, by moving z from

a tube to an adjacent one. Such elementary moves are represented by 2×2 matrices acting

on the corresponding spaces of conformal blocks. We refer to appendix B for a discussion

of this fact, and a review of the explicit calculation of the fusion and braiding matrices.

In order to understand the elementary moves, we just need to consider the simplest

possible setup, where a single degenerate insertion moves between the three legs of a three-

point vertex of full punctures. This has the physical interpretation of a surface operator

in the “pair of pants” theory of four free hypermultiplets, with masses turned on in the

Cartan of the SU(2)1 × SU(2)2 × SU(2)3 flavor subgroup.

If we place the full punctures of Liouville momenta α1, α3, α4 respectively at 0,1, ∞ on

the sphere, and the degenerate insertion at z, the conformal blocks can be given explicitly

in terms of hypergeometric functions. The basis of conformal blocks where the degenerate

field is inserted, say, on the a1 leg behave as z∆α1±b/2−∆α1−∆(2,1) = zb(Q
2
∓α1) as z → 0. The

transformation of basis to solutions with well defined behavior near z = 1 is called fusion

matrix, and will be denoted as F±±. This has to be intended as a transport along the

positive real axis. The transformation of basis to solutions with good behavior as z → ∞
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is called braiding matrix, and will be denoted as B±±(±1). The sign ±1 refers to transport

from 0 to ∞ along the positive real axis, on either side of z = 1.

For more general conformal blocks, we need to set up a useful convention to distinguish

the continuous labels at the intermediate channels from the discrete ± label associated

to the ± b
2 shift. In order to do that, we add a dummy label to the conformal block: we

do not just specify in which leg of the conformal block we insert the degenerate field,

but also “near which end” of the leg. Thus we label the conformal block by the Liouville

momentum a through the “long” piece of the leg. The other, “short” part of the leg has

momentum a ± b
2 . When a degenerate insertion is moved from one end to the other of

the same leg, the notions of “long” and “short” parts of the leg are exchanged, and the

continuous label is shifted by ± b
2 .

The transport of the degenerate insertion along a path in the Riemann surface gives a

sequence of elementary operations:

• fusion and braiding matrices, which only act on the discrete label

• transport along a leg, which act by a diagonal shift operator ai → ai ± b
2

• transport around a leg, which provides a diagonal phase factor.

It is rather simple to connect this decomposition to the semiclassical approximation

in the perturbative regime. In that regime, the branch points of the cover Σ → C lie in

the pair of pants regions, away from the long, thin tubes associated to the SU(2) gauge

groups. It is easy to see from the expression of φ2 for the pair of pants theory that each

pair of pants in C supports a single cut in the branched cover Σ → C. Only when the

path γ in C passes through a pair of pants there is some ambiguity on the lift γ̃ in Σ. The

2 × 2 fusion and braiding matrices differentiate between the two possible choices of sheet

of Σ entering and exiting the pair of pants. The transport along and around the tube is

perfectly diagonal, and well described by the naive WKB analysis.

4.2 S-duality of line operators in Nf = 4 theory

As an illustrative application of the Liouville CFT technology, let us consider the loop

operators, acting on a surface operator, in Nf = 4 SU(2) gauge theory, for which the

instanton partition function coincides with the Liouville conformal blocks of the four punc-

tured sphere. As usual, we place the punctures, of momenta α1,α2,α3,α4 respectively at

0, q, 1,∞, and consider a trivalent graph connecting 0, q and 1,∞ by a channel of mo-

mentum α. We will now introduce the Wilson and ’t Hooft loop operators via the CFT

monodromy operation, and explicitly demonstrate that S-duality interchanges the two.

The surface operator is represented by a (2,1) degenerate operator placed at some

location z on one of the legs of the conformal block. For definiteness, we place it on the

internal leg of the conformal block, say, near the 1,∞ vertex. As will become clear below,

this choice is particularly convenient for studying the action of S-duality.
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Figure 8. The Wilson loop move. The red line represents the degenerate insertion

Figure 9. The ’t Hooft loop move. It represents the same path as in the previous picture, but in

the S-dual frame

The basic Wilson line operator transports the degenerate field around the internal leg.

In the notation of the appendix B, this produces a simple phase factor
(

Ω
α± b

2

α,− b
2

)2

= e2πib(∓Q/2−Q/2±α) = e2πib(−Q/2± a
~
) (4.3)

To do S-duality, we need to apply a fusion matrix F that maps the original ‘s-channel’

conformal block into a ‘t-channel’ block, associated to a graph where (0,∞) and (q, 1)

are joined by an internal leg of momentum a′. If, during this operation, we want to keep

the degenerate field insertion in the intermediate channel, we need to specify in detail

the relative motion of the punctures at z and q. It is simpler to move z away from the

intermediate leg, and place it, say, on the q = 1 external leg. With this choice, the Wilson

line operator takes the schematic form

W = F Ω2F, (4.4)

the degenerate insertion is transported (via a fusion matrix F ) to the intermediate leg,

rotated around it via Ω2, and then fused back to the external leg (see figure 8).

A priori, we could now compute the ’t Hooft loop expectation values by defining them

as the Wilson loops in the S-dual theory, and by using the known form of the fusion matrix

F that implements the S-duality transformation on the Liouville conformal blocks:

= F . (4.5)

In other words, the ’t Hooft loop H could be obtained by commuting the Wilson loop W

with F
WF = FH (4.6)
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Figure 10. The Moore-Seiberg transformations which verify S-duality for the line operators. The

upper row gives the computation of a Wilson loop in Nf = 4. The computation is manipulated

through hexagon and pentagon relations.

However, the fusion matrix F for arbitrary conformal blocks is quite involved, and this

type of calculation is hard to do in practice. So instead, we define the ’t Hooft loop H

more directly, via the monodromy operation of a degenerate field on the S-dual path, as

indicated in figure 9. Schematically, the sequence of moves that defines H is (c.f. figure 9):

H = ΩFδFΩ2FδFΩ, (4.7)

the degenerate insertion is rotated to the other side of 1, fused to the internal leg,

transported across it, rotated around ∞, transported back, fused back to the 1 external

leg, and rotated to the original configuration. Because of the two shift operators, the final

expression contains three different terms, where a′ is subject to shifts ±b, 0.

The monodromy operation in figure 9 involves relatively simple braiding and fusion ma-

trices, that do not act on the modular parameter q, that defines the SU(2) gauge coupling.

Moreover, the braiding and fusion matrices can be shown to satisfy important consistency

relations, known as the pentagon and hexagon identities, which among others can be used

to derive the S-duality relation (4.6). The relation is proved graphically in figure 10.

Here we sketch the algebraic steps. First, we expand: FH = FΩFδFΩ2FδFΩ =

Ω(FFδF )Ω2FδFΩ. We apply the pentagon identity to the block in parenthesis FH =

Ω(FF)Ω2FδFΩ and commute F through FH = ΩFΩ2(FFδF )Ω. Another pentagon

identity and commutation brings us close to the final result FH = (ΩFΩ)(ΩFΩ)F . Finally,

two hexagon relations give FH = FΩF 2ΩFF = FΩ2FF = WF .

5 Line operators

We are now ready to study the gauge theory line operators that act in the bulk, without any

(nearby) surface operators. Such bulk line operators a priori look quite different from the

line operators that act on a surface operators. Surface line operators are essentially abelian,

since (for a surface operator with a next-to-maximal Levi subgroup) they live in a single

U(1) factor of the gauge group G, whereas bulk line operators are non-abelian. Nonetheless,
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we claim that a bulk line operator can be obtained by annihilating two identical surface

operators, one of which contains a surface line operator.13 In the Introduction, we used

this insight, combined with the 6d perspective, to argue that the Wilson-’t Hooft loops in

our class of gauge theories can be identified with certain loop operators in Liouville CFT,

defined in terms of the four step monodromy procedure summarized in section 1.2. In this

section, we will use this identification to compute the expectation values of Wilson and ’t

Hooft loops for certain basic examples. First, we will present an independent motivation

for our proposed CFT definition of the line operators.

5.1 Wilson-’t Hooft loops from Liouville CFT

Consider a circular Wilson line W
(k)
j in the spin j representation of the k-th SU(2) gauge

group factor. As shown by Pestun, inserting W
(k)
j inside the gauge theory instanton sum

on R
4, i.e. with given Coulomb branch parameters ai, simply amounts to multiplication by

the corresponding character

Wj(ak) = trRj

(

e4πibakT3
)

=

j
∑

p=−j

e2πbpak . (5.1)

Here and in the following, the summation
∑j

p=−j for the half-integral j stands for the sum

over half-integral p between −j and j. Instanton sums on R
4 are therefore eigenfunctions of

the circular Wilson line operators. On S4, the Wilson loop expectation value takes the form

〈W
(k)
j 〉

S4 =

∫

dai

∣

∣Z(τ ; ai)
∣

∣

2
Wj(ak) (5.2)

A similar direct gauge theory calculation of the expectation value of ’t Hooft loop oper-

ators in N = 2 gauge theories is not yet available. However, based on the semi-classical

discussion of section 2, we expect that these will take the following schematic form

〈Hj 〉S4 =

∫

daida′k Z(τ ; ai)Z(τ ; a′k)Hj(ai, a
′
k), (5.3)

where Hj denotes some ’t Hooft loop associated with the spin j representation. In the

following we will explicitly compute the kernel Hj(a, a′) in some specific examples.

The Wilson and ’t Hooft loops are special cases of a more general class of dyonic ’t

Hooft-Wilson line operators, whose systematic study was initiated in [23, 24]. We can

make contact here with the recent work [10], which provides a useful classification of ’t

Hooft-Wilson line operators in generalized SU(2) quiver gauge theories. The operators are

labeled by a set of magnetic and electric charges pi and qi for each SU(2) gauge group,

subject to an identification (pi, qi) → (−pi,−qi) for each i, and to a constraint: the sum

of the three magnetic charges pi for the three SU(2) gauging a single matter block should

13To see this, recall that a surface operator restricts the gauge transformations to the subgroup that, at

the surface, commutes with the U(1). Annihilating two surface operators reinstates the full gauge symmetry.

The bulk loop is given by averaging the surface loop over the full gauge orbit. Via standard coadjoint orbit

quantization, this yields a non-abelian loop operator.
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be even.14 The authors of [10] propose a suggestive identification between the set of line

operator charges and the set of (homotopy classes of) closed non-selfintersecting curves in

C. This classification via closed non-selfintersecting paths γ on C naturally fits with the

description of the loop operators via the 6-d (2,0) theory as the end-point of supersymmetric

semi-infinite M2-branes, as reviewed in the Introduction.

Correspondingly, we will denote a general Wilson-’t Hooft loop operator by

Φj(γ) . (5.4)

Here the label j indicates the spin j of the SU(2) representation. In the gauge theory, the

operators Φj(γ) can be thought of as the effect of transporting a dyonic point particle,

with charge labeled by the path γ, around the loop trajectory.

In a given perturbative regime, one can identify a complete set of non-intersecting

cycles on C, that lift to a complete set of A-cycles on the SW surface Σ. We will denote this

set of cycles by Ak. On the SW surface, we can choose a set of dual B-cycles, that project

back to C to a set of dual cycles that we denote by Bk.
15 The Wilson and ’t Hooft loops

are then identified as the loop operators associated with the A and B-cycles, respectively

W
(k)
j ≡ Φj(Ak) , H

(k)
j ≡ Φj(Bk) . (5.5)

If one would consider the insertion of multiple Wilson lines (all located on concentric

circles, invariant under the U(1) rotation that is used to justify the localization of the gauge

theory path integral), one would discover that the Wilson lines form a commutative and

associative algebra, given by the representation ring of SU(2):

W
(k)
ℓ (a)W (k)

s (a) =
∑

|ℓ−s|≤ j ≤|ℓ+s|

W
(k)
j (a). (5.6)

Via S-duality, we thus learn that, in general, all operators Φj(γ) associated with some given

path γ form a commutative associative algebra, isomorphic to the SU(2) representation

ring. More generally, we will see that two line operators Φj1(γ1) and Φj2(γ2) do not

commute in case the two curves γ1 and γ2 intersect.

We now set to describe the identification between line operators of charge γ and the

Verlinde loop operators associated with the same path γ on C.16 Within the context of

rational CFTs, the Verlinde operators are known to generate a commutative and associative

algebra, given by the fusion algebra of the CFT. Here we would like to define analogous

operators in Liouville theory.

14The authors of [10] find it useful to enlarge the space of line operators, by including magnetic flavor

line operators. Here, for now, we only consider line operators for the gauge groups.
15This description is slightly oversimplified. The A and B-cycles lie on the Prym curve of Σ. Moreover,

the set of B-cycles is not unique. E.g. one is free to apply shifts of the form Bk → Bk + Ak. In the gauge

theory, this freedom is a reflection of the Witten effect, shifts in the dyonic charge spectrum by one electric

unit. For small theta angles θk, however, there is a preferred choice of dual B-cycles that correspond to the

pure monopole charges.
16In fact, we face a small puzzle here: as we will see shortly, the loop operators in the CFT make sense

for all γ, while the gauge theory line operators appear to require the loop γ to be non-self-intersecting. We

will propose a resolution to this puzzle in appendix D.
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Liouville CFT is a non-rational CFT. It has a continuous spectrum of primary opera-

tors. Furthermore, part of the operator spectrum, including the identity operator, create

non-normalizable states. It is not at all obvious, therefore, that Liouville theory possesses

a well-defined fusion algebra, with similar properties to that of a rational CFT. However,

the discrete sub-spectrum of degenerate Virasoro representations do seem to specify a

well-defined closed sub-algebra. In particular, the Virasoro modules associated with the

operators Φn,1 generate a closed fusion algebra

[Φp,1] × [ Φq,1 ] =
∑

|p−q+1|≤n≤|p+q−1|

[ Φn,1]. (5.7)

This algebra is identical to the representation ring of SU(2), via the identification n ≡ 2j+1 .

More generally, the fusion algebra of a degenerate field with a continuous representation

also seems well defined. It reads (here j ≡ n−1
2 )

[ Φn,1] × [Va ] =

j
∑

p=−j

[Va+pb] (5.8)

where [Va] denote the chiral sub-Hilbert space with given Liouville momentum a. Here

and in the following, the symbol
∑j

p=−j for (half-)integral j stands for the summation over

p = −j,−j + 1, . . . , j − 1, j as usual. We now define the Verlinde monodromy operators

Φj(γ) via the following recipe [12]:

1. Insert the identity operator 1 inside a chiral Liouville correlation function.

2. Write 1 as the result of fusing two chiral operators Φ2j+1,1(z), via their OPE.

3. Transport one of the operators along a closed non-self-intersecting path γ.

4. Re-fuse the two degenerate fields together into identity 1, via their OPE.

This procedure defines a linear map on the space of Liouville conformal blocks. We need

to introduce a normalization factor Nj in order for these operations to represent the fusion

rule [25]. We will come back to this point shortly.

As a concrete illustration, let us consider the simplest case of N = 4 SYM theory,

corresponding to Liouville theory on the torus. The genus 1 conformal blocks are given by

the chiral partition sum, defined by the trace of qL0 over the sub-space [Va]

Z(a) = Tr
[Va]

qL0, (5.9)

with q = e2πiτ . These conformal blocks span a linear space, on which the monodromy

operators act. The monodromy operators Φj(A) around the A-cycles manifestly act diag-

onally, via eigenvalues that generate the SU(2) representation ring, and thus are naturally

given by (specialized) SU(2) characters. One finds

Φj(A)Z(a) = Wj(a)Z(a) (5.10)
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with Wj(a) as given in eqn (5.1). This establishes the identification of Φj(A) with the

Wilson line operators Wj. The action on the conformal blocks generated by the monodromy

around B-cycles should reflect the fusion algebra of the corresponding degenerate field [12,

25]. Indeed, one finds that

Φj(B)Z(a) =

j
∑

p=−j

Z(a + pb) (5.11)

These operators Φj(B) also generate an SU(2) representation ring. Since S-duality in-

terchanges the A and B-cycle, we identify Φj(B) with the ’t Hooft loop. Note that the

S-duality map amounts to taking a Fourier-transform, or equivalently:

Φj(B)Z(a) = Wj(aD)Z(a) ; aD ≡ i

4π

∂

∂a
. (5.12)

This relation matches with the results of the semi-classical study in section 2. It is impor-

tant to note, however, that it is special to the case of N = 4 SYM theory; in general, the

S-duality transformations are much more involved, as we will see shortly.

We should note here that, to obtain the above results, one needs to apply a stan-

dard normalization factor such that the operator Φj(B) associated with the B-cycle, when

acting on the identity representation, produces the degenerate character Zj with unit pre-

coefficient Φj(B)Z(0) = Zj with Zj =
∑

−j≤ p≤j
Z(pb) . The required normalization factor

Nj depends on j, but is otherwise the same for every path γ. To compute the factors Nj,

we perform the monodromy operation

= F−1 = F−1 = F−1F

For the first two degenerate insertions under consideration we obtain N1/2 = −cos πb2, and

N1 = 1+2 cos(2πb2). In general we expect to find Nj = (−)2j
∑

−j≤p≤j eiπpb2. Upon multi-

plying the ‘bare’ CFT monodromy operators by this factor, we get the properly normalized

Verlinde operators Φj(γ), that are identified with the ’t Hooft-Wilson loop operators.

In the following we will consider examples of Wilson and ’t Hooft loops in the simplest

N = 2 gauge theories, namely N = 2∗ and SU(2) with four flavors.

5.1.1 Example 1: Wilson loop in Nf = 4

As a first concrete check, we now compute the Wilson line in the SU(2) gauge theory with

Nf = 4 fundamental flavors, corresponding to the four punctured sphere.

For simplicity, we first focus on the spin 1/2 representation, defined by the monodromy

of the degenerate field Φ2,1. It generates the fusion algebra

[Φ2,1] × [Va ] = [Va− b
2
] + [Va+ b

2
] . (5.13)

According to our previous discussion, we define the Wilson loop by the operation:

= F−1 (5.14)
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= F−1Ω2 (5.15)

= F−1Ω2F (5.16)

For details on the notation, see appendix B. The degenerate fusion rules imply that the

momentum of the intermediate channel of the first and last graph is − b
2± b

2 , which we shortly

denote by ±. Notice that the + channel corresponds to the state with zero momentum.

The Wilson loop is then

W1/2 = (F−1Ω2F )++. (5.17)

The correct expressions for the fusion and flip matrices can be found in appendix B. Per-

forming the explicit computation gives

W1/2 = 2cosh(2πbP ) ; a = Q/2 + iP. (5.18)

As already mentioned, once the fusion matrices with a degenerate insertion (2, 1) are

given, we can use the pentagon and hexagon identities in order determine the fusion

matrices with a degenerate insertion (n, 1). Via this route, we have computed the fusion

matrices with a degenerate (3, 1) insertion. We obtain for the corresponding Wilson loop

W1 = 1 + 2 cosh(4πbP ) . The general answer can now be guessed, and agrees with the

gauge theory result (5.1)

Wj =

j
∑

p=−j

e4πpbP . (5.19)

Note that, since the monodromy calculation can be performed locally on a given

internal leg of the conformal block, this result for the N = 2 gauge theory with Nf = 4

flavors is sufficient to fix the form of any Wilson line in any member in our class of N = 2

gauge theories. The precise match between (5.19) and (5.1) formed the original motivation

for our proposed identification of the Wilson-’t Hooft loop operators with the Verlinde

operators. Combined with the geometric motivation presented in the Introduction, based

on the relation with surface operators, this precise match can be viewed as direct evidence

supporting the conjectured identification between surface operators and degenerate

operator insertions in the Liouville CFT.

5.1.2 Example 2: ’t Hooft loop in N = 2∗

We now turn to the ’t Hooft loop of the N = 2∗ theory, corresponding to the torus with

one puncture. It is specified by the following monodromy operation:

= F−1 (5.20)

= F−1B (5.21)
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= F−1BF . (5.22)

Note that in the last line, there are two types of terms: one has a′ = a′′ and has the vacuum

in the fusion of the two degenerate states with −b/2; the other has a′ − a′′ = ±b and has

−b in the fusion of the two states with −b/2. As we did for the case of the Wilson loop,

we project on the term which has the vacuum in the fusion. We can write the result in the

following form

H1/2 Z(a) = H+(a)Z(a + 1
2b) + H−(a)Z(a − 1

2b) (5.23)

Note that the full operation again involves shift operators of the form e±
1
2
b∂a .

In terms of the fusion and braiding matrices

H+(a) = N1/2

(

F

[

−b/2 −b/2

a a

])−1

++

B

[

m −b/2

a a + b/2

]

−+

F

[

−b/2 −b/2

a + b/2 a + b/2

]

−+

(5.24)

H−(a) = N1/2

(

F

[

−b/2 −b/2

a a

])−1

+−

B

[

m −b/2

a a − b/2

]

+−

F

[

−b/2 −b/2

a − b/2 a − b/2

]

++

(5.25)

Finally, using the explicit expression for F and B we obtain

H+(a) =
Γ(2ibP ) Γ(1 + b2 + 2ibP )

Γ(2ibP + mb)Γ(1 + b2 + 2ibP − mb)
, (5.26)

H−(a) =
Γ(−2ibP ) Γ(1 + b2 − 2ibP )

Γ(−2ibP + mb)Γ(1 + b2 − 2ibP − mb)
(5.27)

Here the mass parameter m is normalized so that at m = 0 the theory reduces to N = 4

SYM theory, i.e. m = 0 corresponds to inserting the identity operator at the puncture.

A consistency check. The Wilson loop operator is “hermitian,” in the sense that inside

a full correlation function on S4 one can act with the Wilson line either on the holomorphic

or the anti-holomorphic conformal block, and obtain the same result: indeed the Wilson

loop operator (5.2) is diagonal in the integration variable P , and symmetric under iP →
−iP . For consistency, the ’t Hooft loop should satisfy the same constraint.

Up to the usual normalization factor, the integral expression for the S4 expectation

value of the ’t Hooft loop is (here b = 1)

〈H1/2 〉S4 =

∫

daC(a,m,Q − a)
[

Z(a)H+(a)Z(a + 1
2b) + (+ ↔ −)

]

(5.28)

where C(a,m,Q− a) denotes the DOZZ three point function. The DOZZ pre-factor arises

as a one loop determinant in the gauge theory, and does not depend on the gauge coupling.

The conformal block represent the sum over the classical instanton contributions, and do

depend on the gauge coupling. For the N = 4 case, the partition function on S4 further

simplifes and reproduces the semi-classical calculation on the gauge theory side performed

in [26]; for details, see appendix E.
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For N = 2∗ the DOZZ three point function takes the form

C(a,m,Q − a) =
[

πµγ(b2)b2−2b2
]−m/b Υ0Υ(2a)Υ(2m)Υ(2a − Q)

Υ(m)2Υ(2a + m − Q)Υ(2a − m)
. (5.29)

The action of the ’t Hooft loop is non-diagonal in the integration momentum P . Hence

to compare the action of the ’t Hooft loop on the holomorphic conformal block and the

action on the anti-holomorphic conformal block one needs to shift the integration contour,

taking into account the effect of the shift on the relevant DOZZ three point functions. A

simple calculation shows that the effect of a shift in the integration variable a is:

C(a + b/2,m,Q − a − b/2)

C(a,m,Q − a)
=

γ(1 + b2 + 2ibP )γ(2ibP )

γ(2ibP + mb)γ(1 + b2 + 2ibP − mb)
. (5.30)

By using the explicit expressions (5.26)–(5.27), we recognize the required relation with the

’t Hooft loop coefficients:

C(a + b/2,m,Q − a − b/2)

C(a,m,Q − a)
=

H+(iP )

H−(iP + b/2)
(5.31)

This relation is sufficient to show that the integral expression when the ’t Hooft operator

acts on the anti-holomorphic conformal block coincides with (5.28) and hence that the ’t

Hooft operator is hermitian.

The DOZZ prefactor can be thought of as part of the integration measure of the integral

over the Coulomb branch parameter a. Alternatively, we can choose to absorb it in the

definition of the conformal blocks. This leads to a somewhat simplified form of the ’t Hooft

loop expectation values, that suggests that it should be possible to reproduce the result

via a direct gauge theory calculation. We leave this problem for future study.

5.1.3 Example 3: ’t Hooft loop in Nf = 4

We can repeat the exercise for the case of SU(2) gauge theory with four flavors. We define

the ’t Hooft loop in this case by the following operation:

= F−1 (5.32)

= F−1BB (5.33)

= F−1BBB (5.34)

= F−1BBBBB (5.35)

= F−1BBBBBF (5.36)
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In words, one braids m2 and −b/2 twice, when going from (5.32) to (5.33), then braids

−b/2 and −b/2 when going from (5.33) to (5.34), then braids −b/2 and m3 twice when

going from (5.34) to (5.35). In the last line, a′ and a′′ can take the values a and a ± b. As

before, we project on the channel a′ = a′′. Using the explicit expressions for the fusion and

braiding matrices in the appendix, we obtain the following result17

H1/2 Z(a) = H+(a)Z(a + b) + H0(a)Z(a) + H−(a)Z(a − b) (5.37)

with

H±(a) = − 2π2csc(πb2)

Γ[−b2]Γ[1 + b2]
× (5.38)

× Γ[1 + 2b(b ± iP )]Γ[b(b ± 2iP )]Γ[±2ibP ]Γ[1 + b2 ± 2ibP ]
∏

si=±
Γ[12 (1 + b2 ± 2ib(P + s1m1 + s2m2))]Γ[12 (1 + b2 ± 2ib(P + s3m3 + s4m4))]

and

H0(a) =
4 cos πb2

cosh 4πbP − cos 2πb2
(cosh 2πbm2 cosh 2πbm3 + cosh 2πbm1 cosh 2πbm4) (5.39)

+
4 cosh 2πbP

cosh 4πbP − cos 2πb2
(cosh 2πbm1 cosh 2πbm3 + cosh 2πbm2 cosh 2πbm4) .

The above formulas are clearly more complicated than those of the N = 2∗ theory, and it

would seem to be a true challenge to reproduce them via a direct gauge theory calculation.

However, we expect that, similar as for N = 2∗, the prefactors H±(a) can be consider-

ably simplified absorbing the DOZZ factor/one-loop determinant into the definition of the

conformal blocks. The diagonal factor H0(a), however, can not be simplified in this way.

Note further that, although the above ’t Hooft operator is associated to the spin 1/2

representation of SU(2), its action on the chiral partition functions looks more like that

of a spin 1 loop operator, at least when compared to the N = 2∗ answer (5.23). The

geometric reason for this is that to perform the monodromy operation for the Nf = 4

theory, the degenerate insertion needs to pass the intermediate leg of the conformal block

twice. The physical reason is that the ’t Hooft operator with minimal magnetic charge

in the Nf = 4 theory, which has fields in the doublet of the gauge group, has twice the

magnetic charge of the minimal ’t Hooft loop of the N = 2∗ theory, which has fields only

in the adjoint of the gauge group.18

The S-duality relation between Wilson and ’t Hooft line operators can be explicitly

demonstrated, by standard manipulations in the Moore-Seiberg groupoid. The main part

of the computation was already done in section 4.2 for the corresponding line operators

17We removed an overall phase factor e
3

2
iπb2 . This type of phase factor can be produced, say, by an

extra braiding move of one degenerate field around the other in the vacuum channel. Such spurious P

independent phase factors are subtle to track down across S-duality, unless one goes carefully through

the full set of algebraic manipulations in the Moore-Seiberg groupoid. More simply, we remove it here by

requiring H0 to be real.
18This fact was already noted in [24].
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acting on a surface operator. The new ingredients are the initial and final fusions from and

to the identity, which add little extra complication.

As a more conceptual point, we observe that the linear action of the Wilson-’t Hooft

loops on the chiral partition function is independent of the gauge coupling τ . This is of

course an automatic consequence of the fact that both are specified as elements of the

Moore-Seiberg groupoid of the Liouville CFT, which is generated by fusion and braiding

matrices that do not depend on the complex structure of Riemann surface C. This mo-

tivates us to look for a more intrinsic formulation of the loop operators, in which this

independence is more manifest.

5.2 Loop operators from quantum Teichmüller space

The modular geometry of Liouville CFT identifies the space of conformal blocks with

a linear representation space on which the fusion and braiding matrices and the loop

operators act as a non-commutative set of unitary and hermitian operators, respectively.

It is thus natural to expect that there should exist a suitable phase space that after

quantization yields the Liouville conformal blocks as Hilbert states. The Verlinde

operators would then be given by suitable functions, defined on this phase space. For

the Liouville-Virasoro conformal blocks associated with some genus g Riemann surface

C with n punctures, there is a natural candidate for such a phase space: the Teichmüller

space Tg,n of C. This relation between Liouville CFT and the quantization of Tg,n was

conjectured in [27], and recently proven in [28].

Teichmüller space Tg,n can be thought of as the space of constant curvature metrics

on C. This also happens to be space of classical solutions to the Liouville equations on

C. Tg,n is known to be 6g − 6 + 2n dimensional symplectic manifold, with symplectic form

given by the Weil-Peterson form. It can thus be quantized.

A convenient set of observables is obtained as follows. We may specify the constant

curvature 2-d metric via a zweibein and a spin connection, which in turn combine into a flat

SL(2, R) gauge field A. To any (non-self-intersecting) path γ on C, we can thus associate the

Wilson-like loop L(γ) = tr 1
2
exp

∮

γ A, where the trace is taken in the spin 1/2 representation

of SL(2, R). L(γ) can be expressed in terms of the geodesic length ℓ(γ) of γ via

L(γ) = 2 cosh 2ℓ(γ) . (5.40)

In the quantized theory, these operators in general only commute in case the corresponding

curves do not intersect. We can thus define a maximally commuting set of observables,

by choosing the set of L(γ)’s for all the dividing cycles of a pant decomposition of the

Riemann surface C. The Hilbert space of the quantum theory is thus naturally labeled by

the eigen values of this maximally commuting set of operators.

This structure is of course reminiscent of the way the Liouville CFT loop operators

Φj(γ) act on the space of conformal blocks. In fact, we claim that the operators L(γ) can

be identified with the Verlinde monodromy operators of the lowest degenerate field Φ2,1.

Φ 1
2
(γ) ≡ L(γ) . (5.41)
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A semi-classical motivation for this identification is that the degenerate field equation (2.12)

tells us that moving Φ2,1 proceeds via parallel transport via a flat SL(2, R) connection

A =

(

0 b2T

1 0

)

in the spin 1/2 representation. In the full quantum theory, the result

was established in [28]. The same type of argument can be generalized to the degenerate

operators Φ2j+1,1, to show that the corresponding monodromy operation can be identified

with the spin j Wilson loop trj exp
∮

γ A =
∑

−j≤p≤j
e2pℓ(γ).

As concrete illustration, we return to the Nf = 4 example discussed in the subsection

4.2.3. This case was analyzed in detail in [29]. We will not repeat his analysis here, but

only state the main results relevant to our problem of computing the action of the loop

operators. The most convenient construction of the quantized Teichmüller theory proceeds

via the introduction of so-called Fock variables. In the case of the four punctured sphere,

these comprise a single pair of canonically conjugate variables P̂ and X̂, with [P̂, X̂] = i.

The A and B-cycle operators are expressed in terms of P̂ and X̂ as [29] (here for simplicity,

we assume that all mass parameters mi are equal)

L̂(A) = 2 cosh(2πbP̂) + e−
1
2
bX̂
[

4 cosh2(πbP̂)
]

e−
1
2
bX̂ (5.42)

L̂(B) = 2 cosh(2πbP̂) + e
1
2
bX̂
[

4 cosh2(πb(P̂ − m))
]

e
1
2
bX̂

These two loop operators do not commute when b 6= 1, but for b = 1, they do commute.

We will comment on this distinction in the concluding section.19

The conformal block with fixed Liouville momentum along the intermediate channel

is now identified with the eigen state |Ψa〉 of the A-cycle operator L̂(A), with eigenvalue

L̂(A)|Ψa〉 = 2cosh(2πbP ) |Ψa〉 . (5.43)

These eigen states have been explicitly constructed in [30]. Via the gauge theory Liouville

correspondence, |Ψa〉 represents the Nekrasov partition sum with Coulomb parameter a,

and L̂(A) is the spin 1
2 Wilson line. Note however that the quantum system has been

defined independent of the gauge coupling constant τ , and hence, without introducing

extra structure, it can not be used to compute gauge theory quantities that depend on τ .

The spin 1
2 ’t Hooft loop is found by computing the action of the dual loop operator

L̂(B) on the eigen states of L̂(A)

L̂(B)|Ψa〉 = H+(a)|Ψa+b〉 + H0(a)|Ψa〉 + H−(a)|Ψa−b〉 . (5.44)

The results of [29] imply that, in a suitable normalization of |Ψa〉, the above pre-factors

H±(a) and H0(a) coincide with the results (5.38) and (5.39) found from the Liouville CFT.

The fusion matrix F that implements S-duality of the Nf = 4 theory, is the unitary basis

transformation that relates the eigen states of L̂(A) and L̂(B).

19For general b, there exists a natural dual pair of operators L̃(A) and L̃(B) given by the same expres-

sions (5.42), with b replaced by 1/b. The first pair (5.42) represent the monodromy loops of the degenerate

field Φ2,1 and the dual pair represent the monodromy loops of Φ1,2. The two dual pairs of operators

commute with each other, but not among each other.
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To conclude, we learn that the Wilson-’t Hooft loop operators, when acting on the

Nekrasov partition functions form a non-commutative ring, given by the ring of func-

tions (5.40) on the quantized Teichmüller space.

6 Conclusion

In this paper we have studied some basic properties of surface and loop operators in a class

of N = 2 SU(2) quiver gauge theories, obtained by compactifying the 6-d (2, 0) theory on

a Riemann surface C. We have exploited the identification of the instanton partition sum

of the gauge theory with the conformal blocks of Liouville CFT, to define the expectation

values of the surface and loop operators in terms of natural quantities in the CFT. In the

2-d CFT formalism, non-perturbative properties of the gauge theory, such as S-duality,

can be made manifest. We end with some comments on our main results, and point to

some important open problems.

We have found that the Wilson-’t Hooft line operators are naturally represented via a

non-commutative ring of linear operators Φ(γ), that act on the instanton partition functions

of the ǫ deformed theory on R
4. This raises a small basic puzzle, since in general, there is

no natural way to define a commutation relation between line operators on R
4. However,

in the ǫ-deformed theory there is a special supersymmetric sub-class of loop operators that

are left invariant under the U(1) symmetry (1.2). For b =
√

ǫ1
ǫ2

6= 1 the invariant loops must

be located at w1 = 0 or at w2 = 0. When restricted to each of these 2-d subspaces, loop

operators do allow a natural time ordering, e.g. by using the radial time coordinate exp(t) =

|w1|2+|w2|2. The loop operators thus may represent a non-commutative ring. On the other

hand, in the special case that b = 1, the U(1) symmetry (1.2) leaves invariant a continuous

family of circular loops, given by t = const. within any plane of the form c1w1 + c2w2 = 0.

When acting at the same radial time t, two such circular loops in different planes are

automatically linked. Locality restricts the commutation relation between linked loop

operators to elements of the center of the gauge group G. In the case of the SU(2) quiver

theories, two different loop operators must therefore either commute or anti-commute for

b = 1. This is indeed the case for our construction. The two operators in the Nf = 4

theory given in (5.42) are a specific example: it is easy to check that in this case the ’t

Hooft loop commutes with the Wilson loop.

Perhaps the most important lesson from our study is that it has illustrated the central

role played by the surface operators of the supersymmetric gauge theory. It is evident that

surface operators have a very rich set of properties, that are well worth analyzing in much

more detail. In particular, it would be a most useful advance if one could establish our

conjectured identification with a local degenerate field placed at a point on the Riemann

surface C. One possible route is to try to make contact with the work of Braverman [21],

who has independently proposed that the instanton partition function in the presence of a

surface operator should satisfy a differential equation of the type (2.12).
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A Useful formulae

We start by defining the Barnes double Gamma function. Barnes double zeta function is

defined as

ζ2(s;x|ǫ1, ǫ2) =
∑

m,n

(mǫ1 + nǫ2 + x)−s =
1

Γ(s)

∫ ∞

0

dt

t
ts

e−tx

(1 − e−ǫ1t)(1 − e−ǫ2t)
(A.1)

from which Barnes’ double-Gamma function is defined as

Γ2(x|ǫ1, ǫ2) = exp
d

ds

∣

∣

∣

s=0
ζ2(s, x|ǫ1, ǫ2). (A.2)

The arguments ǫ1,2 in Γ2 will be often omitted if there is no confusion. Assume ǫ1,2 ∈ R>0.

Then Barnes’ double-Gamma function is analytic in x except at the poles at x = −(mǫ1 +

nǫ2) where (m,n) is a pair of non-negative integers. Therefore one can think of Barnes’

double-Gamma as the regularized infinite product

Γ2(x|ǫ1, ǫ2) ∝
∏

m,n≥0

(x + mǫ1 + nǫ2)
−1 . (A.3)

An important property is

Γ2(x + ǫ1|ǫ1, ǫ2)

Γ2(x|ǫ1, ǫ2)
=

√
2π

ǫ2
x/ǫ2−1/2Γ(x/ǫ2)

(A.4)

The three point function of primaries in Liouville theory is given by the DOZZ formula

in terms of

C(α1,α2, α3) =
[

πµγ(b2)b2−2b2
](Q−

P3
i=1 αi)/b

×

× Υ0Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α1 + α2 + α3 − Q)Υ(α1 + α2 − α3)Υ(α2 + α3 − α1)Υ(α3 + α1 − α2)
.

(A.5)
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where the Υ and γ functions are given by

Υb(x) =
1

Γb(x)Γb(Q − x)
, Γb(x) = Γ2(x|b, b−1), γ(x) = Γ(x)/Γ(1 − x) (A.6)

B Fusion and braiding

In this appendix we briefly review the definition of fusion and braiding matrices and the

identities they satisfy. We will follow closely the review [22] to which we refer the reader

for more details. For Liouville theory, the relevant results were developed in [13] and

references therein. We use the following pictorial representation for the conformal block of

the four-point function

〈Va1(0)Va1(1)Va3(∞)Va4(q)〉{a} = , (B.1)

where ai denote the Liouville momenta of the states. Usually these momenta are chosen to

lie in the physical line ai = Q
2 + iPi, with Pi real, however, sometimes, as discussed in detail

bellow, we will consider ”degenerate” values of the form iP = −n
2 b−m

2b . Fusion and braiding

matrices are defined as the ones linearly relating different sets of blocks, for instance

=
∑

a′

Faa′

[

a2 a3

a1 a4

]

(B.2)

In principle, the index a′ could run over a continuous set, however for the case considered in

this paper we will focus on discrete sums, as argued bellow. We will often choose one the ex-

ternal states, lets say a2, to be the degenerate field V2,1, namely a2 = Q/2+−2
2 b− 1

2b = −b/2.

In this case, the ”degenerate” fusion rules imply that a = a1 ± b/2 and a′ = a3 ± b/2.

Another case of interest is the case of the identity operator, in which a2 = 0, in this case

a = a1 and a′ = a3. The fusion matrix has the following symmetries

Faa′

[

a2 a3

a1 a4

]

= Faa′

[

a1 a4

a2 a3

]

= Faa′

[

a3 a2

a4 a1

]

. (B.3)

In addition, the fusion matrices satisfy the following orthogonality conditions

∑

a′

Faa′

[

a2 a3

a1 a4

]

Fa′a′′

[

a2 a1

a3 a4

]

= δaa′′ . (B.4)

In a similar manner, we define the braiding matrices

=
∑

a′

B
(ǫ)
aa′

[

a2 a3

a1 a4

]

(B.5)

where ǫ = ±1 denotes the sense of the braiding. B and F satisfy the following relation

Faa′

[

a2 a3

a1 a4

]

= e−ǫiπ(∆a1+∆a3−∆a−∆a′)B
(ǫ)
aa′

[

a2 a4

a1 a3

]

(B.6)
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A particular case of the braiding matrix, in which of the the external states is the identity,

flips a1 and a2, defining the flip operator

= Ω(ǫ)aa1,a2
(B.7)

where20

Ω(ǫ)aa1,a2
= eǫπi(∆a1+∆a2−∆a) (B.8)

and ∆a = a(Q − a) is the conformal dimension of the given operator.

Fusion and braiding matrices are known to satisfy several identities [13, 22]. In par-

ticular they satisfy the so-called pentagon and Yang-Baxter identities

∑

s

Fp2s

[

j k

p1 c

]

Fp1l

[

i s

a c

]

Fsr

[

i j

l k

]

= Fp1r

[

i j

a p2

]

Fp2l

[

r k

a c

]

(B.9)

∑

p

B(ǫ)
a6p

[

a2 a3

a1 a7

]

B(ǫ)
a7a9

[

a2 a4

p a5

]

B(ǫ)
pa8

[

a3 a4

a1 a9

]

=
∑

p

B(ǫ)
a7p

[

a3 a4

a6 a5

]

B(ǫ)
a6a8

[

a2 a4

a1 p

]

B(ǫ)
pa9

[

a2 a3

a8 a5

]

The so-called hexagon identity is obtained from the Yang-Baxter relation by setting, lets

say, a5 = 0 and using the fact that Fa1a3

[

0 a3

a1 a4

]

= 1.

B.1 Degenerate fusion

The Liouville theory correlation functions are naturally defined for normalizable vertex

operators, whose Liouville momentum α lies on the physical line α = Q
2 + iP for real

P , i.e. with conformal dimensions greater than Q2

4 . It is sometimes useful, though, to

analytically continue such correlation functions to other values of the momenta, especially

to the degenerate values iP = −n
2 b − m

2b . A correlation function with one degenerate field

satisfies a holomorphic differential equation due to the presence of a null vector in the

Verma module of the degenerate field.

A correlation function with all momenta on the physical line can be decomposed into

conformal blocks and written as a multiple integral over the momenta on the internal legs,

which also lie on the physical line. As the conformal blocks are analytic in the confor-

mal dimensions, and satisfy individually the Ward identities for the energy momentum

tensor, one may imagine that the conformal blocks with a degenerate insertion will also

satisfy the same differential equation as the full correlation function. However, this is not

the case, essentially because the insertion of a null vector does not make the conformal

block automatically zero. Rather, the conformal block vanishes identically if and only if

the internal/external momenta adjacent to the insertion of the null field are analytically

continued to values satisfying the degenerate fusion relations iP1 − iP2 = rb− s
b where r, s

are the weights of SU(2) representations of spin n−1
2 and m−1

2 respectively. Hence only

conformal blocks satisfying this constraint will satisfy the differential equation.

20Note that if one of the entries of Ω is degenerate, then the other two entries should be related, so in

this case the corresponding δ-function is missing from our definition of Ω.
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Correspondingly, if one of the external Liouville momenta in a correlation function is

analytically continued to a degenerate value, we expect one of the integrals over continuous,

physical momenta to “localize” to a discrete sum over the values allowed by the degenerate

fusion relations. The mechanism is rather simple and can be understood from the form

of the DOZZ three point function. As a function of the external momenta, say α1, the

DOZZ three point function has actually a zero at all degenerate values, because of the

factor Υ(2α1) in the numerator. In the full correlation function, however, this zero is

compensated by a crucial divergence produced by the analytic continuation: the poles

produced by the factors Υ(α1 + α2 − α3)Υ(α3 + α1 − α2) at α3 = α2 + (α1 + nb + mb−1)

and at α3 = α2 − (α1 + n′b + m′b−1) move towards each other and end up pinching the

integration path as α1 passes through the degenerate values. One can deform away the

path from the pinching poles, say keeping it in the canonical region for one Υ function, at

the price of collecting extra residues as the poles of the other Υ function are crossed. These

poles satisfy the degenerate fusion relations for α1, α2. An almost identical contribution

comes from the other two Υ functions at the denominator.

As a result, we are left with a sum over the residues, i.e. conformal blocks which satisfy

the degenerate fusion constraints, and hence the differential equation. We will call these

conformal block “degenerate conformal blocks”

Any sort of fusion and braiding operations in the presence of a degenerate field must

send solutions of the differential equation to solutions of the differential equation. Hence

the action of a fusion operation on a degenerate conformal block should give a combination

of degenerate conformal blocks, rather than an integral over all possible momenta in the

intermediate channels. The mechanism is presumably similar as the one for the correlation

functions. There are two integrals: one in the definition of the fusion matrix itself, and one

over the internal momentum of the fused conformal block. The fusion matrix has a zero

both when an external momentum becomes degenerate, and then furthermore when the

internal momentum satisfies the degenerate fusion rule. The zeros will kill the continuum

contributions, and spare only the discrete residues accumulated during the analytic contin-

uation of the external momentum to the degenerate value, and of the internal momentum

to the value dictated by the degenerate fusion relation.

As we will see below, we do not need to compute those residues: the fusion matrix in-

volving a degenerate field used in this paper can be extracted directly from the explicit solu-

tions to the differential equations for four point degenerate conformal blocks on the sphere.

For the computations relevant to this paper, we only need the answer for the simplest

case, the (2, 1) degenerate field. The genus zero four point correlation functions with a

(2, 1) insertion satisfy a degree 2 differential equation which reduces to the hypergeometric

equation. The equation and solutions are actually determined uniquely by the behavior as

the degenerate puncture, located at the point q, approaches the other punctures at 0, 1,∞
of Liouville momenta α0,1,∞. The two conformal blocks in the s channel, with internal
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momentum α0 ± b
2 are

Zs
− = qα0b(1 − q)α1b ×

×2F1

((

α0 + α1 + α∞ − b

2
− Q

)

b,

(

α0 + α1 − α∞ − b

2

)

b, (2α0 − b)b; q

)

Zs
+ = q(Q−α0)b(1 − q)α1b ×

×2F1

((

Q − α0 + α1 − α∞ − b

2

)

b,

(

− α0 + α1 + α∞ − b

2

)

b, (2Q − 2α0 − b)b; q

)

The s-channel conformal blocks can be rewritten in terms of t-channel conformal blocks

by standard hypergeometric identities, from which the fusion coefficients can be computed

F−−

[

−b/2 a3

a1 a4

]

=
Γ[(2a1 − b)b] Γ[(Q − 2a3)b]

Γ[
(

a1 − a3 + a4 − b
2

)

b] Γ[1 + (a1 − a3 − a4)b + b2/2]
(B.10)

F−+

[

−b/2 a3

a1 a4

]

=
Γ[(2a1 − b)b] Γ[(2a3 − Q)b]

Γ[
(

a1 + a3 − a4 − b
2

)

b] Γ[
(

a1 + a3 + a4 − b
2 − Q

)

b]
(B.11)

F+−

[

−b/2 a3

a1 a4

]

=
Γ[1 + (Q − 2a1)b] Γ[(Q − 2a3)b]

Γ[1 −
(

a1 + a3 − a4 − b
2

)

b] Γ[1 −
(

a1 + a3 + a4 − b
2 − Q

)

b]
(B.12)

F++

[

−b/2 a3

a1 a4

]

=
Γ[1 + (Q − 2a1)b] Γ[(2a3 − Q)b]

Γ[
(

− a1 + a3 + a4 − b
2

)

b] Γ[1 − (a1 − a3 + a4)b + b2/2]
(B.13)

It is straightforward to verify the basic pentagon/Yang-Baxter/hexagon identities which

involve such degenerate fusion matrices only.21 The pentagon/hexagon identities involving

one degenerate field produce a recursion relation for the full, general fusion matrix which

can, in principle, be used to determine its functional form. More prosaically, these identities

are central to the results we present in this paper.

C Semi-classical conformal blocks for Nf = 4

Here we consider the conformal block corresponding to the four punctured sphere, that

describe the partition function of the Nf = 4 theory. We focus on the semiclassical limit,

~ → 0, with the conformal dimensions given by ∆i = Q2

4 +
a2

i
~

(where ai can be a mass

parameter or a Coulomb branch parameter). In this limit

〈Vm1(0)Vm2(q)Vm3(1)Vm4(∞)〉a ∼ exp

(

−F(a)

~2
+ O(~0)

)

(C.1)

As seen in section 2, we can also consider the above conformal block with a degenerate

field insertion. This insertion modifies the semi-classical limit (C.1) at subleading order

〈Vm1(0)Vm2(q)Φ2,1(z)Vm3(1)Vm4(∞)〉a ∼ exp

(

−F(a)

~2
+

bW(a, z)

~
+ O(~0)

)

(C.2)

Notice that we have inserted the degenerate field in z, with q ≪ z ≪ 1. Both expressions

can be computed as an instanton expansion. (C.1) simply as an expansion of the form

21These relations can also be used to produce the fusion matrices for higher degenerate fields (m,n). The

resulting expressions, however, are quite complicated and will not be presented here.
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Figure 11. Decomposition of a self-intersecting path into a linear combination of non self-

intersecting paths.

∑

k Zkq
k, while (C.2) and an expansion of the form

∑

k,l Zk,lq
k
1ql

2. In order to work con-

sistently at a given order in the second sum, we choose q1 = q1/2z and q2 = q1/2/z. This

means we are locating the degenerate insertion at q1/2z.

The superpotential W can then be obtained as the ratio of (C.2) to (C.1). To do this,

the correct procedure is then to expand its log powers of q and then take the semiclassical

limit. In first order we obtain

W(q1/2z, a) = −ab2 log z + b2 a2 + m2
3 − m2

4 − (a2 − m2
1 + m2

2)z
2

2az
q1/2 + · · · (C.3)

where the first term comes from a three level factor, which in the semiclassical limit is of

the form |z|− ab
~ .

As mentioned in section 2, we can recover the quadratic differential φ2(z) by con-

sidering the conformal block with an extra insertion of the energy momentum tensor.

We consider the conformal block (C.1) and insert an energy momentum tensor T (q1/2z).

Again, we can compute φ2(q
1/2z) = −T (q1/2z) as an instanton expansion. Considering its

semiclassical limit

φ2(q
1/2z) =

a2

z2

1

q
− (m2

1 − m2
2)z

2 + m2
4 − m2

3 − a2(1 + z2)

z3

1

q1/2
+ · · · (C.4)

We obtain the following relation between (C.3) and (C.4)

(

∂zW(q1/2z)
)2

= qφ2(q
1/2z) (C.5)

We checked this relation to rather high order in the instanton expansion. This relation

is exactly what we expect from the discussion of section 2, see eq. (2.15).

D Self-intersecting paths

We would like to argue that the Verlinde operators associated to self-intersecting paths

can be rewritten as a linear combination of products of operators associated to non-self-

intersecting paths. We provide a simple illustrative example. A full proof is outside the

scope of this work.

Be Mγ the operator valued 2 × 2 matrix which represents the transport of a degen-

erate field along a path γ. If γ is non-self-intersecting, there always is a pair of pants

decomposition of the surface such that γ is one of the curves cutting the tubes. In that

conformal block basis, Mγ is a simple diagonal matrix Ω2, not operator valued, and is the
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core of a Wilson loop operator, written schematically as FMγF . From the explicit com-

putation, we know that the Wilson loop gives − secπb2 cosh 2πbPγ . This is proportional

to the trace TrMγ = − exp πib2 cosh 2πbPγ . The determinant is detMγ = − exp 2πib2 Any

2 × 2 matrix satisfies the simple identity M + M−1detM = TrM . Hence we can write

Mγ = TrMγ + M−1
γ exp 2πib2.

Consider now a figure eight path γ, with a single self intersection point. If we cut

the path at the self-intersection, we decompose γ into two non-self-intersecting, fragments,

γ1 and γ2. There are now two possibilities. If γ1 and γ2 are homotopic to each other,

so that γ = 2γ1, then we can simply rewrite Mγ = M2
γ1

= Mγ1TrMγ1 + exp 2πib2, and

hence decompose the loop operator for γ as a linear combination of the square of the

loop operator for γ1 and the identity. If γ1 and γ2 are not homotopic to each other,

we can pick a pair of pants decomposition where both γ1 and γ2 cut tubes. Then both

Mγ1 and Mγ2 are actual matrices, not operator valued, and we can rewrite Mγ1Mγ2 =

Mγ1TrMγ2 + Mγ1M
−1
γ2

exp 2πib2. Hence the loop operator for γ is rewritten as a linear

combination of the product of loop operators for γ1 and γ2 and the loop operator for the

path γ1γ
−1
2 , which is not self-intersecting.

The analysis for more general self-intersecting paths is probably more complicated.

If we could treat the operator valued transport matrices as normal matrices, it is easy

to replace each self intersections with linear combinations of the two possible ways to

recombine the path without self intersection. It possible that a judicious choice of pant

decompositions may allow one to ignore the operator nature of the coefficients of the

transport matrices. If this were not the case, the operator ordering problems would give

extra commutator terms. The commutators between functions of a and operators shifting

a by multiples of ~b would be subleading in the ~ → 0 limit. Hence the relations we seek

would be valid at least in the undeformed gauge theory.

E N = 4 SYM: an explicit check

Here we compare the results of section 5 with the explicit gauge theory expressions of the

Wilson and ’t Hooft loop operators, for the case of SU(2) N = 4 SYM on S4, determined

in [4, 26]. This provides an extra check of our choice of overall normalization of the

loop operators.

The N = 4 SYM partition function on S4 is a product of an instanton sum, a classical

contribtion, and a one-loop factor (which in this case happens to be trivial). The combined

result reads [4]

ZS4

N=4
=

∣

∣

∣

∣

1

η(q)

∣

∣

∣

∣

2 ∫

t

da
∣

∣e2πiτa2 ∣
∣

2
=

(

1

4τ2

)1/2∣
∣

∣

∣

1

η(q)

∣

∣

∣

∣

2

, (E.1)

where η(q) is the Dedekind η-function and with q = e2πiτ . The above gauge theory partition

sum coincides with the partition function of c = 25 Liouville theory on T 2. It is invariant

under SL(2, Z) transformations, generated by τ → τ + 1 and the S-duality map

τ → τ̃ = −1/τ . (E.2)
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As shown in [4], the Wilson loop expectation value (normalized such that the Wilson

loop in the trivial representation equals to 1) takes the form

〈Wj〉 =
√

4τ2

∫

t

da
∣

∣e2πiτa2 ∣
∣

2
j
∑

p=−j

e4πipa =

j
∑

p=−j

e
2πp2

τ2 (E.3)

This result matches with our prescription in section 5.1, based on the Verlinde loop oper-

ators of Liouville CFT on T 2.

We now compare the gauge theory result (E.3) with the m → 0 limit of our expres-

sion (5.28) for the ’t Hooft loop in the N = 2∗ theory. The action of the ’t Hooft loop

with general j of the N = 4 theory was determined in (5.11), and indeed, H1/2 of the

N = 2∗ theory (5.23) reduces to (5.11) in the m → 0 limit. Then, adopting the same

overall normalization as above, eqs. (5.11) and (5.28) yield22

〈Hj〉 =
√

4τ2

∫

t

da e2πiτa2
j
∑

p=−j

e2πiτ(a+p)2 =

j
∑

p=−j

e
2πp2|τ |2

τ2 (E.4)

Here we used that the chiral partition function is given by Z(a) = e2πiτa2
/η(q), and

normalized the result by dividing by the S4 partition sum (E.1), as prescribed. Eq. (E.4)

is manifestly S-dual to (E.3), since 1/τ̃2 = |τ |2/τ2.
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